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1. Introduction
Imagine there is a 3×3 grid of bushes, labeled𝐺1, 𝐺2, ..., 𝐺9,
from top to bottom and left to right (the bunny example
in the opening figure). There is a fluffy little bunny hid-
ing in the middle bush, starving and ready to munch on
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some grass around it. Assume the bunny never gets full
and the grass is never depleted. Once each minute, the
bunny jumps from its current bush to one of the nearest
other bushes (up, down, left, or right, not diagonal) or
stays at its current location, each with equal probability.
We can then ask about longer-term probabilities. For ex-
ample, if the bunny starts at𝐺5, the probability of jumping
to 𝐺7 after two steps is

Prob𝐺5(at 𝐺7 after two steps)
= Prob(𝐺5 → 𝐺4 → 𝐺7) + Prob(𝐺5 → 𝐺8 → 𝐺7)

= 1
5 ×

1
4 +

1
5 ×

1
4 =

1
10 .

But what happens to the probabilities after three steps? ten
steps? more?

This paper investigates the convergence of such proba-
bilities as the number of steps gets larger. As we will dis-
cuss later, such bounds are not only an interesting topic
in their own right, they are also very important for reli-
ably using Markov chain Monte Carlo (MCMC) computer
algorithms [1–3] which are very widely applied to nu-
merous problems in statistics, finance, computer science,
physics, combinatorics, and more. After reviewing the
standard eigenvalue approach in Section 3, we will concen-
trate on the use of “coupling,” and specifically on the use
of “minorization” (Section 4) and “drift” (Section 6) con-
ditions. We note that coupling is a very broad topic with
many different variations and applications (see, e.g., [9]),
and has even inspired its own algorithms (such as “cou-
pling from the past”). And, there are many other meth-
ods of bounding convergence of Markov chains, including
continuous-time limits, different metrics, path coupling,
non-Markovian couplings, spectral analysis, operator the-
ory, and more, as well as numerous other related topics,
which we are not able to cover here.

2. Markov Chains
The above bunny model is an example of a Markov chain
(in discrete time and space). In general, a Markov chain is
specified by three ingredients:

1. A state space 𝒳, which is a collection of all of the
states theMarkov chainmight be at. In the bunny example,
𝒳 = {𝐺1, 𝐺2, ..., 𝐺9}.

2. An initial distribution (probability measure) 𝜇0(⋅),
where 𝜇0(𝐴) is the probability of starting within 𝐴 ⊂ 𝒳 at
time 0. In the bunny example, 𝜇0(𝐺5) = 1, and 𝜇0(𝐺𝑖) =
0 ∀𝑖 ≠ 5.

3. A collection of transition probability distributions 𝑃(𝑥, ⋅)
on 𝒳 for each state 𝑥 ∈ 𝒳. The distribution 𝑃(𝑥, ⋅) repre-
sents the probabilities of the Markov chain going from 𝑥
to the next state after one unit of time. In a discrete state
space like the bunny example, the transition probabilities
can be simply written as 𝑃 = {𝑝𝑖𝑗}𝑖,𝑗∈𝒳 , where 𝑝𝑖𝑗 is the

probability of jumping to 𝑗 from 𝑖. Indeed, in the bunny
example:

For example, in the second row, 𝑝21 = 𝑝22 = 𝑝23 =
𝑝25 =

1
4
because from 𝐺2, the probabilities of jumping to

each of 𝐺1, 𝐺2, 𝐺3, or 𝐺5 are each
1
4
.

We write 𝜇𝑛(𝑖) for the probability that the Markov chain
is at state 𝑖 after 𝑛 steps. Given the initial distribution 𝜇0
and transition probabilities 𝑃(𝑥, ⋅), we can compute 𝜇𝑛 in-
ductively by

𝜇𝑛(𝐴) ≔ ∫
𝑥∈𝒳

𝑃(𝑥, 𝐴) 𝜇𝑛−1(𝑑𝑥) , 𝑛 ≥ 1 .

On a discrete space, this formula reduces to 𝜇𝑛(𝑗) =
∑𝑖∈𝒳 𝑝𝑖𝑗 𝜇𝑛−1(𝑖). In matrix form, regarding the 𝜇𝑛 as row-
vectors, this means 𝜇𝑛 = 𝜇𝑛−1 𝑃. It follows by induction
that 𝜇𝑛 = 𝜇0 𝑃𝑛, where 𝑃𝑛 is the 𝑛th matrix power of 𝑃,
also called the 𝑛-step transition matrix. Here (𝑃𝑛)𝑖𝑗 is the
probability of jumping to 𝑗 from 𝑖 in 𝑛 steps. Indeed, if
we take 𝜇0 = (0, 0, … , 1, … , 0), so 𝜇0(𝑖) = 1 with 𝜇0(𝑗) = 0
for all 𝑗 ≠ 𝑖, then 𝜇𝑛(𝑗) = ∑𝑟=0 𝜇0(𝑟)(𝑃𝑛)𝑟𝑗 = (𝑃𝑛)𝑖𝑗. This
makes sense since if we start at 𝑖, then 𝜇𝑛(𝑗) is the proba-
bility of moving from 𝑖 to 𝑗 in 𝑛 steps.

Onemain question inMarkov chain analysis is whether
the probabilities 𝜇𝑛 will converge to a certain distribution,
i.e., whether 𝜋 ≔ lim𝑛→∞ 𝜇𝑛 exists. If it does, then letting
𝑛 → ∞ in the relation 𝜇𝑛+1 = 𝜇𝑛𝑃 indicates that 𝜋must be
stationary, i.e., 𝜋 = 𝜋𝑃. On a finite state space, this means
that 𝜋 is a left eigenvector of the matrix 𝑃 with correspond-
ing eigenvalue 1.

In the bunny example, by solving the system of linear
equations given by 𝜋𝑃 = 𝜋, the stationary probability dis-
tribution can be computed to be the following vector:

𝜋 = ( 111 ,
4
33 ,

1
11 ,

4
33 ,

5
33 ,

4
33 ,

1
11 ,

4
33 ,

1
11) .

In fact, the bunny example satisfies general theoretical
properties called irreducibility and aperiodicity, which guar-
antee that the stationary distribution 𝜋 is unique, and that
𝜇𝑛 converges to 𝜋 as 𝑛 → ∞ (see, e.g., [8]). However, in
this paper we shall focus on quantitative convergence rates,
i.e., how large 𝑛 has to be to make 𝜇𝑛 sufficiently close to
𝜋.
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(𝜆0, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, 𝜆8) = (1, 0.702, 0.702, −0.467, 0.333, 0.25, 0.25, 0.119, 0.119)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑣0
𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6
𝑣7
𝑣8

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.091 0.121 0.091 0.121 0.152 0.121 0.091 0.121 0.091
0.489 0.361 0 0.361 0 −0.361 0 −0.361 −0.489
0.055 −0.318 −4.863 0.399 0 −0.399 4.863 0.318 −0.055
−0.224 0.358 −0.224 0.358 −0.537 0.358 −0.224 0.358 −0.224
0.500 0 −0.500 0 0 0 −0.500 0 0.500
0.002 −0.500 0.002 0.499 −0.007 0.499 0.002 −0.500 0.002
0.256 −0.043 0.256 −0.043 −0.854 −0.043 0.256 −0.043 0.256
−0.436 0.394 0 0.394 0 −0.394 0 −0.394 0.436
0.018 0.377 −0.425 −0.410 0 0.410 0.435 −0.377 −0.018

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Figure 1.

3. Eigenvalue Analysis on Finite State Spaces
When the state space is finite and small, it is sometimes
possible to obtain a quantitative bound on the conver-
gence rate through direct matrix analysis (e.g., [6]). We
require eigenvalues 𝜆𝑖 and left-eigenvectors 𝑣𝑖 such that
𝑣𝑖𝑃 = 𝜆𝑖𝑣𝑖. For example, for the above bunny process, we
compute (numerically, for simplicity) the eigenvalues and
left-eigenvectors in Figure 1.

To be specific, assume that the bunny starts from the
center bush 𝐺5, so 𝜇0 = (0, 0, 0, 0, 1, 0, 0, 0, 0). We can ex-
press this 𝜇0 in terms of the above eigenvector basis as the
linear combination:

𝜇0 = 𝑣0 − 0.4255𝑣3 − 0.7259𝑣6 .
(Here 𝑣0 = 𝜋, corresponding to the eigenvalue 𝜆0 = 1.)
Recalling that 𝜇𝑛 = 𝜇0𝑃𝑛 and that 𝑣𝑖𝑃 = 𝜆𝑖 𝑣𝑖 by definition,
we compute that, e.g.,
𝜇𝑛(𝐺5) = (𝜆0)𝑛𝑣0(𝐺5) − 0.4255(𝜆3)𝑛𝑣3(𝐺5) − 0.7259(𝜆6)𝑛𝑣6(𝐺5)

= 𝜋(𝐺5) − 0.4255(−0.4667)𝑛(−0.537) − 0.7259(0.25)𝑛(−0.854) .

Since |0.25| < |0.4667| and |0.4255 ⋅ (−0.537)| + |0.7259 ⋅
(−0.854)| < 0.85, the triangle inequality implies that

|𝜇𝑛(𝐺5) − 𝜋(𝐺5)| < 0.85 (0.4667)𝑛 , 𝑛 ∈ ℕ .
This shows that 𝜇𝑛(𝐺5) → 𝜋(𝐺5), and gives a strong bound
on the difference between them. For example, |𝜇𝑛(𝐺5) −
𝜋(𝐺5)| < 0.01 whenever 𝑛 ≥ 6, i.e., only six steps are
required to make the bunny’s probability of being at 𝐺5
within 0.01 of its limiting (stationary) probability. Other
states besides 𝐺5 can be handled similarly.

Unfortunately, such direct eigenvalue or spectral anal-
ysis becomes more and more challenging on larger and
more complicated examples, especially on nonfinite state
spaces. So, we next introduce a different technique which,
while less tight, is more widely applicable.

4. Coupling and Minorization Conditions
The idea of coupling is to create two different copies of a
random object, and compare them. Coupling has a long
history in probability theory, with many different appli-
cations and approaches (see, e.g., [9]). A key idea is the

coupling inequality. Suppose we have two random variables
𝑋 and 𝑌 , each with its own distribution. Then for any sub-
set 𝐴, we can write

||Prob(𝑋 ∈ 𝐴) − Prob(𝑌 ∈ 𝐴)||
= ||Prob(𝑋 ∈ 𝐴, 𝑋 = 𝑌) + Prob(𝑋 ∈ 𝐴, 𝑋 ≠ 𝑌)
− Prob(𝑌 ∈ 𝐴, 𝑋 = 𝑌) − Prob(𝑌 ∈ 𝐴, 𝑋 ≠ 𝑌)|| .

But here Prob(𝑋 ∈ 𝐴, 𝑋 = 𝑌) = Prob(𝑌 ∈ 𝐴, 𝑋 = 𝑌),
since they both refer to the same event, so those two
terms cancel. Also, each of Prob(𝑋 ∈ 𝐴, 𝑋 ≠ 𝑌) and
Prob(𝑌 ∈ 𝐴, 𝑋 ≠ 𝑌) are between 0 and Prob(𝑋 ≠ 𝑌),
so their difference must be ≤ Prob(𝑋 ≠ 𝑌). Hence,

||Prob(𝑋 ∈ 𝐴) − Prob(𝑌 ∈ 𝐴)|| ≤ Prob(𝑋 ≠ 𝑌) .
Since this upper bound is uniform over subsets 𝐴, we can
even take a supremum over 𝐴, to also bound the total vari-
ation distance:

‖ℒ(𝑋) − ℒ(𝑌)‖𝑇𝑉 ≔ sup
𝐴⊆𝒳

||Prob(𝑋 ∈ 𝐴) − Prob(𝑌 ∈ 𝐴)||

≤ Prob(𝑋 ≠ 𝑌) .
That is, the total variation distance between the probability
laws ℒ(𝑋) and ℒ(𝑌) is bounded above by the probability
that the random variables 𝑋 and 𝑌 are not equal. To apply
this fact to Markov chains, the following condition is very
helpful.

Definition. A Markov chain with state space𝒳 and transi-
tion probabilities 𝑃 satisfies aminorization condition if there
exists a (measurable) subset 𝐶 ⊆ 𝒳, a probability measure
𝜈 on 𝒳, a constant 𝜖 > 0, and a positive integer 𝑛0, such
that

𝑃𝑛0(𝑥, ⋅) ≥ 𝜖𝜈(⋅), 𝑥 ∈ 𝐶 .
We call such 𝐶 a small set. In particular, if 𝐶 = 𝒳 (the entire
state space), then the Markov chain satisfies a uniform mi-
norization condition, also referred to as Doeblin’s condition.

For a concrete example, suppose the state space is the
half-line𝒳 = [0,∞), with transition probabilities given by

𝑃(𝑥, 𝑑𝑦) = (𝑒−2𝑦 + 1
√2𝜋(𝑥 + 1)

𝑒−
𝑦2

2(𝑥+1)2 ) 𝑑𝑦 . (1)
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Figure 2. The example satisfying the minorization condition.

That is, from a state 𝑥, the chain moves to an equal mix-
ture of an Exponential(2) distribution and a half-normal
distribution with mean 0 and standard deviation 𝑥+1. In
this case, 𝑃(𝑥, 𝑑𝑦) ≥ 𝑒−2𝑦 𝑑𝑦 for all 𝑥 (see Figure 2), so
the chain satisfies a uniform minorization condition with
𝑛0 = 1, 𝜈(𝑦) = 2𝑒−2𝑦, and 𝜖 = 1

2
.

The uniform minorization condition implies that there
exists a common overlap of size 𝜖 between all of the transi-
tion probabilities. This allows us to formulate a coupling
construction of two different copies {𝑋𝑛} and {𝑋 ′

𝑛} of a
Markov chain, as follows. Assume for now that 𝑛0 = 1.
First, choose 𝑋0 ∼ 𝜇0(⋅) and 𝑋 ′

0 ∼ 𝜋(⋅) independently.
Then, inductively for 𝑛 = 0, 1, 2, …:

1. If 𝑋𝑛 = 𝑋 ′
𝑛, choose 𝑧 ∼ 𝑃(𝑋𝑛, ⋅) and let 𝑋 ′

𝑛+1 =
𝑋𝑛+1 = 𝑧. The chains have already coupled, and they will
remain equal forever.

2. If 𝑋𝑛 ≠ 𝑋 ′
𝑛, flip a coin whose probability of Heads is

𝜖. If it showsHeads, choose 𝑧 ∼ 𝜈(⋅) and let 𝑋 ′
𝑛+1 = 𝑋𝑛+1 =

𝑧. Otherwise, update 𝑋𝑛+1 and 𝑋 ′
𝑛+1 independently with

probabilities given by

Prob(𝑋𝑛+1 ∈ 𝐴) = 𝑃(𝑋𝑛, 𝐴) − 𝜖𝜈(𝐴)
1 − 𝜖 ,

Prob(𝑋 ′
𝑛+1 ∈ 𝐴) = 𝑃(𝑋 ′

𝑛, 𝐴) − 𝜖𝜈(𝐴)
1 − 𝜖 .

(The minorization condition guarantees that these “resid-
ual” probabilities are nonnegative, and hence are
probability measures since their total mass

equals
𝑃(𝑋𝑛,𝒳)−𝜖𝜈(𝒳)

1−𝜖
= 1−𝜖

1−𝜖
= 1.) This construction en-

sures that overall, Prob(𝑋𝑛+1 ∈ 𝐴|𝑋𝑛 = 𝑥) = 𝑃(𝑥, 𝐴) and
Prob(𝑋 ′

𝑛+1 ∈ 𝐴|𝑋 ′
𝑛 = 𝑥) = 𝑃(𝑥, 𝐴) for any 𝑥 ∈ 𝒳: indeed,

if the two chains are unequal at time 𝑛, then
Prob(𝑋𝑛+1 ∈ 𝐴 | 𝑋𝑛 = 𝑥)

= Prob(𝑋𝑛+1 ∈ 𝐴, Heads | 𝑋𝑛 = 𝑥)
+ Prob(𝑋𝑛+1 ∈ 𝐴, Tails | 𝑋𝑛 = 𝑥)

= Prob(Heads) Prob(𝑋𝑛+1 ∈ 𝐴 | 𝑋𝑛 = 𝑥, Heads)
+ Prob(Tails) Prob(𝑋𝑛+1 ∈ 𝐴 | 𝑋𝑛 = 𝑥, Tails)

= 𝜖 𝜈(𝐴) + (1 − 𝜖) 𝑃(𝑥, 𝐴) − 𝜖 𝜈(𝐴)
1 − 𝜖 = 𝑃(𝑥, 𝐴) .
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Figure 3.

If 𝑛0 > 1, then we can use the above construction for
the times 𝑛 = 0, 𝑛0, 2𝑛0, …, with 𝑛 + 1 replaced by 𝑛 + 𝑛0,
and with 𝑃(⋅, ⋅) replaced by 𝑃𝑛0(⋅, ⋅). Then, if desired, we
can later “fill in” the intermediate states 𝑋𝑛 for 𝑗𝑛0 < 𝑛 <
(𝑗+1)𝑛0, from their appropriate conditional distributions
given the already-constructed values of 𝑋𝑗𝑛0 and 𝑋(𝑗+1)𝑛0 .

Now, since 𝑋 ′
0 ∼ 𝜋(⋅) and 𝜋 is a stationary distribution,

therefore 𝑋 ′
𝑛 ∼ 𝜋(⋅) for all 𝑛. And, every 𝑛0 steps, the two

chains probability is at least 𝜖 of coupling (i.e., of the coin
showing Heads). So, Prob(𝑋𝑛 ≠ 𝑋 ′

𝑛) ≤ (1 − 𝜖)⌊𝑛/𝑛0⌋, where
⌊⋅⌋means floor. The coupling equality then implies the fol-
lowing.

Theorem 1. If {𝑋𝑛} is a Markov chain on 𝒳, whose transition
probabilities satisfy a uniform minorization condition for some
𝜖 > 0, then for any positive integer 𝑛 and any 𝑥 ∈ 𝒳,

‖ℒ(𝑋𝑛) − 𝜋(⋅)‖𝑇𝑉 ≤ (1 − 𝜖)⌊𝑛/𝑛0⌋.

For the above Markov chain (1), we showed a uniform
minorization condition with 𝑛0 = 1 and 𝜖 = 1/2. So,
Theorem 1 immediately implies that ‖ℒ(𝑋𝑛) − 𝜋(⋅)‖𝑇𝑉 ≤
(1 − 𝜖)⌊𝑛/𝑛0⌋ = (1 − (1/2))𝑛 = 2−𝑛, which is < 0.01 if 𝑛 ≥ 6,
i.e., this chain converges within six steps.

Assume𝒳 is finite, and for some 𝑛0 ∈ ℕ there is at least
one state 𝑗 ∈ 𝒳 such that the 𝑗th column of 𝑃𝑛0 is all
positive, i.e., (𝑃𝑛0)𝑖𝑗 > 0 for all 𝑖 ∈ 𝒳. Then we can set 𝜖 =
∑𝑗∈𝒳min𝑖∈𝒳(𝑃𝑛0)𝑖𝑗 > 0, and 𝜈(𝑗) = 𝜖−1 min𝑖∈𝒳(𝑃𝑛0)𝑖𝑗, so
that (𝑃𝑛0)𝑖𝑗 ≥ 𝜖 𝜈(𝑗) for all 𝑖, 𝑗 ∈ 𝒳, i.e., an 𝑛0-step uniform
minorization condition is satisfied with that value of 𝜖.
4.1. Application to bunny example. The bunny example
does not satisfy a one-step minorization condition, since
every column of 𝑃 has some zeros, so we instead consider
its two-step transition probabilities, 𝑃2, in Figure 3.

In this two-step transition matrix, the fifth column only
contains positive values, since no matter where the bunny
starts, there will always be at least a

9
80

chance that it will
jump to the center bush (𝐺5) in two steps. Thus, we can
satisfy a two-step minorization condition by taking

𝜖 = ∑
𝑗∈𝒳

min
𝑖∈𝒳

(𝑃2)𝑖𝑗 = 0 +⋯+ 0 + 9
80 + 0 +⋯+ 0 = 9

80

and 𝜈(𝑗) = 𝜖−1 min𝑖∈𝒳(𝑃𝑛0)𝑖𝑗 as above. Then, we can apply
Theorem 1, with 𝑛0 = 2 and 𝜖 = 9/80, to conclude that

‖ℒ(𝑋𝑛) − 𝜋(⋅)‖𝑇𝑉 ≤ (1 − 9
80)

⌊𝑛/2⌋
= (7180)

⌊𝑛/2⌋
.

For example, if we want the distribution of the bunny’s
location to be within 0.01 of the stationary distribution
𝜋, this is achieved within 𝑛 = 78 steps. This bound is
not nearly as tight as our previous result 𝑛 = 6, but it is
uniform over all states (not just 𝐺5), plus it was derived
using a much more general method (without the need to
compute eigenvalues and eigenvectors). Of course, such
bounds might be more difficult to obtain on larger, more
complicated examples.
4.2. Pseudo-minorization conditions. The coupling
construction used to prove Theorem 1 was a pairwise con-
struction, i.e., it only considered two chain locations 𝑥 and
𝑦 at a time. If we replace the distribution 𝜈(⋅) with 𝜈𝑥𝑦(⋅),
allowing it to depend on 𝑥 and 𝑦, then 𝐶 is called a pseudo-
small set, and Theorem 1 continues to hold [4]. It then
follows that on a finite state space, if we instead choose

𝜖 = min
𝑖,𝑗∈𝒳

∑
𝑧∈𝒳

min{(𝑃𝑛0)𝑖𝑧, (𝑃𝑛0)𝑗𝑧} > 0,

𝜈𝑖𝑗(𝑧) =
min{(𝑃𝑛0)𝑖𝑧, (𝑃𝑛0)𝑗𝑧}

∑𝑤∈𝒳min{(𝑃𝑛0)𝑖𝑤, (𝑃𝑛0)𝑗𝑤}
,

then the chain will satisfy an 𝑛0-step pseudo-minorization
condition, i.e., for all 𝑖, 𝑗, 𝑧 ∈ 𝒳, (𝑃𝑛0)𝑖𝑧 ≥ 𝜖 𝜈𝑖𝑗(𝑧) and
(𝑃𝑛0)𝑗𝑧 ≥ 𝜖 𝜈𝑖𝑗(𝑧). Hence, exactly as above, we will again
have ‖ℒ(𝑋𝑛) − 𝜋(⋅)‖𝑇𝑉 ≤ (1 − 𝜖)⌊𝑛/𝑛0⌋.

We now apply this pseudo-minorization idea to the
bunny example, with 𝑛0 = 2. Examining the ma-
trix 𝑃2 above, we see that the minimum values of
∑𝑧∈𝒳min{(𝑃2)𝑖𝑧, (𝑃2)𝑗𝑧} occur at (𝑖, 𝑗) = (3, 7) or (1, 9), cor-
responding to opposite corners of the 3 × 3 grid (which
makes sense since opposite corners will have the least
amount of transitional overlap). We then calculate the
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minorization constant

𝜖 = ∑
𝑧∈𝒳

min{(𝑃2)3𝑧, (𝑃2)7𝑧}

= 1
12 + 0 + 0 + 0 + 1

6 + 0 + 0 + 0 + 1
12 = 1

3 .

Therefore, ‖ℒ(𝑋𝑛) − 𝜋(⋅)‖𝑇𝑉 ≤ (1 − 𝜖)⌊𝑛/2⌋ = ( 2
3
)⌊𝑛/2⌋. For

instance, this bound is < 0.01 if 𝑛 = 24, i.e., if the bunny
jumps 24 times. This is a significant improvement over
the previous minorization result of 𝑛 = 78, though it is
still not as tight as the specific eigenvalue bound of 𝑛 = 6.

5. Continuous State Space:
Point Process MCMC

The above analysis was primarily focused on finite state
spaces, such as the bunny example. We now extend to con-
tinuous examples on subsets of ℝ𝑑.

To be specific, consider a point process consisting of three
particles each randomly located within the closed rectan-
gle [0, 1]2 ⊂ ℝ2, with positions denoted by 𝑥 = (𝑥𝑖)𝑖=1,2,3 =
(𝑥𝑖1, 𝑥𝑖2)𝑖=1,2,3, so the state space 𝒳 = [0, 1]6. Suppose
these particles are distributed according to a probability
distribution with unnormalized density (meaning that the
actual density is a constant multiple of so it integrates to
1) given by

𝜋(𝑥) ≔ 𝜋(𝑥1, 𝑥2, 𝑥3) = exp [−𝐶
3
∑
𝑖=1

||𝑥𝑖||−𝐷∑
𝑖<𝑗

||𝑥𝑖−𝑥𝑗||−1] ,

where 𝐶 and 𝐷 are fixed positive constants, and || ⋅ || is
the usual Euclidean (𝐿2) norm on ℝ2. In this density, the
first sum pushes the particles towards the origin, and the
second sum pushes them away from each other.

We now create aMarkov chainwhich has𝜋 as its station-
ary distribution. To do this, we use a version of theMetrop-
olis Algorithm [3]. Each step of the Markov chain proceeds
as follows. Given 𝑋𝑛 = 𝑥, we first “propose” to move the
particles from their current configuration 𝑥 to some other
configuration 𝑦, chosen from the uniform (i.e., Lebesgue)

measure on𝒳. Then, with probabilitymin[1, 𝜋(𝑦)
𝜋(𝑥)

], we “ac-

cept” this proposal and move to the new configuration by
setting 𝑋𝑛+1 = 𝑦. Otherwise, we “reject” this proposal and
leave the configuration unchanged by setting 𝑋𝑛+1 = 𝑥.

This Metropolis Algorithm is a well-known procedure
which can easily be shown [1,3] to create a Markov chain
which has 𝜋 as its stationary distribution. It is the most
common type of Markov chain Monte Carlo (MCMC) algo-
rithm. Such algorithms are a very popular and general
method of generating samples from complicated proba-
bility distributions, by running the corresponding Markov
chain for many iterations. They are used very frequently
in a wide variety of fields, ranging from Bayesian statis-
tics to financial modeling to medical research to machine

learning and more. For further background, see, e.g., [1]
and the many references therein.

However, to get reliable samples, it is important to
know how many iterations are required to approximately
converge to 𝜋, i.e., to establish quantitative convergence
bounds. The above Markov chain has an uncountably infi-
nite state space𝒳, so the eigenvalue analysis of Section 3 is
not easily available (though there have been some efforts
to use spectral analysis on general state spaces; see, e.g.,
[2] and other papers). On the other hand, the uniform
minorization condition of Section 4 can still be applied.
Indeed, in the web appendix [10], we prove the following
lemma.

Lemma 1. The Markov chain constructed above satisfies a
uniform minorization condition with 𝑛0 = 1 and 𝜖 =
(0.48) 𝑒−𝐶(4.25)−𝐷(9.88).

For example, if 𝐶 = 𝐷 = 1/10, then we may take 𝜖 =
0.117. It then follows from Theorem 1 that we have the
convergence bound

‖ℒ(𝑋𝑛) − 𝜋(⋅)‖𝑇𝑉 ≤ (1− 𝜖)𝑛 = (1− 0.117)𝑛 = (0.883)𝑛 .

This shows that after 𝑛 = 38 steps, the total variation dis-
tance between our Markov chain and the stationary distri-
bution will be less than 0.01.

6. Unbounded State Space: Drift Conditions
In the previous section, the uniform minorization condi-
tion gave us a good quantitative convergence bound. How-
ever, in many cases, especially on unbounded state spaces,
the minorization condition cannot be satisfied uniformly,
only on some subset 𝐶 ⊆ 𝒳. In such cases, we have to ad-
just our previous 𝑛0 = 1 coupling construction, as follows.
We first choose 𝑋0 ∼ 𝜇(⋅) and 𝑋 ′

0 ∼ 𝜋(⋅) independently,
and then inductively for 𝑛 = 0, 1, 2, …:

1. If 𝑋𝑛 = 𝑋 ′
𝑛, we choose 𝑋𝑛+1 = 𝑋 ′

𝑛+1 ∼ 𝑃(𝑋𝑛, ⋅).
2. Else, if (𝑋𝑛, 𝑋 ′

𝑛) ∈ 𝐶 × 𝐶, we flip a coin whose proba-
bility of Heads is 𝜖, and then update 𝑋𝑛+1 and 𝑋 ′

𝑛+1 in the
same way as in step 2 of our previous (uniform minoriza-
tion) construction above.

3. Else, if (𝑋𝑛, 𝑋 ′
𝑛) ∉ 𝐶 × 𝐶, then we just conditionally

independently choose 𝑋𝑛+1 ∼ 𝑃(𝑋𝑛, ⋅) and 𝑋 ′
𝑛+1 ∼ 𝑃(𝑋 ′

𝑛, ⋅),
i.e., the two chains are simply updated independently.

The above construction provides good coupling bounds
provided that the two chains return to 𝐶×𝐶 often enough,
but this last property is difficult to guarantee. Thus, to ob-
tain convergence bounds, we also require a drift condition.
Basically, the drift condition guarantees that the chains
will return to𝐶×𝐶 quickly enough that we can still achieve
a coupling.

Definition. A Markov chain with a small set 𝐶 ⊆ 𝒳 sat-
isfies a bivariate drift condition if there exists a function
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ℎ ∶ 𝒳 × 𝒳 → [1,∞) and some 𝛼 > 1, such that

̄𝑃ℎ(𝑥, 𝑦) ≤ ℎ(𝑥, 𝑦)/𝛼, (𝑥, 𝑦) ∉ 𝐶 × 𝐶 ,
where

̄𝑃ℎ(𝑥, 𝑦) ≔ 𝐄[ℎ(𝑋𝑛+1, 𝑌𝑛+1) | 𝑋𝑛 = 𝑥, 𝑌𝑛 = 𝑦]
is the expected (average) value of ℎ(𝑋𝑛+1, 𝑌𝑛+1) on the next
iteration, when the chains start from 𝑥 and 𝑦, respectively
(and proceed independently).

Such bivariate drift conditions can be combined with
nonuniformminorization conditions to produce quantita-
tive convergence bounds. To state them, we use the quan-
tity 𝐵𝑛0 = max{1, 𝛼𝑛0(1 − 𝜖) sup𝐶×𝐶 𝑅̄ℎ}, where

𝑅̄ℎ(𝑥, 𝑦) = ∫
𝒳
∫
𝒳
(1 − 𝜖)−2 ℎ(𝑧, 𝑤)

× [𝑃𝑛0(𝑥, 𝑑𝑧) − 𝜖𝜈(𝑑𝑧)][𝑃𝑛0(𝑦, 𝑑𝑤) − 𝜖𝜈(𝑑𝑤)] .
This daunting expression represents the expected value of
ℎ(𝑋𝑛+𝑛0 , 𝑋 ′

𝑛+𝑛0) given that 𝑋𝑛 = 𝑥, that 𝑋 ′
𝑛 = 𝑦, and that

the two chains fail to couple at time 𝑛 (i.e., the correspond-
ing coin shows Tails). We can simplify 𝑅̄ℎ in certain situ-
ations. For example, if 𝐷 is a set such that 𝑃𝑛0(𝑥, 𝐷) = 1
for all 𝑥 ∈ 𝐶, then since the expected value of a random
variable is always less than the maximal value it could take,
we have

sup
(𝑥,𝑦)∈𝐶×𝐶

𝑅̄ℎ ≤ sup
(𝑥,𝑦)∈𝐷×𝐷

ℎ(𝑥, 𝑦) .

With all that in mind, we have the following result.

Theorem 2. Consider aMarkov chain on𝒳, with 𝑋0 = 𝑥, and
transition probabilities 𝑃. Suppose the above minorization and
bivariate drift conditions hold for some 𝐶 ⊆ 𝒳, ℎ ∶ 𝒳 × 𝒳 →
[1,∞), probability distribution 𝜈(⋅), 𝛼 > 1, and 𝜖 > 0. Then
for any integers 1 ≤ 𝑗 ≤ 𝑛, with 𝐵𝑛0 as above,

‖ℒ(𝑋𝑛) − 𝜋‖𝑇𝑉 ≤ (1 − 𝜖)𝑗 + 𝛼−𝑛𝐵𝑗−1𝑛0 𝐄𝑍∼𝜋[ℎ(𝑥, 𝑍)] .
Here we give a basic idea of the proof; for more details,

see [5, 7]. We create a second copy of the Markov chain
with 𝑋 ′

0 ∼ 𝜋, and use the above coupling construction. Let
𝑁𝑛 be the number of times the chain (𝑋𝑛, 𝑋 ′

𝑛) is in 𝐶 × 𝐶
by the 𝑛th step. Then by the coupling inequality,

‖ℒ(𝑋𝑛) − 𝜋‖𝑇𝑉
≤ 𝑃[𝑋𝑛 ≠ 𝑋 ′

𝑛]
≤ 𝑃[𝑋𝑛 ≠ 𝑋 ′

𝑛, 𝑁𝑛−1 ≥ 𝑗] + 𝑃[𝑋𝑛 ≠ 𝑋 ′
𝑛, 𝑁𝑛−1 < 𝑗] .

The first term suggests that the chains have not coupled
by time 𝑛 despite visiting 𝐶 × 𝐶 at least 𝑗 times. Since
each such time gives them a chance of 𝜖 to couple, the first
term is ≤ (1 − 𝜖)𝑗. The second term is more complicated,
but from the bivariate drift condition together with a mar-
tingale argument, it can be shown to be no greater than
𝛼−𝑛𝐵𝑗−1𝑛0 𝐄𝑍∼𝜋[ℎ(𝑥, 𝑍)].

Sometimes it could be hard to directly check the bivari-
ate drift condition. We now introduce the more easily-
verified univariate drift condition, and give a way to derive
the bivariate condition from the univariate one.

Definition. A Markov chain with a small set 𝐶 satisfies a
univariate drift condition if there are constants 0 < 𝜆 < 1
and 𝑏 < ∞, and a function 𝑉 ∶ 𝒳 → [1,∞], such that

𝑃𝑉(𝑥) ≤ 𝜆𝑉(𝑥) + 𝑏𝟏𝐶(𝑥), 𝑥 ∈ 𝒳 ,
where 𝑃𝑉(𝑥) ≔ 𝐄[𝑉(𝑋𝑛+1) | 𝑋𝑛 = 𝑥].

This univariate drift condition can be used to bound
𝐄𝜋(𝑉). Indeed, assuming 𝐄𝜋(𝑉) < ∞, stationarity then
implies that 𝐄𝜋(𝑉) ≤ 𝐄𝜋(𝑉) + 𝑏, whence 𝐄𝜋(𝑉) ≤
𝑏/(1 − 𝜆). But also, univariate drift conditions can imply
bivariate drift conditions, as follows.

Proposition. Suppose the univariate drift condition is satisfied
for some 𝑉 ∶ 𝒳 → [1,∞], 𝐶 ∈ 𝒳, 0 < 𝜆 < 1, and 𝑏 <
∞. Let 𝑑 = inf𝑥∈𝐶𝑐 𝑉(𝑥). If 𝑑 > [𝑏/(1 − 𝜆)] − 1, then
the bivariate drift condition is satisfied for the same C, with
ℎ(𝑥, 𝑦) = 1

2
[𝑉(𝑥) + 𝑉(𝑦)] and 𝛼−1 = 𝜆 + 𝑏/(𝑑 + 1) < 1.

Proof. Assume (𝑥, 𝑦) ∉ 𝐶 × 𝐶. Then either 𝑥 ∉ 𝐶 or
𝑦 ∉ 𝐶, so ℎ(𝑥, 𝑦) ≥ (1 + 𝑑)/2. Then, our univariate drift
condition applied separately to 𝑥 and to 𝑦 implies that
𝑃𝑉(𝑥) + 𝑃𝑉(𝑦) ≤ 𝜆𝑉(𝑥) + 𝜆𝑉(𝑦) + 𝑏. Therefore

̄𝑃ℎ(𝑥, 𝑦) = 1
2[𝑃𝑉(𝑥) + 𝑃𝑉(𝑦)]

≤ 1
2[𝜆𝑉(𝑥) + 𝜆𝑉(𝑦) + 𝑏]

= 𝜆ℎ(𝑥, 𝑦) + 𝑏/2
≤ 𝜆ℎ(𝑥, 𝑦) + (𝑏/2)[ℎ(𝑥, 𝑦)/((1 + 𝑑)/2)]
= [𝜆 + 𝑏/(1 + 𝑑)]ℎ(𝑥, 𝑦) ,

which gives the result. □

We now apply these nonuniform quantitative conver-
gence bounds to a Markov chain on an unbounded state
space. Let the state space be 𝒳 = ℝ, the entire real line,
with unnormalized target density 𝜋(𝑥) = 𝑒−|𝑥|.

To create a Markov chain which has 𝜋 as its stationary
distribution, we use another version of the Metropolis Al-
gorithm [1,3]. Each step of the Markov chain proceeds as
follows. First, we propose tomove from the state 𝑥 to some
other state 𝑦, chosen from the uniform (i.e., Lebesgue)
measure on the interval [𝑥−2, 𝑥+2]. Then, with probabil-

ity min[1, 𝜋(𝑦)
𝜋(𝑥)

], we accept this proposal and move to the

new state 𝑦, otherwise we reject it and remain at 𝑥. Once
again, this procedure creates a Markov chain which has 𝜋
as its stationary distribution.

To apply Theorem 2, we need to establish minorization
and drift conditions. In the web appendix [10], we prove
the following lemmas.
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Lemma 2. The above Markov chain satisfies a minorization
condition with 𝐶 = [−2, 2], 𝑛0 = 2, 𝜖 = 1

8𝑒2
, and 𝜈(𝐴) =

1
2
Leb(𝐴 ∩ [−1, 1]), where Leb is Lebesgue measure on ℝ.

Lemma 3. The above Markov chain satisfies a univariate drift
condition with 𝑉(𝑥) = 𝑒−|𝑥|/2, 𝐶 = [−2, 2], 𝜆 = 0.916, and
𝑏 = 0.285.

We can then apply the above Proposition to derive a bi-
variate drift condition. Note that here 𝑑 = inf𝑥∈𝐶𝑐 𝑉(𝑥) =
𝑒 and [𝑏/(1−𝜆)]−1 = 2.39 < 𝑒. So, ℎ(𝑥, 𝑦) ≔ 1

2
(𝑉(𝑥)+𝑉(𝑦))

satisfies a bivariate drift condition with 𝛼−1 = 𝜆 + 𝑏/(𝑑 +
1) = 0.916 + 0.285/(𝑒 + 1) ≐ 0.993.

We also need to bound the above quantity 𝐵𝑛0 = 𝐵2. Let
𝐷 = [−6, 6]. Then clearly 𝑃2(𝑥, 𝐷) = 1 for any 𝑥 ∈ 𝐶. Thus

sup
(𝑥,𝑦)∈𝐶×𝐶

𝑅̄ℎ(𝑥, 𝑦) ≤ sup
(𝑥,𝑦)∈𝐷×𝐷

ℎ(𝑥, 𝑦)

= sup
𝑥∈𝐷

𝑉(𝑥) = 𝑒3 < 20.1 .

So

𝐵2 ≡ max[1, 𝛼2(1 − 𝜖) sup 𝑅̄ℎ]

< (0.993)−2(1 − 1
8𝑒2 )(20.1) ≐ 20.04.

Let 𝑋0 = 0. Then

𝐄𝑍∼𝜋[ℎ(0, 𝑍)] = 𝐄𝑍∼𝜋[
1
2(𝑉(0)+𝑉(𝑍))] =

1
2 +

1
2𝐄𝜋(𝑉)

= 1
2 +

1
2
∫𝑦∈𝒳 𝑒

1
2 |𝑦|𝑒−|𝑦|𝑑𝑦

∫𝑦∈𝒳 𝑒−|𝑦|𝑑𝑦
= 1

2 +
1
2 ×

2
1 = 2 .

(If this specific calculation were not available, then we
could instead use the bound 𝐄𝜋(𝑉) ≤ 𝑏/(1 − 𝜆) =
0.285/(1 − 0.916) = 3.393 as discussed above.) Therefore,
by Theorem 2, with 𝑋0 = 0, we have

‖ℒ(𝑋𝑛) − 𝜋‖𝑇𝑉 ≤ (1 − 𝜖)𝑗 + 𝛼−𝑛𝐵𝑗−12 𝐄𝑍∼𝜋[ℎ(0, 𝑍)]
≤ (0.983)𝑗 + (0.993)𝑛(20.04)𝑗−1[2] .

For example, setting 𝑛 = 120, 000 and 𝑗 = 274 = 1 +
𝑛/439.56, this becomes ‖ℒ(𝑋𝑛) − 𝜋(⋅)‖𝑇𝑉 ≤ (0.983)274 +
[(0.993)(20.04)1/439.56]120000[2] < 0.01, i.e., the Markov
chain is within 0.01 of stationarity after 120,000 iterations.
This is quite a conservative upper bound. Nevertheless, we
have obtained a concrete quantitative convergence bound
for an unbounded Markov chain.

7. Conclusion
This paper has discussed Markov chains and their con-
vergence rates, and why they are important for MCMC
algorithms. We introduced the eigenvalue method, the
coupling method, and minorization and drift conditions,
and applied them to examples on state spaces ranging
from finite to compact to unbounded. For the bunny

example, we showed several possible methods of obtain-
ing convergence bounds. Indeed, bounding a Markov
chain’s convergence rate is not a one-time, definitive pro-
cess; for various Markov chains, it is possible to strengthen
the bound through careful and creative new constructions.
The bounds presented in this paper all have their imperfec-
tions, and will certainly not give tight or realistic bounds
for all examples. There is plenty of room for new and
tighter and more flexible bounds, which can help us to
understand Markov chains better, and also run MCMC al-
gorithms more confidently and reliably.
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An updated introduction to the now rich subject of KAM 
theory for PDEs is provided in the first part of this research 
monograph. The authors then focus on the nonlinear wave 
equation endowed with periodic boundary conditions. The 
main result of the monograph proves the bifurcation of small 
amplitude finite-dimensional invariant tori for this equation, 
in any space dimension. 
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