
WHAT IS. . .

a Hyperpolygon?
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Part of the spectacular success of the study of quiver repre-
sentations is the realization that one may construct many
interesting geometries—both old and new—from just the
data of a directed graph. For us, a quiver will simply be a di-
rected graph with nodes labelled by natural numbers and
multiedges permitted. Familiar geometries such as those
of projective space and Grassmannians can be constructed
from a relatively simple graph, consisting of just two nodes
and an arrow from one to the other, which is a so-called
𝐴2 quiver. By increasing the complexity of the quiver, one
can produce more interesting spaces.
Quivers and flag varieties. As suggested by the connection
of projective space and Grassmannians to 𝐴-type quivers,
the ADE Dynkin-type quivers play a fundamental role in
the theory and capture many of its connections to geome-
try, representation theory, combinatorics, and physics.

Figure 1. Labelled 𝐴𝑚 quiver.

Given an equioriented 𝐴-type quiver of length 𝑚 la-
belled by an increasing sequence of nonnegative integers
𝑟𝑖 as in Figure 1, one may associate the vector space

𝑉 =
𝑚−1

⨁
𝑖=1

Hom(ℂ𝑟𝑖 , ℂ𝑟𝑖+1)
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which is subject to the conjugation action of the group
𝐺 = ∏𝑚−1

𝑖=1 GL(𝑟𝑖, ℂ). Through a suitable notion of quo-
tient furnished either by geometric invariant theory (GIT)
or by symplectic reduction, one may restrict to a subvari-
ety of 𝑉 on which the group action is free. The result of
restricting in this way and then quotienting is typically de-
noted by 𝑉//𝐺. The quiver variety 𝑉//𝐺 is an example of a
moduli space, a space that keeps track of representations of
the original quiver up to the equivalence furnished by 𝐺.

In the case of the 𝐴-type quiver, the quotient 𝑉//𝐺 is
a partial flag variety ℱ𝑟1,…,𝑟𝑚 , from which the Grassmanni-
ans are recovered as ℱ𝑟1,𝑟2 . In the case of projective space
ℙ𝑟−1 = ℱ1,𝑟, GIT issues the familiar instruction of delet-
ing the origin from Hom(ℂ, ℂ𝑟) before taking the quo-
tient. For economy, we will denote the tuple of labels by
𝑟 = (𝑟1, … , 𝑟𝑚).

The partial flag varieties are prototypical examples of
quiver varieties. One proceeds in essentially the same way
for all quivers: an arrow between vertices labelled 𝑢 and 𝑣
contributes a summand Hom(ℂᵆ, ℂ𝑣) to 𝑉 and there is a
corresponding conjugation action by a product of general
linear groups, whose factors act on the left or right of ar-
rows via multiplication. Working over the field of complex
numbers is useful for the correspondences we wish to mo-
tivate in this note, but one can choose to work over other
fields.
Nakajima quiver varieties. An upgrade of the theory of
quiver representations is provided by Nakajima, who con-
sidered the quaternionic vector space 𝑇∗𝑉 rather than 𝑉
as the starting point for the quotient. Visually, for each
existing arrow one adds another arrow that points in the
opposite direction. The Nakajima quiver variety construc-
tion is symplectic in nature and involves restricting 𝑇∗𝑉
to the intersection of two level sets, one given by the fiber
of a moment map valued in the Lie algebra of a maximal
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Figure 2. (a): Affine 𝐷4 Dynkin diagram; (b): general
star-shaped quiver.

compact group in 𝐺 and the other in the Lie algebra of 𝐺
itself.

This quotient by 𝐺 is typically denoted 𝑇∗𝑉///𝐺. By the
theorem of Hitchin-Karlhede-Linström-Roček, this quo-
tient inherits three quaternionically-commuting complex
structures 𝐼, 𝐽, 𝐾 from 𝑇∗𝑉 as well as a Riemannian met-
ric 𝑔. Antisymmetrizing 𝑔 by composing it with each of
𝐼, 𝐽, 𝐾 produces respective symplectic forms,𝜔𝐼 , 𝜔𝐽 , 𝜔𝐾 , giv-
ing three Kähler structures intertwined by 𝑔. This data on
𝑇∗///𝐺 is called a hyperkähler structure. Hyperkähler varieties
hold a special place in geometry: for instance, they are au-
tomatically Calabi-Yau. For the case of the 𝐴-type quiver,
the hyperkähler variety 𝑇∗𝑉///𝐺 is precisely 𝑇∗ℱ𝑟.

When the quiver is of any affine ADE type and is la-
belled appropriately, the corresponding Nakajima quiver
variety is a gravitational instanton, in the sense that it is 2-
dimensional over ℂ and has a complete, asymptotically lo-
cally Euclidean (ALE) metric 𝑔. The ALE condition means
that the hyperkähler metric collapses to the Euclidean met-
ric with polynomial order 4 as one goes out to infinity in
any direction. In fact, every such gravitational instanton is
realizable as a Nakajima quiver variety, completing a circle
of ideas that includes the McKay correspondence and the
work of Kronheimer.
Hyperpolygons. The story of hyperpolygons begins by con-
sidering a particular quiver, the affine 𝐷4 Dynkin diagram,
and generalizing it to a class of diagrams known as the star-
shaped quivers. The affine 𝐷4 itself can be thought of as the
interlacing of four copies of the𝐴2 quiver, as seen in Figure
2(a).

For any individual 𝐴-type quiver, allowing the copy of
GL at the node with the largest label to act leads to a zero-
dimensional variety as the quotient. By interlacing 𝑛 𝐴-
type quivers, each with length 𝑚 + 1 and labelled by a tu-
ple 𝑟𝑖 = (𝑟𝑖1 , … , 𝑟𝑖𝑚, 𝑟) such that there is a common central
node labelled by 𝑟, one obtains a star-shaped quiver. This

is shown in Figure 2(b). The 𝐴-type quivers are referred
to as the arms of the star. For 𝑛 sufficiently large, we can
allow the group associated to the central node to act and
still have a positive-dimensional quotient.

In order to build the Nakajima quiver variety for the
star, we can use the fact that each 𝐴-type arm gives rise
to 𝑇∗ℱ𝑟𝑖 . The overall Nakajima quiver variety is the quo-
tient of a subvariety inside the product of these cotangent
bundles. This is an example of reduction in stages. From
this point forward, we will adopt the symplectic point of
view, so that the subvariety is an intersection of level sets
of moment maps, and we shall restrict the action to that
of the compact group 𝐺 = SU(𝑟). This subvariety is the set
of simultaneous solutions to the (rescaled) moment map
equations

𝑛
∑
𝑖=1
(𝑥𝑖𝑥∗𝑖 − 𝑦∗𝑖 𝑦𝑖)0 = 0, (1)

𝑛
∑
𝑖=1
(𝑥𝑖𝑦𝑖)0 = 0 (2)

for 𝑥𝑖 ∈ Hom(ℂ𝑟𝑖𝑚 , ℂ𝑟) and 𝑦𝑖 ∈ 𝑇∗
𝑥𝑖Hom(ℂ𝑟𝑖𝑚 , ℂ𝑟) ≅

Hom(ℂ𝑟, ℂ𝑟𝑖𝑚), and where the subscript 0 is an instruction
to make the matrix traceless by subtracting a multiple of
the identity. One of the featured connections of these quo-
tients to geometric representation theory is hidden in the
left-hand side of equation (2). When we have just a sin-
gle 𝐴-type arm, the image of this map is contained in the
nilpotent cone of the dual of the Lie algebra 𝔰𝔩(𝑟, ℂ). When
the flag is complete, (1, 2, … , 𝑟), the map coincides with the
famous Springer resolution.

A hyperpolygon is nothing more than an isomorphism
class [(𝑥1, … , 𝑥𝑛; 𝑦1, … , 𝑦𝑛)] in 𝑇∗𝑉///𝐺 for the star-shaped
quiver. As a solution to the equations above, the data
𝑥1, … , 𝑥𝑛; 𝑦1, … , 𝑦𝑛 defines a pair of polygons, one in the
(rescaled) Lie algebra 𝔰𝔲(𝑟)∗ and another in 𝔰𝔩(𝑟, ℂ)∗, with
sides given by (𝑥𝑖𝑥∗𝑖 − 𝑦∗𝑖 𝑦𝑖)0 in the former case and by
(𝑥𝑖𝑦𝑖)0 in the latter. For the case of 𝑟 = 2 and the ordi-
nary quotient 𝑉//𝐺 where all of the 𝑦𝑖’s are zero, we recover
ordinary 𝑛-gons in Euclidean 3-space.

It is worth noting that, when 𝑇∗ℱ𝑟𝑖 was constructed
for each arm, the corresponding quotient had involved its
own choice of level sets of real and complexmomentmaps.
When the smallest label on each arm is 𝑟𝑖1 = 1, this level
set is determined by a number 𝛼𝑖 ∈ ℝ, which determines
the fiber of the moment map for the action of the circle
group U(1) on the outermost node of each arm. (All other
moment maps can be set to 0.) The choice of this number
determines the Kähler structure on the underlying flag va-
riety of each arm and determines the length of the 𝑖th side
(𝑥𝑖𝑥∗𝑖 − 𝑦∗𝑖 𝑦𝑖)0 of the real polygon. We will proceed with
the assumption of 𝑟𝑖1 = 1 from now on.
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Figure 3. A hyperpolygon with 𝑠𝑖 = (𝑥𝑖𝑥∗𝑖 )0, 𝑡𝑖 = −(𝑦𝑖𝑦∗𝑖 )0, and
𝑣𝑖 = (𝑥𝑖𝑦𝑖)0.

Given this geometric interpretation, we refer to 𝑇∗𝑉///𝐺
for the star-shaped quiver as hyperpolygon space and give it
its own symbol, 𝒳𝑟1,…,𝑟𝑛(𝛼), where 𝛼 is the vector of pa-
rameters 𝛼𝑖 ∈ ℝ. Hyperpolygon spaces were first stud-
ied by Konno as a hyperkähler extension to the notion of
usual polygon space, and then later studied as a Nakajima
quiver variety by Harada–Proudfoot. In a different vein,
one can see in the moment map equation∑𝑛

𝑖=1(𝑥𝑖𝑦𝑖)0 = 0
a connection to what is usually called the additive Deligne-
Simpson problem, which asks whether we can find repre-
sentatives 𝐶1, … , 𝐶𝑛 of respective fixed conjugacy classes
𝒞1, … , 𝒞𝑛 in 𝔤𝔩(𝑟, ℂ) such that

𝐶1 +⋯+ 𝐶𝑛 = 0.
The conjugacy classes are fixed nilpotent orbits, and a so-
lution to the general additive problem can be obtained
by studying the problem from the point of view of star-
shaped quivers, as done by Crawley-Boevey.
Higgs bundles. Of particular interest is the connection of
hyperpolygons to Higgs bundles, geometric objects on Rie-
mann surfaces that arise from gauge theory as solutions to
reduced self-dual Yang-Mills equations, now known as the
Hitchin equations. Specifically, a Higgs bundle (𝐸, 𝜙) on a
Riemann surface 𝑋 is a holomorphic vector bundle 𝐸 → 𝑋
with a global holomorphic map 𝜙 ∶ 𝐸 → 𝐸⊗𝜔𝑋 , theHiggs
field, where 𝜔𝑋 is the holomorphic cotangent bundle of 𝑋 .

Higgs bundles of a fixed rank and Chern class come
with their own moduli space, known as the Hitchin system.
Like the Nakajima quiver varieties, the Hitchin system is
hyperkähler. The term “system” refers to the fact that the
moduli space of Higgs bundles contains the data of a com-
pletely integrable Hamiltonian system with respect to one
of the symplectic forms of its hyperkähler structure. An-
other feature shared by Nakajima quiver varieties and the
Hitchin system is an algebraicℂ∗-action whose fixed-point
locus contains all of their nontrivial cohomological infor-
mation. In a sense, Nakajima quiver varieties are a finite-
dimensional analogue of the Hitchin system, which arises
from the hyperkähler quotient of an infinite-dimensional
affine space by a gauge group.

For the star-shaped quiver, the relationship between
Nakajima quiver varieties and Hitchin systems is more

than an analogy. The earliest work on this relationship
is due to Godinho–Mandini, who considered flags of type
(1, 2). More generally, choose any star-shaped quiver (with
any flag types) and 𝑛 distinct points 𝑧𝑖 ≠ ∞ on the projec-
tive line ℙ1. Then, setting

𝜙(𝑧) =
𝑛
∑
𝑖=1

(𝑥𝑖𝑦𝑖)0
𝑧 − 𝑧𝑖

𝑑𝑧, (3)

one obtains a meromorphic Higgs field, with simple poles
at points 𝑧𝑖, for the trivial rank-𝑟 holomorphic bundle on
ℙ1. The moment map condition ∑(𝑥𝑖𝑦𝑖)0 = 0 from equa-
tion (2) is a condition on the residues of this Higgs field
that forces the Higgs field to be holomorphic at infinity.

For sufficiently generic choices of the Kähler mod-
uli 𝛼𝑖 ∈ ℝ, the map sending a hyperpolygon
[(𝑥1, … , 𝑥𝑛; 𝑦1, … , 𝑦𝑛)] to the corresponding Higgs field 𝜙(𝑧)
is a well-defined embedding of moduli spaces, where the
target space is a moduli space of so-called parabolic Higgs
bundles on a copy of ℙ1 punctured along the divisor of the
𝑛 points. The parabolic structure—in particular, the para-
bolic weights—of the target moduli space are determined
by the 𝛼𝑖’s.

The construction of the Higgs bundle moduli space re-
quires the restriction to certain Higgs bundles, determined
by GIT or by moment maps (the Hitchin equations them-
selves). It turns out that hyperpolygons for generic 𝛼𝑖’s give
rise to Higgs bundles that satisfy this restriction. The em-
bedding of 𝒳𝑟1,…,𝑟𝑛(𝛼) into a corresponding Higgs bundle
moduli space is not hyperkähler—that is, it respects the 𝐼
complex structures of the two moduli spaces, but not the
𝐽 and 𝐾 ones. It is worth noting that, by convention, the 𝐽
and 𝐾 complex structures on the Hitchin system give it the
interpretation as a moduli space of flat connections or as
a character variety rather than as a space of Higgs bundles.

As an example, consider the affine 𝐷4 quiver with
the flag (1, 2) on each arm. The hyperpolygon space
𝒳(1,2),(1,2),(1,2),(1,2)(𝛼) is a noncompact surface of dimen-
sion 2 over ℂ that admits the structure of a gravitational in-
stanton, by the Kronheimer–McKay–Nakajima correspon-
dence. As such, the Nakajima hyperkähler metric 𝑔𝑁 has
the ALE decay rate mentioned above. The corresponding
parabolic Hitchin system on ℙ1 with four simple poles is
also a 2-dimensional space overℂ. Despite the similarities,
there is a codimension 1 locus in the Hitchin system that
is not present in the hyperpolygon space, and the Hitchin
metric also has a slower decay rate.
Generalized hyperpolygons. Inspired by conjectures of
Hausel–Letellier–Rodriguez-Villegas, the authors of this
note have extended the notion of hyperpolygon to a more
general class of quivers, the comet-shaped quivers of Figure 4.

These are formed by adding 𝑔-many loops to the central
node of a star-shaped quiver. The loops are then doubled
as per the Nakajima convention. A hyperkähler quotient
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Figure 4. A comet-shaped quiver.

𝑇∗𝑉///𝐺 is constructed as above for this quiver, with the
resulting moduli space denoted as 𝒳𝑔

𝑟1,…,𝑟𝑛(𝛼).
These generalized hyperpolygons can be interpreted again

as a pair of polygons, but now with more sides due to the
data representing the loops. The virtue of this generaliza-
tion is that it also leads to a construction of an associated
meromorphic Higgs bundle, but on a punctured Riemann
surface of higher genus. In this setting, instead of punc-
turing the plane ℂ ⊂ ℙ1 𝑛 times, one places either a reg-
ular parallelogram lattice on the plane or tessellates the
hyperbolic plane by Poincaré regular 4𝑔-gons. The funda-
mental cell is then punctured 𝑛 times in either scenario.
The key then is to modify the denominator of the model
Higgs field in equation (3) with an appropriate periodic
function that maps each puncture to the cell in which our
coordinate 𝑧 resides, in order for 𝜙(𝑧) to be well-defined
on the quotient by the lattice or by the Fuchsian group of
the tessellation.

Once compactified, one obtains a Riemann surface of
genus 𝑔 equipped with a meromorphic Higgs field for the
trivial rank-𝑟 bundle. As in the previous setting, one has an
embedding of moduli spaces in the 𝐼 complex structures.
A key piece of data now is that the sum of the residues
(𝑥𝑖𝑦𝑖)0 is not zero but rather∑𝑔

𝑗=1[𝑎𝑗 , 𝑏𝑗], where the 𝑎𝑗 ’s are
matrices in 𝔰𝔩(𝑟, ℂ) that represent the loops and where the
𝑏𝑗 ’s represent the corresponding doubled loops as in Figure
4. This expression is the linearization of a product that
defines the SL(𝑟, ℂ)-character variety of the Riemann sur-
face, and speaks to the manner in which the hyperpolygon
space collapses more rapidly to a Euclidean affine space at
infinity than the Hitchin system.
Integrability. Since the space 𝒳𝑔

𝑟1,…,𝑟𝑛(𝛼) is the quotient of

𝑇∗ℱ𝑟𝑖 (𝛼1) ×⋯ × 𝑇∗ℱ𝑟𝑛(𝛼𝑛) × 𝑇∗𝔰𝔩(𝑟, ℂ)

by SU(𝑟) subject to the appropriate moment map condi-
tions, it inherits its symplectic structures from those of the
hyperkähler varieties in the original product. These sym-
plectic structures are host to integrable systems of Gelfand–
Tsetlin-type and, in the case of complete or minimal flags,

can be written down explicitly in terms of Hamiltonians
given by invariant polynomials of matrices.

The question is whether the integrable system descends
along with the symplectic structures. In the case where ev-
ery arm is either theminimal one (1, 𝑟) or the complete one
(1, 2, … , 𝑟), then the answer is yes. This can be justified by
working explicitly with the SU(𝑟)-action and carefully tal-
lying the number of such invariants that remain free after
quotienting by the action. This number is exactly half the
(complex) dimension of 𝒳𝑔

𝑟1,…,𝑟𝑛(𝛼). What this establishes

is the existence of explicit subintegrable systems within
parabolic Hitchin systems. These subintegrable systems
are defined using only representation-theoretic data and
not the complex structure on the Riemann surface, which
the Hitchin system relies upon in an intimate way. In a
sense, these are very basic models for Hitchin integrabil-
ity.

In general, through hyperpolygons we have a testing
ground for various insights and conjectures into Hitchin
systems. Hence, questions about Higgs bundles, such
as explicit realizations of their mirror symmetry, can be
asked about hyperpolygons with the potential for answers
of a very concrete nature. Hyperpolygons emerge else-
where in mathematics and physics, too, such as in quiver
gauge theories and symplectic duality. Many themes in
mathematics—even very deep and long-brewed ones—
have at their heart examples that are very simple yet illumi-
nating. Hyperpolygons play such a role in these corners of
geometry, representation theory, and physics.
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