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The aim of this note is to give a glimpse of how methods
and concepts from algebraic geometry (in particular, from
computational and real algebraic geometry) can be used
to analyze standard models in molecular biology. These
models occur in systems and synthetic biology, which fo-
cus on understanding the design principles of living sys-
tems. The past ten years have experienced an intense ac-
tivity in the field and a rapidly growing literature. In turn,
this application has challenged the current theory, mainly
in the realm of real algebraic geometry.

Some Background on Chemical

Reaction Networks

In chemical reaction network theory, and in particular
in the study of (bio)chemical reaction networks in bio-
chemistry, the input consists of a finite number of chem-
ical species together with binding and unbinding reac-
tions among them. The goal is to understand the evolu-
tion of the concentrations of these chemical species over
time. This evolution is usually modeled by means of
an autonomous system of ordinary differential equations
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depending on kinetic parameters. In particular, a standard
modelization is by means of what is called mass-action ki-
netics, that we briefly recall below. We refer the readers to
the surveys [6, 7] and Chapter 5 in the book [5], as well as
the book [9], for the history, basic definitions, examples,
and important results, with an extensive bibliography. To-
gether with Elisenda Feliu, we expect to complete an intro-
ductory book for students by 2021.

Before giving the general definitions, we introduce an

important biological mechanism. It is a small network,
but we will see that even in this basic case the number of
variables and parameters involved makes it difficult to deal
with.
The phosphorylation cycle. Below is the directed graph
(or digraph) associated with the phosphorylation of a pro-
tein (considered the substrate and denoted by S;) by
means of a kinase enzyme (another protein denoted by E),
which “helps” the substrate to acquire a phosphate group
(not modeled) in a binding site and get transformed into a
phosphorylated substrate (denoted by S;) via an interme-
diate species (denoted by ES):

So+E—ES, 5'S, +E, (1)
kott
€01’1
- Ccat
Sl +F<—FSl bd S()+F
Coft

The second connected component of this digraph repre-
sents the emission of the phosphate group from S;, which
is then transformed back to Sy by means of a phosphatase
enzyme (another protein denoted by F), via another inter-
mediate species (denoted by FS;).

In this scheme we have represented six chemical species
(So,S1,E,F,ESy, FSy) and six so-called complexes formed
with these species. Complexes are at the nodes of the di-
graph (1) corresponding to the interactions among species
(So + E,ESy, S, + E,S; + F,FS1,Sy + F). The six di-
rected edges represent the chemical reactions and are la-
beled with positive constants termed reaction rate constants.
Once we give an order to the species (for instance, as we
enumerated them above), we can identify the complexes
with nonnegative integer vectors in Z° (that is, e; + e =
(1,0,1,0,0,0),es,e, + e3,e, + ey, €4,€, + €4, respectively).
There are two monomolecular complexes consisting of
each of the intermediate species ES,, FS; and four bi-
molecular complexes. Enzymes E, F speed up the transfor-
mation of the other proteins without being incorporated
in the final products of the process. This is crucial in the
transport of energy and the regulation of metabolism in
the body.

As we mentioned, we are interested in understand-
ing the evolution of the concentrations of the chemical
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species. These concentrations are usually denoted with
lowercase letters (sq, S;, ¢, f,eSg, fS1, respectively) or just
with Xxq,...,xs. However, it is good to keep the original
notation when studying (bio)chemical reaction networks,
so as to have quick visual information of the role played
by each of the (bio)chemical species. Mass-action kinet-
ics associated to this network with positive rate constants

kons - » €cat yields the following polynomial autonomous
system of ordinary differential equations:

% = —kon X1X3 + Kogf X5 + leat X6

% = —Con X2X4 + Kcat X5 + €cat Xe»

% = —kon x1X3 + (Koft + Keat) Xs,

% = —Con X2X4 + (oft + cat) Xe» (2)

B o knri = (ko + ka5

% = GonX2X4 — (Cott + Ceat) Xe-

This is a system of the form Z—): = f(x), with f = (f1,.., f5)

and any f; € R[xy, ..., X¢] is a polynomial with real coeffi-
cients. It is straighforward to check that

f1+f2+f5+f6=0’ f3+f5=0, f4+f6=0.

As we will argue later, for any initial value x(0) there is a
solution curve x = (X, ..., X¢) defined forall ¢t > 0. This im-
plies that there exist constants T = (T3, T;, T3) such that the
following linear conservation laws are valid for any non-
negative t:

x1+x2+x5+x6=Tl,x3+x5=T2,x4+x6=T3.

These three linear conservation constants (or total amounts)
are usually denoted by S;.¢, Eiot, Frot, T€sSpectively, because
they represent the total amounts of substrate, kinase, and
phosphatase. Moreover, if x(0) € R, we have that T €
R3,. Thus, R® is foliated by the parallel translates of the
3-dimensional linear subspace

S={x€RE : x; + X5+ X5+ X5 = X3 + X5 = X4 + X¢ = 0},

which contain the trajectories.

We can easily describe in this case the (algebraic variety
of) constant solutions V(f) = {fi(x) = --- = fs(x) = 0}.
The points of V(f) are known as the steady states of the
system and can be described by the vanishing of the three
following binomials:

{x6 — K3 X1X3, x5 — Ky X1X3, X3%4 — Ko X1X3},  (3)

where K, K, K, are rational functions of the given six re-
action rate constants x = (Kon, Koffs -+ » € cat) Which are de-
fined over the whole positive orthant, i.e., for all x € RS,,.
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For instance,
kOI’l

= (Kot + kear)

is the inverse of the so-called Michaelis—-Menten constant.

Mass-action kinetics systems enjoy the following impor-
tant property: both the positive orthant and the nonneg-
ative orthant (RS, and RS, in this case) are forward in-
variant for the dynamics. This means that if at time 0 all
the concentrations are positive (resp., nonnegative), they
will remain positive (resp., nonnegative) for any positive
time. This is something desirable if we are to model the
evolution of the concentrations of chemical species. The
trajectory x = (xy, ..., Xg) starting at a point x(0) € R, will
thus be confined to the so-called stoichiometric compatibility
class, or S-class for short:

B0y = (S+x(0) N R,

K,

A major object of study, as we will explain later, is the in-
tersection V(f) N B for a positive initial value, that is,
the steady states in each S-class containing a positive point.
To understand this intersection, one could parametrize the
linear variety S+ x(0) and replace this parametrization into
the equations defining V(f), but this will produce a loss in
sparsity. Instead, in this case we can easily find a rational
parametrization of V(f) N RS, from the binomial descrip-
tion (3):

R, — V(H)NREx, (4)

X1X3
(x1,X3,%4) +—> (xl,KOx—,x3,x4,K1x1x3,K2x1x3).
4

So, any concentration vector at steady state can be ration-
ally described in terms of the concentrations of the sub-
strate S, and the concentrations of the enzymes E and F
at steady state. In this case, there is a single positive steady
state in any S-class which intersects the positive orthant,
for any choice of the nine positive parameters (x, T), but
even in this simple case, this is not an easy computation to
do without further tools. The intersection V(f)NRE,NEBy()
can then be described as follows:

{x S Rgo . X1X4 + KO X1X3 + (Kl + Kz) X1X3x4 - Tl X4 =

X3 +K1X1X3—T2 = Xy +K2x1X3—T3 = 0}

Our point of view is that we have a 9-dimensional family
of ODE systems (composed of a 6-dimensional family of
steady state varieties and a 3-dimensional family of trans-
lates of S) and we aim at developing tools to understand
the different qualitative behaviors as we move the parame-
ters, based on the structure of the reaction network. Of course,
this study is also useful to understand quantitatively each
particular system.

We will use the following usual representation of the
phosphorylation cycle (1). It will be depicted as in Fig-
ure 1.
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So S;
F

Figure 1. One-site phosphorylation cycle.

Note that the intermediate species and the reactions in-
volving them as well as the six reaction rate constants are
omitted.

General definitions. The input data of a chemical reaction
network is a finite labeled digraph G = G(X,Y, R, x) with
m nodes and r directed edges, where X = {Xi,...,X,} is a
finite (numbered) set of species, Y = {y;,...,yu} C Z%, is
a finite (numbered) set of complexes on these species that
label the vertices of G, and R is the set of edges (y;,y;) of G
(also denoted by y; — y;), which represent the reactions
between pairs of complexes. The entries of the positive
vector x = (x;; : y; = y; € R) € R{, label the edges
and are called reaction rate constants. Complexes are clas-
sically represented as nonnegative integer combinations of
the species, as we had in (1), and we also will think of them
as vectors in Z%,.

Our variables x = (xy,...,x,) will be the (respective)
concentrations of the species, a continuous approximation
that makes sense, for example in the phosphorylation cy-
cle where chemical species represent different molecules,
when the number of molecules per unit volume is high.
When this number is small, stochastic modeling is used
instead of the deterministic mass-action ordinary differen-
tial equation modeling that we now define. Note that a
complex y; gives rise to a monomial in the concentrations
of the chemical species x¥i = x}" x5 - x;".

Definition 0.1. Mass-action kinetics specified by a chemical

network G = G(X, Y, R, x) gives the following autonomous

system of ordinary differential equations in the concentra-

tions (x;, X5, ..., X,) of the species, as functions of time ¢:

% = Z Kij X7 (Y — yi)- (5)
Yi—VjER

Then, for each coordinate i € {1,...,n},
dx;
d_tl = filx),

where fi, ..., f, are polynomials in R[x, ..., X, ] which carry

combinatorial information from G.

A direct consequence of the form of the differential
equations in (5) is what we observed in the case of the
phosphorylation cycle. For any trajectory x : I — R" de-
fined in an interval I, the vector Z—x lies for all t € I in the

t
stoichiometric subspace S. This is the linear subspace of R"
generated by the differences y; — y;, which record the net
production of each species in the corresponding reaction
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Yi = Yj:

S =(yj=Yilyi=yj€R). (6)
Assume S has dimension n—s and is defined by the vanish-
ing of the linear forms ¢, ..., €5 € S*. Thus, any trajectory
x defined in I is contained in a parallel translate

Sp = {xeR" : 6,(x) =Ty, () =T}, (7)

where T = (Ty, ..., Ty) is a vector of total amounts. We have
that ¢;(fi,..., f) =0 forany i = 1,...,s. In general, any lin-
ear dependency among fi, ..., f, gives rise to a linear first
integral, which restricts the dynamics of the system to lin-
ear varieties and reflects the biochemistry of the network.

Another consequence of the form of the differential
equations in (5) is that both the positive orthant R%, as
well as its closure RZ, are forward invariant for the dy-
namics, for any mass-action system. Thus, any trajectory
x : I —» R" starting at a nonnegative point is contained in
an S-class, which is the intersection of a linear variety St
with RZ,. When there exists a linear form ¢ € S* with all n
coefficients positive, S-classes are compact and the system
is called conservative. Like in the case of the phosphoryla-
tion cycle, trajectories are defined for any positive time (in
this case, ¢ = (7 + x5 + X5 + Xg) + (%3 + X5) + (x4 + Xg¢)
is such a linear form). All the networks we will consider
in this note are conservative, so to ease the notation, we
will assume from now on that trajectories are defined for
any t > 0. In this case, trajectories starting in the nonnega-
tive orthant are confined to polyhedra, which are compact
manifolds with boundary, contained in the boundary of
the orthant and carrying combinatorial information from
the network G.

Definition 0.2. The steady state variety V(f) of the kinetic
system (5) equals the zero set of fi, ..., f,. Any element of
V(f) is called a steady state of the system. We denote by
V(f)so (resp., V(f)so) the positive (resp., the nonnegative)
steady states.

Steady states are essential ingredients in the study of
the dynamics of (5). Trajectories do not need to converge
when t — o0, but if they do, the limit point is a steady
state. It is well known that as polynomials are continu-
ously differentiable functions, if all eigenvalues of the Ja-
cobian J(fi, ..., f,,) of the system at a steady state x* € V()
have negative real part, then x* is locally asymptotically
stable, that is, nearby trajectories converge to it. When
S # R", there are linear dependencies among the poly-
nomials fj, ..., f;, and so at least s eigenvalues are equal to
0 (and there might be others). Therefore, we say that x* is
a stable steady state if the remaining n — s eigenvalues have
negative real part. Hopf bifurcations are defined similarly,
from the standard definition. Also, a steady state is said to
be nondegenerate when the rank of J(fi, ..., f,,) equals s.

Another important dynamical property is the existence
of at least two stable positive steady states in the same
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S-class, that is, with the same total amounts T for some T.
In this case, the system is said to be bistable. Bistability is
interpreted as the mathematical counterpart of biological
decision making, even if the dynamical systems are deter-
ministic. A necessary property for the existence of bistabil-
ity is the occurrence of more than one positive steady state
in the same S-class. When this is the case, the system is
called multistationary.

Note that this is not reflected in the notation, but the
polynomials fi, ..., f,, depend on the parameters x. We can
look at (5) as a family of polynomial autonomous ODE's.
In fact, we will view the total amounts T in (7) also as
parameters.

Definition 0.3. A reaction network G is said to have the ca-
pacity for multistationarity if there exists a choice of ther +s
parameters (x, T) for which the cardinality of the intersec-
tion of V(f) with the positive points in S7 (or with the pos-
itive points in the corresponding S-class STNRY) is at least
two. If x*, x** are distinct positive points in V(f) N St for
some value of (x, T), we say that they are two stoichiomet-
rically compatible positive steady states (denoted by scpss)
and that (x, T) are multistationarity parameters.

Some Important Biochemical
Reaction Networks

We quickly summarize some important signaling path-
ways that model reactions inside the cell.

0.1. n-site phosphorylation cycle. Phosphorylation of a
substrate can occur in many binding sites and there are
many mechanisms modeling a multiple phosphorylation-
dephosphorylation cycle. Multisite phosphorylation plays
important regulatory roles in the cell and it is related
to multiple disorders. There is an important body of
work on the mathematics of phosphorylation systems,
which belong to the so-called post-translational modifi-
cation systems, consisting of diverse configurational trans-
formations of the proteins after they have been produced.
Phosphorylation of a substrate typically activates it, which
means that it can “transmit information” by participating
in other reactions.

Similar to the case of a single phosphorylation site we
considered before for n = 1, the sequential distributive n-site
cycle is represented in Figure 2.

E E /E\‘
/> ~
S() S1 S2 Sn—l Sn
~_— —— ~_
F F F

Figure 2. n-site phosphorylation cycle.

This reaction network consists of 3n+ 3 variables, 4n+2
nodes, and 6n reactions (and so 6n reaction rate constants).
For any n, dimS* = 3, so there are always three total
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conservation constants Sy, E¢ot, Fior. Thus, the total num-

ber of parameters is 6n + 3. We will explain below why

we can prove general results for these networks even as the
number of variables and the number of parameters grow

linearly with n.

The nice mathematical paper [20] initiated a series of
further developments, with clever ad-hoc computations
that involve an algebraic perspective. Many results are
known on multisite sequential distributive phosphoryla-
tions, collecting work developed through several articles in
our references and the references therein, as well as other
very recent work that we could not include in the bibliog-
raphy due to a limitation on the number of items. How-
ever, many questions are still open for the sequential dis-
tributive n-site cycle, even for n = 2. We detail some of
these questions together with some known results (unluck-
ily, without precise references due to size limitation in the
bibliography):

1. When n > 2, the n-site system has the capacity for
multistationarity.

2. When n = 2, the multistationarity region is described
by means of a suite of recent techniques from real alge-
braic geometry to determine the signs of a multivariate
polynomial over the positive orthant.

3. [Itis not known, even for n = 2, if the system can have
oscillatory solutions (but this is not possible for many
simplified models). Oscillations do exist in mixed
mechanisms, where for instance the dephosphoryla-
tion is processive instead of distributive, which means
that the first (or the second) component of the di-
graph is instead assumed to be of the form:

Kon .

- kcat kcat
So+E<—ESO g ESl s Sz+E,

kot

where ES, ES; are intermediate species. Note that the
species S; of the singly phosphorylated phosphate do
not occur in this component.

4. There are quite explicit open sets in parameter space
where the number of scpss is n for n odd and n+1 for
n even.

5. Roughly “half” of these n or n + 1 scpss can be stable
(and the other “half” unstable).

6. Anupper bound for the number of scpss is 2n—1, and
it is conjectured that indeed this bound is attained,
but this has only been demonstrated for n < 4.

0.2. ERK pathways. The Ras-Raf-MEK-ERK pathway is a
cascade of phosphorylation of proteins in the cell that
communicates a signal from a receptor on the surface of
the cell to the DNA in the nucleus. In a cascade, the phos-
phorylated substrate in one layer acts as an enzyme in the
next layer. ERK stands for extracellular signal-regulated
kinase, which is activated and then controls downstream
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responses, such as cell division. Figure 3 shows a partial
reaction network of this pathway, where E = Ras, and Sy=
Raf, R=MEK, Ry=ERK are the unphosphorylated forms of
the proteins, which can be phosphorylated in two sites
each. Mutations in these proteins were studied in relation
to the occurrence of cancer. The number of variables of

E
/\
So S
____—
F,

s, s,
/\ /—\
P

F, F,

-

e~
F; F;

Figure 3. Three-layer cascade.

this network (including the concentrations of the 10 inter-
mediate species not depicted) is equal to 20, 21, or 22, de-
pending on how many of the phosphatases F;, F,, F; are
equal, and there are accordingly five, six, or seven total
amounts. Moreover, the number of reaction rate constants
is 30. These are really big numbers to deal with in a nonlin-
ear system. It is known that the associated system has the
capacity for multistationarity and there are oscillatory solu-
tions. Algebro-geometric methods can give further insight
on this important signaling cascade. We refer the reader
to the article [16] for a review of key biological questions.
The emergence of multistationarity and oscillations in sub-
networks of a different model of ERK regulation where
only one layer of the cascade is considered but the two
phosphorylation sites are distinguished has been studied
in [15].

Cellular compartments. Figure 4 features a simplified net-
work which is composed of two modules which are mono-
stationary acting on different cellular compartments. Both
modules in the nucleus and the cytoplasm of the cell are
the phosphorylation cycles with one binding site that we
discussed before. Moreover, it is assumed that there could
be linear reactions between similar species, like S¢ < S
(or S¢ — S), but also between corresponding intermedi-
ate species (which are not depicted) through linear shut-
tling reactions. This “coupling” of biological systems, spa-
tially organized, can produce emergent complex behav-
ior, in particular, multistationarity. Several mathematical
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Figure 4. A compartment model.

tools are used in [18] to analyze these models and identify
minimal subnetworks which are bistable, but these tools
also require an intensive parameter sampling and simula-
tion.

There are many other important mechanisms in bio-
chemistry usually modeled with mass-action kinetics, in-
cluding other compartmental models, different types of
cascades, models used in immunology introduced by
McKeithan in a 1995 PNAS article and mathematically
studied later by Sontag, or bifunctional enzyme models
in bacteria introduced by Shinar and Feinberg in a 2010
Science paper. These last models show an interesting prop-
erty called Absolute Concentration Robustness because the
concentration of one of the regulatory proteins has a con-
stant value at any positive steady state, independently of
the S-class.

Mass-action kinetics modeling in other frameworks.
The basic question of which autonomous polynomial dy-
namical systems dx/dt = f(x) in n variables (X, ..., X,)
come from a chemical reaction network under mass-action
kinetics has been answered by Hars and Téth in 1979.
The necessary and sufficient condition is that each mono-
mial with negative coefficient in each f; is divisible by
X;. This restriction is satisfied by the the oscillatory Lotka-
Volterra equations and other standard models in ecology,

LN . dx
but not by the “chaotic” Lorenz equations d—tl = ax,—ax,,
de dz
= T T Xy — XX = XX Bx3, where a, 3, y are
positive, due to the existence of the negative term —x;x;

in f5.

Many models of population dynamics in epidemiology,
like the basic SIR model, can also be realized as arising
from a reaction network with mass-action kinetics, as well
as models for gene regulation.

When all the complexes are monomolecular, that is,
consists of a single species, we have that m = n and the
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resulting mass-action dynamics system (5) associated to
the corresponding digraph G = (X, X, R, x) is a linear sys-

tem:
dx

= = —L©)x (8)
where £(G) € R™" is the Laplacian matrix of G:
kij’ Xi d X] (S R,
(~£©@y; =1 * N X ERIZ),
- Z kip, i=7].
X;—>X,€eR

The description of the kernel of this matrix is a beautiful
match of linear algebra with combinatorics, which goes
back to Tutte, known as the Matrix-Tree Theorem [19].
When G is strongly connected, that is, when for each pair
of nodes in G there exists a directed path joining them, the
Laplacian matrix has rank n—1 and there is a positive vector
generating its kernel, where each entry is combinatorially
expressed as a sum of certain monomials in the reaction
rate constants x with coefficient 1. For many nonlinear
mass-action kinetics systems, taking advantage of this pos-
itivity with respect to certain embedded linear networks
yields interesting explicit results. However, the global dy-
namic behavior of nonlinear mass-action kinetic systems
is far from the linear case and mostly an open question.

Some Results

Some recent work on biochemical reaction networks.
We summarize now some recent results obtained using
algebro-geometric techniques about special families of sys-
tems usual in biochemistry.

Together with Mercedes Pérez Millan, we recognized in
many relevant biochemical networks, including all those
we briefly presented in this note, what we called a MESSI
structure. The main ingredient is the existence of a partition
of the sets of species into a subset of intermediate species
(which could be empty) and several nonempty subsets of
core species, together with axioms that restrict the confor-
mation of the complexes (which are at most bimolecular)
and the kind of reactions that are allowed. This partition is
in general natural, according to the function of the differ-
ent species in the network, and features several underlying
linearities (which are not independent, due to the interac-
tion of the intermediate species).

Recognizing this structure allowed us to prove general
results based on the combinatorics of digraphs associated
to the original digraph. For instance, we give sufficient con-
ditions to ensure the existence of a rational parametrization
of the steady state varieties like the one in (4), that can be
obtained algorithmically. As we mentioned, the fact that
the coordinates of this rational function are well defined
over the positive orthant ultimately relies on the Matrix-
Tree Theorem. It is important to note that a “generic” al-
gebraic variety does not admit a rational parametrization,
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so this is a very special property that allows us to reduce
the number of variables. For instance, in the case of the
phosphorylation cycle we are led to study polynomials in
three variables for any value of n. In the case of cascades,
however, the dimension of the steady state variety V(f) in-
creases with each layer. We can also give easily checkable
combinatorial conditions on G and its associated digraphs
that ensure persistence of the system, which means that any
trajectory starting in the positive orthant must remain at a
fixed positive distance (depending on the trajectory) from
the coordinate hyperplanes in R". All MESSI sytems are
conservative and it is possible to find linear forms in S*
with coefficients 0,1 like those in (6), and give sufficient
conditions for these forms to be a basis of linear relations
among the polynomials fi, ..., f,. Our work was built on
several previous articles, in particular, the pioneering ar-
ticle [19] by Thomson and Gunawardena and the inter-
esting article [10] by Feliu and Wiuf on the elimination
of intermediate species, plus previous axiomatizations by
Gnacadja.

We can also give sufficient conditions to ensure the ex-
istence of an explicit monomial parametrization, like in the
case of the phosphorylation cycle. Thus, V(f). is a trans-
late of a toric variety for any value of x, and we can algo-
rithmically decide the capacity for multistationarity. This
is based on results in [13] that take into account the re-
lation of the oriented matroid associated with the expo-
nents of the monomials in the parametrization and the
oriented matroid associated with a basis of linear forms
of St. Moreover, it is possible to construct (some) multi-
stationarity parameters and exhibit pairs of stoichiometri-
cally compatible positive steady states.

A different approach to identifying multistationarity pa-
rameters is presented in [4], based on Brouwer degree the-
ory combined with the existence of parametrizations. It
is possible to quite explicitly describe open regions in the
space of parameters x for which either (x, T) is monosta-
tionary for any T, or there exist some (a priori undeter-
mined) parameters T for which (x, T) is multistationary.
This is based on the sign of a critical function. The use of
parametrizations to reduce the number of variables and
structural reductions of the reaction network is also ap-
plied to determine the stability and the existence of Hopf
bifurcations, like for instance in [15]. The beautiful Routh-
Hurwitz theorem gives conditions on the signs of particu-
lar determinants built with the coefficients of a univariate
polynomial, to deduce the fact that all its roots have nega-
tive real part, without computing (which is in general not
possible) or approximating the roots. This is particularly
useful for studying the characteristic polynomials of the Ja-
cobians of the polynomials fi, ..., f in (5) depending on
x at a steady state (which is in general implicitly defined)
and also to ensure the existence of Hopf bifurcations via
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a similar implicit criterion due to Yang, which again does
not need the computation of the roots. The question of
inheritance of oscillation in chemical reaction networks
with inflow and outflow reactions (0 - X; — 0 for any
i =1,..,n) is studied in the nice paper [1].

To give a general framework to find open regions of mul-
tistationarity jointly in the space of all parameters (x, T)
polyhedral methods have been introduced in [3]. These
are based on degeneration methods a la Viro. The theoreti-
cal results are adapted to make them amenable to effective
computations in a variety of specific models of biochemi-
cal systems for which there exist explicit parametrizations
of the corresponding steady state varieties. Once the inter-
sections with the S-classes V(f)NRZ, N Bg) in the positive
orthant are described as the zero set of s sparse polyno-
mials in s variables, where s is the codimension of the S-
classes (similarly to the case of a single phosphorylation),
we record the configuration A of the exponents occurring
in them and the matrix C of coefficients of these polynomi-
als. The sought open multistationarity regions arise from
simplices that lie in a single regular (mixed) subdivision of
A, which are jointly decorated by C. This is applied to give
open multistationarity regions for the sequential distribu-
tive n-site phosphorylation cycle for any n. We refer to [11]
for a simple example and basic definitions, together with
an explicit application to cascades with any number of lay-
ers. These degeneration tools are also applied to describe
open regions where there are n (or n + 1) scpss for any n
in [12], where we also provide a basic systematic imple-
mentation in a computer algebra system.

A different line of attack is presented for instance in [14],
like in some other previous papers, where tools from nu-
merical algebraic geometry are used to describe the “geog-
raphy” of the space of parameters in particular enzymatic
systems. Robustness of multistationarity is measured in
terms of the size and the shape of the region where the
property holds, with an extensive sampling of parameter
points in an 8-dimensional space. Under realistic molecu-
lar assumptions, the size of the regions of interest is very
small. We will return to these ideas shortly.

It would be very useful to detect and study underlying
mathematical structures in other signaling pathways in sys-
tems biology.

Some theoretical results on polynomial equations that
emerged from this study. The question of multistation-
arity in dynamical systems arising from chemical reaction
networks is a question about the number of positive so-
lutions of systems of sparse real polynomials. This is ef-
fectively computable for a given system since the work of
Alfred Tarski (published in 1951) on quantifier elimina-
tion over the reals. There are many recent advances in the
implementation of these algorithms, but the complexity
is in general high and so the computations turn out to be
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unfeasible for parametric systems, even for networks of rel-
atively small size.

Nevertheless, the importance of the biochemical appli-
cations has led to theoretical advances on sharp lower
and upper bounds for the number of positive solutions
of systems of n real polynomial systems in n variables
with a fixed monomial structure. One first upper bound
is clearly the Bernshtein-Kushnirenko-Khovanskii bound
for the number of complex solutions with nonzero coor-
dinates for systems of Laurent polynomials in terms of the
mixed volume of their Newton polytopes. In the univari-
ate case, this bound is just the degree of the polynomial.
The simple Descartes’ rule of signs from 1637 gives a better
upper bound, which is sharp for instance for polynomials
having all roots real, and which implies that a real polyno-
mial with k monomial terms cannot have more than k —1
positive roots, independently of the size of the exponents
(that is, independently of its degree). A breakthrough re-
sult by Khovanskii proved that also in the multivariate case,
the number of positive roots cannot exceed a bound that
only depends on the number of monomials (and the num-
ber of variables), but not on the degrees. This bound is far
from sharp. There are some sharper particular results, but
the general question of finding a tight upper bound is out
of reach for the moment.

No general multivariate Descartes’ rule of signs is
known (not even a conjectural one). We recognized a par-
tial multivariate Descartes’ result giving conditions on a
sparse (generalized) polynomial system to have at most
one positive solution, in terms of oriented matroids associ-
ated to the exponents and to the coefficients of the system.
In fact, part of this result was hidden in a previous paper by
Craciun, Garcia-Puente, and Sottile in their study of con-
trol points for toric patches in geometric modeling. Our
work was built on results on chemical reaction networks
done by chemical engineers. In fact, in many fields of sci-
ence the analysis of parametrized systems by means of sign
vectors has a long history, for instance in market models
in economics or in the well-posedness of the input-output
relation of an electronic circuit in electronics.

There are sufficient conditions for the existence of a pos-
itive solution when no more than one exists for any value
of the parameters, based on degree theory. A very intricate
result has been obtained in the realm of chemical reaction
networks by Boros in 2019, building on work of Nachman
and Deng, showing the existence of positive steady states
for weakly reversible mass-action systems. It is mostly an
open question to find good lower bounds for the number
of positive solutions of general systems of sparse real poly-
nomials. Known results include for instance the study of
some specific systems by Sottile and Soprunova in 2006,
and the use of polyhedral and combinatorial methods by
Bihan, Santos, and Spaenlehauer in a beautiful paper from
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2018. The obtained lower bounds, based on degenera-
tions, are in general not sharp, as it is deduced from our
paper [2] on upper bounds via a new Descartes’ rule of
signs for polynomial systems supported on circuits (with
n + 2 monomials in n variables).

Moreover, the question about the precise number of
positive steady states for parametric systems with fixed
monomial structure can in theory be “solved” via the com-
putation of the finitely many chambers in the complement
of the discriminant of the system (in fact, plus other resul-
tant hypersurfaces corresponding to systems with a solu-
tion with a zero coordinate). We give now a concrete ex-
ample extracted from [8] not related to biochemistry, but
which is useful to visualize what we mentioned about the
regions with many positive roots being very small. We con-
sidered the following system of two polynomials in two
variables (x1, x,) depending on two parameters (a, b):

fila,b,x,y) = x°+ay’ -y =0, )
frla,b,x,y) = y* +bx*—x = 0.

The associated discriminant D € Z[a, b] satisfies by def-
inition the following property: D(a,b) = 0 whenever (9)
has a degenerate solution. As we move the parameters, the
only way of changing the number of real roots of the sys-
tem is when two complex conjugate roots merge, that is,
when we traverse the discriminant locus {D = 0}. We can
compute D via elimination of variables, for instance via a
Grobner basis computation. It is a polynomial of degree
90 with 58 monomials and huge integer coefficients! But
{D = 0} can be rationally parametrized and Figure 5 shows
a picture on a logarithmic scale of this curve in the (a, b)
plane.

Figure 5. There is a “hidden” chamber near the arrow.
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It is easy to see that for any choice of (a, b), the only solu-
tion to system (9) on the coordinate axes is the origin, and
this is a nondegenerate common root. Then, the signs of
the real solutions must also be constant in each chamber
in the complement of {D = 0}. It is then enough to pick
one point in each of the finitely many chambers and ap-
proximate its solutions. Taking parameters in each of the
visible chambers, we get either one or three positive roots.
But after amplifying the picture close to the arrow in Fig-
ure 5 around 1700 times, a new chamber is visible in Fig-
ure 6. One point that lies inside is (ﬁ, ﬁ) and we get that

the associated system (9) has five positive solutions! The
volume of this small region with the maximal number five
of solutions (an upper bound known a priori by previous
work by Li, Rojas, and Wang) is smaller than 5.701 - 107,

Figure 6. The colored chamber is visible after amplifying
around 1700 times.

Both theoretical results and computational methods
(symbolic as well as numeric) in (real) algebraic geometry
have to be streamlined to be able to get a hand on all the
“discriminant complement” chambers associated to fam-
ilies of real polynomials arising in biological models, to
predict the number of scpss. It is also a hard task to predict
from the structure of the network the possible number of
scpss which are stable. More generally, the ultimate goal is
to partition the parameter space into chambers containing
parameters whose associated ODE systems have the same
qualitative dynamic behavior.

A Small Summary

We gave a quick overview of recent results and some
challenges in the algebro-geometric study of biochemical
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reaction networks modeling signaling pathways in systems
biology. These networks give rise to quite diverse, but
not general, mass-action dynamical systems. Understand-
ing their structure allows us to prove theoretical results for
classes of models and to do computations for systems with
a large number of variables and parameters. These results
on the qualitative analysis of families of models can be
used to guide experimental design and in synthetic biol-
ogy.

Traditionally, these systems are analyzed by means of
numerical simulations combined with parameter infer-
ence or parameter sampling. However, many parameters
are difficult (or even provably impossible) to estimate, and
parameter values might vary depending on the environ-
ment and individual. Accordingly, algebraic geometry and
computational algebra tools are useful for understanding
the mathematical properties of networks and families of
steady state varieties, providing a global and qualitative ap-
proach to study the systems for all parameter values.

There are mathematical tools to address many of the
open questions, but for networks of interest the responses
tend to be too complex to be understood or computed.
This application has thus challenged current methods,
mainly in the domain of real algebraic geometry, and has
given rise to purely theoretical results on polynomial equa-
tions. New advances will require the combination of tools
from different areas in mathematics besides algebraic ge-
ometry (and its computational aspects), including dynam-
ical systems, discrete mathematics, data science, etc. and
of course, also from biochemistry.
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