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Superhuman Mathematics
How is breakthrough mathematics achieved? Here is one
example, from algebraic number theory.

In his 1987 paper “Deforming Galois representations,”
Barry Mazur observes that the geometric concept of a
smoothly varying complex family of representations of
a group has an arithmetic analogue. He sets up defor-
mation theory in the non-geometric setting of mod 𝑝
and 𝑝-adic Galois representations, and makes some inter-
esting observations about the relationship between arith-
metic deformation rings and Galois cohomology. By
1990, Mazur and Tilouine have raised a profound ques-
tion about whether a certain universal deformation ring
coming out of this theory is isomorphic to one of Hida’s
Hecke algebras. In 1993 Wiles uses new techniques in
commutative algebra to reduce a variant of this question
to a numerical criterion, and a year later, aided by Tay-
lor, he has pushed the strategy through. The semistable
Shimura–Taniyama conjecture (at that time often called
the semistable Shimura–Taniyama–Weil conjecture) fol-
lows, and hence, by earlier work of Ribet, Fermat’s Last
Theorem.

This is but one of very many examples where cross-
fertilization has occurred in mathematics. The breadth of
Mazur’s mathematical knowledge (he was initially a topol-
ogist) played a key role here. In a 2014 article [Maz14]
for the Math. Intelligencer, Mazur writes: “Reasoning by
analogy is the keystone: it is present in much (perhaps
all) daily mathematical thought, and is also often the in-
spiration behind some of the major long-range projects in
mathematics.”
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One might hence ask the following question: if one hu-
man had an understanding of all of modern pure mathe-
matics simultaneously, how much further would they im-
mediately be able to see? How many insights are there
which are needed to unblock one field, but which have al-
ready been made in another?

This question can of course be dismissed as a thought
experiment. Perhaps it is the kind of thing which philoso-
phers might muse over, but it is the year 2020 and pure
mathematics is much too big for one human to compre-
hend.

However, it is the year 2020 and hence we have com-
puter proof systems which are now in theory capable of
understanding all of modern pure mathematics. So why
is our community not teaching it to them? This is entirely
within our grasp, and we have absolutely no idea what will
happen when we do.

1. Teaching Mathematics to Humans
Let us look at the way pure mathematics is learnt by hu-
mans, from undergraduate to PhD level.
1.1. The basics. Three key concepts in pure mathematics
are the definition, the theorem statement, and the proof. We
will talk more about this trichotomy later on, but for now
let us focus on the concept of proof. A course introducing
the formal notion of proof might cover concepts such as
sets, functions, and binary relations, and basic theorems
about these objects will be carefully proved. For example,
there might be a proof that distinct equivalence classes for
an equivalence relation are disjoint. There are many ways
that one can attempt to teach this to undergraduates. Re-
cently I have become fond of a method where I bring a set
of around 100 plastic shapes coloured red, yellow, green,
and blue into class. Two shapes are defined to be equiv-
alent if they have the same colour, and it is not hard to
convince the students that this is an equivalence relation,
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and that the red shapes form an equivalence class, the blue
shapes form another, and so on. The fact that distinct
equivalence classes are disjoint is now obvious. However
this is an example, not a proof. The formal proof, which I
then go on to show the students, is a series of elementary
steps, each of which follows from the rules of logic or the
axioms of an equivalence relation.

In proofs such as these, we are operating very close to
the “machine” which drives formal mathematics—the ma-
chine which tells us that if 𝑃 is true, and if 𝑃 implies 𝑄,
then 𝑄 is true, and other such logical rules. This axiom-
based attitude continues to play an important role in sub-
sequent classes such as first courses in group theory, lin-
ear algebra, and real analysis. The real numbers might be
presented as a complete totally ordered archimedean field,
that is, a structure satisfying a list of axioms. Using only
these axioms, and the axioms of the foundational system
we’re working in (often set theory), we can build a basic
theory of real analysis from first principles. The theories
of sequences, limits, infinite sums, continuous functions
ℝ → ℝ, differentiation, integration, and so on can all
be carefully built from these axioms. Similarly, a lecturer
presents the axioms of a group in a first course on group
theory, and from these axioms we can build the theory
of subgroups, normal subgroups, group homomorphisms,
kernels, images, and quotient groups, and prove the first
isomorphism theorem for groups. At this stage in the de-
velopment ofmathematics, every proof can be chased right
down to the axioms of the system we are considering, and
students are expected to learn from such courses thatmath-
ematics can be done in this way. Much (but, as we are
about to see, not all) of undergraduate pure mathematics
is of this form.
1.2. Developing intuition. After a while it becomes in-
convenient to do mathematics in a purely axiomatic fash-
ion. For example, proving that if we remove a finite set
of points from ℝ2 then the resulting topological space is
still path connected could of course in theory be done from
the axioms, but in practice, rather than attempting to write
down the function defining a path between two arbitrary
points in the space, one would just draw a picture. The
same is also true when proving basic results about contour
integrals in complex analysis—there are several “proofs by
picture” in a typical development of the theory. The con-
cept of a simple closed curve in the plane having an inside
and an outside will often be taken as read, although very
few students will have seen a proof of the Jordan curve the-
orem at this point in their mathematical education. Over
time, students learning mathematics begin to understand
our unwritten rules of “what is allowed in practice.” One
is reminded of the apocryphal story of a student asking
their professor whether the fact just presented to the class

as “obvious” was indeed obvious, and the professor going
into deep thought to emerge 20 minutes later with the re-
ply “yes.” By this point in the development of a student’s
education, lecturers are expecting the students to “learn to
fly.” Arguments in lectures may take place high above the
axioms, with technical details being dismissed as obvious
or easy to verify, and left to the reader (perhaps with some
hints). This is the beginning of what Terry Tao [Tao09] has
called the post-rigorous stage of mathematics. To borrow a
phrase from computer science, students begin to learn the
intuitive “front end” of mathematics.
1.3. PhD research. Those students who convince us that
they can steer their mathematical arguments correctly are
rewarded by being given PhD places. The prize for this
“levelling up” is that they are allowed access to the mathe-
matical literature, and from now on they can assume any
result they like, as long as it is published in a reasonably
prestigious journal and their advisor believes it. A typical
PhD thesis in puremathematics will contain new proofs of
results in a given theory. In my personal case, this theory
was the theory of 𝑝-adic Galois representations attached
to modular forms. By the time they graduate, a PhD stu-
dent will typically know many theorem statements con-
cerning the objects they chose to study, and may well have
contributed to this list of theorem statements themselves.
Again to borrow a phrase from computer science, the stu-
dent knows the interface to each object in their area of ex-
pertise. The student is allowed to assume any results in
the interface, and might well know how to prove some of
them—but possibly not all of them. For example, when I
was a PhD student, I had not read the details of the proof of
the theorem of Deligne which attached a 𝑝-adic Galois rep-
resentation to a modular form, a key result from the inter-
face to the theory of modular forms upon which my entire
PhD work was based. In fact, at that time there was only
really a sketch proof of the result in the literature. This was
not however a problem, because the proof of Deligne’s the-
orem was “known to the experts.” Students are expected
to get their own intuition of their area, and after a while
should have a feeling about what is accessible given known
results, and what requires genuinely new ideas.

In the rest of this article, I would like to discuss the idea
that computers can be taught mathematics in much the
same sort of way. I leave it up to the reader to decide
whether they would like to be involved, but what I do be-
lieve is that these computer systems are now here, that they
can eat mathematics, and that they will ultimately change
the way we do both teaching and research; furthermore,
the sooner these systems are noticed by mathematicians,
the sooner this will happen.
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2. A Brief Introduction to Interactive
Theorem Provers (ITPs)

Before we talk about computer proof systems, let us con-
sider a computer program which many of us are familiar
with: LATEX.

The computer program LATEX is a mathematical typeset-
ting system. Thirty years ago, only a small number of (typi-
cally young) mathematicians knew how to write LATEX files,
but now most of us do; this program is now the standard
typesetting system for mathematicians. If one runs the
LATEX program on a LATEX file, one of two things can hap-
pen. The file might contain errors, for example perhaps we
accidentally used a command in normal text mode which
is only valid in maths mode. In this case the LATEX editor
we are using will typically flag these errors and ask that we
fix them. But when all the errors are gone, the LATEX pro-
gram will compile the LATEX file, and the output will be a
(hopefully) beautifully typeset document. This document
is typically a pdf file nowadays, which can be read on a
screen, printed out, or of course sent to another computer
on the internet.

The computer program Lean is an interactive theorem
prover (ITP). A small number of (typically young) math-
ematicians know how to write Lean files. A Lean file can
contain definitions, theorem statements, and proofs—we
shall see examples later. Just as a LATEX file is likely to con-
tain some parts written in “maths mode,” a Lean file is
likely to contain some parts written in “tactic mode.”

If one runs the Lean program on a Lean file, one of two
things can happen. The file might contain errors, for ex-
ample perhaps not all the hypotheses of a theorem were
checked (or were true!) when it was applied. In this case,
the Lean editor we are using will typically flag these er-
rors and ask that we fix them. When all the errors are
gone, Lean will compile the Lean file, and the output will
be. . .nothing at all. When this happens, Lean believes that
all the definitions in your file make sense, and it believes
that all the proofs in the file are correct.1

Note that Lean is not (just) a programming language
like Python or C++ or Haskell. To give an example of the
difference: in Python you could write a program which
printed out the first 1000 prime numbers, or the first 1000
digits of 𝜋. In Lean you could write a proof that there are
infinitely many prime numbers, or a proof that 𝜋 was tran-
scendental.

1It is not strictly speaking true that the output is nothing at all—the actual out-
put is a computer file, unreadable by humans, where each proof is represented as
a complicated graph. The proofs in this form (terms in a type theory) can be in-
dependently verified by typecheckers written in other languages and running on
other operating systems and other chipsets, to minimise the possibility that bugs
in Lean cause incorrect proofs to be accepted as valid.

Lean was written by Leonardo de Moura at Microsoft
Research, and is free and open source software which runs
on any modern operating system. It is one of many ITP
systems. Others include Coq, Isabelle/HOL, Mizar, Meta-
math, HOL Light, Agda, Arend, and there are at least 20
more; many of these are also free and open source, and
some are over 50 years old. All of these systems use slightly
different logical foundations, and it is hard to automati-
cally move a mathematical proof from one system to an-
other, for the same reasons that it is hard to automatically
translate a computer program from one language to an-
other. However the differences in these systems will not
concern us here. It suffices to say that essentially all of the
examples in this article can in theory be written in essen-
tially all of the ITP systems. Wewill focus on the Lean theo-
rem prover in the examples below, but this is only because
it is the system which I know best.

3. Teaching Mathematics to Computers
For the rest of this article, I would like to discuss the possi-
bility of teaching a computer pure mathematics, following
the same path as the way we teach it to humans. Let us
start with the basics. Earlier on, we mentioned three fun-
damentalmathematical concepts—the theorem statement,
the proof, and the definition. We will now see about how
Lean understands these concepts.
3.1. Propositions. First let us talk about general true/
false statements, a fundamental concept in mathematics.
As well as theorems, mathematicians are interested in con-
jectures, which are true/false statements which might be
believed to be true, but which are not proven. Here are
some examples of true/false statements:

• 2 + 2 = 4;
• 2 + 2 = 5;
• Fermat’s Last Theorem;
• The Riemann Hypothesis.

Two of these statements are true, one is false, and the
truth value of the Riemann Hypothesis is currently un-
known. Mathematicians do not really have a good word
for a general true/false statement. The Riemann Hypoth-
esis is called a conjecture, but it seems ridiculous to call
2+2 = 4 or 2+2 = 5 a conjecture. Note however that most
mathematicians use the words Theorem, Lemma, Proposi-
tion, and Corollary to express ideas which are formally the
same, whereas logicians use the word Proposition to mean
an arbitrary true/false statement. From now on we will use
the word Proposition in this way, meaning amathematical
statement which has a truth value, rather than one which
is definitely true. For example, 2 + 2 = 5 is a false Propo-
sition. We will capitalise Proposition to remind us of this
slightly non-standard usage.
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Here is an example of some valid Lean code which de-
fines a Proposition:

variables (X Y Z : Type)
(f : X → Y) (g : Y → Z)

open function

definition P :=
injective f ∧ injective g →
injective (g ∘ f)

This code defines a Proposition called P, stating that the
composite of two injective functions is injective. Note that
there is no proof here—we are just observing that the the-
orem statement can be formalised in Lean. The variables 𝑋 ,
𝑌 , and 𝑍 were initialised to be not sets but “types”; how-
ever, in this context the two ideas coincide, the only dif-
ference being a linguistic one where we speak about terms
x of a given type X and write x : X rather than speaking
about elements 𝑥 of a given set 𝑋 and writing 𝑥 ∈ 𝑋 . Note
finally that the arrow→ is used both as notation for a func-
tion, and for the concept ⟹ of implication.

Here is an example which shows that 2 + 2 = 5 is also a
Proposition in Lean:

definition Q :=
2 + 2 = 5

Just to reiterate: a Proposition is any true/false state-
ment.
3.2. Proofs. Creating a mathematical proof of a Proposi-
tion is like solving a puzzle, or a level of a computer game.
Let us look further at this analogy. In a sudoku puzzle, one
is presented with a partially filled-in grid of numbers and
asked to fill in the rest of them, subject to some axioms.
My first experience with sudoku was seeing levels of this
game in newspapers, and solving them with a pen. Solv-
ing a sudoku level in this way can be quite inconvenient—
any error may create quite a mess and might be difficult
to recover from. It is far easier to solve sudoku levels on
a phone app or a web browser, where errors can be erased
more efficiently, and experimental lines can be explored
and then painlessly accepted or rejected.

Many of us will have seen undergraduate work, written
in pen, which is also quite a mess. Lean offers a structured
environment where proofs can be created. As an example,
let us consider the proof of the Proposition that if 𝑓 ∶ 𝑋 →
𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are injective functions, then so is 𝑔∘𝑓. Let
us first run through the mathematical proof. By definition,
our task is to prove that if 𝑎, 𝑏 ∈ 𝑋 and 𝑔(𝑓(𝑎)) = 𝑔(𝑓(𝑏)),
then 𝑎 = 𝑏. By injectivity of 𝑓, we know that to prove
𝑎 = 𝑏 it suffices to prove that 𝑓(𝑎) = 𝑓(𝑏). Finally, the
assertion 𝑓(𝑎) = 𝑓(𝑏) follows from injectivity of 𝑔 and our
assumption.

We will go through a Lean proof of this Proposition be-
low. As one creates the proof using a Lean editor, one
can see Lean’s “tactic state,” representing the things Lean
knows at any point during the proof. For example, just af-
ter one has applied injectivity of 𝑓, Lean’s tactic state is the
following:

X Y Z : Type,
f : X → Y,
g : Y → Z,
f_inj : injective f,
g_inj : injective g,
a b : X,
hgf : (g ∘ f) a = (g ∘ f) b
⊢ f a = f b

Let us go through this tactic state. The current hypothe-
ses are listed above the “turnstile” ⊢, and the current goal
is stated after it. The first three lines say that𝑋 , 𝑌 , and 𝑍 are
types, and 𝑓 and 𝑔 are functions. The hypotheses f_inj
and g_inj are the assertions that 𝑓 and 𝑔 are injective.
The next line says that 𝑎 and 𝑏 are terms of type 𝑋 , which
is the type-theoretic way to say that they are elements of
the set 𝑋 . Our final hypothesis hgf is the assertion that
𝑔(𝑓(𝑎)) = 𝑔(𝑓(𝑏)), and our goal is to prove 𝑓(𝑎) = 𝑓(𝑏).

As one solves the level, i.e., builds the proof, in Lean,
the tactic state changes interactively, until it eventually be-
comes Proof complete. Just like theorem statements,
Lean’s tactic state can often be easily understood by math-
ematicians without any specialist knowledge of ITPs, be-
cause the notation used is close to standard mathematical
notation.

Here is a complete Lean file containing the proof, writ-
ten in Lean’s tactic mode, with comments (written in grey,
preceded by --, and ignored by Lean). If you are reading
this article in digital format, I invite you to interact with
this proof by clicking on this link, which will open up a
Lean editor within a web browser. This is most definitely
not the best way to interact with Lean—it will be slow (you
might have to wait for up to ten seconds for Lean to ini-
tialise and process the file on a fast PC, and far longer on
a mobile device; you also need to have some cookies en-
abled). But when “Lean is busy. . . ” finally turns to “Lean
is ready!” you can click around and see Lean’s tactic state
at any given point in the proof. If instead you install Lean
on your own computer, the same process will be lightning
fast.

-- need access to many useful tactics
import tactic

-- need injective functions
open function
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-- Let X, Y, Z be types and
-- let f : X → Y and g : Y → Z be
-- functions between these types
variables (X Y Z : Type)

(f : X → Y) (g : Y → Z)

-- Theorem: if f and g are
-- injective, then so is g ∘ f.
theorem injective_comp :

injective f ∧ injective g →
injective (g ∘ f) :=

begin
-- assume f and g are injective.
rintro ⟨f_inj, g_inj⟩,
-- We want to prove g ∘ f is
-- injective. So say a,b ∈ X and
-- assume g(f(a))=g(f(b)).
intros a b hgf,
-- We want to prove that a = b. By
-- injectivity of f, it suffices to
-- prove that f(a)=f(b).
apply f_inj,
-- By injectivity of g, it suffices
-- to prove g(f(a))=g(f(b)).
apply g_inj,
-- But this is an assumption.
assumption,

end

This tactic mode proof looks mildly intimidating
but basically comprehensible, in the same way that
\sum_{n=0}^{100}n^2 lookedmildly intimidating but
basically comprehensible before we learnt about LATEX’s
mathsmode. The tactics used in the proof such as intros
and apply perform basic logical moves on the tactic state,
and are not hard to pick up. The last line of the proof, the
assumption tactic, solves the goal 𝑔(𝑓(𝑎)) = 𝑔(𝑓(𝑏)) by
noting that it is equal to one of our assumptions, namely
hgf.

Anyone concerned about how such a triviality might
take five lines to prove might be interested in seeing the
same proof written in Lean’s “term mode”:

theorem injective_comp′ :
injective f ∧ injective g → injective
(g ∘ f) :=

λ ⟨f_inj, g_inj⟩ _ _ hgf, f_inj $ g_inj
hgf

This complete proof—shorter than the corresponding LATEX
proof—is far harder for a beginner to understand, and also
indicates something about what is going on under the
hood, namely that a proof in Lean is actually a function.

Indeed, Lean is a functional programming language. We
will not go any further into this issue here.

Below is another tactic mode Lean proof, this time of
the fact that if 𝑎 and 𝑏 are real numbers, then (𝑎 + 𝑏)3 =
𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3. Before we embark upon it, let us
consider what goes into a proof from first principles, as-
suming that the real numbers are a field. We first write the
left-hand side as ((𝑎+𝑏)(𝑎+𝑏))(𝑎+𝑏) or (𝑎+𝑏)((𝑎+𝑏)(𝑎+𝑏))
depending on what definition we are using for 𝑥3. Then
we apply left and right distributivity several times to ex-
pand out the brackets. If one does this whilst carefully
keeping track of all brackets involved, one will discover
that one now needs to apply associativity and commuta-
tivity of addition and multiplication 20 times or more in
order to turn the left-hand side into the right-hand side—
operations which a mathematician applies intuitively and
without comment. The full proof, using only the axioms
of a ring, seems to be at least 30 lines long, although the
exact number of axiom applications needed depends on
other foundational questions such as whether 3 is defined
to mean (1+1)+1 or 1+ (1+1). Here is a complete proof
of this result in Lean’s tactic mode:

import tactic -- tactics
import data.real.basic -- the real

numbers

example (a b : ℝ) :
(a+b)^3=a^3+3∗a^2∗b+3∗a∗b^2+b^3 :=

begin
ring,

end

The ring tactic is a high-level tactic, concealing tedious
low-level work and enablingmathematicians to operate us-
ing their usual interface, well above the axioms of a ring.
This tactic was implemented in Lean by Mario Carneiro, a
computer scientist, following the efficient Coq implemen-
tation by Grégoire and Mahboubi in [GM05] of a “classi-
cal” decision problem algorithm for commutative rings. It
has been indispensable for the subsequent development
of ring theory in Lean.

A general tactic mode proof will contain a mixture of
low-level and high-level tactics, corresponding to whether
the corresponding human proof is operating at axiom level
or well above the axioms.

Codewars (www.codewars.com) is a website contain-
ing programming challenges in many programming lan-
guages, including Lean. The Lean Codewars levels contain
many mathematical puzzles, ranging from easy questions
(proving that the sum of two odd numbers is even, for ex-
ample), to far harder ones involving finding all integer so-
lutions to the subtle Diophantine equations 𝑥2−37𝑦2 = 3
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and 𝑦2 = 𝑥3 + 11. Solving these harder problems involves
using a range of low-level and high-level tactics. Of course
one can also invoke theorems fromLean’s extensivemathe-
matics library, where various number-theoretic facts such
as quadratic reciprocity are already proved. We will say
more about Lean’s mathematics library below.
3.3. Definitions. As well as Propositions and proofs, sys-
tems like Lean can understand new mathematical defini-
tions. Many of the definitions in Lean’s maths library are
definitions of types or of terms. For example, the type ℝ is
defined to be the type of equivalence classes of Cauchy se-
quences of rationals, and the term 𝜋 is defined to be twice
the smallest positive zero of the cosine function. Groups,
rings, fields, manifolds, schemes, perfectoid spaces, and
many many other mathematical structures are all defined
to be types in Lean, and their definitions are all readable
to mathematicians. For example here is a definition of a
group in Lean:

class group (G : Type)
extends has_mul G, has_one G, has_inv G

:=
(mul_assoc :
∀ (a b c : G), (a ∗ b) ∗ c = a ∗ (b ∗

c))
(one_mul : ∀ (a : G), 1 ∗ a = a)
(mul_left_inv : ∀ (a : G), a−1 ∗ a = 1)

The “structural” part of a group (the multiplication,
identity, and inverse) is packed into the second line, and
the axioms follow afterwards. Given this definition, one
can now start to prove other basic results. For example
here is something which is proved very early on in the de-
velopment of the interface for groups—the proof that the
left identity coming from the axioms is also a right iden-
tity:

theorem mul_one (a : G) : a ∗ 1 = a :=
begin

-- exercise!
end

This exercise now becomes a puzzle. It is my experience
that certain undergraduates enjoy solving puzzles like this
in Lean, developing the basic theory of groups by complet-
ing levels of a computer game.

In 2012 Peter Scholze introduced the concept of a per-
fectoid algebra and a perfectoid space into mathematics.
Slightly later on, Fontaine introduced the general notion
of a perfectoid ring. Here is the definition of a perfectoid
ring in Lean (here 𝑝 is a prime number):

structure perfectoid_ring (R : Type)
[Huber_ring R] extends Tate_ring R :
Prop :=

(complete : is_complete_hausdorff R)
(uniform : is_uniform R)
(ramified : ∃ 𝜛 : pseudo_uniformizer R,
𝜛^p | p in R∘)

(Frobenius : surjective (Frob R∘/p))

A perfectoid ring is a complete Hausdorff Tate ring sat-
isfying some technical hypotheses. Experts in the area will
certainly be able to read and understand the gist of the
code above. Perfectoid rings and perfectoid spaces were
formalised in Lean by Johan Commelin, Patrick Massot,
and myself; see [BCM20].
3.4. Lean’s mathematics library. The above snippet from
perfectoid_ring codewould not compile in core Lean
alone; some imports would be needed from Lean’s maths
library and Lean’s perfectoid space library. Lean’s maths
library is a rapidly growing library containing a lot of
undergraduate-level algebra, analysis, number theory, ge-
ometry, and topology. At the time of writing (April
2020) it contains theorems from number theory such as
quadratic reciprocity, theorems from algebra such as the
Hilbert basis theorem, theorems from analysis such as the
inverse function theorem, open mapping theorem, and
Arzelà–Ascoli theorem, definitions such as manifolds and
topological spaces, smooth functions, and so on. Under-
graduates at my university can (and do) solve problem
sheets and past exam questions in Lean; I am convinced
that it can play a role in making undergraduate teaching
better (see forthcoming work of Iannone and Thoma, dis-
cussing my interventions so far).

Note however that much work remains to be done in
Lean’s maths library. A notable omission in complex anal-
ysis is Cauchy’s integral formula (Lean is behind other sys-
tems in this regard), a notable omission in number the-
ory is the basic theory of factorisation of ideals into prime
ideals in algebraic number fields, and a notable omission
in algebra is undergraduate representation theory. It is
only a matter of time before these holes are filled, how-
ever, such is the pace of development right now. Enough
commutative algebra was developed for undergraduates at
my university to define schemes and to prove that an affine
scheme is a scheme (that is, that the structure presheaf on
an affine scheme is a sheaf). We have also formalised vari-
ous tags in the Stacks Project [Sta18], an encyclopedic ref-
erence for modern algebraic geometry. Homological alge-
bra is on the horizon, although we have made the design
decision to set up everything within the context of abelian
categories and are currently developing tactics to help with
diagram chasing. By “we” I mean the collection of math-
ematicians and computer scientists who are collaborating
to build Lean’s mathematics library, an open source library
of mathematics written in Lean which was started in 2017
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and now contains over a quarter of a million lines of code.
There are plenty of ways to get started learning the the-
ory, and plenty of projects to work on. Within a few years
I believe that the library will cover all of undergraduate
pure mathematics. Another of my visions for the library is
that it becomes a 21st century version of Bourbaki. Indeed
much of Bourbaki’s Topologie Génerale is now formalised
in Lean, thanks to the efforts of (mathematician) Patrick
Massot, building on earlier work of (computer scientist)
Johannes Hölzl. Much of this was needed to formalise the
definition of a perfectoid space. We are only just beginning
to create an interface for the theory of local fields, however,
so proving Scholze’s tilting correspondence is still several
years away. Later on, we will ask whether proving profound
results like this is even the right thing to be doing.
3.5. Learning to fly. We have seen that ITPs, if taught by
humans, are capable of picking up the basics of mathemat-
ics, and are (completely unsurprisingly) capable of check-
ing proofs which stick close to the axioms of mathematics,
such as most basic results in the first year of a mathematics
degree. We have also seen an example of a higher-powered
tactic, ring, which solves a problem for which working
axiomatically would be a chore. How much further away
from the axioms can we move?

The Yoneda lemma is a lemma in category theory where
the idea is, in some sense, in the theorem statement, and
the proof is to just chase the diagrams. It will come as
no surprise to hear that Lean can find the proof by it-
self; a generic “follow your nose” tactic has been written
by Scott Morrison at the Australian National University.
Morrison, a mathematician, is an expert in designing high-
powered tactics in Lean which can discover proofs of state-
ments such as this. Morrison is currently concentrating
on category theory, although the tactics he is developing
are slowly being taken up by developers in other areas of
mathematics in Lean. In particular, Lean already has some
kind of primitive intuition for mathematics, although this
intuition currently works better in some areas than others.

Gabriel Ebner, a computer scientist, is implementing a
second approach, where versions of Lean goals are passed
to an external system which specialises in solving first-
order logic problems, and the external system passes back
data which Lean then attempts to turn into a rigorous
proof. Such techniques (calling external solvers which
have been designed to solve certain types of logic prob-
lem) are referred to as “hammers” and they are already in
active use in several other ITPs—Lean is still playing catch-
up in this area. Indeed Sledgehammer [PB], developed
by a team led by Larry Paulson, was an extremely success-
ful tool for the Isabelle/HOL proof system. Note however
that almost all experiments by computer scientists are re-
stricted to the databases of formalised theorems which are

currently available, and because available databases still do
not even cover all of undergraduate mathematics, one imag-
ines that there is still much room for improvement.
3.6. Research-level mathematics. Mathematics is vast,
and growing quickly, and unless there is some kind of com-
plete cultural change (which seems unlikely), one cannot
imagine humans formalising their proofs in an ITP rather
than typing them up into LATEX any time soon (it would
also make papers around four times longer; four seems to
be the current “de Bruijn factor” representing the ratio be-
tween the length of a formal proof and the length of the
corresponding LATEX proof). Similarly it would take an ex-
traordinary breakthrough inmachine learning before com-
puters can start to read human-written papers.

There have been some spectacular one-off achievements
however. The two most obvious examples are [GAAea13]
(a formalisation of the proof of the Feit–Thompson odd or-
der theorem inCoq) and [HAB+17] (a formalisation of the
Hales–Ferguson proof of the Kepler conjecture). These two
formalisations came about for two rather different reasons.
The Feit–Thompson work, led by Gonthier, was a demon-
stration that ITPs were capable of understanding a proof
which is of Fields medal standard. The Kepler conjecture
work, led by Hales, was an attempt to justify the correct-
ness of the Hales–Ferguson proof, after the Annals of Math-
ematics chose to publish the paper proof whilst the referees
claimed that they were only “99% certain” of its correct-
ness. To give another recent example, the 2017 Ellenberg–
Gijswijt proof [EG17] of the cap set conjecture, also pub-
lished in the Annals, was formalised [DHL19] in Lean two
years later by Dahmen, Hölzl, and Lewis. These examples
show that it is now feasible for modern mathematics (or
at least some of it) to be formalised in “real time.” How-
ever the problem remains that there is no currently feasible
method to turn the corpus of modern mathematics into a
formally verified state.
3.7. Formal abstracts. But let us go back to the human
PhD student, who, when they start their research, does not
need to know all of the proofs of all of the theorems that
they will be using. The important thing is that they know
the statements. And teaching modern theorem statements
to a computer is well within our grasp.

Tom Hales has proposed, in his Formal Abstracts
project [Hal20], that themain theorem statements and def-
initions of mathematical papers be formalised in an ITP.
Proofs are not required. Hales has chosen Lean for the sys-
tem he wants to use, but there is no reason why other
analogous projects cannot use other systems. One out-
put of such a project would be a complex graph linking
important mathematical concepts, and which grows over
time. Hales imagines exploration tools enabling humans

DECEMBER 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1797



to analyse this graph, like a Google Earth for mathemat-
ics. Search for mathematical theorems would suddenly
become much easier—and the machine learning experts
would finally have something to get their teeth into. Math
Reviews and Zentralblatt contain human-written reviews
of modern mathematical papers, and writing a formal ab-
stract would in many cases be easier than writing a re-
view, as only the theorem statements would be required,
and once sufficiently many definitions are in the system,
formalising theorem statements becomes easy. As more
young mathematicians learn how to write mathematics in
this kind of software, the possibility of making such a data-
base seems to be becoming ever more real. Such a project
seems to be a feasible way of digitising modern mathemat-
ics, and can be integrated into the hammers mentioned
previously in order tomakemore powerful proof search. If
PhD students are encouraged to formalise the statements
of the results they are claiming to prove, and the state-
ments of some of the theorems they use, then such a data-
base could begin to grow very quickly indeed.

The Formal Abstracts project offers a real possibility
of making an entirely new object—a digitisation of what
the modern mathematician believes, and a chance for ma-
chine learning experts to see what they can make of it in a
format which they can easily understand. If we, the math-
ematical community, build this database, then they, the
computer scientists, will come. In fact, they are waiting.

Final Thoughts
I have spoken a lot about Lean, but there are many other
systems available; Coq and Isabelle/HOL are also serious
systems with a lot of mathematics in, and there are others
too. The debate about which system is “best” is a com-
plex one, involving technicalities about dependent types,
strong normalisation, and subject reduction, and is be-
yond the scope of this article.

All of the systems could be used for educational pur-
poses at the undergraduate level; I use Lean with my 1st
year students and some of them love it. I run a weekly club,
the Xena project, where I teach undergraduates (and they
teach me) how to use Lean to do undergraduate and MSc-
levelmathematics in Lean. I would be extremely interested
in making one of these systems more user-friendly whilst
keeping it flexible enough to do a lot of undergraduate-
level mathematics. An interesting related question is how
to teach this topic to undergraduates—teaching material
for undergraduate mathematicians is currently being de-
veloped by a team consisting of both mathematicians and
computer scientists. The CoCalc website [SI20] enables
teams of people to work on Lean code in a collaborative
real-time environment and I have used this environment
for training undergraduates to use Lean.

Whether or not they are used for teaching, it seems to
me inevitable that these systems will one day change the
way we do research. Writing proofs in these systems forces
a human to clarify their thinking, and will perhaps lead
them to discover better abstractions. Long proofs, too long
for any single human to comprehend every last detail of,
are becoming more commonplace. Can computers help
to check these? Looking further ahead, I believe that one
day our subject will experience a true culture shock, where
a computer announces a proof of a conjecture which hu-
mans are interested in, and if the argument is sufficiently
deep, then the computer might not be able to explain their
argument using a language that humans can understand.
But well before that happens, computers will become tools
which we can use to search for and verify lemmas in all ar-
eas of pure mathematics, and the sooner an area is taught
to one of these systems, the sooner computers will be able
to help. The Lean Prover community website at https://
leanprover-community.github.io/ and the Lean chat-
room at https://leanprover.zulipchat.com/ are two
places to start, if people have any questions about what
some of us believe will be the future of mathematics.

I thank the members of the Lean Prover community,
and the anonymous referee, for their feedback on an ear-
lier version of this article.
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