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A Mathematical Experience 
in a BIG Career

Kelly B. Yancey

“Intellectual growth should commence at birth and cease only 
at death.”

—Albert Einstein

Research staff members at the Institute for Defense Anal-
yses–Center for Computing Sciences (CCS) are life-long 
learners. We continue to become proficient in new areas of 
mathematics and computer science and apply that knowl-
edge to the National Security Agency’s mission-research 
endeavors. It is an exciting and highly collaborative place 
to work. In addition to high-performance computing for 
cryptography, CCS’s work includes cryptography itself, 
extensive projects in network security and related cyber 
issues, signal processing, and emerging algorithmic and 
mathematical techniques for analyzing extremely complex 
data sets.

In a 2019 article in the Early Career section of the Notices 
[Yan19] I discussed some of the benefits of working as a re-
search staff member at CCS, a career that I began in August 
2016 after I finished a research postdoc at the University of 
Maryland, College Park (UMD). As I shared in that article, 
having an open mind about what it means to be a research 
mathematician has been crucial to my success in finding a 
satisfying career that works for me and my family.

In 2015, after the second year of my postdoc at UMD, 
I participated in SCAMP at CCS to learn about a research 
environment outside of academia. SCAMP is a 10-week 
summer workshop, hosted every summer by CCS, where 
researchers tackle difficult problems in support of the 
National Security Agency’s mission. I loved several things 
about this opportunity: the research environment, my 
collaborators, and the hard problems that needed to be 
solved. SCAMP, which brings together mathematicians 
from a variety of backgrounds and careers, is the subject 
of a different article in this issue by David Saltman [Sal21].

In my earlier piece and in David Saltman’s article, there 
is advice on how to decide if a career in support of the 
NSA’s mission is right for you. In my 2019 article I also 
discussed how the chances of being hired by government 
and industry greatly increase if you prepare ahead of time 
by participating in summer internships in graduate school 
or during a postdoc, by taking a few courses in data science 
or machine learning or statistics, and by learning to pro-
gram. In this article I highlight the kind of mathematics 

function—the more clearly and directly your work impacts 
the bottom line, the better.

5. Getting the Second Job
There are a lot of different types of jobs within the finance 
industry, and your first job is unlikely to be your dream 
job. However, once in the finance industry, you will quickly 
meet a lot of other people within the industry. Talk to them 
and to people in other areas at your firm. Ask them about 
what they do and what their job is like.

If you discover an area that seems more appealing than 
the track you are on, moving into it takes some preparation. 
Figure out what skills are needed for that job and learn 
them. Even better, find a project in your current role that 
uses those skills so that you have experience applying them. 
The timing of the job change is important, too. Moving out 
of a job too quickly after starting will raise eyebrows, but 
taking a new job after 2–3 years in your first one is generally 
seen as acceptable.

Finally, there is no tenure in finance. Turnover is high, 
and layoffs are common. Every year is a new test, a new 
chance to prove you can contribute, innovate, and succeed. 
Good luck!
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The distance functions that are related to Jaccard distance 
are different from prior work by Cui et al. [CDFI13]. In 
particular, the Cesáro Jaccard distance in [PYY19] is shown 
to provide a representation of the distance between regular 
languages that matches intuition and is also proven to be 
defined for any pair of regular languages. This is in con-
trast to other Jaccard-type distances for regular languages, 
including the work by Cui et al., where distances between 
some pairs of regular languages do not exist.

The distance functions that we define in [PYY19] based 
on topological entropy are mostly disjoint from Cesáro 
Jaccard in what they measure. Both types of distance func-
tions can be useful, and for the remainder of this article we 
focus on a topological entropy-based distance function to 
highlight the connection between formal language theory 
and symbolic dynamics.
Background

Regular languages and DFA. Regular languages are ex-
actly those families of words that can be recognized using 
a finite amount of memory as a proposed word streams 
by. These languages can be represented by a graphical 
structure called a deterministic finite automaton (DFA). 
A DFA is a directed graph where the edges are labeled by 
elements from a finite alphabet A such that there is at 
most one outgoing edge from each vertex with a given 
label, together with an initial state and a set of final states, 
which are special vertices in the graph. A word is accepted 
by a DFA if there is a path in the graph associated to that 
word that begins at the initial state and terminates at a final 
state. Given this structure, the associated regular language 
L is the set of words that are accepted by the DFA [HU79]. 
Figure 1 provides an example of a DFA over the alphabet 
A= {a,b} whose associated regular language L consists 
of words that contain an even number of a’s and an even 
number of b’s. In the parity DFA state 1 is the initial state 
(indicated by a bold arrow) and the final state (indicated 
by double circles), and the words aabb, ababbb ∈ L .

Performing operations on DFA, including symmetric 
difference, is a well-studied area; see [HU79] for more infor-
mation. To measure the complexity of a regular language, 
we turn to the topological entropy of sofic shifts, a subject 
in dynamical systems.

Sofic shifts and topological entropy. Sofic shifts, objects 
in symbolic dynamics, are related to DFA from computer 
science; see [BP97]. The full shift is the set of all bi-infinite 
sequences over the finite alphabet A (i.e., AZ ={(xi)i∈Z : 
xi∈A}) together with the shift map σ :AZ→AZ  defined by 
(σ(x))i = xi+1. A shift space (X,σ) is a subset of the full shift 
that is closed (in the product topology on AZ) and shift-in-
variant. A sofic shift is a shift space that can be represented by 
a directed graph where the edges are labeled by elements of 
A. We assume that all shift spaces are right-solving, which 
means that there is at most one outgoing edge from each 
vertex with a given label. A point in a sofic shift space is a 
bi-infinite walk on the graph.

that one can do in a BIG career (Business, Industry, and/
or Government career) by describing a subset of the results 
that were unclassified from my SCAMP 2015 experience.

A Collaborative Experience
CCS employs mathematicians trained in a variety of areas: 
dynamical systems, graph theory, number theory, harmonic 
analysis, topology, geometry, probability theory, and com-
binatorics, to name a few. During SCAMP 2015, I worked 
with mathematicians from a diverse set of backgrounds, 
and we each brought a unique perspective to the problems 
at hand. In particular, the work from SCAMP discussed in 
this article was carried out by Austin Parker (a theoretical 
computer scientist), Matthew Yancey (an extremal graph 
theorist), and me (a dynamicist); this research is a blend 
of all three fields.

During SCAMP 2015, my colleagues and I made precise 
the problem we wanted to solve, studied literature related 
to the problem, wrote algorithms and proved related the-
orems, coded our algorithms, and wrote a paper on our 
results. The rest of this article is an overview of the parts of 
that project that were unclassified, as well as research that 
continued after SCAMP. For more detailed information, 
see [PYY17, PYY19].

Entropy of a Regular Language
Symbolic dynamics is a field within dynamical systems 
that has connections with theoretical computer science. In 
both symbolic dynamics and theoretical computer science, 
we often analyze infinite languages L which are composed 
of finite words over a finite alphabet A. The mathematics 
discussed in this article illuminates and makes precise the 
connection between sofic shifts (from symbolic dynamics) 
and deterministic finite automata (from computer science), 
and uses that connection to develop a distance between 
regular languages involving topological entropy.

Regular languages are used in designing programming 
languages and in many applications such as pattern match-
ing. Do you need to search a document for a keyword? Your 
computer uses regular languages to accomplish this task 
via regular expressions. There are many motivations for 
developing a good distance function to measure similarity 
between regular languages. Activities in bioinformatics, 
copy-detection, and network defense sometimes require 
that large numbers of regular expressions be managed. 
Metrics aid in indexing and management of those regular 
expressions.

Given two sets A and B, the symmetric difference A∆B is 
defined as (–A∩B)∪(A∩B–) and can be used to think about 
how different the two sets A and B are. In fact, the Jaccard 
distance between two finite sets A and B is the symmetric 
difference normalized: 

|A∆B|
|A∪B| . In the case of regular languages 

L1,L2, the symmetric difference L1∆L2 is usually infinite.
In [PYY19] we introduce distance functions based on 

generalizations of Jaccard distance and topological entropy. 
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be computed by taking the maximum of the topological 
entropies of sofic shifts corresponding to irreducible com-
ponents of G.

Topological Entropy vs. Language Entropy
In their foundational paper on regular languages [CM58], 
Chomsky and Miller define the entropy of a regular lan-
guage L as Shannon’s channel capacity:

where Wn(L) is the set of words in L of length exactly n. 
Chomsky and Miller’s technique was to develop a recursive 
formula for the number of words accepted by a regular lan-
guage. That recursive formula comes from the characteristic 
polynomial of the adjacency matrix for an associated au-
tomaton. The eigenvalues of the adjacency matrix describe 
the growth of the language. However, Chomsky and Miller 
incorrectly applied the Perron-Frobenius theorem in their 
proof of convergence; this limit does not always exist for 
regular languages, as seen in the language consisting of 
even length words.

The formal language community has adopted the con-
vention of defining the entropy of a regular language as

lim sup =
log|Wn(L)|

   n→∞              n
to address the issue of convergence. Much of the analysis in 
[PYY19] is devoted to constructing a definition of entropy 
of a regular language that describes the overall growth 
of the language while still being rigorous and matching 
existing intuition. We prove that the upper limit in the 
channel capacity is realized by the topological entropy of 
the corresponding sofic shift and define another notion 
of entropy, which is preferable since an upper limit is not 
necessary. We use similar techniques to those employed by 
Chomsky and Miller; however, we apply generalizations of 
Perron-Frobenius theory that were discovered by Rothblum 
several decades after the work of Chomsky and Miller on 
entropy [Rot81]. For a regular language L define the lan-
guage entropy to be

h(L) = lim
log|W≤n(L)|

              n→∞         n
where W≤n(L) is the set of words in L of length at most n. 
Given a DFA, the associated sofic shift will be defined in 
the next section.

The underlying graphical structure of a sofic shift is sim-
ilar to a DFA; however, there are no initial and final states 
in a sofic shift. As an example, consider the Golden Mean 
Shift displayed in Figure 2. In this case, A= {a,b} and the 
shift space consists of bi-infinite sequences of a’s and b’s 
where no two b’s are adjacent.

Topological entropy is a concept meant to describe the 
exponential growth of distinguishable orbits of the dy-
namical system up to arbitrary scale. A positive quantity for 
topological entropy reflects chaos in the system. Let (X,σ) 
be a shift space. We call a finite block admissible if there is 
a point in X where the block appears as a subword. Denote 
the set of admissible blocks of length n in X by Bn(X). The 
topological entropy of (X,σ) is given by

ht(X)= lim
log|Bn(X)|

.
                n→∞        n

While topological entropy can be difficult to compute 
in general, it is an easy calculation for sofic shifts. Given a 
directed graph G on m vertices, the corresponding adjacency 
matrix A is an m×m matrix where the ijth entry A(ij) is the 
number of edges from vertex i to vertex j. Using generaliza-
tions of Perron-Frobenius theory, it has been proven that 
the topological entropy of a sofic shift represented by a 
labeled graph G is equal to the log of the spectral radius of 
the adjacency matrix of G. That is, the topological entropy 
is given by the log of the adjacency matrix’s largest modulus 
eigenvalue. Algorithms for computing eigenvalues are well 
known and run in polynomial time in the width of the 
matrix. For more information on the topological entropy 
of sofic shifts, see [LM95].

As an example, we will compute the topological entropy 
of the Golden Mean Shift, X, in Figure 2. The adjacency 
matrix for this shift is given by ( 1  1

1  0 ). The eigenvalues of this 
matrix are 1±√5

2 , which means that ht(X) = log( 1+√5
2

) (hence 
the name Golden Mean Shift).

An irreducible component of a directed graph G is a max-
imal subgraph H of G such that for every pair of vertices u 
and v in H, there is a directed path from u to v. Irreducible 
components can be computed in linear time. The topolog-
ical entropy of a sofic shift X represented by a graph G can 

Figure 1. Parity automaton.
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leads us to the following definition: the entropy sum distance 
between two regular languages L1 and L2 is defined as

HS(L1,L2) = ht(L1∩L2
—

) + ht(L1
—
∩ L2).

The entropy sum distance is a good candidate for mea-
suring the distance between regular languages because, as 
we proved, it is a pseudometric and we give conditions on 
when it is granular (i.e., for any two points in the space 
you can find a point between them) [PYY19], and it can 
be efficiently computed. For more information on this 
distance function and its relationship with Jaccard-based 
distances, see [PYY19].
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Theorem 1. Let L be a nonempty regular language, and let X 
be the associated sofic shift. Then

h(L) = lim sup
log|Wn(L)|

= ht(X).
                   n→∞           n

Using Topological Entropy to Compute Distance
To use topological entropy to measure the complexity of 
L1∆L2, which is a regular language, we must first recast a 
DFA into a sofic shift that represents similar information. 
The common method to turn a DFA into a sofic shift is to 
simply forget the information regarding initial and final 
states. In that case, you can easily construct a single sofic 
shift that represents two very different regular languages 
[PYY19].

To deal with the issue of a single sofic shift representing 
different languages, we define another method to transform 
a DFA into a sofic shift. To explain this method, we first 
describe two additional operations that can be performed 
on DFA, trimming and computing the essential subgraph. 
The operation of trimming a DFA is to remove any state that 
is not included in some accepting path for that DFA. This 
operation does not change the language represented. A 
state q is removed during trimming if and only if q satisfies 
at least one of two properties: (1) there is no path from 
the initial state to q, or (2) there is no path from q to any 
final state. These conditions can be tested using a simple 
depth-first search. The second operation is computing the 
essential subgraph. Given a representation G of a sofic 
shift, the essential subgraph is the largest subgraph of G 
such that each vertex has at least one incoming edge and 
at least one outgoing edge. The essential subgraph of G 
can be calculated by iteratively deleting vertices that have 
no directed edge entering that vertex or no directed edge 
leaving that vertex.

Given a regular language L, we define the associated sofic 
shift to be the sofic shift with representation G, where G is 
constructed from the DFA representing L by (1) trimming 
the DFA, (2) ignoring initial and final states, and (3) com-
puting the essential subgraph.

As discussed previously, we believe that topological 
entropy is a good candidate for measuring the complexity 
of the symmetric difference between two regular languages 
(now that we can convert each regular language to a sofic 
shift), and here we use this concept to define a distance 
between regular languages. We call this distance function 
the entropy sum distance. It was inspired by first consid-
ering the topological entropy of the symmetric difference 
directly, i.e., ht(L1∆L2). However, since topological entropy 
only captures the irreducible component of highest com-
plexity and does not account for the rest of the irreducible 
components, more information is gathered by computing 
the topological entropy of each summand of the symmet-
ric difference directly and then summing the results. This 
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