
The Structure of
Homeomorphism and
Diffeomorphism Groups

Kathryn Mann
My favorite opening to amath talk is from a 2014 lecture of
Etienne Ghys. Part of a minicourse for young researchers
in geometric group theory, he begins the lecture with “My
second favorite group [dramatic pause...] is the group of
all diffeomorphisms of a compact manifold.” Beyond the
obvious question what is your first favorite, then? (for this,
one should see the rest of the lecture series), this line has
another hook that I like even better. Ghys’ statement is
a bit like answering the question “what is your favorite
food” with “my favorite food is dessert!” That’s a great
response, I couldn’t agree more, but didn’t you just cheat
there by naming an infinite class of things in place of a
single thing? For it has been known since the 1980s that
varying the manifold 𝑀 and even varying what you mean
by diffeomorphism (smooth, 𝐶1, 𝐶2,...) produces an infinite
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family of pairwise nonisomorphic groups. In other words,
manifolds are completely classified by the algebraic struc-
ture of their diffeomorphism groups.

However, to Ghys’ credit, many of the tools we have to
approach the study of these groups are broad principles
that can be applied to large classes of examples. In fact, sev-
eral structural results about diffeomorphism groups also
hold for groups of homeomorphisms, although the ab-
sence of differentiability typically necessitates a different
toolkit for the proof. My goal here is to give you a quick
tour of what we know of the structure theory of home-
omorphism and diffeomorphism groups and highlight a
few recent developments both in this theory and in its rela-
tionship with the modern study of dynamical systems. To
keep this piece within a reasonable scope, I have chosen
to focus on the algebraic and dynamical structural prop-
erties, leaving absent the equally fascinating world of the
topology, especially the homotopy type, of such groups.
I recommend Hatcher’s A 50-year View of Diffeomorphism
Groups [Hat12] as an introduction to what is known, and
not known, in this direction.
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Why Study Diffeomorphism Groups?
We understand mathematical objects by understanding
their symmetries—this is the essence of Felix Klein’s
Erlangen Program and a guiding principle in many ar-
eas of mathematics. Following this principle, any-
one who studies topological or smooth manifolds
should seek to understand the groups Homeo(𝑀) and
Diff(𝑀) of self-homeomorphisms and, respectively, self-
diffeomorphisms of a manifold 𝑀. Topologists are also
interested in these groups for many other reasons, includ-
ing the role they play in surgery theory, 𝐾-theory, and the
theory of fiber bundles. To give a concrete and relatively
elementary example, the group cohomology ofHomeo(𝑀)
and Diff(𝑀) (that is to say the cohomology of their clas-
sifying spaces) gives the characteristic classes of topolog-
ical and smooth 𝑀-bundles, respectively, while their co-
homology as discrete groups gives characteristic classes for
flat bundles, or bundles with a foliation transverse to the
fibers. Thus, both the homotopy type and the algebraic
structure of these groups play a crucial role in classifying
fiber bundles over an arbitrary base space.

Another source of motivation for the study of diffeo-
morphism groups comes from dynamical systems. In its
most general sense, dynamics is simply the study of trans-
formations under iteration. Classically, dynamicists stud-
ied the behavior of a single transformation and its iterates,
that is to say a cyclic subgroup of Homeo(𝑀) or of Diff(𝑀).
In the past fifty years, the field has widened to encom-
pass the study of larger systems of transformations obey-
ing some algebraic laws, i.e., very general (typically infi-
nite but finitely generated) subgroups of homeomorphism
or diffeomorphism groups. A major motivating question
is to understand to what extent the algebraic structure of
a subgroup 𝐺 ⊂ Homeo(𝑀) influences or constrains the
possible dynamics of actions of 𝐺 on 𝑀. In this way we
can start to build a dictionary between algebraic proper-
ties such as nilpotency, torsion, subgroup distortion, amenabil-
ity, and so on, and dynamical properties such as entropy,
existence of fixed points, or stability under perturbation.

To give one further perspective, one can also (somewhat
tautologically) view the groups Homeo(𝑀) and Diff(𝑀) as
examples of automorphism groups of a locally homoge-
neous space—namely, the manifold𝑀 itself, with its topo-
logical or smooth structure. But these groups also act tran-
sitively on many natural objects associated with 𝑀, espe-
cially in the case where 𝑀 is connected. These include
the space of labeled or unlabeled 𝑛-tuples of points in the
case where the manifold has dimension at least two, the
space of ordered tuples in the 1-dimensional case, spaces
of embedded discs, of simple closed curves (nonseparat-
ing simple closed curves when 𝑀 is a surface), and so on.
As such, they are also groups of automorphisms of the con-
figuration spaces of points, curves, discs, etc. The standard

Figure 1. A local chart for Diff(𝑀) to the space of vector fields
on 𝑀.

compact-open or 𝐶∞ topology makes Homeo(𝑀) and
Diff(𝑀) examples of Polish (completely metrizable)
spaces, fostering some recent interactions with descriptive
set theory, which has a rich toolkit to study Polish groups
and automorphism groups of a wide class of structures.

A Guiding Principle: Analogies with Simple
Lie Groups
The main barrier to understanding the groups Homeo(𝑀)
andDiff(𝑀) is the fact that these groups are just intractably
huge, even when𝑀 itself is low-dimensional or otherwise
of low complexity. For instance, fix some manifold 𝑀 of
dimension at least 2. It is an open question whether there
exists a finitely generated, torsion-free group that is not iso-
morphic to some subgroup of Homeo(𝑀). This question
has only recently been answered if you replace Homeo(𝑀)
withDiff(𝑀); this is the solution to Zimmer’s conjecture of
Brown, Hurtado, and Fisher as explained in Fisher’s recent
article in this series [Fis20].

A helpful organizing principle is to think of homeo-
morphism and diffeomorphism groups as loose analogs
of simple Lie groups. The group Diff(𝑀) is in fact, in
a precise sense, an infinite-dimensional Lie group with
a Fréchet manifold structure, locally modeled on the
infinite-dimensional vector space of smooth vector fields
on 𝑀. A local chart from a neighborhood of the identity
in Diff(𝑀) to the space of vector fields is given by mapping
a diffeomorphism 𝑔 to the vector field 𝑋(𝑝) ≔ exp−1𝑝 𝑔(𝑝),
where exp𝑝 is the Riemannian exponentialmap on a neigh-
borhood of the identity in the tangent space 𝑇𝑝(𝑀). Charts
based at other points than the identity element may be ob-
tained by composing with left multiplication. This gives
Diff(𝑀) a smooth structure for which left multiplication
and inverses are smooth maps, and its “Lie algebra” is the
Lie algebra of vector fields on 𝑀.

However, the local chart above is not the usual Lie alge-
bra exponentialmap! In fact, the Lie algebra exponential—
assigning to a vector field the time-onemap of the flow gen-
erated by this vector field—is not surjective onto any neigh-
borhood of the identity, even in the simple case where
𝑀 = 𝑆1. (It is a pleasant exercise to identify some such dif-
feomorphisms that are not the time-one map of any flow.
In the circle case these are diffeomorphisms with some,
but not all, points being periodic with finite period greater
than one. See alsoMilnor’s wonderful survey [Mil84].) For
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this reason, the Lie group structure onDiff(𝑀) is—perhaps
counterintuitively—not usually the source of analogy with
finite-dimensional simple Lie groups. Additionally, the
group Homeo(𝑀) has no natural smooth structure or Lie
algebra, but many of the known parallels between diffeo-
morphism groups and simple Lie groups also hold here.
Rather, I believe that the important feature shared by all
of these groups is the fact that they are the automorphism
groups of highly homogeneous structures.

The remainder of this article is organized to illustrate
specific instances of this analogy between simple (and oc-
casionally semisimple) Lie groups and diffeomorphism
groups, beginning with simplicity itself. To keep things
within a reasonable scope, I have chosen to focus primar-
ily on the identity components Homeo0(𝑀) and Diff0(𝑀)
of the homeomorphism and diffeomorphism groups of
a manifold 𝑀, as discussion of the mapping class groups
Homeo(𝑀)/Homeo0(𝑀) (and analogously forDiff) would
take us much further afield.

Simplicity
Recall that a Lie group is simple if its Lie algebra is non-
abelian and has no nontrivial proper ideals. The best ana-
log of this for topological groups is to ask whether the
identity component of the group has no nontrivial proper
normal subgroups. When 𝑀 is a noncompact manifold,
the subgroup of compactly supported homeomorphisms or
diffeomorphisms—those which pointwise fix the comple-
ment of some compact set—is an obvious normal sub-
group, so the relevant object of study is its identity compo-
nent, denoted Homeo𝑐(𝑀) or Diff𝑐(𝑀). Of course, when
𝑀 is compact, these are just the groups Homeo0(𝑀) and
Diff0(𝑀) themselves.

In both the smooth and topological cases, simplicity (in
the algebraic sense described above) was established in the
1970s by Edwards, Kirby, Thurston, and others1 as a con-
sequence of the following three general properties:

1. Fragmentation. Let 𝒪 be an open cover of 𝑀. Then
Diff𝑐(𝑀) and Homeo𝑐(𝑀) are generated by homeomor-
phisms supported on elements of 𝒪.

2. Localized perfectness. Let 𝐵 be an open ball in𝑀. Any
element ofDiff𝑐(𝐵) orHomeo𝑐(𝐵) can be written as a prod-
uct of commutators.

3. Simplicity of the commutator group. Let 𝑔 ≠ 𝑖𝑑 in
Diff𝑐(𝑀), and let 𝐵 ⊂ 𝑀 be an open ball. Then any com-
mutator in Diff𝑐(𝐵) lies in the normal closure of 𝑔. The
same holds replacing Diff with Homeo.

While I have deliberately stated these in parallel for Diff
and Homeo, the proofs of 1 and 2 are entirely different
in the smooth and 𝐶0 case. Fragmentation is easy for

1This being an expository note, the number of citations in the text is limited. A
version of this article with an extended reference list is available at https://e
.math.cornell.edu/people/mann/homeo.pdf.

Figure 2. Schematic for the simplicity argument. The
commutator [𝑎, 𝑏] can be written as [[𝑎, 𝑔], [𝑏, ℎ𝑔ℎ−1]].

diffeomorphisms: an element of Diff𝑐(𝑀) is always the
time-one map of a compactly supported time dependent
vector field, and cutting that vector field off by smooth
bump functions is the only tool required for fragmenta-
tion. No such strategy works for homeomorphisms; rather,
the proof is a deep result of Edwards and Kirby using the
same machinery that goes into proving the annulus theo-
rem.

Similarly, perfectness of Homeo𝑐(𝐵) is an old trick (per-
haps first appearing in this form in a paper of R. D. An-
derson in 1958) but for Diff𝑐(𝐵) it is a hard theorem of
Thurston tied to the cohomology of classifying spaces, and
it uses results of Herman for diffeomorphisms of the circle
and the torus that rely heavily on KAM theory.

The common point is that localized perfectness implies
simplicity. This is a short argument which uses a clever
trick of “displacing supports.” Given a homeomorphism
𝑔 (other than the identity), one wishes to show that any
other homeomorphism 𝑓 can be written as a product of
conjugates of 𝑔. I’ll give the essence of the argument here,
in the special case where 𝑓 has support on some small ball
𝐵 such that 𝑔(𝐵) ∩ 𝐵 = ∅. If 𝑔 is not the identity, such a
ball is guaranteed to exist, and stepping from here to the
general case is not too difficult.

So suppose 𝑓 is such a homeomorphism, and that 𝑓
can be written as a commutator 𝑓 = 𝑎𝑏𝑎−1𝑏−1 (the ar-
gument is essentially the same if 𝑓 is a product of sev-
eral commutators—this is where we are using local perfect-
ness). Going forward, I’ll use the standard notation [𝑎, 𝑏]
for the commutator 𝑎𝑏𝑎−1𝑏−1. Recall that 𝑔(𝐵) ∩ 𝐵 = ∅.
Take any homeomorphism ℎ that pointwise fixes 𝐵 and
moves 𝑔(𝐵) disjoint from 𝐵 ∪ 𝑔(𝐵). One now checks by
hand that 𝑓 = [[𝑎, 𝑔], [𝑏, ℎ𝑔ℎ−1]] which, if you write it
out and unpack all the commutators, is easily seen to be
a product of conjugates of 𝑔. The trick to showing that 𝑓
agrees with this nested commutator is the elementary fact
that homeomorphisms with disjoint support commute.
The conjugate 𝑔𝑎−1𝑔−1 has support on 𝑔(𝐵), so [𝑎, 𝑔] has
support on 𝐵 ∪ 𝑔(𝐵) and agrees with 𝑎 on 𝐵. Similarly,
[𝑏, ℎ𝑔ℎ−1] agrees with 𝑏 on 𝐵 and has support on 𝐵∪ℎ𝑔(𝐵).
Thus, on 𝑔(𝐵) and on ℎ𝑔(𝐵) these two commutators com-
mute, so [[𝑎, 𝑔], [𝑏, ℎ𝑔ℎ−1]] is supported on 𝐵 and agrees
with [𝑎, 𝑏] there. Variations, some quite sophisticated, of
this trick of displacing supports to produce commuting el-
ements appear throughout the literature cited below.
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Indicative of the subtleties involved in the question of
simplicity, there is one case which we still do not know
how to treat. In between Homeo𝑐(𝑀) and Diff𝑐(𝑀) lie the
groups Diff𝑟𝑐(𝑀) of 𝐶𝑟 diffeomorphisms for 𝑟 = 1, 2, 3, ….
Mather, also in the 1970s, showed with yet a different strat-
egy that the groupsDiff𝑟𝑐(𝑀) are also perfect—except in the
case 𝑟 = dim(𝑀) + 1, where it remains open! To this day,
whether Diff20(𝑆1) is a simple group remains an open ques-
tion; the sticking point here is exactly the problem of lo-
cal perfectness. Further references and discussion can be
found in [Ban97].

Automatic Continuity
Abroad question, applicable to any topological group, is to
what extent does the algebraic structure of the group determine
its possible group topologies?

Along this line, in the 1930s and 40s, Cartan, van
der Waerden, Freudenthal, and others studied abstract ho-
momorphisms between simple (and also semisimple) Lie
groups. A sample consequence of their work is the follow-
ing.

Theorem 0.1. An abstract algebraic isomorphism between
compact semisimple Lie groups, or between absolutely simple
real Lie groups, is necessarily continuous.

Further notable work in this direction was done by
Borel and Tits in the 1970s. Muchmore recently, L. Kramer
removed the hypothesis that the target group be a Lie
group, showing the following.

Theorem 0.2 (Kramer [Kra11]). An abstract isomorphism be-
tween an absolutely simple real Lie group and a locally compact,
𝜎-compact group is necessarily continuous.

As a consequence of this, one can show that the stan-
dard Lie group topology is the unique locally compact, 𝜎-
compact group topology on such a group (a result proved
earlier for compact Lie groups by Kallman). The hypothe-
sis “absolutely simple” prevents such counterexamples as
a discontinuous algebraic automorphism of ℝ obtained
from a linear transformation of ℝ as a vector space over
ℚ, or a discontinuous algebraic automorphism of SL𝑛(ℂ)
induced by a wild automorphism of ℂ. But these are, in a
sense made precise by Kramer, the only kinds of patholo-
gies that can occur.

Theorems 0.1 and 0.2 are instances of automatic conti-
nuity results, promoting an algebraic morphism to a topo-
logical one. While their proofs rely on Lie-theoretic tech-
niques, Hurtado recently showed that a form of automatic
continuity holds for diffeomorphism groups as well.

Theorem 0.3 (Hurtado [Hur15]). Let 𝑀 be a com-
pact manifold, and 𝑁 any manifold. Any homomorphism
Φ ∶ Diff0(𝑀) → Diff0(𝑁) is necessarily continuous.

Homeomorphism groups satisfy an even stronger ver-
sion of automatic continuity, analogous to Kramer’s result.

Theorem 0.4 (Rosendal, Solecki [RS07], Mann [Man16]).
Let 𝑀 be a manifold, compact or homeomorphic to the interior
of a compact manifold with boundary, and𝐺 any separable topo-
logical group. Then any homomorphism Φ ∶ Homeo(𝑀) → 𝐺
is necessarily continuous.

This says the algebraic structure of the group “remem-
bers” the topology, in a very strong way. Separability of
the target 𝐺 is needed as a hypothesis to eliminate obvi-
ous counterexamples such as the (discontinuous) identity
map from Homeo(𝑀) (with its usual compact-open topol-
ogy) to Homeo(𝑀) equipped with the discrete topology.

Other examples of groups recently found to satisfy
strong forms of automatic continuity include the group of
an infinite-dimensional, separable, complex Hilbert space
with the strong operator topology, the isometry group
of the Urysohn universal metric space, and automorphism
groups of Lebesgue probability spaces. (These are results
of Tsankov, Sabok, and Ben Yaacov–Berenstein–Melleray,
respectively.) Many of these results rely on the technique
of ample generics in Polish groups developed by Kechris
and Rosendal. Rosendal’s survey [Ros09], though by now
slightly out of date, is a good invitation to the subject.

While the statements of Theorems 0.3 and 0.4 mirror
each other—taking 𝐺 = Homeo(𝑁) for some other mani-
fold 𝑁 in the statement of Theorem 0.4 gives the 𝐶0 coun-
terpart of Hurtado’s smooth version—as was the case for
simplicity, the proofs of these two results are essentially
different. The 𝐶0 case, with the exception of the line and
the circle, relies on a kind of diagonal argument common
in these proofs for other automorphism groups, together
with commutator tricks like the one in the proof of sim-
plicity explained above. The smooth case uses the idea of
averaging a metric under a sequence of diffeomorphisms to
show that any sequence tending to the identity inDiff0(𝑀)
converges along a subsequence to an isometry in Diff0(𝑁).
This is then improved to convergence to the identity, from
which one concludes continuity. Establishing such con-
vergence requires maintaining control on derivatives of
diffeomorphisms, motivating ideas that would later lead
Hurtado to work on the Burnside problem for diffeomor-
phisms of the sphere, and the Zimmer program explained
in the last section of this article.

Interestingly, automatic continuity (either in Hurtado’s
sense with a restricted target, or the very general sense) for
the groups Diff𝑟0(𝑀) when 0 < 𝑟 < ∞ remains open. As
some positive evidence towards this, a result of Kallman
from the 1980s states that the 𝐶𝑟 topology is the unique
Polish topology on Diff𝑟(𝑀). This implies in particular
that there can be no discontinuous automorphisms of such
a group. But in fact, a much stronger statement about
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automorphisms was known even earlier: any automor-
phism of Diff𝑟(𝑀) is inner. This kind of rigidity of the
group structure is best framed as a “reconstruction” result,
which brings us to our next topic.

Reconstruction Theorems
While automatic continuity says that the algebraic struc-
ture of a homeomorphism group “remembers” its group
topology, it was known decades earlier that the algebraic
structure remembers the underlying manifold. This is a
1963 result of Whittaker, which states that the existence of
an abstract isomorphism Φ ∶ Homeo0(𝑀) → Homeo0(𝑁)
implies that𝑀 is homeomorphic to𝑁 andΦ is induced by
conjugation by a homeomorphism.

Whittaker’s work also applies to more general topolog-
ical spaces, and does not require that manifolds be com-
pact. However, some care is needed in the hypotheses be-
cause (for example) Homeo0(ℝ) is abstractly isomorphic
to the homeomorphism group of a closed interval—one
simply forgets the endpoints of the closed interval and re-
stricts the homeomorphisms to the interior—but of course
the line and the interval are not homeomorphic.

Nearly twenty years later, Filipkiewicz extended this to
diffeomorphism groups, showing that in this case the alge-
braic structure of the group also remembers the regularity
of the diffeomorphisms. This gives us the “infinite family
of desserts” advertised above.

Theorem 0.5 (Filipkiewicz [Fil82]). Let 𝑀 and 𝑁 be
compact manifolds and suppose there is an isomorphism
Φ ∶ Diff𝑟0(𝑀) → Diff𝑠0(𝑁). Then 𝑟 = 𝑠, the manifolds 𝑀
and 𝑁 are 𝐶𝑟 diffeomorphic, and Φ is induced by a 𝐶𝑟 diffeo-
morphism.

In both this and Whittaker’s theorem, the basic strat-
egy is to promote an isomorphism between transforma-
tion groups to a bijection between manifolds by associat-
ing subgroups of Diff𝑟(𝑀) or Homeo0(𝑀) to subsets of 𝑀,
eventually showing that the isotropy (point stabilizer) sub-
group 𝐺𝑥 of a point 𝑥 ∈ 𝑀 is mapped under an isomor-
phism Φ to the isotropy subgroup of some point of 𝑁. A
key tool is commutation relations. To give a toy example,
note that 𝐺𝑥 is characterized by the following property. A
nontrivial diffeomorphism 𝑔 lies in 𝐺𝑥 if and only if, for any
open set 𝐵 containing 𝑥, the subgroup of diffeomorphisms sup-
ported on 𝐵 does not commute with its conjugate by 𝑔. Though
this is far from a proof that point stabilizers are mapped
to point stabilizers, it is a hint that one might be able to
pick out such subgroups by algebraic relations (in this case,
commutation).

The relationship between point stabilizers in 𝑀 and
those in𝑁 gives a point-to-point map 𝜏 ∶ 𝑀 → 𝑁. Further-
more, this map is compatible with the group action in the
sense that, for any 𝑓 ∈ Diff𝑟0(𝑀), we have𝐺𝑓(𝑥) = 𝑓(𝐺𝑥)𝑓−1

from which it follows that 𝜏(𝑓(𝑥)) = Φ(𝑓)𝜏(𝑥)Φ(𝑓)−1. This
compatibility allows one to show fairly easily that 𝜏 is a
homeomorphism; Filipkiewicz then appeals to deep re-
sults of Montgomery and Zippin [MZ55] to conclude that
it is a 𝐶𝑟 diffeomorphism.

Analogous theorems for groups of symplectomor-
phisms, contact diffeomorphisms, and volume-preserving
diffeomorphisms were later obtained by Banyaga. An ex-
pository account of this and Filipkiewicz’s theorem can be
found in [Ban97]. M. Rubin [Rub89] generalized Whit-
taker’s results in a different direction, extending it to more
general classes of topological spaces and subgroups of
their automorphism groups using a more model-theoretic
framework. Both show that the algebraic structure of the
automorphism group is sufficient to recover the underly-
ing manifold or space.

Such reconstruction results can be interpreted as in-
stances of the broad principle that any sufficiently rich ob-
ject can be recovered, within its class, from its automorphism
group. To give a sense of the breadth of this principle, let
me mention two other recent examples (with a geomet-
ric topological flavor; apologies for my bias). The first is
the folklore theorem that the homeomorphism class of
a compact surface 𝑆 can, with a few low-complexity ex-
ceptions, be completely recovered from the mapping class
group Homeo(𝑆)/Homeo0(𝑆) of homeomorphisms up to
isotopy. This was recently extended by Bavard–Dowdall–
Rafi to infinite-type noncompact surfaces as well. The sec-
ond example that comes to mind is a recent result of Can-
tat that Cremona groups of projective spaces determine the
dimension of the space. Surely the reader can draw a few
examples from their own field of study!

Optimal Regularity
Filipkiewicz’s theorem says that Diff𝑟0(𝑀) and Diff𝑠0(𝑀) are
nonisomorphic when 𝑟 ≠ 𝑠. But it leaves no practical way
to distinguish them algebraically. As a concrete step in this
direction, one could ask:

For a given manifold 𝑀, can the groups Diff𝑟0(𝑀) and
Diff𝑠0(𝑀) be distinguished by their finitely generated subgroups?

Navas posed this question explicitly for one-
dimensional manifolds in a 2017 problems list [Nav18].
As he notes, questions of distinguishing regularity have a
long history among dynamicists that can be traced back to
work of Denjoy on the relationship between regularity and
topological dynamics. Denjoy showed that, while there
are many 𝐶1 counterexamples, if 𝑓 is any 𝐶2 diffeomor-
phism of the circle without periodic or fixed points, then
for every point 𝑥, the orbit {𝑓𝑛(𝑥) ∶ 𝑛 ∈ ℤ} is a dense subset
of the circle. A typical 𝐶1 counterexample is illustrated in
Figure 3: there is an invariant Cantor set (red in the figure)
on which the diffeomorphism behaves like a rotation. To
visualize the dynamics, the figure shows the mapping torus
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Figure 3. Dynamics of a 𝐶1 “Denjoy counterexample”
diffeomorphism of the circle.

of such a homeomorphism, with points on the leftmost
circle connected to their images on a copy of the circle to
the right. Dense orbits and existence or nonexistence of
periodic points are both properties invariant under conju-
gation by homeomorphisms, so Denjoy’s theorem implies
that there exist 𝐶1 diffeomorphisms which cannot be topo-
logically conjugate to any 𝐶2 diffeomorphism, an observa-
tion later generalized by Harrison to higher dimensional
manifolds and higher regularity.

Denjoy’s theorem takes as input a weak dynamical as-
sumption (no periodic points) and a regularity hypothe-
sis (twice continuously differentiable), and gives as out-
put the strong dynamical conclusion that all orbits are
dense. Thus, it reveals something about the interplay be-
tween topological dynamics and regularity. When one has
a group action rather than a single diffeomorphism, the
algebraic structure of the group can also enter the picture.
A well-known and early instance of a result along these
lines is Thurston’s generalization of the Reeb stability theo-
rem. Thurston’s theorem says that a group of𝐶1 diffeomor-
phisms of a manifold with a common fixed point at which
the diffeomorphisms are all first order equal to the iden-
tity map (that’s a regularity + dynamical assumption) nec-
essarily has the (algebraic) local indicability property that
every finitely generated subgroup surjects to ℤ. The search
for similar theorems of the form

[dynamical assumptions] + [regularity]
⇒ [algebraic conclusion]

(or any permutation thereof) remains an active and excit-
ing area. This is the context for Navas’ question above.

Several results along these lines are known to hold
when 𝑀 is one-dimensional, and a positive answer to
Navas’ question was given by Kim and Koberda not long
after the appearance of his problems list. Their proof uses
a highly refined version of the diffeomorphisms with disjoint
supports commute line of tricks to encode the regularity of a
diffeomorphism by the rate at which it moves, and there-
fore contracts, small subintervals (forced to be supports of
group elements) towards a fixed point. Obtaining enough
control on supports to pull off this argument from purely

algebraic hypotheses is quite a technical feat, and even so,
in low regularity they use some additional dynamical in-
put from earlier work of Bonatti, Monteverde, Navas, and
Rivas. A different approach to this question, inspired by
work of Ghys, was pursued by the author and Wolff, with
the aim of eventually addressing the question for higher di-
mensionalmanifolds. While we found a short proof some-
what complimentary in technique to that of Kim–Koberda,
the higher dimensional case is still out of reach!

Structure Theorems for Group Actions
The reconstruction results of the previous sections came
out of a classification of isomorphisms between large trans-
formation groups. Classifying homomorphisms between
them is a significantly harder problem. A homomorphism
Homeo0(𝑀) → Homeo(𝑁) is simply a group action of
the group Homeo0(𝑀) on the space 𝑁, so going forward
I will use the language of group actions to describe such
maps. (Again, we are restricting to the identity component
Homeo0(𝑀) to avoid actions that factor through an action
of the mapping class group.)

There are many natural examples of such actions. The
groups Homeo0(𝑀) and Diff0(𝑀) obviously act on the
product manifold 𝑀 ×𝑊 for any manifold 𝑊 . They also
have a natural action on

Conf𝑘(𝑀) = ((𝑀 ×⋯ ×𝑀) −△)/Sym𝑛,

the “configuration space” of 𝑘 distinct, unlabeled points
in 𝑀. In some instances, such as when 𝑀 is a Riemann-
ian manifold of negative curvature, or more generally
when 𝜋1(𝑀) has trivial center, the action of Homeo0(𝑀)
or Diff0(𝑀) on𝑀 can also be shown to lift to an action on
covers of 𝑀. Finally, to give some examples special to the
differentiable case, Diff0(𝑀) also acts naturally on the tan-
gent bundle of 𝑀, the projectivized tangent bundle of 𝑀,
and various jet bundles over𝑀. With the exception of the
product action on𝑀×𝑊 and the tangent bundle action, all
of the examples above have a single orbit, indicating that
even a classification of transitive actions is a nontrivial and
potentially difficult problem.

This classification problem has been posed, in vari-
ous forms, at least since the time of Whittaker’s work.
Part of the challenge in the problem is simply stating
a clear conjectural picture. Rubin, in the 1989 arti-
cle [Rub89] briefly mentioned above, asks “Are there
any reasonable assumptions on the type of the em-
beddings so that the embeddability of Homeo(𝑋) in
Homeo(𝑌) will imply that 𝑋 is some kind of continuous
image of 𝑌?” (emphasis mine). Embeddability here is
meant in the algebraic sense of the existence of an in-
jective homomorphism Homeo(𝑋) → Homeo(𝑌), and
Rubin is speaking not just of manifolds, but of quite
general topological spaces. Two years after that, Ghys
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asked whether embeddability of Diff0(𝑀) into Diff0(𝑁)
implies that the dimension of 𝑁 must be at least as large
as that of 𝑀. This was answered positively by Hurtado in
2015 using his automatic continuity result [Hur15], im-
proving on a very low-dimensional case I had proved ear-
lier (but that case did not have automatic continuity!).
Hurtado also gives a more precise picture of what a clas-
sification might look like. Although he does not give an
explicit conjecture, he notes that Diff0(𝑀) acts naturally
on the tangent bundle of𝑀 (as well as various Grassmani-
ans, etc.) and remarks that all known examples of actions
of Diff0(𝑀) on other manifolds are built from pieces that
have the form of natural bundles over 𝑀 or configuration
spaces of points on 𝑀. If one believes this is an exhaus-
tive list, then one could refine Rubin’s question to ask for
a stratification of the target manifold into understandable
pieces that map continuously either to 𝑀 or to tuples of
points on 𝑀.

Pursuing the analogy between large transformation
groups and Lie groups, one could frame the problem of
classifying morphisms between such groups as the ana-
log of representation theory for these groups—a perspective
which I myself have advertised. But a more useful framing
is to draw parallels with the classical theory of compact (or
locally compact) transformation groups pursued by Bre-
don, Conner, Floyd, Montgomery, Zippin, and others in
the 1950s–70s. Montgomery and Zippin [MZ55] frame
one aspect of this program as a search for the similarities be-
tween actions of a compact group on a manifold and standard
linear or other model geometric actions. Years later, Bredon
[Bre72], in broad terms, says that he views theory of com-
pact transformation groups as “a generalization of the the-
ory of fiber bundles.”2 Indeed, the general starting point
for this theory is typically to first show that only finitely
many orbit types may occur, then to understand and clas-
sify orbits, and then to say that the neighborhood of any
orbit looks something like a direct product, giving a local
bundle-like structure. However, complete solutions to the
classification problem for compact group actions are gen-
erally only attainable with some restriction on the types
of orbits that appear, whether by explicit assumption, or
by restricting the dimension of the space and the group.
A comprehensive introduction to such problems can be
found in Bredon’s book [Bre72].

That one might similarly be able to classify actions of
homeomorphism or diffeomorphism groups is a compar-
atively recent idea, perhaps first advocated for by Ghys,
although I personally learned this question from Benson
Farb. However, it was automatic continuity theorems that

2While [MZ55, Bre72] are old references, the study of transformation groups
has fractured into many different directions since then. Terry Tao’s Hilbert’s
Fifth Problem and Related Topics covers a good deal of the classical material
from a modern perspective, and is another good starting point.

Figure 4. The configuration space of two labeled points on 𝑆1
is an open annulus, that of two unlabeld points is
topologically a mobius band. Both inherit an action of
Homeo0(𝑆1).

provided the catalyst needed to make major progress in
this direction. Using automatic continuity for actions of
Homeo(𝑆1), in 2012 E. Militon gave a complete classifica-
tion of actions ofHomeo0(𝑆1) on the closed annulus and 2-
torus. His classification gives a decomposition of the torus
or annulus into orbits, each homeomorphic to either the
circle with the standard action, or to an open annulus with
the action coming from identifying the annulus with the
configuration space of two (labeled) points in 𝑆1. See Fig-
ure 4. These two types of orbits may be glued together in
a multitude of different ways, leading to an uncountable
family of nonconjugate examples which Militon describes
completely.

Recent work of Lei Chen and the author gives a general
classification of orbit types in all dimensions.

Theorem 0.6 (Chen–Mann [CM]). Suppose that
Homeo0(𝑀) acts on a manifold 𝑁. Then each orbit is the
continuous, injective image of a cover of a configuration space
Conf𝑛(𝑀).

While locally embedded, such orbits are not necessarily
globally embedded. The simplest example where this fails
is the following bundle construction.

Example 0.7. Suppose Σ is a surface of genus at least two.
Then Homeo0(Σ) lifts to act continuously, by homeomor-
phisms on the universal cover Σ̃, which is topologically an
open disc, and this action commutes with the action of the
deck group. Extend this to an action on Σ̃ × 𝑆1 by homeo-
morphisms that are constant on the second factor. Orbits
of this action are embedded open discs, but we can change
this by passing to a quotient of the product space by an ac-
tion of 𝜋1(Σ) that is nontrivial on the second factor. To
be precise, the fundamental group 𝜋1(Σ) admits many ac-
tions by homeomorphisms on the circle—for instance, any
hyperbolic structure on the surface gives a discrete, faith-
ful representation of 𝜋1(Σ) into PSL(2, ℝ) which acts nat-
urally on ℝ𝑃1 ≅ 𝑆1 by fractional linear transformations.
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Figure 5. A quotient of Σ̃ × 𝑆1 by a diagonal action of 𝜋1(Σ) is a
circle bundle over Σ which inherits an action of Homeo0(Σ).
The trivial action on 𝑆1 gives a product bundle with closed
orbits as shown, while typical actions have dense orbits.

Fix such an action, and take the quotient of Σ̃ × 𝑆1 by the
diagonal action of 𝜋1(Σ) by deck transformations on the
first factor, and homeomorphisms of 𝑆1 on the second.
The result is an 𝑆1 bundle over Σ with a continuous action
of Homeo0(Σ) by homeomorphisms. Provided the action
of 𝜋1(Σ) on 𝑆1 doesn’t factor through that of a finite group,
the orbits of the Homeo0(Σ) action on this quotient space
will accumulate on themselves.

Interestingly, if one takes the representation of 𝜋1(Σ)
into PSL(2, ℝ) described above, then the resulting circle
bundle over Σ is, topologically, the unit tangent bundle
(or projectivized tangent bundle) of the surface. While the
group of diffeomorphisms of the surface has an obvious ac-
tion on this space, I find it quite surprising that the group
of homeomorphisms also does since a homeomorphism has
no obvious induced action on the tangent space to a point!

Because of automatic continuity, Theorem 0.6 reduces
to the problem of classifying certain closed subgroups of
Homeo0(𝑀). (In the case where 𝑀 is noncompact, auto-
matic continuity does not quite apply and a little more
work is needed, so for simplicity I’ll assume here that𝑀 is
compact.) If 𝜌 ∶ Homeo0(𝑀) → Homeo(𝑁) is any action,
then the stabilizer

𝐺𝑦 ≔ {𝑔 ∈ Homeo0(𝑀) ∶ 𝜌(𝑔)(𝑦) = 𝑦}

of some point 𝑦 ∈ 𝑁 is a closed subgroup, and the or-
bit map gives a continuous, injective map of the coset
space Homeo0(𝑀)/𝐺𝑦 into 𝑁. Thus, Theorem 0.6 be-
comes equivalent to determining which closed subgroups
ofHomeo0(𝑀) are “large enough” so that their coset space
can be locally embedded in a finite-dimensional mani-
fold. Classical invariance of domain says that ℝ𝑛 is not lo-
cally embeddable in a manifold of dimension less than
𝑛, so no ℝ𝑛 subgroup of Homeo0(𝑀), that is to say no
𝑛-many commuting flows, can survive the quotient map
to Homeo0(𝑀)/𝐺𝑦 if dim(𝑁) < 𝑛. Applying this ob-
servation to subgroups of Homeo0(𝑀) with disjoint sup-
ports, and quoting local simplicity, with enough work we
eventually conclude that 𝐺𝑦 contains the identity compo-
nent of the stabilizer of a finite set of points in 𝑀, hence
Homeo0(𝑀)/𝐺𝑦 is (up to taking a cover) identified with the
configuration space of those points.

The example ofDiff0(𝑀) acting on the projectivized tan-
gent bundle of 𝑀 shows that a similar classification for
actions of diffeomorphism groups, even for actions on
compact manifolds, must account for more kinds of or-
bit types. Remarkably, this kind of construction—taking
quotients of jets of diffeomorphisms up to 𝑟th-order—is
the only kind of new phenomenon that occurs: we show
in [CM] that if Diff0(𝑀) acts on a manifold by smooth dif-
feomorphisms, then every orbit is the continuous, injec-
tive image of a fiberwise quotient of the 𝑟-jet bundle over
a cover of a configuration space of points on 𝑀.

Theorem 0.6 confirms the picture suggested by Hurtado
[Hur15] that 𝑁 should be “built from pieces” that look
like bundles—the pieces are simply the orbits of the action.
Classifying all actions now amounts to understanding how
such pieces can be glued together. We obtain some prelim-
inary results under restrictions on dimension that simplify
the types of orbits that may occur. (Such hypotheses are
commonplace in the classical literature on compact trans-
formation groups.) A sample theorem, paralleling classi-
cal “slice” or local product theorems for the compact group
case, is as follows.

Theorem 0.8 (Chen–Mann [CM]). If 𝑀 and 𝑁 are con-
nected manifolds with dim(𝑁) < 2 dim(𝑀) and Homeo𝑐(𝑀)
acts on 𝑁 without global fixed points, then 𝑁 has the structure
of a generalized flat bundle over 𝑀, i.e., there is a homol-
ogy manifold 𝐹 such that 𝑁 ≅ (𝑀̃ × 𝐹)/𝜋1(𝑀), where 𝜋1(𝑀)
acts diagonally by deck transformations on 𝑀̃ and on 𝐹 by some
representation to Homeo(𝐹).

In fact, we can also describe the possible actions on 𝑁
up to conjugacy: they are all obtained by a construction
as in Example 0.7. A related result for diffeomorphism
groups of compact manifolds can be obtained without the
hypothesis that the action has no global fixed points; one
shows directly that in this setting no orbits can be single-
tons. This line of work also allows one to complete the
classification of Homeo0(𝑆1) actions on surfaces that was
initiated by Militon, filling in the case of the 2-sphere and
open annulus. However, it appears we have only yet seen
the tip of the iceberg, and I hope to seemuch exciting work
in this direction in the near future.

Local and Global Rigidity of Lattices
Having advocated for the analogy between Lie groups and
diffeomorphism or homeomorphism groups, this survey
would be incomplete without a discussion of the role of
lattices in these groups.

A lattice Γ in a Lie group 𝐺 is a discrete subgroup such
that 𝐺/Γ has finite volume with respect to the natural left-
invariant volume form on 𝐺 giving Haar measure. A lat-
tice is called cocompact or uniform if 𝐺/Γ is additionally
compact. In one sense, lattices are small subgroups, be-
ing discrete and, under appropriate hypotheses on 𝐺, they
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are also always finitely generated groups. At the same
time, that 𝐺/Γ is finite volume means that lattices are
also large and this gives them some remarkable rigidity
properties, constraining the ways they may be embedded
into 𝐺 and into other Lie groups. The paradigm example
of such a result is Margulis’ superrigidity theorem, which es-
sentially says that the representation theory of a lattice Γ in
a semisimple Lie group 𝐺 is the same as the representation
theory of 𝐺 itself: with a few technical caveats, any repre-
sentation of Γ to a finite-dimensional linear group extends
to a continuous representation of 𝐺.

Infinite-dimensional linear representations of lattices
have no such rigidity property. Remarkably, nonlin-
ear representations—that is, representations of lattices to
groups of diffeomorphisms—do. That this might be true
was an idea first suggested by R. Zimmer in the late 1970s.
Zimmer generalized other work of Margulis (specifically,
on cocycle rigidity for group actions) to actions of lattices
by measure-preserving diffeomorphisms of manifolds. He
followed this with a series of broad conjectures about
how lattices should act—or fail to act!—on manifolds, giv-
ing rise to what is now known as the Zimmer program.
This program is often summarized by the catchphrase “big
groups don’t act on small manifolds” meaning that lat-
tices in semisimple Lie groups that are large (specifically,
of high rank) should not act faithfully onmanifolds of low
dimension.

More broadly, the Zimmer program aims to classify all
actions of higher rank semisimple Lie groups and their
lattices on compact manifolds, the idea being that they
should be constrained to a collection of natural or obvi-
ous examples (such as, but not exclusively, those coming
from actions of the ambient Lie group as is the case in
Margulis’ theorem). While a complete classification is a
lofty and probably unattainable goal, there have been a
number of remarkable recent advances, for which I refer
the reader to [Fis20] and Fisher’s other survey articles ref-
erenced there. Here I will only very briefly highlight one
feature of this program, namely rigidity of geometric exam-
ples. This is distinct from the “big groups don’t act on small
manifolds” tagline, looking instead for examples of groups
that do act on spaces, but whose possible actions are highly
constrained. Of course, one expects techniques that an-
swer this problem to apply to the “groups that don’t act”
program as well, and vice versa.

As one such example, consider the special linear group
SL(𝑛, ℤ), a nonuniform lattice in SL(𝑛, ℝ). Since the ac-
tion of SL(𝑛, ℤ) on ℝ𝑛 preserves the points with integer
coordinates, it descends to an action on the torus ℝ𝑛/ℤ𝑛,
which preserves both Lebesgue measure and the natural
affine structure on the torus—instances of what I mean
by a “geometric example.” These linear actions also have
a strong dynamical property called Anosov dynamics: for

Figure 6. The action of ( 2 1
1 1 ) ∈ SL(2, ℤ) on ℝ2/ℤ2. The figure

shows a fundamental domain and its image, translated back
onto the fundamental domain.

any element with all eigenvalues off the unit circle, the
tangent space of the manifold splits globally into invari-
ant directions (here, eigendirections) that are contracted
or expanded by iterates of the map.3

The most famous Anosov diffeomorphism is probably
( 2 1
1 1 ) ∈ SL(2, ℤ), also known as Arnold’s “cat map” after

an illustration in Arnold’s Ergodic Problems in Classical Me-
chanics in which he applies themap to a cartoon image of a
cat. After several iterations, the cat’s face is unrecognizably
stretched and distributed around the torus. This is a ba-
sic property of Anosov maps. Formally speaking, volume-
preserving Anosov diffeomorphisms are ergodic. One con-
sequence of this is what one might call chaotic behavior:
nearby points in the domain have vastly different trajecto-
ries under iterates of the map.

Despite this chaos on the level of trajectories of indi-
vidual points, Anosov diffeomorphisms exhibit remark-
able global stability, in the sense that if you nudge the
whole system, the result is a system that is qualitatively
exactly the same—typically (depending on the regularity
involved) conjugate to the original system. These rigidity-
type results for diffeomorphisms and 1-parameter families
of diffeomorphisms date back to work of Anosov himself
in the 1960s.

In the context of group actions, for groups other than ℝ
or ℤ, in many cases Anosov dynamics of a single group ele-
ment can be promoted via an understanding of the group
structure to not only local rigidity but global rigidity for
the whole action. One important and influential instance
of this is in the work of Katok, Lewis, Zimmer, and others,
starting in the 1990s. To give a sample result, Katok, Lewis,
and Zimmer showed that any measure-preserving action
of SL(𝑛, ℤ) on ℝ𝑛/ℤ𝑛 such that a single diffeomorphism
has Anosov dynamics is (up to passing to a finite index
subgroup) smoothly conjugate to a linear action. Some
mild hypothesis is required on the measure, although in

3I am sweeping a few things under the rug here; the precise definition of Anosov
is a formalization of this idea of invariant splitting.
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other work this hypothesis has been replaced with other
hypotheses such as the existence of a finite orbit or a fixed
point. See Spatzier’s survey [Spa04] for a nice introduction
to the history of such results.

Rigidity of lattices remains an active and exciting area.
Recently, Brown, Rodriguez-Hertz, and Wang proved a
much broader theorem along the lines of that of Katok–
Lewis–Zimmer described above, but applicable to a much
wider class of lattices and with weaker hypotheses. As well
as obtaining global rigidity for actions of SL(𝑛, ℤ) on tori
ℝ𝑚/ℤ𝑚 (note that 𝑚 is not required to equal 𝑛 here!) un-
der suitable hypotheses, they obtain rigidity of cocompact
lattices on nilmanifolds, a class which includes tori.

Theorem 0.9 (Brown–Rodriguez-Hertz–Wang [BRHW17]).
Suppose Γ is an irreducible cocompact lattice in a semisimple Lie
group acting on a nilmanifold𝑀 by smooth diffeomorphisms. If
some element has Anosov dynamics, then (up to possibly passing
to a finite index subgroup) this action is smoothly conjugate to
a group of linear automorphisms of 𝑀.

Without passing to a finite index subgroup, one obtains
conjugacy to an affine action—still a geometric example.
Their work also covers nonirreducible and many nonuni-
form lattices, but in the interest of simplicity of the state-
ment I have restricted to this case. However, differentiabil-
ity is an essential component of this result. While Brown,
Rodriguez-Hertz, and Wang can reduce the hypotheses
from smooth to 𝐶1 or even Lipschitz actions at the cost of
a weaker conclusion, the machinery going into the regular-
ity of the conjugacy is essentially a smooth phenomenon.

That said, there are also a few known instances of “rigid-
ity of geometric examples” for groups acting by homeo-
morphisms. Although the definition of Anosov is in terms
of the induced action of a diffeomorphism on the tangent
bundle, and hence requires an action to be 𝐶1, there are
topological analogs of Anosov flows; the idea being that
you can quantify the rate of expansion and contraction
of continuous trajectories even if you cannot meaningfully
speak of a splitting of the tangent space. These topological
flows have many of the same dynamical properties, and
𝐶0 perturbations of Anosov diffeomorphisms also exhibit
similar stability properties.

However, Zimmer’s conjecture that there should be “no
actions of large groups on small manifolds,” speaking here
of discrete groups, is wide open in the 𝐶0 case, except when
the manifold is very small: dimension one. These one-
dimensional results rely on the total ordering of points
on the line, or cyclic ordering of points on the circle, a
property that can actually be promoted to a left-invariant
total ordering on any group of homeomorphisms of the
line or circle. As you might expect, such a total order
on a group imposes strong algebraic constraints, and this
has been successfully leveraged to show certain groups,

including lattices, do not act. Morris’ paper [Mor11] is a
nice introduction; the state of the art can be found in a
very recent paper of Deroin and Hurtado, who show non-
orderability of all higher rank lattices.

There are also a few instances of 𝐶0 rigidity of geometric
examples in low dimension, even without Anosov dynam-
ics. It is less clear what “geometric” should mean for a
group acting by homeomorphisms, but one possible defi-
nition, in the style of a model geometry in the sense of Felix
Klein, is that the action should be conjugate to that of a co-
compact lattice in a Lie groupwhich acts transitively on the
manifold. With this definition, classifying geometric sub-
groups ofHomeo0(𝑆1) is an easy exercise: any group acting
geometrically is (up to taking a finite, cyclic extension) the
fundamental group 𝜋1(Σ𝑔) of a higher genus surface, act-
ing on the circle via a discrete, faithful representation into
PSL(2, ℝ) or a finite, cyclic extension of PSL(2, ℝ). Wolff
and I showed these are precisely the rigid examples.

Theorem 0.10 (Mann, Mann–Wolff [MW]). All geometric
actions of 𝜋1(Σ𝑔) are rigid, in the sense that every continuous
deformation of such an action is semiconjugate to the original
action. Conversely, any action of 𝜋1(Σ𝑔) on the circle that is
rigid under all continuous deformations is necessarily semicon-
jugate to a geometric example.

Semiconjugate here means that there is a continuous,
surjective, degree one map ℎ ∶ 𝑆1 → 𝑆1 intertwining
the geometric action with its deformation. Deformation is
meant in the large or global sense, in fact the whole con-
nected component of a geometric action in the space of all
homomorphisms of 𝜋1(Σ𝑔) into Homeo0(𝑆1) consists pre-
cisely of the representations semiconjugate to it. The rea-
son I mention this here is the suspicion that rigidity of geo-
metric examples—perhaps with a different definition of geo-
metric; I am not convinced we have the right one—should
continue to be a fruitful future direction.

One phenomenon at play in the rigidity of geometric
actions on the circle is a weak topological replacement of
the rigidity of Anosov diffeomorphisms mentioned above.
In the Anosov case, a single diffeomorphism has a global
expansion/contraction property coming from a splitting of
the tangent space at every point. Geometric actions of sur-
face groups on the circle exhibit a contrasting notion of “ex-
pansion/contraction everywhere” that can be phrased in
purely topological terms: each homeomorphism 𝑓 in the
action has a finite set of attractors (points 𝑥 with a neigh-
borhood 𝑈 such that the intersection of iterates 𝑓𝑛(𝑈),
𝑛 ≥ 0, is equal to 𝑥), and the union of attractors, taken
over all group elements, forms a dense subset of the circle.
That local dynamics of many group elements can stand in
place of global dynamics of a single group element is far
from a new idea, but is still a fruitful one. J. Bowden and
I recently extended some of the ideas to prove a weaker,
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local 𝐶0 rigidity for other geometrically motivated group
actions on higher dimensional spheres, but how far this
idea can be pushed is completely up in the air. I suspect, as
many others do, that our guiding analogy with Lie groups
holds true and Zimmer’s philosophy applies quite broadly
to actions of lattices by homeomorphisms on manifolds,
butwe are very far fromunderstanding how thismight play
out.
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