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Why Study Lattice Polymers?
There are three principal reasons to study lattice poly-
mers. For physicists (and mathematicians interested in
applications), the miraculous phenomenon of “universal-
ity” means that exact information about real-world poly-
mer systems can be obtained by studying highly idealized
models such as lattice polymers. For mathematicians (and

Nathan Clisby is a senior lecturer in the Department of Mathematics at Swin-
burne University of Technology, Melbourne, Australia. His email address is
nclisby@swin.edu.au.

Communicated by Notices Associate Editor Emilie Purvine.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2255

physicists who appreciatemathematical beauty), the physi-
callymotivatedmodels aremathematically appealing, and
have rich combinatorial structure. The third reason is that
it is just a really fun research topic.1

The most fundamental model is the self-avoiding
walk [Flo49,MS93], which is a walk that starts at the ori-
gin of a lattice and moves successively to neighboring sites,
with the rule that self-intersections are forbidden. An
example of a self-avoiding walk on the square lattice is
shown in Figure 1, together with a self-avoiding polygon,
which is a walk that returns to the origin but is otherwise
self-avoiding.

Formally, an 𝑛-step self-avoiding walk on ℤ𝑑 is a map-
ping 𝜔 ∶ {0, 1, … , 𝑛} → ℤ𝑑 with 𝜔(0) at the origin, steps of

1It’s possible that the author is somewhat biased.
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Figure 1. A self-avoiding walk (left) and a self-avoiding
polygon (right) on the square lattice.

unit Euclidean length so that |𝜔(𝑖+1)−𝜔(𝑖)| = 1 for each 𝑖,
and the self-avoidance constraint enforced by 𝜔(𝑖) ≠ 𝜔(𝑗)
for all 𝑖 ≠ 𝑗. We are interested in the number of walks of
length 𝑛, which we denote by 𝑐𝑛, the number of polygons
of length 𝑛, which we denote by 𝑝𝑛, and other properties
such as the mean squared distance of the end of an 𝑛-step
walk from the origin,

𝔼𝑛(|𝜔(𝑛)|2) = 𝑐−1𝑛 ∑
|𝜔|=𝑛

|𝜔(𝑛)|2,

which measures the typical size of a walk.
It is widely believed that the following asymptotic be-

havior occurs for the self-avoiding walk on a regular lattice
in any dimension:

𝑐𝑛 ∼ 𝐴𝜇𝑛𝑛𝛾−1,
𝔼𝑛(|𝜔(𝑛)|2) ∼ 𝐷𝑛2𝜈,

where 𝜇 is a lattice-dependent growth constant, and 𝛾 and
𝜈 are universal critical exponents that only depend on the
dimension of the lattice. Simple random walks undergo
Brownian motion, and have 𝛾 = 1 and 𝜈 = 1

2
, while

walks that move at a steady speed, that is “ballistically,”
have 𝜈 = 1. For self-avoiding walks there are exact con-
jectures for 𝑑 = 2 of 𝛾 = 43

32
and 𝜈 = 3

4
, and precise nu-

merical estimates from Monte Carlo simulations for 𝑑 = 3
of 𝛾 = 1.156953(1) and 𝜈 = 0.5875970(4) (the numbers
in parentheses indicate the uncertainty in the final digit),
while for 𝑑 ≥ 4 the self-avoidance constraint is sufficiently
weak that critical exponents assume their randomwalk val-
ues 𝛾 = 1 and 𝜈 = 1

2
, with logarithmic corrections when

𝑑 = 4.
Self-avoiding walks are self-similar fractal objects, with

fractal dimension 1/𝜈. As
1
2
< 𝜈 < 1 for 𝑑 = 2, 3, self-

avoiding walks are visibly more spread out than simple
random walks, but do not move ballistically. This can be
observed in the image at the start of the article that shows
a self-avoiding walk of 1 billion steps on the square lattice,
generated using a Markov chain Monte Carlo procedure
known as the pivot algorithm.

The self-similarity of two-dimensional self-avoiding
walks can be observed in Figure 2. Starting at the top left

corner there is a walk of one billion steps. Then, by follow-
ing the arrows one has a sequence of subwalks of length
108, 107, … , 10 steps that are obtained by zooming into the
original walk. It is impossible (at least to the author) to
distinguish between different length scales until the under-
lying lattice becomes apparent. This image also serves as
a striking “proof by picture” that 𝜈 = 3

4
, as subwalks of

length 𝑘 are scaled by 𝐴𝑘−3/4, where 𝐴 is a fixed constant.
If 𝜈 was even slightly different from the conjectured value
of

3
4
, then the size of the images of these subwalks would

noticeably change as 𝑘 is varied from 10 to 109.
The self-avoiding walk is intimately related to other

models in lattice statistical mechanics, as it is the 𝑛 → 0
limit of the so-called 𝑛-vector model; the famous Ising
model corresponds to 𝑛 = 1.

Remarkably, self-avoiding walks can be used to gain ex-
act information about real-world polymer systems due to
the phenomenon of universality. Universality is the ob-
servation that when a change of state, or phase transition,
with a diverging correlation length occurs for a model in
statistical mechanics, that sufficiently similar systems in
the same “universality class” will have exactly the same
kind of behavior in the limit of large system size, and the
fine-grained details of the model do not matter.

The key feature that determines the behavior of real
polymer chains in a good solvent is the excluded volume
constraint, and this property is exactly captured by the self-
avoiding walk model. Thus, real polymers, self-avoiding
walks on any three-dimensional lattice, weakly avoiding
walks that penalize but do not forbid self-intersections,
and various semirealistic models of polymers in ℝ3 all
have the same value of 𝜈. Self-avoiding walks also capture
other universal properties, such as the fact that knots are
ubiquitous in long polymers; as 𝑛 → ∞ the probability of
a self-avoiding polygon being knotted approaches 1 expo-
nentially rapidly.

Much is known about self-avoiding walks, but rather
less has been proved. Two stand-out results are the proof
by Hara and Slade [HS92], via the lace expansion, that
for 𝑑 ≥ 5 the critical exponents exist and assume ran-
dom walk values, and the proof by Duminil-Copin and
Smirnov [DCS12], via the introduction of a parafermionic
observable that satisfies a remarkable discrete holomor-

phicity condition, that 𝜇 = √2 +√2 for the honeycomb
lattice. But, although there is overwhelming numerical ev-
idence in favor of the correctness of the asymptotic forms
for 𝑐𝑛 and 𝔼𝑛(|𝜔(𝑛)|2) given above, there is as yet no proof
of this for 𝑑 = 2 and 𝑑 = 3.

For 𝑑 = 2, it is believed that in the scaling limit,
where 𝑛 → ∞ and the appropriately scaled lattice spacing
approaches zero, that the two-dimensional self-avoiding
walk model converges to Schramm-Loewner Evolution

APRIL 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 505



Figure 2. Zooming in to a self-avoiding walk with 109 steps on the square lattice. Starting from the top left, subwalks have
109, 108, … , 10 steps, with each successive subwalk appearing as a red section in the larger walk. The scale factor for the length-𝑘
subwalk is 𝐴𝑘−3/4, where 𝐴 is a fixed constant.

(SLE) with parameter 𝜅 = 8
3
. A proof of this would im-

mediately confirm the conjectured exponent values for the
two-dimensional self-avoiding walk, and much else, and
would surely be worthy of a Fields Medal.

For 𝑑 = 3, the situation is even more challenging, and
the prospects of proving any strong results seem remote.
Therefore, current efforts to improve our understanding of
three-dimensional lattice polymer systems are focused on
experimental mathematics efforts in computer enumera-
tion andMonte Carlo simulation to deepen our qualitative
and quantitative understanding of the behavior of these
systems.

Despite the large gaps in what has been proved about
self-avoiding walks, it has been an extraordinarily rich
model in inspiring progress in combinatorics, mathemati-
cal physics, probability, and polymer science. Going into
detail on these topics would require rather more space
than I have available (see [MS93, JvR15] for more of these
details) and in this article I will instead narrowly focus on
aspects of lattice polymers related to enumerative combi-
natorics. Although the self-avoiding walk model has not
been solved, it has inspired a fabulously diverse ecosys-
tem of combinatorially interesting solvable models. With-
out even the slightest pretense at comprehensiveness, I
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will concentrate on enumerative combinatorial aspects of
a select few models of lattice polymers to convey some
of the goals and methods of this research area. In addi-
tion, one of the most powerful experimental mathemat-
ics approaches to the quantitative understanding of self-
avoiding walks and related models is to perform exact enu-
merations on the computer. I will briefly explain the com-
binatorial and geometric insights that are at the heart of
the most efficient known algorithms for the enumeration
of self-avoiding walks in two and three dimensions.

I will now give a brief overview of the use of generating
functions in the study of lattice polymers.

Generating Functions
For any combinatorial sequence 𝑐𝑛, with 𝑛 ≥ 0, we may
associate a generating function

𝐶(𝑥) = ∑
𝑛≥0

𝑐𝑛𝑥𝑛.

For lattice models of polymers, typically 𝑐𝑛 is the number
of walks of length 𝑛, and we say that 𝑥 is the parameter
that is conjugate to the length of the walk. Stealing a vivid
metaphor from Wilf [Wil94], “a generating function is a
clothesline on which we hang up a sequence of numbers
for display.” This generating function may be purely for-
mal, but often we can study the behavior of 𝑐𝑛 via the ana-
lytic properties of 𝐶(𝑥); this is the domain of analytic com-
binatorics.

We may want to keep track of additional properties be-
sides length, in which case we will construct a multivariate
generating function. For example, for Dyck paths (defined
later) we construct a generating function that weights con-
tacts with a surface

𝐷(𝑎, 𝑥) = ∑
𝑚,𝑛≥0

𝑑𝑚,𝑛𝑎𝑚𝑥𝑛,

with 𝑑𝑚,𝑛 the number of Dyck paths with 𝑚 contacts and
of length 𝑛. We can treat 𝑎 and 𝑥 as purely formal param-
eters, or we can give them particular values. In particular,
𝐷(1, 𝑥) is the generating function for Dyck paths counted
by length alone. If we treat 𝑎 as a fixed constant, then
𝐷(𝑎, 𝑥) is a function of 𝑥, and we can consider the walks
to be weighted objects. In this case, there is a direct corre-
spondence between 𝑎 and so-called Boltzmann weights in
statistical mechanics that determine how the lattice poly-
mer will behave as a function of temperature.

Whenmodels in statistical mechanics have a phase tran-
sition from one state to another, this will manifest as a
singularity in the generating function at a critical point.
For the generating functions of lattice polymers that we
will discuss, this critical point is also the leading singular-
ity of the generating function. For single variable generat-
ing functions, such as 𝐶(𝑥), the leading singularity, 𝑥𝑐, is
a constant, while for multivariate generating functions the

location and nature of the critical point may be a function
of the other parameters.

If the leading behavior of the generating function 𝐶(𝑥)
at 𝑥𝑐 is a power-law singularity with exponent −𝛾, that is,

𝐶(𝑥) ∼ 𝐴(𝑥) (1 − 𝑥
𝑥𝑐
)
−𝛾

with 𝐴(𝑥) analytic in the vicinity of 𝑥𝑐, then
𝑐𝑛 ∼ ̄𝐴𝑛𝛾−1𝑥−𝑛𝑐 = ̄𝐴𝑛𝛾−1𝜇𝑛,

where 𝜇 = 1/𝑥𝑐 is the growth constant for the sequence 𝑐𝑛
and ̄𝐴 = 𝐴(𝑥𝑐)/Γ(𝛾).

Thus, there is a correspondence between the leading
power-law singularity in the generating function and the
power-law factor of the asymptotic behavior of the associ-
ated sequence. In particular, a pole in the generating func-
tion with 𝛾 = 1 will mean that the sequence will grow as a
pure exponential with no power-law correction.

More complicated analytical forms and associated as-
ymptotic behavior are possible, including confluent expo-
nents and the occurrence of multiple leading singularities,
both of which result in additive power-law corrections for
the sequence. Still more exotic behavior may occur, such
as stretched exponential asymptotics like

𝑐𝑛 ∼ 𝐴𝑛𝛾−1𝜇𝑛𝜍1 𝜇𝑛,
with 𝜎 ≠ 1.

Generating functions may have a wide variety of analyt-
ical properties. In order of increasing generality, they may
be:

• Polynomial, in the case where there are only
a finite number of objects. For example, self-
avoiding walks in a 4 by 4 grid.

• Rational, where the only singularities are poles.
• Algebraic, so that the generating function is a so-

lution of a polynomial equation.
• Differentiably finite (D-finite), or holonomic, so

that the generating function is a solution of a lin-
ear differential equation with polynomial coeffi-
cients.

• Differentiably algebraic (D-algebraic), so that the
generating function is a solution of a polynomial
equation involving 𝑥, the function, and its deriva-
tives.

• None of the above!

For solvable models, the goal is to find an explicit ex-
pression for the generating function—perhaps as an al-
gebraic expression, or as the solution of a higher order
ODE—or at least to find a polynomial-time algorithm for
generating coefficients.

The anisotropic generating function for self-avoiding
polygons on the square lattice, for which vertical steps
have different weights than horizontal steps, is not D-
finite [Rec06]. If one then sets the vertical and horizontal
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weights to be equal one obtains the standard model for
self-avoiding polygons on the square lattice. Therefore, in
the absence of a miraculous and unexpected cancellation
of singularities, the generating function for self-avoiding
polygons is not D-finite. This strongly suggests that it will
be, at best, extremely challenging to find exact solutions
for self-avoiding walks and self-avoiding polygons on the
square lattice.

In this case, our goal is to learn as much about the
model as possible by finding efficient algorithms to enu-
merate the objects, so as to determine as many as possible
terms of the sequence 𝑐𝑛.

Consequently, we seek to determine the properties of
this sequence via series analysis techniques. Themost pow-
erful general technique is the method of differential ap-
proximants [Gut89], which takes the finite approximation
of the generating function and finds a linear ordinary dif-
ferential equation with polynomial coefficients that repro-
duces these initial terms. Features of the model such as 𝑥𝑐
and the associated critical exponent can then be estimated
by analyzing the singularities of the differential equation.

The application of sophisticated computer enumera-
tion and series analysis techniques to problems in lattice
statistical mechanics was pioneered from the late 1950s by
Domb and Sykes (see, e.g., [DS61]) and their many collab-
orators including Fisher, Essam, and Gaunt.

It can be extremely powerful to apply series analysis
techniques to series expansions for problems that are sus-
pected of being solvable, or more precisely to have D-finite
generating functions. If, for example, it is found that a
differential equation involving 100 coefficients is able to
exactly reproduce 1000 terms of a sequence that has been
found by other means, one would be very confident that
the true generating function is in fact the solution of the
differential equation. Such a discovery does not constitute
a proof, but once the solution is known it is usually much
easier to prove that it is correct! Furthermore, when the
generating function can be proved to beD-finite, with a pri-
ori upper bounds available for the order and degree of the
associated differential equation, then this guessing proce-
dure can be made fully rigorous [Zei90].

The Model Spectrum
One characteristic that distinguishes different models of
walks is howmuch informationmust bemaintained about
thewalk as it gets longer, so as to correctly calculateweights
and avoid self-intersections.

Variants of directed walks can on occasion completely
forget about their past behavior, while so-called “prudent”
walks (defined later) can never completely forget about
their past behavior, but can condense that information to
a finite set of parameters. In contrast, the most physically
relevant model, self-avoiding walks, requires that the walk

remember its entire past behavior. Indeed, each step of a
self-avoiding walk of length 𝑛 depends on every other step,
and it is incorrect to think of a self-avoiding walk as being
generated step-by-step as it is a truly non-Markovian pro-
cess.

This makes it straightforward to solve simple variants of
directed models, challenging to solve models such as pru-
dent walks that require more information to be retained,
and extremely difficult—perhaps even impossible—to
solve variants of the self-avoiding walk model.

A unifying principle for exact solutions and efficient
enumeration algorithms is that a geometric or combinato-
rial insight must be gained that allows for independence
between different parts of the walk, where the dependence
between different parts is mediated by a finite (for solu-
tions) or reduced (for algorithms) set of parameters.

Our goal is to find as much information as possible
about the sequences and generating functions of lattice
polymer models. In particular, we wish to understand the
functional form of the generating function and to deter-
mine features such as critical exponents exactly, or to es-
timate them as accurately as possible. In this way we can
gain insight into the phase transitions of themodel, and by
universality thesemodels may also tell us about real-world
systems.

The tools we have at our disposal in this endeavor are, in
order of preference, exact solutions, polynomial time algo-
rithms for enumeration, exponential algorithms for exact
enumeration, and finally Monte Carlo methods of approx-
imate enumeration. We will touch on each of the exact
methods in this article, starting with the exact solution of
directed walk models.

Directed Walks
We begin by considering the simplest model of all: di-
rected walks on the square lattice. Walks start at the ori-
gin, and are able to move either to the north or east with
each step. See Figure 3 for example configurations. The di-
rected nature of the walkmeans that there is never any pos-
sibility for self-intersection, and so choices are completely
unrestricted. By convention, we take the number of walks

Figure 3. Directed walks on the square lattice of 100 steps
(left) and 1000 steps (right).
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Figure 4. Example of a directed self-avoiding walk on a
cylinder of circumference 𝑤 = 4.

with zero steps to be 1, and then there will be two walks
of length 1, and in general

𝑎𝑛 = 2𝑛.
The associated generating function is

𝐴(𝑥) = ∑
𝑛≥0

𝑎𝑛𝑥𝑛 = ∑
𝑛≥0

(2𝑥)𝑛 = 1
1 − 2𝑥 .

We can see that the only singularity of the generating func-
tion is a simple pole, that 𝛾 = 1, and the growth constant
𝜇 = 2. Rather than enumerating the walks directly, an al-
ternative approach is to find a functional equation for the
generating function. We recognize that either a directed
walk has zero steps (corresponding to 𝑥0 = 1), or has a
step to the north or east (weight 𝑥 + 𝑥 = 2𝑥) followed by
another directed walk. So

𝐴(𝑥) = 1 + 2𝑥𝐴(𝑥),
and rearranging gives the same answer as the direct ap-
proach.

One notable feature of directed walks is that they are
anisotropic: although they are self-similar fractal objects,
their scaling behavior depends on the direction. As can be
observed in Figure 3, in the SW-NE direction, the directed
walk is moving ballistically with constant speed away from
the origin so that 𝜈 = 1, whereas in the NW-SE direction
the walk is performing a one-dimensional random walk.

We next determine the generating function 𝐹(𝑤)(𝑥) for
a simple modification of directed walks with periodic
boundary conditions in the north direction, so that self-
intersections may occur when the walk winds around the
cylinder of circumference 𝑤. We show an example of
these directed walks with 𝑤 = 4 in Figure 4. Playing
around with small configurations shows that the num-
ber of cylinder walks when 𝑤 = 2 with 𝑛 ≥ 0 steps is
𝑓(2)𝑛 = 1, 2, 3, 5, 8, 13, …, which is suspiciously reminiscent
of the Fibonacci sequence. By partitioning the set of walks
into those that end in an east step, and those that end in a
north step, it is straightforward to show that the recurrence
relation for the Fibonacci sequence is indeed satisfied, that
is, 𝑓(2)𝑛 = 𝑓(2)𝑛−2 + 𝑓(2)𝑛−1 for 𝑛 ≥ 2.

Instead of obtaining an expression for 𝑓(𝑤)𝑛 for arbi-
trary 𝑤 directly, we will derive a functional equation. We

recognize that either the walk never takes an east step, in
which case it can take either 0, 1, 2, … , 𝑤−1 north steps, or
it does take at least one east step, in which case it can take
0, 1, 2, … , 𝑤−1 north steps, then one east step, followed by
another walk. Thus,

𝐹(𝑤)(𝑥) = (1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑤−1)
+ (1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑤−1)𝑥𝐹(𝑤)(𝑥)

⇒ 𝐹(𝑤)(𝑥) = 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑤−1
1 − 𝑥 − 𝑥2 − 𝑥3 −⋯− 𝑥𝑤 .

If we take 𝑤 = 2, then the generating function is

𝐹(2)(𝑥) = 1 + 𝑥
1 − 𝑥 − 𝑥2 .

To determine an explicit expression for 𝑓(2)𝑛 , we need to
perform a partial fraction decomposition and observe that

1 − 𝑥 − 𝑥2 = (1 − 𝜙𝑥)(1 + 𝜙∗𝑥),

where 𝜙 = (1 + √5)/2 is the golden ratio, and 𝜙∗ = 1/𝜙 =
(−1 + √5)/2. With a bit of algebra we find that

𝐹(2)(𝑥) = 𝜙 + 1
𝜙 + 𝜙∗

1
1 − 𝜙𝑥 + 𝜙∗ − 1

𝜙 + 𝜙∗
1

1 + 𝜙∗𝑥

= ∑
𝑛≥0

( 𝜙 + 1
𝜙 + 𝜙∗𝜙

𝑛 + 𝜙∗ − 1
𝜙 + 𝜙∗ (−𝜙

∗)𝑛) 𝑥𝑛

⇒ 𝑓(2)𝑛 = 𝜙 + 1
𝜙 + 𝜙∗𝜙

𝑛 + 𝜙∗ − 1
𝜙 + 𝜙∗ (−𝜙

∗)𝑛

= (𝑛 + 1)th Fibonacci number.
Thus we have 𝛾 = 1, 𝜇 = 𝜙 = 1.618033…, and as a bonus
we have an explicit expression for the Fibonacci numbers
in terms of the golden ratio. Note that 𝜇 is less for cylin-
der walks than for directedwalks; the additional restriction
placed on the walks makes them less numerous. General-
izations of Fibonacci numbers are obtained for higher 𝑤,
for example the so-called Tribonacci numbers for 𝑤 = 3;
the On-Line Encyclopedia of Integer Sequences (https://
oeis.org) is an amazing resource for discovering interest-
ing sequences.

Dyck Paths
The final directed model we will consider is Dyck paths
with contact weights. Dyck paths are directed paths on
the rotated square lattice with allowed steps being north-
east and south-east, with the extra conditions that the path
must always have 𝑦 ≥ 0 but start and end with 𝑦 = 0; see
Figure 5 for an example. The boundary is a mathematical
abstraction of an impenetrable surface. We weight each
step taken by 𝑥, and associate an additional weight 𝑎 with
each return to the surface. If we set 0 < 𝑎 < 1, then con-
tacts are penalized, if we set 𝑎 = 1, then the weights have
no effect on the generating function at all, and if we set
𝑎 > 1, then contacts are reinforced.
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Figure 5. Example of a Dyck path with 10 steps, and two
returns to the surface. The associated weight is 𝑎2𝑥10.

We are introducing this model both because it has inter-
esting combinatorics, and also because it is an extremely
simple model of polymer adsorption. We shall see that
there is a special value of 𝑎 where the Dyck path will
transform from being typically far from the surface, or
“desorbed,” to typically being close to the surface, or “ad-
sorbed.” That is, a phase transition will occur. The contact
weight 𝑎 can be related to experimental quantities used to
induce adsorption such as temperature and solvent qual-
ity.

To find a functional equation we condition on the
first return to the surface. Either a Dyck path has
zero steps (contributing weight 1), or it consists of a
step above the surface (weight 𝑥), then a Dyck path
above the surface (where the contact weights are ig-
nored, hence set to 1), then a step down to the sur-
face (weight 𝑎𝑥), followed by another Dyck path. This
functional equation can be represented pictorially as

= +

𝐷(𝑎, 𝑥) = 1 + 𝑥𝐷(1, 𝑥)𝑥𝑎𝐷(𝑎, 𝑥)
= 1 + 𝑎𝑥2𝐷(1, 𝑥)𝐷(𝑎, 𝑥).

If we let 𝑎 = 1 we obtain a quadratic functional equation
for 𝐷(1, 𝑥):

𝐷(1, 𝑥) = 1 + 𝑥2𝐷(1, 𝑥)2

⇒ 𝐷(1, 𝑥) = 1 − √1 − 4𝑥2
2𝑥2 ,

where the appropriate branch is chosen to ensure that the
solution corresponds to the physical model, which has
positive coefficients. We point out that 𝐷(1, 𝑥) has the ex-
pansion

𝐷(1, 𝑥) = 1 + 𝑥2 + 2𝑥4 + 5𝑥6 +⋯+ 𝐶𝑛𝑥2𝑛 +⋯ ,

where 𝐶𝑛 is the 𝑛th Catalan number, one of the most fa-
mous of all sequences. Thus

𝑑2𝑛 = 𝐶𝑛 =
1

𝑛 + 1(
2𝑛
𝑛 ) ∼

4𝑛

√𝑛3𝜋
,

and by comparing 𝑛𝛾−1 with 𝑛−3/2 we observe that 𝛾 = − 1
2

and 𝜇 = 2 (the same as directed walks) for unweighted
Dyck paths.

Now, we can write 𝐷(𝑎, 𝑥) in terms of 𝐷(1, 𝑥) to obtain
the full solution:

𝐷(𝑎, 𝑥) = 1
1 − 𝑎𝑥2𝐷(1, 𝑥) =

2
2 − 𝑎(1 − √1 − 4𝑥2)

.

Note that 𝐷(𝑎, 𝑥) is a function of 𝑥2, and therefore any co-
efficients involving an odd power of 𝑥 must be identically
zero. This reflects the fact that there must be an even num-
ber of steps to return to the surface.

Our expression for 𝐷(𝑎, 𝑥) has strikingly different qual-
itative behavior depending on the value of the weight 𝑎,
which may be identified with two different universality
classes. For 𝑎 ≤ 2, the leading singularity is an algebraic
singularity at 𝑥𝑐 = ± 1

2
, so 𝜇 = 2 and the rate of expo-

nential growth is thus independent of 𝑎; this is the de-
sorbed phase. For 𝑎 > 2, the leading singularity is a pole
at 𝑥𝑐 = ± 1

𝑎
√𝑎 − 1; this is the adsorbed phase.

Dyck paths with contact weights thus provide a qualita-
tive model of the physical adsorption phase transition that
is observed with real polymers.

With some extra work [RvR04], it is possible to show
that the mean number of contacts for a 2𝑛-step weighted
Dyck path is to leading order given by

𝔼2𝑛(contacts) =
⎧
⎨
⎩

2
2−𝑎

+ 𝑜(1), 𝑎 < 2,
√𝜋√𝑛 + 𝑂(1), 𝑎 = 2,
𝑎−2
𝑎−1

𝑛 + 𝑂(√𝑛), 𝑎 > 2.

This conforms with what we might expect: when the
polymer is desorbed with 𝑎 < 2, there are on average a fi-
nite number of contacts as we would expect the polymer to
only approach the surface in the vicinity of the ends. When
𝑎 > 2, the number of contacts is proportional to 𝑛, which
is consistent with the polymer being adsorbed or stuck to
the surface. Finally, precisely at 𝑎 = 2, we have a critical
phase where the system changes from being desorbed to
adsorbed, and in this case there are 𝑂(𝑛𝜙) contacts, with
𝜙 = 1

2
.

For real polymers in two dimensions, it is believed that
the exponent 𝜙 is in fact exactly the same as for weighted
Dyck paths, while in three dimensions the question is not
fully settled, but the best available evidence is that 𝜙 =
0.484(4) [BOP18].

There is an enormous zoo of directed walk models that
are studied for reasons of mathematical interest and phys-
ical relevance. These models can be fiendishly difficult to
solve, unlike the simple examples presented here. But, for
now we move on to a family of models for which steps in
all directions are allowed, and thus is closer to the physi-
cally relevant self-avoiding walk model.
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Prudent Walks
Prudent walks are walks that make prudent choices to
avoid the possibility of self-intersection, by never taking
a step towards a site they have previously visited. A short
example of a prudent walk is shown in Figure 6, with the re-
gion that currently cannot be stepped towards highlighted
on the right.

Figure 6. A prudent walk on the square lattice (left), and on
the right the shaded rectangle shows the region that the walk
cannot step towards.

This method of avoidance is significantly less crude
than was the case for directed walks, but does not require
the arbitrarily long memory of detailed structure that is
characteristic of self-avoiding walks. This is illustrated in
Figure 6, where on the right the details of the structure of
the walk in the shaded region are completely irrelevant to
the future choices that may be available—it is safe to for-
get everything except for the dimensions of the shaded re-
gion. The rules for self-avoidance can be encoded by keep-
ing track of the direction of motion, and the bounding rec-
tangle of previously visited sites.

One consequence of the prudent rule is that at each step
the end of the walk lies on its bounding rectangle,2 and
this leads to four natural subcategories of prudent walks: 1-
sided prudent walks that are always on the eastern bound-
ary of the rectangle, 2-sided prudent walks that always lie
on the northern or eastern boundaries, 3-sided prudent
walks that lie on the western, northern, or eastern bound-
aries, and finally 4-sided prudent walks (or, just prudent
walks) that can lie on any boundary. Note that 2-, 3-, and
4-sided prudent walks are not time-reversible.

Two random 4-sided prudent walks are shown in Fig-
ure 7. The short walk of 100 steps could almost be mis-
taken for a self-avoiding walk (compare with the subwalk
of 100 steps in Figure 2), but longer walks are very clearly
directed.

1-sided prudent walks are more commonly known as
partially directed walks, and can move either north, east,
or south. We recognize that either the walk never takes an

2The converse is not true—there are walks for which every step lies on the
bounding rectangle that are imprudent.

Figure 7. 4-sided prudent walks of 100 steps (left) and 1000
steps (right).

east step, in which case it can take an arbitrary number of
north or south steps, or it does take at least one east step,
in which case it can take an arbitrary number of north or
south steps, then one east step, followed by another walk.
Thus,

𝑃1(𝑥) = (1 + 2𝑥 + 2𝑥2 +⋯)
+ (1 + 2𝑥 + 2𝑥2 +⋯+)𝑥𝑃1(𝑥)

= 1 + 𝑥
1 − 𝑥 + (1 + 𝑥)𝑥

1 − 𝑥 𝑃1(𝑥)

⇒ 𝑃1(𝑥) =
1 + 𝑥

1 − 2𝑥 − 𝑥2 .

The leading singularity is a pole at 𝑥𝑐 = −1+√2, and so the
growth constant is 𝜇 = 1/𝑥𝑐 = 1+√2 = 2.4142…. Partially
directedwalks aremore numerous than directedwalks, but
qualitatively they behave in exactly the same way.

2-sided prudent walks are considerably more interest-
ing, as walks can move in all four directions and more
information needs to be retained to find a suitable func-
tional equation. The principal insight that allows a func-
tional equation to be constructed is that with each step
the 2-sided walk may either take a step along either the
northern or eastern boundaries, or the walk may inflate the
boundary by taking an east step from the eastern bound-
ary, or a north step from the northern boundary. When
this inflation step occurs the walk can forget about its past
behavior, with the exception of the relative location of the
north-east corner. The resulting generating function is

𝑃2(𝑥) =
1

1 − 2𝑥 − 2𝑥2 + 2𝑥3

× (1 + 𝑥 − 𝑥3 + 𝑥(1 − 𝑥)√
1 − 𝑥4

1 − 2𝑥 − 𝑥3 ) .

Despite their increased freedom as compared to 1-sided
walks, 2-sided walks nonetheless behave as directed walks
moving in the north-east direction. This is reflected in
the fact that the leading singularity is a pole at 𝑥𝑐 =
0.4030317… that is a solution of 1 − 2𝑥 − 2𝑥2 + 2𝑥3 = 0.
This corresponds to a growth constant of 𝜇 = 1/𝑥𝑐 =
2.4811943…. As this growth constant is strictly larger than
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the value for 1-sided prudent walks, we see that 2-sided
prudent walks are exponentially more numerous.

3-sided prudent walks are much more challenging still,
but Bousquet-Mélou [BM10] in a tour de force was able to
find an appropriate functional equation using the condi-
tional independence after an inflationary step occurs, and
then to obtain a closed form expression for the generat-
ing function as an infinite sum. Bousquet-Mélou explains
that besides the length, information about additional “cat-
alytic” parameters must be retained in the construction of
the functional relation. For 2-sidedwalks, a single catalytic
variable that tracks the distance of the end to the north-
east corner of the bounding rectangle suffices, while for 3-
and 4-sided walks it is necessary to retain two and three
catalytic variables, respectively. These catalytic variables
contain all of the necessary information about the past be-
havior of a walk so that the future behavior can be correctly
modeled.

3-sided walks asymptotically have the same growth rate
as 2-sided walks, and after some extra freedom in their ini-
tial stage behave in the same manner as 2-sided walks by
settling down to follow the diagonal in either the north-
east or north-west directions.

Interestingly, in contrast to the other models we have
seen, the generating function for 3-sided prudent walks is
not D-finite. Bousquet-Mélou showed that the generating
function is meromorphic in the disk |𝑥| < √2 − 1, but
with infinitely many poles occurring in the disk. The strik-
ing feature is that 3-sided prudent walks have a straightfor-
ward, natural definition, but nonetheless have a wickedly
complicated solution. Perhaps there is another, more nat-
ural, formulation of the solution that captures the simplic-
ity of the underlying problem?

Finally, no explicit expression has been obtained for
4-sided prudent walks. There is a functional equa-
tion [BM10] for 𝑃4, the generating function for prudent
walks ending on the northern edge of the bounding rec-
tangle, involving three catalytic variables:

(1 − 𝑥𝑢𝑣𝑤(1 − 𝑥2)
(𝑢 − 𝑥𝑣)(𝑣 − 𝑥𝑢)) 𝑃4(𝑥; 𝑢, 𝑣, 𝑤)

= 1 + 𝑥𝑢𝑃4(𝑥; 𝑤, 𝑥𝑤, 𝑢) + 𝑥𝑣𝑃4(𝑥; 𝑤, 𝑥𝑤, 𝑣)

− 𝑥2𝑣𝑤
𝑢 − 𝑥𝑣𝑃4(𝑥; 𝑣, 𝑥𝑣, 𝑤) −

𝑥2𝑢𝑤
𝑣 − 𝑥𝑢𝑃4(𝑥; 𝑢, 𝑥𝑢, 𝑤),

where the desired generating function is obtained by set-
ting the catalytic variables to one, 𝑃4(𝑥) = 𝑃4(𝑥; 1, 1, 1).
There is a polynomial-time algorithm based on the func-
tional equation to generate series coefficients, and it was
recently proved that the limiting large 𝑛 behavior is exactly
the same as 2- and 3-sided prudent walks [PST17].

It is arguable that this means that the model has been
“solved,” in the sense that we exactly know the limiting
large 𝑛 behavior, and can quantitatively understand any

features of the model to arbitrary precision. But, it would
be far more satisfying to have an explicit solution, and
preferably one that captures the simplicity and elegance
of the model itself.

A key question is: can the generating function 𝑃4(𝑥) be
written in a convenient or illuminating form, or as the so-
lution of a natural equation without catalytic variables?

If progress could be made on this problem it would
perhaps give hints as to how to make progress on other
difficult lattice polymer problems. And, just maybe, this
would also give some information about what a solution
of the full two-dimensional self-avoiding walk problem
might look like.

We also note that, disappointingly, each of the prudent
walk models has 𝜈 = 1, and thus behave as directed walks.
It is not clear how to devise a solvable model that has

1
2
<

𝜈 < 1.
This takes us to the boundary of lattice polymer models

that can be considered solvable, and we now jump to the
other side of the fence.

Self-Avoiding Walks on ℤ3
The simplest method of computer enumeration of combi-
natorial objects is to generate each of the objects that are
being counted, which I will refer to as brute force enumer-
ation. Then, the computational complexity of the algo-
rithm is determined completely by the asymptotic growth
in number of the objects.

The secret to inventing an effective enumeration algo-
rithm is to find a combinatorial or geometric insight that
will allow one to count less numerous objects instead.

The length-doubling algorithm [SBB11], the fastest
known method for counting three-dimensional self-
avoiding walks, uses a brilliant insight involving inclusion-
exclusion to get an exponential improvement in computa-
tional complexity.

We start with the observation that every walk of length
2𝑛 can be uniquely split into two 𝑛-step self-avoidingwalks
at the midpoint. Therefore, 𝑐2𝑛 is the number of pairs of
nonintersecting 𝑛-step self-avoiding walks.

We generate the set 𝑆𝑛 of all self-avoiding walks of 𝑛
steps starting at the origin. By definition, 𝑐𝑛 = |𝑆𝑛|, so this
requires CPU time 𝑂(𝑛𝛾−1𝜇𝑛). We label all of the sites that
the walks visit (there will be 𝑂(𝑛3) sites), and we let 𝐵𝑖 be
the set of walks that pass through site 𝑖, and 𝐴𝑖 be the set of
pairs of walks that pass through site 𝑖. Finally, we count 𝑐2𝑛,
first through the observation that the number of mutually
avoiding pairs is the same as the number of all pairs (𝑐2𝑛)
minus the number of pairs with at least one intersection:

𝑐2𝑛 = number of mutually avoiding pairs from 𝑆𝑛
= 𝑐2𝑛 − | ∪𝑖 𝐴𝑖|.

We then apply the standard inclusion-exclusion formula
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for | ∪𝑖 𝐴𝑖|, summing over all subsets 𝑉 = {𝑣1, … , 𝑣𝑘} of the
set of visited sites, and partitioning by the size of |𝑉|:

𝑐2𝑛 = 𝑐2𝑛 −∑
𝑘

∑
|𝑉 |=𝑘

(−1)𝑘+1|𝐴𝑣1 ∩ 𝐴𝑣2 ∩⋯ ∩ 𝐴𝑣𝑘 |.

Finally, we recognize that the number of pairs of walks that
pass through a particular set of sites is the square of the
number of individual walks that pass through the set. Thus
we obtain the final formula:

𝑐2𝑛 = 𝑐2𝑛 −∑
𝑘

∑
|𝑉 |=𝑘

(−1)𝑘+1|𝐵𝑣1 ∩ 𝐵𝑣2 ∩⋯ ∩ 𝐵𝑣𝑘 |2.

Most sets are empty, because each walk has 𝑛 steps, and
so any collection of more than 𝑛 sites must be empty. The
powerset for each walk has 2𝑛 elements, so this means that
there are at most 2𝑛𝑐𝑛 nonempty sets in the sum.

Heuristically speaking, via the magic of the inclusion-
exclusion formula the length-doubling algorithm trans-
forms the problem of counting all possible ways that the
half-walks can avoid each other to counting all possible
ways that the half-walks can intersect.

This transformation results in a significant reduction in
computational complexity: neglecting power-law factors,
we have changed the computational effort to enumerate
𝑐2𝑛 from 𝑂(𝜇2𝑛) to 𝑂((2𝜇)𝑛). The computational complex-
ity per step decreases from 𝜇 (≈ 4.68) for brute force enu-
meration to √2𝜇 (≈ 3.06) for the length-doubling algo-
rithm.

This method has been used to enumerate 𝑐𝑛 up to 𝑛 =
36 [SBB11].3 Then, series analysis gives estimates of 𝛾 =
1.1570(3) and 𝜇 = 4.684040(5), which are very accurate, but
less so than values available fromMonte Carlo simulations
using the pivot algorithm.

Self-Avoiding Polygons on ℤ2
The finite lattice method is the most powerful known
method for enumerating self-avoiding walks and polygons
in two dimensions. We will not go into the details of how
it is applied [CJ12], but instead will concentrate on com-
municating the central idea.

For Dyck paths and prudent walks, earlier parts of the
walk are independent of later ones. But, this is not a good
strategy for self-avoiding walks or polygons, as each step
depends on all others. Instead, we use spatial indepen-
dence, by dividing configurations with a boundary which
ensures that the two sides are independent of each other
modulo topological information on how the boundary
edges can join up. Thus we build configurations site-by-
site, instead of step-by-step.

We will describe the simpler case of self-avoiding poly-
gons on the square lattice, but the same method can be ap-
plied to self-avoiding walks with minor technical tweaks.

3𝑐36 = 2 941 370 856 334 701 726 560 670.

We start by observing that each polygon has a unique
minimum bounding rectangle. Therefore, if we wish to
enumerate all self-avoiding polygons of 𝑛 steps, we can
enumerate all polygons that touch each side of a partic-
ular rectangle, and then sum over all possible rectangles.
(This is where the moniker “finite lattice method” comes
from.)

Next, if we build up this set of polygons in a particular
rectangle site-by-site, we do not need to remember all of
the details of the polygons that are being generated. In-
stead, we can enumerate all partial configurations to the
left of the boundary of the built-up region that are com-
patible with a given future topology that specifies how oc-
cupied edges on the boundary must be joined up. See Fig-
ure 8, which shows two configurations that are compatible
with a given boundary; the details of the configurations
can be safely forgotten, and it is only necessary to keep
track of the boundary state.

Figure 8. Two partial configurations to the left of the boundary
that are compatible with the same boundary topology to the
right.

Partial configurations are built up bymoving the bound-
ary through the rectangle site-by-site, as shown by themov-
ing boundary in Figure 9.

Thus, the problem of enumerating self-avoiding poly-
gons of 𝑛 steps has been converted to the problem of
enumerating boundary configurations that are compatible
with self-avoiding polygons of 𝑛 steps. The efficiency of the
method is determined by the number of boundary config-
urations, which in turn is determined by the maximum
number of occupied edges on the boundary. The occur-
rence of bad configurations, such as in Figure 9, with 𝑂(𝑛)
edges concentrated on a particular column means that the
number of boundary configurations grows exponentially
with 𝑛. It can be shown that the algorithmic complexity
per step is at most 31/4 ≈ 1.316, but the method of prun-
ing [JG99,CJ12] brings this down to about 1.20.

This is a dramatic improvement over the exponential
complexity for the brute forcemethod, which has complex-
ity 𝜇 ≈ 2.638, and consequently far longer sequences can
be generated.

On the square lattice, the finite lattice method has
been used to enumerate self-avoiding polygons of up to
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Figure 9. The arrow shows how the boundary is deformed so
that a particular site (shown as a solid circle) that is initially on
the right-hand side of the boundary ends up on the left-hand
side of the boundary. The example configuration is a “bad”
polygon configuration with many boundary edges, while a set
of good columns is shown in green.

130 steps [CJ12],4 and self-avoiding walks of up to 79
steps [Jen13].5

Series analysis methods thence allow for spectacu-
larly accurate estimates of critical parameters. For
example, analysis of the polygon series gives 𝜇 =
2.63815853035(2). Note that a recently developed transfer-
matrix method [JSG16], which involves calculation of
eigenvalues of the transfer matrix for different topologi-
cal sectors, gives an estimate that is even more accurate,
of 𝜇 = 2.63815853032790(3).

A major breakthrough was made in a recent pa-
per [Zba19], which combines the transfer matrix method
with inclusion-exclusion to derive a subexponential algo-
rithm for enumeration of self-avoiding walks and poly-
gons. The key insight was the recognition that every con-
figuration must have at least one set of “good” columns,
each with only 𝑂(√𝑛) occupied edges, that are spaced at
regular intervals in the bounding rectangle; see Figure 9.
Then, inclusion-exclusion can be applied to convert the
problemof enumerating all polygons to enumerating poly-
gons with any combination of good columns.

Remarkably, the computational effort to enumerate all
𝑛-step self-avoiding polygons (or walks) is now 𝑂(𝑟√𝑛),
which is subexponential! The new algorithm has not yet
been implemented. Whether it proves to be more efficient
in practice for achievable lengths depends crucially on the
value of 𝑟, which is as yet unknown.

4𝑝130 = 17076613429289025223970687974244417384681143572320.
5𝑐79 = 10 194 710 293 557 466 193 787 900 071 923 676.

Future Paths
The study of lattice polymers continues to be a vibrant re-
search area.

On the physics side, there is much interest in gaining
deeper understanding of the adsorption transition, the col-
lapse transition (where a polymer changes from an ex-
tended state to a scrunched up globule), the behavior of
confined polymers, and the influence of knots in the poly-
mer chain.

On the mathematical side, the zoo of combinatorially
interesting, solvable models continues to grow.

The biggest open problem in the field is the hoped-
for proof that self-avoiding walks converge to Schramm-
Loewner Evolution with parameter

8
3
in the scaling limit.

The search for a better mathematical description of the
solutions of models like 4-sided prudent walks is ongoing.

It is an open question as to whether it is possible to
invent a natural solvable model for which

1
2
< 𝜈 < 1.

And the quest continues for new combinatorial insights,
and improved algorithms, for the enumeration of as-yet-
unsolvedmodels like self-avoidingwalks and self-avoiding
polygons.
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[PST17] Nicolas Pétrélis, Rongfeng Sun, and Niccolò Torri,
Scaling limit of the uniform prudent walk, Electron. J. Probab.
22 (2017), Paper No. 66, 19, DOI 10.1214/17-EJP87.
MR3698735

[Rec06] A. Rechnitzer, Haruspicy 2: The anisotropic generating
function of self-avoiding polygons is not D-finite, J. Comb. The-
ory Ser. A 113 (2006), 520–546. MR2209707

[RvR04] A. Rechnitzer and E. J. Janse van Rensburg, Ex-
change relations, Dyck paths and copolymer adsorption, Dis-
crete Appl. Math. 140 (2004), no. 1-3, 49–71, DOI
10.1016/j.dam.2003.08.008. MR2064108

[SBB11] R. D. Schram, G. T. Barkema, and R. H. Bissel-
ing, Exact enumeration of self-avoiding walks, J. Stat. Mech.
Theory Exp. 6 (2011), P06019, 8, DOI 10.1088/1742-
5468/2011/06/p06019. MR2853997

[Wil94] Herbert S. Wilf, generatingfunctionology, 2nd ed., Aca-
demic Press, Inc., Boston, MA, 1994. MR1277813

[Zba19] Samuel Zbarsky, Asymptotically faster algorithm for
counting self-avoiding walks and self-avoiding polygons, J.
Phys. A 52 (2019), no. 50, 505001, 6, DOI 10.1088/1751-
8121/ab52b0. MR4051744

[Zei90] Doron Zeilberger, A holonomic systems approach to spe-
cial functions identities, J. Comput. Appl. Math. 32 (1990),
no. 3, 321–368, DOI 10.1016/0377-0427(90)90042-X.
MR1090884

Nathan Clisby

Credits

Article images and author photo are courtesy of Nathan
Clisby.

APRIL 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 515

http://www.arxiv.org/abs/1309.6709
http://dx.doi.org/10.1088/0305-4470/32/26/305
http://dx.doi.org/10.1088/1751-8113/49/49/494004
http://dx.doi.org/10.1214/17-EJP87
http://dx.doi.org/10.1016/j.dam.2003.08.008
http://dx.doi.org/10.1088/1742-5468/2011/06/p06019
http://dx.doi.org/10.1088/1742-5468/2011/06/p06019
http://dx.doi.org/10.1088/1751-8121/ab52b0
http://dx.doi.org/10.1016/0377-0427(90)90042-X
http://dx.doi.org/10.1088/1751-8121/ab52b0
http://www.ams.org/mathscinet-getitem?mr=1261226
http://www.ams.org/mathscinet-getitem?mr=1718791
http://www.ams.org/mathscinet-getitem?mr=3584385
http://www.ams.org/mathscinet-getitem?mr=3526233
http://www.ams.org/mathscinet-getitem?mr=1197356
http://www.ams.org/mathscinet-getitem?mr=3698735
http://www.ams.org/mathscinet-getitem?mr=2209707
http://www.ams.org/mathscinet-getitem?mr=2064108
http://www.ams.org/mathscinet-getitem?mr=2853997
http://www.ams.org/mathscinet-getitem?mr=1277813
http://www.ams.org/mathscinet-getitem?mr=4051744
http://www.ams.org/mathscinet-getitem?mr=1090884
http://www.ams.org/mathscinet-getitem?mr=1171762

