
Susan Friedlander’s
Contributions in

Mathematical Fluid Dynamics

Alexey Cheskidov, Nathan Glatt-Holtz,
Natasa Pavlovic, Roman Shvydkoy, and Vlad Vicol

Alexey Cheskidov is a professor of mathematics at the University of Illinois at
Chicago. His email address is acheskid@uic.edu.
Nathan Glatt-Holtz is an assistant professor of mathematics at Tulane Univer-
sity. His email address is negh@tulane.edu.
Natasa Pavlovic is a professor of mathematics at the University of Texas Austin.
Her email address is natasa@math.utexas.edu.
Roman Shvydkoy is a professor of mathematics at the University of Illinois at
Chicago. His email address is shvydkoy@uic.edu.
Vlad Vicol is a professor of mathematics at New York University. His email
address is vicol@cims.nyu.edu.
Opening photo is of Susan Friedlander lecturing at the Fields Institute in 2008.

Susan Friedlander received her undergraduate degree in
mathematics from University College London in 1967.
Having been awarded one of the prestigious Kennedy
Scholarships to study at the Massachusetts Institute of
Technology, Friedlander moved to the US and earned her
MS degree at MIT in 1970. She subsequently started her
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PhD studies at Princeton University, completing her doc-
torate thesis under the title “Spin Down in a Rotating
Stratified Fluid” in 1972 with the supervision of the fluid
dynamicist Louis Norberg Howard. After being a visit-
ing member at New York University’s Courant Institute of
Mathematical Sciences, Friedlander moved to the Univer-
sity of Illinois at Chicago, where she worked as a Professor
until 2008. Since then, Friedlander is a Professor and the
Director of the Center for Applied Mathematical Sciences
at the University of Southern California.

Throughout her career, Friedlander has focused on
the mathematical analysis of partial differential equations
(PDEs) arising in fluid dynamics. While the fundamental
models are several centuries old, to date fluid dynamics
remains the source of some of the most fascinating and
challenging problems at the intersection of mathematics
and physics. Without a doubt, the phenomenon of “turbu-
lence” is chief among them. A unifying theme in Friedlan-
der’s research is an emphasis on problems of clear physical
interest and importance.

Friedlander’s impact on the field of mathematical fluid
dynamics, and on the mathematical community as a
whole, extends far beyond her research contributions.
Prior to 1989, she opened bridges to the fluids commu-
nities behind the iron curtain. Since the early 1990s she
has served in several leadership positions at the Ameri-
can Mathematical Society, including as Associate Secretary.
For the past 15 years Friedlander has been the Editor in
Chief of the Bulletin of the AMS, and more recently Fried-
lander was one of the key figures in the founding of the
Mathematical Council of the Americas.

Susan is an exceptional mentor. Since the early stages
of our careers, the authors of this paper were fortunate
enough to collaborate with Susan, benefiting from her
guidance, academic generosity, and perspective on math-
ematics as a whole. Susan has helped shape both our ca-
reers and our views ofmathematics, andwe are truly thank-
ful for her inspiration, thoughtful guidance, and limitless
positive energy.

In this review celebrating Friedlander’s contributions
we will focus on her work on hydrodynamic instability as
it relates to the transition from laminar to turbulent flow,
on dyadic models in fluid dynamics and Onsager’s con-
jecture analyzing the transfer of energy in turbulent flows,
and on magnetohydrodynamics as it relates to large-scale
motions in Earth’s fluid core.

1. Equations of Fluid Dynamics
The fundamental partial differential equations that de-
scribe the macroscopic properties of the motion of an in-
compressible, inviscid fluid with constant density are the

Euler equations:

𝜕𝑢
𝜕𝑡 + (𝑢 ⋅ ∇)𝑢 + ∇𝑝 = 0, (1)

∇ ⋅ 𝑢 = 0, (2)

with the initial condition

𝑢(𝑥, 0) = 𝑢0(𝑥), (3)

for the unknown velocity vector field 𝑢 = 𝑢(𝑥, 𝑡) ∈ ℝ𝑑 and
the pressure 𝑝 = 𝑝(𝑥, 𝑡) ∈ ℝ, where 𝑥 ∈ ℝ𝑑, 𝑡 ∈ [0,∞),
and 𝑑 = 2, 3. Despite the fact that Leonhard Euler intro-
duced them in 1757, many basic questions concerning Eu-
ler equations in 𝑑 = 3 are still unresolved. For example, it
is an outstanding problem to find out if solutions of the
3D Euler equations form singularities in finite time, from
smooth initial data.

The equations modeling the macroscopic properties of
viscous, incompressible, homogeneous fluids were formu-
lated byClaude-Louis Navier (1822) and Sir George Stokes
(1845). The Navier-Stokes equations that they derived are
written as

𝜕𝑢
𝜕𝑡 + (𝑢 ⋅ ∇)𝑢 + ∇𝑝 = 𝜈Δ𝑢, (4)

∇ ⋅ 𝑢 = 0, (5)

with the initial condition

𝑢(𝑥, 0) = 𝑢0(𝑥), (6)

and appropriate boundary conditions. As with the Eu-
ler equations the theory of the Navier-Stokes equations in
three dimensions is far from being complete. One of the
major open problems is global existence and uniqueness
of smooth solutions to the Navier-Stokes equations in 3D.
This is one of the Millennium Problems of the Clay Math-
ematics Institute.

Beyond the Navier-Stokes and Euler equations many
other models animate modern research in mathematical
fluid dynamics. Of particular interest in Friedlander’s work
are the magnetohydrodynamics equations (cf. (34)–(37)
below) and other equations arising in geophysics.

2. Instabilities
The late 1970s and early 1980s were marked by the discov-
ery of a new type of instability in incompressible fluids—
the so-called shortwave or broad-band instability. Such
instabilities occur when a fluid rushes through a pipe lead-
ing to the formation of elliptical vortices near the walls. Al-
though such vortices themselves are two dimensional, and
in fact stable under two-dimensional perturbations, they
are manifestly unstable when perturbed in the direction of
their axes of rotation. Moreover, the frequency 𝜅 of unsta-
ble modes corresponding to the same exponential rate 𝜆,

ℒ𝑣 ∼ 𝜆𝑣, 𝑣 = 𝑒−𝑖𝜅⋅𝑥𝜙(𝑥),
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corresponds to a range of values 𝜅 > 𝜅0 instead of be-
ing uniquely determined by a dispersive relation 𝜅 =
𝜅(𝜆). Hence, the term “broad-band.” Grounded in numer-
ous physical works by Orszag, Patera, Bayly, Pierrehum-
bert, Craik, Criminale, and others, these novel instabili-
ties lacked a rigorous foundation presenting a unique chal-
lenge for the mathematical community in the early 1980s.
2.1. The fast dynamo problem. A similar type of instabil-
ity appears in the kinematic dynamo problem. This prob-
lem seeks to describe persistent growth of a magnetic field
𝐻(𝑥, 𝑡) transported by a given velocity field of electrically
conducting fluid 𝑢(𝑥, 𝑡) in the limit of vanishing magnetic
resistivity. Specifically, for 𝐻 satisfying the system

𝜕𝐻
𝜕𝑡 = −𝑢 ⋅ ∇𝐻 + 𝐻 ⋅ ∇𝑢 + 𝜀Δ𝐻, (7)

∇ ⋅ 𝐻 = 0, (8)

the dynamo is called fast if one has

lim sup
𝜀→0

𝜔𝜀 > 0, (9)

where 𝜔𝜀 is the exponential type of the 𝐶0-semigroup 𝐆𝜀
𝑡

generated by (7)–(8). Similar to the fluid problem such
instabilities are expected to be of highly oscillatory nature
as the corresponding spectral problemℒ𝜀𝐻𝜀 = 𝜆𝜀𝐻𝜀 would
require an increasing range of frequencies as 𝜀 → 0.

The groundbreaking works [FV91, FV92, VF93] marked
the beginning of a productive collaboration of Friedlander
withMisha Vishik, who developed a novel approach to the
fast dynamo problem [Vis89]. This proved to be a univer-
sal tool to tackle a range of instability questions in fluids,
geophysics, and magnetohydrodynamics. The approach
is based on studying shortwave asymptotic expansions of
the corresponding evolution semigroup or the associated
Green’s function. Here the general methodology is to re-
duce the evolution of an infinite-dimensional system to the
leading order “core” dynamics. Remarkably in many cases
the reduced dynamics is governed by a finite-dimensional
system of ODEs.

In the context of the fast dynamo problem (7)–(9), the
Green’s function𝐺(𝑥, 𝑦, 𝑡) of the evolution operator𝐆𝜀

𝑡 can
be represented in Lagrangian coordinates

𝜕𝑡𝜑𝑡(𝑥) = 𝑢(𝜑𝑡(𝑥), 𝑡), 𝐺(𝜑𝑡(𝑥), 𝑦, 𝑡) = Γ(𝑥, 𝑦, 𝑡)

as the Fourier integral operator

Γ(𝑥, 𝑦, 𝑡) = 1
2𝜋√𝜀

∫
ℝ𝑛
𝑒
𝑖(𝑥−𝑦)⋅𝜉

√𝜀 𝑏(𝑥, 𝜉, 𝑡, √𝜀)d𝜉,

where the symbol 𝑏 has an asymptotic expansion

𝑏(𝑥, 𝜉, 𝑡, √𝜀) =
∞
∑
𝑛=0

𝑏𝑛(𝑥, 𝜉, 𝑡)𝜀𝑛/2. (10)

Here the principal symbol 𝑏0 which plays the determining
role in exponential growth of the dynamics is obtained by

d𝑏0
d𝑡 = 𝜕𝑢(𝜑𝑡, 𝑡)𝑏0, (11)

the tangent push-forward transport map.
The technical analysis of the asymptotic series (10) is

rather involved. Ultimately it connects the limiting expo-
nential rate of 𝐆𝜀

𝑡 as 𝜀 → 0 over the energy space 𝐿2 to
that of the inviscid problem, and hence to the ODE (11).
At the same time, the asymptotic behavior of (11) is well
known. For steady states it is simply determined by the
largest Lyapunov-Oseledets exponent of the underlying ve-
locity field 𝑢0:

𝜔0 = lim
𝑡→∞

1
𝑡 log sup𝑥

|𝜕𝜑𝑡(𝑥)|

(or otherwise the exponent of the corresponding cocycle
family), which is positive if and only if the flow-map 𝜑𝑡(𝑥)
exhibits exponential stretching of its trajectories. Themain
result of [FV91] reads as follows.

Theorem 2.1. If the system (7)–(8) has a fast dynamo (9),
then necessarily 𝜔0 > 0, and in fact

lim sup
𝜀→0

𝜔𝜀 ≤ 𝜔0.

Thus, a necessary condition for a fast dynamo is the
presence of an instability in the underlying conducting
fluid itself.
2.2. The geometric optics method. As we already de-
scribed above the asymptotic methods developed by Fried-
lander and Vishik in attacking the fast dynamo problem
proved to be applicable to a wide range of problems aris-
ing in fluid dynamics. Indeed, the works [VF93,FV92] laid
the foundation to what is now called the geometric optics ap-
proach to shortwave instabilities, a particular case of which
is the elliptic instability we mentioned in the beginning of
this section.

To describe the method in more detail let us consider
the example of the classical incompressible Euler system
linearized around a given steady state 𝑢0:

𝜕𝑣
𝜕𝑡 = −𝑢0 ⋅ ∇𝑣 − 𝑣 ⋅ ∇𝑢0 − ∇𝑝, (12)

∇ ⋅ 𝑣 = 0, (13)

where 𝑣 is the linear perturbation of 𝑢0 and 𝑝 is the per-
turbed pressure, which plays the role of projecting the right
side of (12) onto the space of divergent-free fields. We con-
sider (12) with periodic boundary conditions, 𝑥 ∈ 𝕋𝑛, or
the whole space 𝑥 ∈ ℝ𝑛, 𝑛 ≥ 2. The method seeks to find
effective dynamics of a localized oscillatory wave written
in the form of a geometric optics ansatz

𝑣(𝑥, 𝑡) = 𝑏(𝑥, 𝑡)𝑒𝑖𝑆(𝑥,𝑡)/𝜀 + 𝑂(𝜀). (14)
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If initially 𝑏(0) = 𝑏0 is localized near position 𝑥0, and the
frequency of initial oscillation is 𝜉, i.e., 𝑆(0) = 𝑆0 = 𝜉 ⋅ 𝑥,
we obtain a new wave at time 𝑡 approximately localized
near the Lagrangian particle 𝑥(𝑡) = 𝜑𝑡(𝑥0). Plugging this
ansatz into the Euler system (12) one reads off the lead-
ing order evolution of the amplitude 𝑏 and phase 𝑆 in the
Lagrangian coordinates of the underlying field 𝑢0:

d𝑆
d𝑡 = 0, d𝑏

d𝑡 = −𝜕𝑢0(𝑥)𝑏 + 2⟨𝜉, 𝜕𝑢0(𝑥)𝑏⟩
𝜉
|𝜉|2 ,

where 𝜉 = ∇𝑆 is the frequency covector. To write the sys-
tem in closed form we replace the transport of 𝑆 by the
transport of the frequency vector, and the resulting system
reads

⎧⎪⎪
⎨
⎪⎪
⎩

d𝑥
d𝑡 = 𝑢0(𝑥),
d𝜉
d𝑡 = −𝜕⊤𝑢0(𝑥)𝜉,
d𝑏
d𝑡 = −𝜕𝑢0(𝑥)𝑏 + 2⟨𝜉, 𝜕𝑢0(𝑥)𝑏⟩

𝜉
|𝜉|2 ,

(15)

supplemented by initial conditions 𝑥(0) = 𝑥0, 𝜉(0) = 𝜉0,
𝑏(0) = 𝑏0, and the incompressibility constraint 𝑏0 ⋅ 𝜉0 = 0.
This is a so-called bicharacteristic-amplitude system (BAS
for short). From a dynamical viewpoint the first two equa-
tions represent a bicharacteristic flow on the tangent bun-
dle of the fluid domain Ω = 𝑇∗𝕋𝑛, denoted 𝜒𝑡(𝑥, 𝜉), and
the last amplitude equation represents evolution of a vec-
tor 𝑏 on the fiber bundle over Ω with fibers given by or-
thogonal planes 𝜋−1(𝑥, 𝜉) = {𝑏 ∶ 𝑏 ⋅ 𝜉 = 0}. Thus,
𝑏(𝑥0, 𝜉0, 𝑏0, 𝑡) = 𝐁𝑡(𝑥, 𝜉)𝑏0 is a cocycle family of maps over
the flow 𝜒.

The asymptotic expansion of the Euler semigroup 𝐆𝑡,
defined by (12)–(13), is dominated by the 𝐵-cocycle play-
ing the role of the principal symbol

𝐆𝑡 = 𝐏𝚽𝑡Op[𝐁𝑡] + 𝐊𝑡,

where 𝐏 is the Leray projection onto the divergence-free
fields, 𝚽𝑡𝑣 = 𝑣 ∘ 𝜑−𝑡,

Op[𝐁𝑡]𝑣(𝑥) = ∫𝑒𝑖(𝑥−𝑦)⋅𝜉𝐁𝑡(𝑦, 𝜉)𝑣(𝑦)d𝑦 d𝜉

is the leading order pseudodifferential operator, and 𝐊𝑡
is a similar operator of order −1. For the high frequency
waves the frequency localization of pseudodifferential op-
erator Op[𝐁𝑡] leads precisely to the ansatz (14) which be-
comes justified a posteriori.

The shortwave instabilities can now be studied by look-
ing into the Lyapunov spectrumof the BASwhosemaximal
exponent is given by

𝜇 = lim
𝑡→∞

1
𝑡 log sup

𝑥0,𝜉0,𝑏0⋅𝜉0=0,|𝑏0|=1
|𝐵𝑡(𝑥0, 𝜉0)𝑏0|.

The main result of [VF93] establishes a direct relationship
between the growth rate of the BAS and the growth rate of
the Euler dynamics in the energy space.

Theorem 2.2. Let 𝜔0 denote the exponential rate of the semi-
group 𝐆𝑡 in 𝐿2. Then

𝜔0 ≥ 𝜇.

The high frequency asymptotic relationship between𝐆𝑡
and 𝐁𝑡 makes it possible to relate shortwave instabilities
to the essential spectrum of the semigroup. The BAS was
found to be fully descriptive of the essential spectrum in
later works. For particular flows, however, Theorem 2.2
proved to be extremely versatile in many different situa-
tions. For example, for the aforementioned elliptic vor-
tices, locally given by 𝑢0 = (𝑎2𝑦, −𝑏2𝑥, 0), the growth of
the BAS becomes a Floquet problem over time-periodic el-
liptic trajectories. This case was also studied in works of
Lifschitz and Hameiri around the same time. The ampli-
tudes 𝑏 become unstable in directions pointing off of the
𝑥𝑦-plane, which is consistent with the empirical observa-
tions of Orszag, Patera, and others. A systematic study of
the BAS and various dynamic scenarios leading to instabil-
ities was performed in [FV92]. First, in 2D, the quantity
|𝑏||𝜉| is conserved. Hence, 𝜇 is related precisely to the ex-
ponential stretching of the underlying field 𝑢0. Here the
cotangent cocycle associated with the 𝜉-equation has the
same Lyapunov spectrum as that of the tangent cocycle
(11). Thus, 𝜇 = 𝜔0 in this case. In particular, all paral-
lel shear flows are shortwave stable. In 3D, the analogue
of this law is conservation of the volume

Vol(𝑏′, 𝑏″, 𝜉) = (𝑏′ × 𝑏″) ⋅ 𝜉

for any pair of amplitudes 𝑏′, 𝑏″ over the same frequency
𝜉. Hence, in 3D we obtain

𝜇 ≥ 1
2𝜔0.

In any case, exponential stretching makes the flow spec-
trally unstable. On the other hand, some integrable flows
𝑢0, where 𝑢0 × (∇×𝑢0) = ∇𝐵, on nondegenerate level tori
of the Bernoulli function 𝐵 are found to be stable, namely
𝜇 = 0. Geometric instability criteria for vortex rings with-
out swirl were provided as well.

In several subsequent works (see [FSV97,FS05] and ref-
erences therein), Friedlander expanded the geometric op-
tics method to a range of models appearing in geophysics
and magnetohydrodynamics. In all these cases the under-
lying bicharacteristic flow remains the same but the am-
plitude equation changes according to a simple recipe—it
captures the principal symbol of the linearization:

d𝑏
d𝑡 = 𝑎0(𝑥, 𝜉)𝑏, ℒ = −𝑢0 ⋅ ∇ + Op[𝑎0] + Op[𝑎1] +⋯ .
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Thus, for the surface quasigeostrophic equation describing
evolution of a potential temperature on a horizontal sur-
face the 𝑏-equation reads

d𝑏
d𝑡 = 𝑖 𝜉

⟂ ⋅ ∇𝜃0(𝑥)
|𝜉| 𝑏,

where 𝜃0 is the underlying steady temperature. In this case
the essential spectrum is neutral, 𝜇 = 0. For density strati-
fied fluids we have

d𝑏
d𝑡 = (2𝜉 ⊗ 𝜉

|𝜉|2 − id) 𝜕𝑢(𝑥)𝑏 + 𝑟 (id−𝜉 ⊗ 𝜉
|𝜉|2 )∇Φ(𝑥),

d𝑟
d𝑡 = −𝑏 ⋅ ∇𝜌0(𝑥).

Here Φ is the gravitational potential. The kinematic
dynamo falls under the same scheme and yields (11).
Camassa-Holm (Euler-𝛼) gives

d𝑏
d𝑡 = (𝜉 ⊗ 𝜉

|𝜉|2 − id) 𝜕𝑢⊤(𝑥)𝑏 + 𝜉 ⊗ 𝜉
|𝜉|2 𝜕𝑢(𝑥)𝑏,

and for inviscid systems of nonrelativistic superconductiv-
ity we have

d𝑏
d𝑡 = (2𝜉 ⊗ 𝜉

|𝜉|2 − id) 𝜕𝑢(𝑥)𝑏 + (id−𝜉 ⊗ 𝜉
|𝜉|2 ) 𝐵 × 𝑏.

Numerous other applications of the theory were found
to non-Newtonian fluids also. The reach of the method
proved to be truly astonishing.
2.3. From linear to nonlinear instability. Justification of
the linearization procedure for inviscid fluids remains a
very challenging problem to this day. Providing an explicit
bound on the ”bad” essential part of the spectrum given
by exponent 𝜇 is a helpful tool to prove a range to suffi-
cient conditions for the analogue of the Lyapunov theory—
going from linear to nonlinear instability [FSV97]. In sev-
eral subsequent works Friedlander established several pio-
neering results in this direction. First, in 2D if there is a
point spectrum (exact eigenvalue) beyond 𝜇, i.e.,

ℒ𝑣 = 𝜆𝑣, Re𝜆 > 𝜇,
then the underlying steady flow 𝑢0 is unstable in the en-
ergy norm [VF03]. Construction of flows with oscillatory
laminar regions that fulfill this condition have been pro-
vided in Friedlander’s works with Yudovich. In the region
outside of the essential spectrum, in fact one can also con-
struct unstable invariant manifolds by analogy with finite-
dimensional theory and dissipative systems as was done
later in works of Lin and Zeng. Next, for the linearized
Navier-Stokes system

𝜕𝑣
𝜕𝑡 = −𝑢0 ⋅ ∇𝑣 − 𝑣 ⋅ ∇𝑢0 − ∇𝑝 + 𝜀Δ𝑣, (16)

∇ ⋅ 𝑣 = 0 (17)

both in 2D and in 3D, those dominant eigenvalues reap-
pear for small viscosities 𝜀 → 0 in a strong spectral limit:

for any eigenvalue of the linearized Euler system with
Re𝜆 > 𝜇 and 𝜀 sufficiently small the Navier-Stokes system
gains point spectrum in a vicinity of 𝜆 with the same mul-
tiplicity, and moreover the Riesz projection 𝐏𝜀 correspond-
ing to those spectral subspaces near 𝜆 tends to that of the
Euler equation 𝐏0 in the uniform operator topology. This
result proves to be particularly interesting in view of the
fact that the nonlinear Navier-Stokes system inherits insta-
bility in 𝐿3 (and in fact any 𝐿𝑝 for 𝑝 > 1) from the lin-
earization, a classical result of Yudovich. Thus, any steady
flow in 3D that has inviscid spectrum beyond 𝜇 becomes
nonlinearly unstable in the vanishing viscosity sense.

3. Dyadic Models
One way to gain an understanding of certain aspects of
the equations of fluid motion is to introduce toy models
which share properties with the actual equations, but are
simpler to analyze. During the last two decades, the work
of Friedlander has shaped studies of so-called dyadic mod-
els of the fluid equations, which simulate the energy cas-
cade through dyadic frequency shells.1 In these models,
the nonlinearity of the Euler equations (𝑢⋅∇)𝑢 is simplified
so that only local interactions between neighboring scales
are considered. However, simplifications of the nonlinear
term vary, and as a consequence the models differ. Some
of the first examples of models of this type were derived by
Desnyanskiy and Novikov in the context of oceanography,
and by Gledzer, whose model was subsequently general-
ized by Ohkitani and Yamada (and is now known as the
GOY model).

The dyadic models that Friedlander explored are de-
signed to share with the actual equations of fluid motion
the scaling of the nonlinear term in 3D (which we moti-
vate in the next subsection) and the following properties:

• A skew-symmetry property of the nonlinear term,

⟨(𝑢 ⋅ ∇)𝑢, 𝑢⟩𝐿2(ℝ3) = 0. (18)

• Conservation of energy for the classical solutions
to the Euler equations,

‖𝑢(⋅, 𝑇)‖2𝐿2 = ‖𝑢0‖2𝐿2 , (19)

which is a consequence of (18) and the
divergence-free condition, as can be seen by pair-
ing the Euler equation (1) with 𝑢 in the 𝐿2 sense.

• Decay of energy for classical solutions to the
Navier-Stokes equations (4)–(6),

‖𝑢(⋅, 𝑇)‖2𝐿2 = ‖𝑢0‖2𝐿2 − 2𝜈∫
𝑇

0
⟨−Δ𝑢, 𝑢⟩. (20)

1Specifically, a 𝑗th dyadic shell refers to a region where the Fourier frequency 𝜉
lies in the annular domain 2𝑗−1 ≤ |𝜉| ≤ 2𝑗 . The fluid velocity in the 𝑗th dyadic
shell is modeled with a single representative, 𝑢𝑗 .
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Broadly speaking, dyadic models provide a framework
for studying specific aspects of turbulence theory, while
being mathematically accessible. Moreover, in some in-
stances thesemodelsmotivated results on actual equations
of fluid motion, as was the case in e.g. [CCFS08].
3.1. Introducing a dyadic model. Let us now recall a ver-
sion of a dyadic model from [CFP07]. This model was in-
spired by a wavelets model introduced in [KP02] as a tool
to help guide a partial regularity result for actual Navier-
Stokes equations with hyperdissipation. We start by briefly
revisiting the wavelets model.

First, we recall some terminology from [KP02]. A cube
𝑄 in ℝ3 is called a dyadic cube if its sidelength is an in-
teger power of 2, 2𝑙, and the corners of the cube are on
the lattice 2𝑙ℤ3. Let 𝐷 denote the set of dyadic cubes in ℝ3.
Let𝒟𝑗 denote the subset of dyadic cubes having sidelength
2−𝑗. Then the parent of𝑄, denoted by 𝑃𝑄, is introduced as
the unique dyadic cube in 𝒟𝑗(𝑄)−1 which contains 𝑄. On
the other hand, one defines𝒞𝑘(𝑄), the 𝑘th-order grandchil-
dren of𝑄, to be the set of those cubes in𝒟𝑗(𝑄)+𝑘 which are
contained in 𝑄.

The modeling starts by replacing a vector-valued func-
tion 𝑢 by a scalar-valued one. An orthonormal family of
wavelets is denoted by {𝑤𝑄}, with 𝑤𝑄 the wavelet associ-
ated to the spatial dyadic cube 𝑄 ∈ 𝒟𝑗. Then 𝑢 can be
represented as

𝑢(𝑥, 𝑡) = ∑
𝑄
𝑢𝑄(𝑡)𝑤𝑄(𝑥).

Note that due to spatial localization of 𝑤𝑄,

‖𝑤𝑄‖𝐿∞ ∼ 2
3𝑗(𝑄)
2 . (21)

On the other hand

‖∇𝑤𝑄‖𝐿2 ∼ 2𝑗 . (22)

Having in mind (21) and (22), a cascade-down operator is
defined through its 𝑄th coefficient as follows:

(𝐶𝑑(𝑢, 𝑣))𝑄 = 2
5𝑗(𝑄)
2 𝑢𝑃𝑄𝑣𝑃𝑄,

with the scaling 25𝑗(𝑄) that reflects the upper bound on the
nonlinear term implied by (21)–(22). Similarly, a cascade-
up operator is defined as the adjoint of 𝐶𝑑(𝑢, 𝑣) via

(𝐶ᵆ(𝑢, 𝑣))𝑄 = 2
5(𝑗(𝑄)+1)

2 𝑢𝑄 ∑
𝑄′∈𝐶1(𝑄)

𝑣𝑄′ .

Then the cascade operator is introduced as

𝐶(𝑢, 𝑣) = 𝐶ᵆ(𝑢, 𝑣) − 𝐶𝑑(𝑢, 𝑣).
Having defined the Laplacian as −Δ(𝑤𝑄) = 22𝑗𝑤𝑄, one
introduces the following model equations:
• Dyadic Euler equation:

d𝑢
d𝑡 + 𝐶(𝑢, 𝑢) = 0.

• Dyadic Navier-Stokes equation:

d𝑢
d𝑡 + 𝐶(𝑢, 𝑢) − Δ𝑢 = 0.

By construction of the cascade operators, we have
⟨𝐶ᵆ(𝑢, 𝑢), 𝑢⟩ = ⟨𝐶𝑑(𝑢, 𝑢), 𝑢⟩, which implies the skew-
symmetry property of the operator 𝐶,

⟨𝐶(𝑢, 𝑢), 𝑢⟩ = 0. (23)

A simple consequence of (23) is conservation of energy
for the dyadic Euler equations and decay of energy for the
dyadic Navier-Stokes equations, at least at the formal level
(for sufficiently regular solutions).

The above dyadic models are special cases of the follow-
ing infinite system of coupled ordinary differential equa-
tions, which was studied by Friedlander:

d
d𝑡 𝑎𝑗 + 𝜈22𝑗𝑎𝑗 − 2𝑐(𝑗−1)𝑎2𝑗−1 + 2𝑐𝑗𝑎𝑗𝑎𝑗+1 = 𝑓𝑗 (24)

for 𝑗 = 0, 1, 2, … , where 𝑎−1 = 0, 𝑐 is a positive parame-
ter related to intermittency, and

1
2
𝑎2𝑗 represents the total

energy in the frequencies of order 2𝑗. The force 𝑓 is such
that 𝑓0 > 0 and 𝑓𝑗 = 0 for all 𝑗 > 0, so that the energy is
pumped on low modes.

As we have seen above, the model preserves many fea-
tures of the fluid equations, while the nonlinearity is
simplified by considering only local interactions between
scales. Moreover, the choice of the constant 𝑐 = 5/2 en-
sures that the nonlinearity in the dyadic model obeys the
same 𝐿2-based estimates as Euler (see (19)) and Navier-
Stokes equations (see (20)). Thanks to these 𝐿2-based es-
timates and a certain monotonicity present in the model, a
finite time blow-up was exhibited for the inviscid dyadic
model [KP05], as well as the viscous dyadic model with
some “small” degrees of dissipation [KP05] or large values
of 𝑐 [Che08]. For instance, solutions blow up when 𝑐 > 3,
in which case the dyadic model scales as 4+-dimensional
Navier-Stokes equations. Such amonotonicity property re-
sembles monotonicity of certain quantities present in so-
called “cooperative” systems (see for example the work of
Palais and the work of Bernoff and Bertozzi where singu-
larities in amodified Kuramoto-Sivashinsky equationwere
identified). Finite time blow-up in the inviscid case was
sharpened by Kiselev and Zlatoš. A three-dimensional vec-
tor model for the incompressible Euler equations was in-
troduced in [FP04], which is similar in some features to
a discretized approximate model constructed by Dinaburg
and Sinai for the Navier-Stokes equations in Fourier space.
It was shown in [FP04] that for special initial data the
evolution equations of the divergence-free vector model
reduced to the scalar dyadic Euler system and finite time
blow-up occurs in this model for the three-dimensional in-
compressible Euler equations. This was a brief snapshot of
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results for dyadic models around 2005, when Susan Fried-
lander initiated the study of phenomena related to turbu-
lence at the level of dyadic models.
3.2. Onsager’s and Kolmogorov’s conjectures. Up to
now we discussed conservation of energy at a formal level,
i.e., for sufficiently regular solutions to Euler equations (1).
However one might wonder about the minimal level of
regularity of a solution to the Euler equation that guaran-
tees conservation of energy. In fact this seemingly naive
question is connected with the statistical theories of tur-
bulence developed by Kolmogorov (1941) and Onsager
(1949). In their seminal works, it is suggested that an ap-
propriate mathematical description of three-dimensional
turbulent flow is given by weak solutions of the Euler equa-
tions which are not regular enough to conserve energy. On-
sager conjectured that for the velocity Hölder exponent
ℎ > 1/3 the energy is conserved2 and that this ceases to
be true for ℎ ≤ 1/3. This latter phenomenon is now called
turbulent or anomalous dissipation. Kolmogorov’s theory
predicts that in a fully developed turbulent flow the energy
spectrum 𝐸(|𝑘|) in the inertial range is given by

𝐸(|𝑘|) = 𝑐0 ̄𝜖2/3|𝑘|−5/3, (25)

where ̄𝜖 is the average of the energy dissipation rate.
While the rigidity part of Onsager’s conjecture (namely

the regime corresponding to the conservation of energy)
has been well understood due to works of Eyink and
Constantin-E-Titi—prior to works on dyadic models—the
flexibility part represented a challenge for a long period
of time. Thanks to advances in the method of convex in-
tegration due to De Lellis-Székelyhidi, the flexibility part
of the Onsager conjecture for the Euler equation has been
very recently settled by Isett, and by Buckmaster-De Lellis-
Székelyhidi-Vicol for dissipative solutions. However, the
state of the puzzle regarding the flexible part of the conjec-
ture was completely open back in 2007. In that context,
the dyadic model (24) provided a mathematical labora-
tory for addressing the phenomena predicted by Onsager
and Kolmogorov.

More precisely, in [CFP07, CFP10] Friedlander et al.
showed that the inviscid (𝜈 = 0) dyadic model possesses
a unique fixed point ̃𝑎, whose energy spectrum 𝒮(𝜅) ∼
𝜀2/3𝜅−8/3, which is just on the borderline of the Sobolev
space 𝐻5/6, where the 𝐻𝑠 Sobolev space is equipped with
the norm

‖𝑎‖2𝐻𝑠 =
∞
∑
𝑗=0

22𝑠𝑗𝑎2𝑗 .

This showed that all the solutions of the dyadic Euler
model stop satisfying energy equality at some time (which

2A very rough motivation for the appearance of the Hölder exponent 1/3
is “sharing” of one derivative among three copies of velocity 𝑢 in the skew-
symmetry relation (18), which has a crucial role in producing energy equalities
(19) and (20).

resolved Onsager’s conjecture in the negative direction),
and the long-time behavior is exactly as predicted by Kol-
mogorov’s theory of turbulence, but with extreme (or what
we now call fully intermittent) energy spectrum. In fact, as
it was observed in [CF09], the dyadic model (24) covers
the whole intermittency range 𝑑 ∈ [0, 3], where the inter-
mittency dimension 𝑑 is connected to the parameter 𝑐 as

𝑐 = 1 + 3−𝑑
2

(see Subsection 3.3). Then

Theorem 3.1 ([CFP07, CFP10]). The following hold for the
dyadic system (24) in the inviscid case 𝜈 = 0:

1. Every regular solution (defined to be a solution with
bounded 𝐻5/6 norm) satisfies the energy equality.

2. There exists a unique fixed point ̃𝑎 to (24), which is
a global attractor. The fixed point is not in 𝐻5/6. In fact,
it lies exactly in the space 𝐵1/33,∞ (defined in (31) below),
which takes into account intermittency.

3. The energy spectrum of the fixed point

𝒮(𝜅) ∼ 𝜀2/3𝜅−
8−𝑑
3 ,

where ̃𝑎0𝑓0 is the energy input rate, that corresponds to the
anomalous energy dissipation rate.

4. Every solution blows up in finite time in 𝐻5/6 and in
𝐵1/3+𝜖3,∞ for any 𝜖 > 0.

5. The 𝐻𝑠 norms of every solution are locally square inte-
grable in time for 𝑠 < 5/6, and every solution eventually
dissipates energy.

We note that the relevance of the Sobolev exponent
5/6 stems from three copies of modeled velocity “sharing”
the scaling of the localized coefficient 25/2 in the skew-
symmetry property for the dyadic nonlinear term (23).
The existence of a global attractor for an inviscid system,
at first, seems surprising. However it is exactly consistent
with the concept of anomalous or turbulent dissipation
conjectured by Onsager.

The relation between the fixed points of inviscid and
viscous dyadic models is as follows.

Theorem 3.2 ([CF09]). The following hold for the dyadic sys-
tem (24) in the viscous case 𝜈 > 0:

1. The global attractor for the viscous dyadic model is a
fixed point ̃𝑎𝜈.

2. The fixed point of the viscous system ̃𝑎𝜈 converges in 𝑙2
to the fixed point of the inviscid system ̃𝑎 as 𝜈 → 0. More-
over, the energy dissipation rate converges to the anomalous
energy dissipation rate of the inviscid system, i.e.,

lim
𝜈→0

𝜀𝜈 = ⟨𝑓, ̃𝑎⟩ = 𝜀,

where

𝜀𝜈 = 𝜈‖ ̃𝑎𝜈‖2𝐻1 = ⟨𝑓, ̃𝑎𝜈⟩
is the energy dissipation rate.
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3.3. From the dyadic model to the full equations. One
of the main features of the dyadic Navier-Stokes model,
the forward energy cascade, leads to the question of
whether solutions satisfy the energy equality. The nonlin-
ear term in the dyadic model is skew-symmetric by con-
struction, and hence one immediately obtains

1
2

d
d𝑡

𝑗
∑
𝑖=0

𝑎2𝑖 = −Π𝑗 − 𝜈
𝑗
∑
𝑖=0

22𝑖𝑎2𝑖 +
𝑗
∑
𝑖=0

𝑓𝑖𝑎𝑖, (26)

where the flux is defined as

Π𝑗 = 2
5
2 𝑗𝑎2𝑗𝑎𝑗+1,

where we again chose 𝑐 = 5/6. Passing to the limit as 𝑗 →
∞, it follows that every solution 𝑎 ∈ 𝐿3(0, 𝑇;𝐻5/6) satisfies
the energy equality

∞
∑
𝑖=0

𝑎2𝑖 (𝑡) =
∞
∑
𝑖=0

𝑎2𝑖 (𝑡0)

+∫
𝑡

𝑡0
[−𝜈

∞
∑
𝑖=0

22𝑖𝑎2𝑖 +
∞
∑
𝑖=0

𝑓𝑖𝑎𝑖] d𝑠 (27)

for all 0 ≤ 𝑡0 ≤ 𝑡 ≤ 𝑇. Surprisingly, this result was not
known for the fluid equations at that time, so Friedlander
and collaborators extended it to the Navier-Stokes equa-
tions in [CSF12].

As we have seen in Section 3.2, a simplified dyadic
model (24) mimicked highly nontrivial predictions for
real equations, raising the following questions. First, can
we rigorously justify the derivation of the model? Second,
what is the meaning of the parameter 𝑐 that affects the en-
ergy spectrum, which ranges from classical Kolmogorov’s
5/3 to the extreme 8/3 power law? This started a fruitful
series of works on obtaining optimal bounds for the en-
ergy flux and incorporating a notion of intermittency in
the mathematical studies of fluid equations.

Consider the Navier-Stokes equations (4) for the mo-
tion of a three-dimensional incompressible viscous fluid.
Define

𝑢≤𝜆𝑗 = 𝑢 ∗ ℱ−1(𝜓(⋅2−𝑗)),
where 𝜓(𝜉) is a smooth nonnegative function supported
in the ball of radius one centered at the origin and such
that 𝜓(𝜉) = 1 for 𝜉 ≤ 1/2, and ℱ is the Fourier transform.
The energy flux due to nonlinear interactions through the
sphere of radius 𝜆𝑗 = 2𝑗 is defined as (see [CCFS08])

Π𝑗 = −∫
ℝ3
(𝑢 ⋅ ∇)𝑢 ⋅ (𝑢≤𝜆𝑗 )≤𝜆𝑗 d𝑥.

Using the test function (𝑢≤𝜆𝑗 )≤𝜆𝑗 in the weak formulation
of the Navier-Stokes equations we obtain

1
2

d
d𝑡 ‖𝑢≤𝜆𝑗‖

2
2 = −Π𝑗 − 𝜈‖∇𝑢≤𝜆𝑗‖22 + ⟨𝑓≤𝜆𝑗 , 𝑢≤𝜆𝑗 ⟩. (28)

In [CCFS08], Cheskidov, Constantin, Friedlander, and
Shvydkoy obtained the following new bounds on the non-
linear term in (4):

|Π𝑗| ≲
∞
∑
𝑖=−1

𝜆
− 2

3
|𝑗−𝑖|𝜆𝑖‖𝑢𝑖‖33, (29)

where 𝑢𝑗 = 𝑢≤𝑗+1 − 𝑢≤𝑗 is the Littlewood-Paley projection
of 𝑢. This estimate employing the Littlewood-Paley decom-
position produced not only a sharpening of the conditions
under which there is no anomalous dissipation, but also
provides detailed information concerning the cascade of
energy through frequency space. More precisely, it shows
that the energy flux Π through the sphere of radius 𝜅 is
controlled primarily by scales of order 𝜅. The estimate also
showed that a critical space for solutions in which the en-
ergy equality is guaranteed, Onsager’s space, is 𝐵1/33,∞ for the
Navier-Stokes equations, and 𝐵1/33,𝑐0 for the Euler equations.

Now define 𝑎𝑗 = ‖𝑢𝑗‖2, so that
1
2
𝑎2𝑗 represents the en-

ergy in the dyadic shell of radius 2𝑗. In order to mimic the
flux estimate (29), we need to pass from 𝐿3 to 𝐿2, which
can be done thanks to Bernstein’s inequality:

𝑎3𝑗 ≲ ‖𝑢𝑗‖33 ≲ 𝜆
3
2
𝑗 𝑎3𝑗 . (30)

To capture the whole range of possible saturations of the
Bernstein inequality, define an intermittency parameter
𝑑 ∈ [0, 3], which, roughly speaking, represents the dimen-
sion of the set occupied by eddies, such that

‖𝑢𝑗‖3 ∼ 𝜆
3−𝑑
6

𝑗 𝑎𝑗 .

Then it is natural to define the Besov norm of 𝑎 as

‖𝑎‖𝐵𝑠3,∞ = sup
𝑗
2𝑗(𝑠+

3−𝑑
6 )𝑎𝑗 . (31)

This combined with the locality of (29) motivates the fol-
lowing model for the energy flux:

Π𝑗 = 𝜆
1+ 3−𝑑

2
𝑗 𝑎2𝑗𝑎𝑗+1. (32)

Here 𝑑 = 3 corresponds to the so-called Kolmogorov’s
regime where eddies occupy the whole space (or lower
bound on ‖𝑢𝑗‖3 in (30)) and 𝑑 = 0 is the case of extreme in-
termittency (or upper bound in (30)). Motivated by (28),
subtracting subsequent equations (26) (for 𝑗 and 𝑗 − 1)
gives

1
2

d
d𝑡 𝑎

2
𝑗 = Π𝑗−1 − Π𝑗 − 𝜈𝜆2𝑗𝑎2𝑗 + 𝑓𝑗𝑎𝑗 , (33)

which is exactly the dyadic model (24) with 𝑐 = 1 + 3−𝑑
2

by definition of the flux.
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4. The Magnetogeodynamo
The geodynamo is the process by which the rotating, con-
vecting, electrically conductingmolten iron in Earth’s fluid
core maintains the geomagnetic field against ohmic decay.
The convective processes in the core that produce the veloc-
ity fields required for this dynamo action are a combina-
tion of thermal and compositional convection. A detailed
description of the dynamo problem requires the exami-
nation of the three-dimensional partial differential equa-
tions governing incompressible magnetohydrodynamics
(MHD) under the effect of Coriolis, Lorentz, and gravity
forces (see the system (34)–(37) below). The system also
possesses thermal source terms which model radioactive
decay within Earth’s core, and can have an essentially sto-
chastic character. The mathematical statement of the geo-
dynamo problem asks whether there are initial data for the
MHD system for which the evolution of the magnetic field
grows for a sufficiently long time, i.e., the existence of in-
stabilities. These instabilities are also expected to play a
fundamental role in magnetostrophic turbulence and tur-
bulent dynamo theory [ML94].

Due to its complexity, in order to simulate this sys-
tem, current computational limitations require parameter
choices that are several orders of magnitude larger than
what is physically realistic. It is therefore reasonable to
attempt to gain some insight into the geodynamo by con-
sidering a reduction of the full MHD equations to a sys-
tem that is more tractable, but still maintains some of
the key physical features. The magnetogeostrophic (MG)
equation proposed by Moffatt and Loper [ML94] (see (37)
and (41) below) is one such model, which has gained sig-
nificant interest in the mathematical community, mostly
due to Friedlander’s work on this subject. During the past
decade Friedlander and her collaborators have gone from
laying down the mathematical foundations of the MG
equations, to proving delicate results about the long-time
dynamics of solutions, the instability of its steady states as
it relates to the geodynamo, and to rigorously deriving the
model from the small parameter regime postulated in its
physical derivation.
4.1. Derivation of the MG model. For simplicity of no-
tation, assume that the axis of rotation and the gravity are
aligned in the direction of the Cartesian vector 𝑒3. Moffatt
and Loper [ML94] furthermore assume that the magnetic
field is the sum of an underlying purely toroidal constant
field 𝐵0𝑒2 and a perturbation field 𝑏(𝑥, 𝑡). The fluid veloc-
ity vector field is denoted by 𝑢(𝑥, 𝑡), while the buoyancy
scalar field as 𝜃(𝑥, 𝑡). In the rotating frame of reference the
MHD system becomes:

𝑁2 [𝑅𝑜 (𝜕𝑡𝑢 + 𝑢 ⋅ ∇𝑢) + 𝑒3 × 𝑢] + ∇𝑃
= 𝑒2 ⋅ ∇𝑏 + 𝑅𝑚𝑏 ⋅ ∇𝑏 + 𝑁2𝜃𝑒3 + 𝜈Δ𝑢, (34)

𝑅𝑚 [𝜕𝑡𝑏 + 𝑢 ⋅ ∇𝑏 − 𝑏 ⋅ ∇𝑢] = 𝑒2 ⋅ ∇𝑢 + Δ𝑏, (35)

∇ ⋅ 𝑢 = 0, ∇ ⋅ 𝑏 = 0, (36)

𝜕𝑡𝜃 + 𝑢 ⋅ ∇𝜃 = 𝜅Δ𝜃 + 𝑆. (37)

Here 𝑆(𝑥, 𝑡) is a given thermal source due to radioactive de-
cay acting on the system, and naturally may be considered
to include stochastic components. The dimensionless phys-
ical parameters that appear above are: the inverse Elsässer
number𝑁2, the Rossby number 𝑅𝑜, themagnetic Reynolds
number 𝑅𝑚, the inverse Peclet number 𝜅, and the inverse
square of the Hartman number 𝜈.

The physical postulate of the Moffatt-Loper MG model
is that slow cooling of the Earth leads to slow solidifica-
tion of the liquid metal core onto the solid inner core, re-
leasing latent heat of solidification which drives composi-
tional convection in the fluid core. Based on this physical
postulate, arguments are given in [ML94] for the appropri-
ate ranges of the aforementioned parameters: 𝑁 ≈ 1 and
𝑅𝑜, 𝑅𝑚 ≪ 1. The MG model is obtained by setting 𝑁 = 1
and passing 𝑅𝑜, 𝑅𝑚 → 0 in (34)–(36), equations which
simplify to3

𝑒3 × 𝑢 = −∇𝑃 + 𝑒2 ⋅ ∇𝑏 + 𝜃𝑒3 + 𝜈Δ𝑢, (38)

0 = 𝑒2 ⋅ ∇𝑢 + Δ𝑏, (39)

∇ ⋅ 𝑢 = 0, ∇ ⋅ 𝑏 = 0. (40)

The linear system of equations (38)–(40) determine the
vector fields 𝑢 and 𝑏 in terms of the scalar buoyancy 𝜃, en-
coding the vestiges of the physics in the problem: Coriolis
force, Lorentz force, and gravity. Further vector manipula-
tions of (38)–(40) give the expression

[(𝑒3 ⋅ ∇)2Δ + [𝜈Δ2 − (𝑒2 ⋅ ∇)2]2] 𝑢
= (𝑒3 ⋅ ∇)Δ(𝑒3 × ∇𝜃)
− [𝜈Δ2 − (𝑒2 ⋅ ∇)2]∇ × (𝑒3 × ∇𝜃) (41)

which allows us to compute 𝑢 as a function of 𝜃, under
the model’s self-consistency assumption that both 𝜃 and 𝑢
have zero vertical mean.4 Note that all the differential op-
erators appearing in (41) have constant coefficients. Thus,
it is convenient to rewrite (41) as 𝑢 = 𝑀𝜈[𝜃], where𝑀𝜈 is a
vector Fourier multiplier operator with associated symbol
𝑀̂𝜈 given by

𝑀̂𝜈1(𝑘) = (𝑘2𝑘3|𝑘|2 − 𝑘1𝑘3(𝑘22 + 𝜈|𝑘|4)) 𝐷𝜈(𝑘)−1,
𝑀̂𝜈2(𝑘) = (−𝑘1𝑘3|𝑘|2 − 𝑘2𝑘3(𝑘22 + 𝜈|𝑘|4)) 𝐷𝜈(𝑘)−1,
𝑀̂𝜈3(𝑘) = ((𝑘21 + 𝑘22)(𝑘22 + 𝜈|𝑘|4)) 𝐷𝜈(𝑘)−1,
𝐷𝜈(𝑘) = |𝑘|2𝑘23 + (𝑘22 + 𝜈|𝑘|4)2

3The orders of 𝜈 and 𝜅 are speculative, but likely very small. For the moment we
keep them as free parameters, which allows us to pass 𝜈, 𝜅 → 0 later on in the
analysis.
4Note that while the physically relevant boundary for the Earth’s fluid core is a
spherical annulus, for the purposes of studying the mathematical properties of
the MG equations we simply consider periodic boundary conditions.
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for 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ ℤ3∗ ∶= ℤ3 ⧵ {𝑘3 = 0}. On {𝑘3 = 0} we
define 𝑀̂𝜈𝑗(𝑘) = 0 for all 𝑗 ∈ {1, 2, 3}, since 𝜃 and 𝑢 have
zero vertical mean.

In summary, for 𝜈, 𝜅 ≥ 0, the magnetogeostrophic MG𝜈,𝜅
equation is the nonlinear advection diffusion equation
(37), in which the incompressible velocity field 𝑢 = 𝑀𝜈[𝜃]
is given by the constitutive law (41). Some of the key
properties of the MG𝜈,𝜅 equation are that it is three di-
mensional, its diffusion is given by the classical Laplacian
(when 𝜅 > 0), and the symbol 𝑀̂𝜈(𝑘) is orthogonal to
the wavevector 𝑘 and is an even function of it. Most im-
portantly, the nature of the operator 𝑀𝜈 changes dramati-
cally between the inviscid case 𝜈 = 0 (when 𝑀𝜈 is an un-
bounded operator) and the dissipative case 𝜈 > 0 (when
𝑀𝜈 is a smoothing operator). This latter fact plays a crucial
role in the analysis of MG𝜈,𝜅.

It is instructive to compare the MG𝜈,𝜅 equation to more
classical hydrodynamic models in the canon of nonlin-
ear active scalar equations, such as the 2D surface quasi-
geostrophic equation (SQG) and its dissipative versions.
The SQG equation has received tremendous interest in the
mathematical community over the past decades, through
works of Constantin, Wu, Cordoba, Caffarelli-Vasseur,
Kiselev-Nazarov-Volberg, and many many others. The
recent results in the analysis of the SQG equation have
played a fundamental role in developing the mathemati-
cal foundations for the MG𝜈,𝜅 model.
4.2. The inviscid model 𝜈 = 0. In Friedlander’s origi-
nal work on this subject [FV11], it is shown that when
𝜈 = 0 there exist regions of Fourier space where 𝑀̂0(𝑘) is
unbounded andmay even grow as fast as |𝑘|when |𝑘| → ∞.
Thus, in this worst-case scenario 𝑀0 acts as an order one
Fourier multiplier, and so the map 𝜃 ↦ 𝑢 = 𝑀[𝜃] effec-
tively loses one derivative. Since the evolution of 𝜃 in
(37) satisfies the maximum principle (when 𝑆 = 0) one
may prove an a priori bound on 𝜃 ∈ 𝐿∞𝑡 𝐿∞𝑥 ; this is the
strongest norm of 𝜃 which is a priori bounded uniformly
in time. In turn, in view of the aforementioned properties
of 𝑀0, we may only deduce a bound on 𝑢 in 𝐿∞𝑡 𝐵𝑀𝑂−1

𝑥 ,
i.e., 𝑢 behaves as the divergence of a 𝐵𝑀𝑂 skew-symmetric
matrix. The crucial observation is that in three dimen-
sions advection-diffusion equations with incompressible
𝐿∞𝑡 𝐵𝑀𝑂−1

𝑥 drifts are critical, meaning that the natural par-
abolic scaling of equations leaves the size of the rescaled
drift velocity 𝑢 unchanged in this norm. When the initial
datum 𝜃0 or the forcing term 𝑆 are large, it is notoriously
difficult to establish the global existence of smooth solu-
tions for such problems, and indeed, prior to [FV11] this
was an open problem. Using a variant of the parabolic De
Giorgi iteration and the incompressibility of 𝑢, Friedlander
and the last author have proven the following.

Theorem 4.1 ([FV11]). Let the initial data 𝜃0 ∈ 𝐿2 ∩𝐿∞ and
𝜃 ∈ 𝐿∞(0,∞; 𝐿2) ∩ 𝐿2(0,∞;𝐻1) be a weak solution of MG0,𝜅,
where 𝜅 > 0. Then, for any 𝑡0, there exists 𝛼 > 0 such that
𝜃 ∈ 𝐶𝛼/2(𝑡0,∞; 𝐶𝛼).

The proof of Theorem 4.1 starts by using De Giorgi
iteration to establish the boundedness of the weak so-
lutions to MG0,𝜅. Proving Hölder regularity requires a
more delicate argument since the drift velocity 𝑢 is the
divergence of a 𝐵𝑀𝑂, rather than 𝐿∞, matrix. By essen-
tially using the divergence-free nature of 𝑢, and by appeal-
ing to the John-Nirenberg inequality, one may however
prove a suitable 𝐿𝑝-based Caccioppoli inequality, which
is the key ingredient in De Giorgi’s improvement of the
oscillation lemma. Note that while Theorem 4.1 only es-
tablishes global Hölder continuity of weak solutions to
MG0,𝜅, a posteriori onemay deduce these solutions are𝐶∞

smooth for 𝑡 > 0, and thus unique.
Having established the global existence of smooth solu-

tions for MG0,𝜅 with 𝜅 > 0, Friedlander and her collabo-
rators have turned their attention to proving the existence
of instabilities for the nonlinear model, since this is after
all what the geodynamo problem asks for. Building on
the ideas discussed in Section 2, Friedlander was able to
prove that for𝑚 ≥ 1, the operator corresponding to MG0,𝜅
linearized around the steady state Θ0 = sin(𝑚𝑥3), with as-
sociated 𝑈0 = 0 and forcing 𝑆 = 𝜅𝑚2 sin(𝑚𝑥3), has unsta-
ble point spectrum. Moreover, the largest eigenvalue has
real part which is at least as large as 2−9𝜅−1 once 𝜅 is taken
to be sufficiently small and 𝑚 ≪ 𝜅−1. As in Section 2, a
careful analysis shows that this linear instability implies
that solutions to the full nonlinear MG0,𝜅 are Lyapunov
nonlinearly unstable: initially small perturbations of Θ0
grow exponentially in time, which is consistent with the
dynamo instabilities.

Friedlander, jointly with Rusin and the last author, has
obtained a number of further results concerning theMG0,𝜅
model. For instance, the system MG0,0 is Hadamard ill-
posed in Sobolev spaces, but local well-posedness is re-
covered if one adds back a dissipative operator of the type
𝜅(−Δ)𝛾 with 𝛾 ≥ 1/2. For further results in the inviscid case,
we refer the interested reader to the review paper [FRV14].
4.3. The viscous model 𝜈 > 0. The nature of the MG𝜈,𝜅
equations changes dramatically when considering the vis-
cous case 𝜈 > 0. To see this, return to the symbol 𝑀̂𝜈 de-
fined implicitly by (41). For 𝜈 > 0, instead of having an
unbounded symbol, one may show that |𝑘|2|𝑀̂𝜈(𝑘)| ≲𝜈 1
for all 𝑘 ∈ ℤ3. Thus, the map 𝜃 ↦ 𝑢 = 𝑀[𝜃] is smooth-
ing of order two in the viscous case; a regularization that
is even stronger than the Biot-Savart law. Thus, an a priori
estimate on 𝜃 ∈ 𝐿∞𝑡 𝐿∞𝑥 (natural in view of the maximum
principle for (36)), yields a bound for∇2𝑢 in 𝐿∞𝑡 𝐿𝑝𝑥 for any
𝑝 < ∞. In particular, the Lipschitz norm of 𝑢 is a priori
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controlled, globally in time, and as for classical ODEs, one
may thus hope that the system is globally well-posed even
when the diffusivity parameter 𝜅 vanishes. This problem
was recently resolved by Friedlander jointly with Suen.

Theorem 4.2 ([FS15]). Consider 𝜈 > 0 and 𝜅 ≥ 0. Assume
that 𝜃0 ∈ 𝐿3 has zero mean. Then, there exists a unique global
weak solution 𝜃 ∈ 𝐵𝐶((0,∞); 𝐿3) with 𝑢 ∈ 𝐶((0,∞);𝑊 2,3) of
the MG𝜈,𝜅 equation.

The remarkable fact about the above result is that it
holds even for 𝜅 = 0. It is also shown in [FS15] that so-
lutions to MG𝜈,𝜅 converge in the vanishing viscosity limit
𝜈 → 0 towards solutions of MG0,𝜅 for 𝜅 > 0. Moreover,
there is no anomalous dissipation of energy for (37) in
the vanishing diffusivity limit: for any 𝑇 > 0 and 𝜃0 ∈ 𝐻1,
we have that

lim
𝜅→0

∫
𝑇

0
∫
𝕋3
𝜅|∇𝜃𝜅,𝜈|2d𝑥d𝑡 = 0,

where 𝜃𝜅,𝜈 denotes the unique solution of MG𝜈,𝜅 guar-
anteed by Theorem 4.2. The above result addresses the
question of magnetogeostropic turbulence raised by Mof-
fatt and Loper [ML94]. Concerning the geodynamo prob-
lem, using techniques similar to those in Section 2, it was
proven by Friedlander and Suen in [FS15] that the dis-
sipative MG𝜈,𝜅 equation sustains exponentially growing
dynamo-type instabilities.
4.4. Singular limits for the magnetogeodynamo in a sto-
chastic setting. Another direction of Friedlander’s work
in magnetohydrodynamics concerns the Moffatt-Loper
model (34)–(37) in the stochastic setting, where the
source term 𝑆 in thermal evolution equation (37) is spec-
ified as a Gaussian white noise. This probabilistic set-
ting of the model interprets white noise driven terms as
a heat source which “continuously regenerates the statis-
tically stationary temperature distribution throughout the
core” as described by Moffat and Loper [ML94]. As such,
an important feature of Friedlander and her collaborators’
work in the stochastic setting is to analyze statistically in-
variant states, i.e., to study invariant measures of the associ-
ated Markovian dynamics. More broadly, such measures
play an important role in the study of turbulence as they
provide a framework for identifying robust statistical quan-
tities in turbulent flows.

In a joint work with Földes, the second coauthor, and
Richards [FFGHR17], Friedlander considered the singular
parameter limits 𝑅𝑜, 𝑅𝑚 → 0 for (34)–(35), with these
limits being carried out in terms of the corresponding in-
variant measures. Roughly speaking, the work [FFGHR17]
establishes that statistically robust quantities of the full
MHD system with 0<𝑅𝑜, 𝑅𝑚≪1 are well approximated by
those measured using the formal limit system 𝑅𝑜 = 𝑅𝑚 =
0. More precisely, we summarize this result as follows.

Theorem 4.3 ([FFGHR17]). Consider (34)–(37) with 𝜈, 𝜅 >
0, in the presence of a stochastic source term of the form

𝑆(𝑥, 𝑡) = ∑
𝑘∈ℤ30
𝑚∈{0,1}

𝛼𝑘,𝑚𝜎𝑚𝑘 (𝑥)𝑊̇ 𝑘,𝑚(𝑡) , (42)

where 𝜎0𝑘(𝑥) ∶= cos(𝑘⋅𝑥), 𝜎1𝑘(𝑥) ∶= sin(𝑘⋅𝑥), 𝛼𝑘 ∈ ℝ are am-
plitudes, and {𝑊̇ 𝑘,𝑚} is a collection of independent white noise
processes. Subject to the nondegeneracy (hypoellipticity) condi-
tion that 𝛼(1,0,0)𝑚, 𝛼(0,1,0)𝑚, 𝛼(0,0,1)𝑚 are nonzero for 𝑚 = 0, 1
the limit equation (34)–(37) when 𝑅𝑜 = 𝑅𝑚 = 0 has a unique
statistically invariant state 𝜇 which is achieved at an exponen-
tial rate; cf. (44) below. For any collection of statistically invari-
ant states {𝜇𝑅𝑜,𝑅𝑚 }𝑅𝑜,𝑅𝑚>0 and any suitably regular observable
Φ of the dynamics, we have

||∫Φ(𝑢, 𝑏, 𝜃)d𝜇𝑅𝑜,𝑅𝑚−∫Φ(𝑢, 𝑏, 𝜃)d𝜇||

≤ 𝐶(𝑅𝑜 + 𝑅𝑚)𝛾, (43)

where the constants 𝛾, 𝐶 > 0 are independent of 𝑅𝑜, 𝑅𝑚 > 0.
An interesting feature of the above result is that the es-

timate (43) is independent of possible nonuniqueness in
the approximating statistics. Here we observe that the for-
mal limit system when 𝑅𝑜 = 𝑅𝑚 = 0, i.e., MG𝜈,𝜅, is an
active scalar equation with a smoothing constitutive law
of order two, and therefore classically yields a Markovian
dynamic. On the other hand, for positive values of 𝑅𝑜, 𝑅𝑚,
it is not clear that (34)–(37) is well posed or that the as-
sociated statistically 𝜇𝑅𝑜,𝑅𝑚 steady states are unique; for
positive 𝑅𝑜, 𝑅𝑚, the invariant states 𝜇𝑅𝑜,𝑅𝑚 are considered
as stochastic analogues (i.e., martingale solutions) of sta-
tionary Leray weak solutions.

The strategy in [FFGHR17] turns on establishing a spec-
tral gap condition is suitable in a Wasserstein metric for
the Markovian dynamics for the limit system. Here, one
considers

𝔚𝜌(𝜇, 𝜈) ∶= inf
Γ∈𝒞𝜇,𝜈

∫𝜌(𝑈, 𝑉)Γ(d𝑈,d𝑉),

where 𝜌 is taken to be a certain metric, topologically equiv-
alent to 𝐿2, but which punishes elements far from the ori-
gin, and 𝒞𝜇,𝜈 is the set of couplings of 𝜇 and 𝜈. “Weak
Harris” mixing results for Markovian systems which are
adapted to such topologies 𝔚𝜌 were developed by Hairer,
Mattingly, Kuksin, Shirikyan, and others in the early 2000s.
By leveraging such modern variants of Harris’ classical the-
orems one may establish bounds of the type

𝔚𝜌(𝜇𝑃𝑡, 𝜈𝑃𝑡) ≤ 𝐶𝑒−𝜅𝑡𝔚𝜌(𝜇, 𝜈). (44)

A crucial step in the analysis leading to (44) is to study
the delicate interactions of the stochastic source terms 𝑆 in
(42) with the nonlinear portion of the drift 𝑢 ⋅ ∇𝜃 present
in (41), in order to establish a certain Hörmander-type hy-
poellipticity condition. This analysis produces a form of

MARCH 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 341



smoothing in the Markovian dynamics, the so-called as-
ymptotic strong Feller condition of Hairer and Mattingly.

The bound (44) crucially affords a reduction of the
study of the convergence of the stationary states in (43),
to the establishing of bounds between positive and limit
solutions in the parameters 𝑅𝑜, 𝑅𝑚 at a fixed finite time
𝑡∗ > 0. The finite time convergence analysis produces inter-
esting challenges due to a phase space mismatch between
the full system when 𝑅𝑜, 𝑅𝑚 > 0 and the active scalar equa-
tion representing the limit. This formally suggests a mul-
titime scale analysis to correctly approximate solutions at
an initial layer in time. One insight in [FFGHR17] is that,
beyond the initial layer, there is no need to correct the dy-
namics in order to obtain a bound similar to (43) for the
thermal components of the dynamics; these decay rates
may then be transferred to bounds on velocity and mag-
netic components.

Figure 1. Friedlander at the Mathematisches
Forschungsinstitut Oberwolfach in 2015.

5. Impact of Friedlander’s Work
It is hard to overestimate the significance of Friedlander’s
research and her impact on the work of so many mathe-
maticians, including the authors of this survey. The geo-
metric optics method has developed into a powerful tool
to study instabilities for a broad range of fluidmodels. Fur-
ther advances in this area have led to a full description of
the essential spectrumof the 2D and 3DEuler system. This,
in turn, made it possible to apply methods from dynami-
cal systems to construct invariant manifolds near unstable
equilibria.

Friedlander’s results on the long-time behavior of
dyadic models represent a prototype of the “dream sce-
nario” for the full Euler equations—finite time blow-up or
regularization that leads to the Onsager-critical regularity
for solutions with any initial data. The regularization prop-
erty of the nonlinear term has been investigated further
starting with the work of Barbato, Morandin, and Romito.

A recent work of Tao exploits the blow-up mechanism of
the dyadic model and adds the energy cascade delays to
break the 4D barrier that result in a construction of an “av-
eraged” 3DNavier-Stokesmodel which fulfills all the same
energy estimates as the actual Navier-Stokes, but blows up
in finite time—a long-awaited result demonstrating that
the energy method alone is not enough to resolve the Clay
Problem for 3D Navier-Stokes.

TheMGmodel has sparked research inmany directions,
and in particular it was one of the first active scalar equa-
tions to which the convex integrationmethodwas adapted.
It played a crucial step in understanding the role of sym-
metries in the Fourier multiplier for the scalar-to-velocity
constitutive law, as a mechanism for generating wild solu-
tions.

Friedlander’s contribution to the ongoing work on the
Onsager conjecture laid the basis for the mathematical for-
malization of the physical concepts of intermittency and
accumulation set for the forward energy cascade in turbu-
lent flows. These concepts proved to be experimentally
measurable and were well received in the physical com-
munity. Friedlander’s analytical results on the energy law
remain sharp to date and were extended to fluids models
with boundaries, to inhomogeneous and compressible flu-
ids, and even to general hyperbolic conservation laws.
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