
In Memoriam:
Peter L. Montgomery
(1947–2020)
Joppe W. Bos and Kristin E. Lauter

Peter Lawrence Montgomery passed away on February 18,
2020. Peter was a brilliant mathematician whose inven-
tions found their way into the everyday life of billions of
people on a daily basis. If you have visited a webpage,
made an electronic payment, or used a messaging app,
then chances are high that one of the mathematical tech-
niques proposed by and named after Peter Montgomery
was used to ensure your security in a time and memory ef-
ficient way. Peter’s main contributions are in the field of
computational number theory. Peter was largely motivated
by the desire to improve integer factorization algorithms al-
though he also wrote papers about many other techniques
ranging from extremely clever low-level computer algo-
rithms to cryptosystems built on top of algebraic number
theory. His contributions end up being useful to speed
up the arithmetic in virtually all public-key cryptographic
systems used around the globe to protect our information
today.

1. His Life
Peter was born in San Francisco, California, on Septem-
ber 25, 1947. He attended UC Berkeley and received a BA
with Honors in Mathematics in 1969 and an MA in 1971.
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Peter’s undergraduate advisor was Derrick H. Lehmer, an
excellent match given Peter’s research interest since high
school: integer factorization.

In 1967, Peter was among the five highest-ranking par-
ticipants in the William Lowell Putnam Mathematical
competition, and was named a Putnam Fellow. In 1972,
Peter started working as a junior programmer for System
Development Corporation (later called Unisys Corpora-
tion) in Huntsville, Alabama, and became the expert on
the Cray CDC 7600 supercomputer.

During this time Peter remained active in the mathe-
matical community. This is illustrated by a series of pa-
pers with Erdős, Graham, Rothschild, Spencer, and Strauss
(see [EGM+73] and related work) in the mid-1970s on Eu-
clidean Ramsey theorems. When implementing textbook
multiprecision multiplication in assembler on a PDP se-
ries computer, he noticed there were unused registers and
wanted to find a way to exploit them [BL17]. He managed
to do so by interleaving the multiplication with the modu-
lar reduction. This led to arguably one of his most widely-
used results: Montgomery multiplication.

About twenty years after his time in Berkeley, David G.
Cantor supervised Peter’s PhD dissertation on his favorite
topic in computational number theory. He received his
PhD in mathematics from UCLA in 1992. Peter held a
position in the mathematics department at Oregon State
University in 1993. He was active in his factoring research
while at OSU, but he found teaching in the classroom chal-
lenging.

In 1998 Peter accepted a position with the Cryptogra-
phy and Anti-Piracy group at Microsoft Research in Red-
mond, WA. Peter’s contributions to Microsoft products
were focused around public-key cryptography. Bignum
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Figure 1. Peter L. Montgomery at age 15 (left), in 1980 (middle), and in 2009 (right).

was the library he wrote for modular arithmetic which was
used as the foundation for his internal implementation of
the RSA cryptosystem. The second author worked closely
with Peter from 1999–2010 on optimizing and deploying
Microsoft’s Elliptic Curve Cryptography library across all
platforms; it was exposed through CNG, the Crypto Next
Generation API, which started shipping in Windows Vista
in 2005.

Peter retired from Microsoft in 2014.

2. Kristin E. Lauter
Peter was one of only a few PhD mathematicians at Mi-
crosoft Research in 1999 when I arrived, and he was my
closest colleague and only collaborator for my first few
years there. We published four papers and numerous
patents on elliptic curve and hyperelliptic curve cryptogra-
phy together, optimizing for efficiency of operations for
different machine instruction sets, introducing algorith-
mic improvements, and alternative approaches to point
compression.

Peter did not like to go anywhere in a car because he said
“it is good for the individual, but not for society.” This is
also highlighted in the letter Peter wrote for his 1995 high
school reunion.

The environmental movement blossomed while I
was at Berkeley, and I vowed in 1972 never to drive
again. But Huntsville lacked sidewalks between
home and work. For one year, I walked with large
placards “WE NEED SIDEWALKS” and “WHERE’S
MY LANE,” until the City Council voted to install
sidewalks near schools and to fund bike lanes and
paths.

When Peter was interviewed for a job at AT&T/Bell Labs in
the 1990s, he was distressed because there were no side-
walks on campus when he went for the interview, so he
turned down the job. He said he had also taken part in
campus demonstrations during his time as a student at UC
Berkeley in the 60s, for various progressive causes.

At Microsoft Research (MSR), Peter took the city bus
to team dinners and events (and knew the schedules by
heart). He always walked or took the shuttle around Mi-
crosoft campus, and I did not like to drive either, so we of-
ten walked or took the shuttle together to the other side of
campus for meetings with Windows developers. I learned
many number-theoretic algorithms from him while riding
the shuttle and walking around together. He explained the
algorithms using small numerical examples. For example,
he always wanted to factor the room number for the meet-
ing we were going to. With the building number, it was
a 6- or 7-digit number, which gave him a chance to figure
out or explain many factoring tricks to me.

Peter also loved children, and he often bought presents
for my twin daughters, such as blinking tennis shoes for
their third birthday (see Figure 2 (left)). He was in Europe
when my daughters were born and so he collected and
brought back to me the newspapers from three or four ma-
jor European cities from the day of their birth. On several
occasions he brought presents for them to work, wrapped
in store packaging, which he carried around campus to
meetings until he had a chance to give them to me. He
was happy to help me watch them at the number theory
conference in Banff in 2003 when they were 3 (see Figure 2
(right)). On an outing up the Banff gondola, he thought
that all their requests were perfectly reasonable and that we
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Figure 2. Peter Montgomery with Kristin Lauter’s daughters at the Conference in Number Theory in Honour of Professor H.C.
Williams, Banff, Alberta, Canada, 2003.

should accommodate all of them, which was not always
possible due to safety concerns!

Peter insisted on taking the Greyhound bus back and
forth from Seattle to Banff for the conference, which was
an overnight trip with some delays on the road and so
he arrived a little late (and with some funny stories to
tell). He took the bus or train to many other conferences
as well, such as the biannual West Coast Number Theory
conferences in Asilomar outside of Monterrey, California.
He loved the problem session at the biannual West Coast
Number Theory conference, interacting with people and
submitting and solving problems. He also loved the prob-
lems in the MAA American Mathematical Monthly publica-
tion, and often wrote up solutions to those problems.

Peter was very generous, and he always wanted to con-
tribute something so he often bought watermelons and
made brownies for Crypto group meetings and parties. He
didn’t shy away from taking part in activities and one year
we almost lost him when he attempted to go out on a ca-
noe on Lake Sammamish during a team picnic.

He also knew that I liked to play bridge, so for many
years he would cut out the bridge column from the news-
paper on a daily or weekly basis and leave it on my desk
in the morning so we could discuss it at lunchtime. He al-
ways liked to have two cans of grape juice and a chocolate
milk in the Microsoft cafeteria with his lunch, and he did
not like spicy food so he often got fried chicken.

Before he moved up to Redmond he telecommuted
from Marin County. He lived there with his mother and
her caregiver until his mother passed away. When he
needed to come to Redmond for a visit he would wake
up early so he could take public transportation to the San
Francisco airport in time for his flight. When he moved
to Redmond he lived in various apartments by himself. I

became concerned about the access and the uneven side-
walks he could trip on in the darkness. When I talked to
him about moving into an assisted care facility close to
campus, he told me that would not work while he was
working, because they served lunch at the facility and he
would not be there for lunch if he was at the office.

Peter had a true passion for mathematics and loved
Techfest (the annual Microsoft internal research 2.5-day
fair) even though most people could not understand his
explanations of our Elliptic Curve Cryptography software.
See Figure 3 for “Evening Destinations,” a puzzle Peter cre-
ated for Techfest to explain the Number Field Sieve. He
gave the names of 40 US States in a list, and the puzzle
was to find the subset of them such that each letter (with
capitalization) appeared an even number of times, in the
amalgamated set of letters. If you work on this puzzle, you
will get a good idea of what it was like to learn number-
theoretic algorithms from Peter.

Peter was a funny and fun-loving person, a gentle and
generous soul.

3. Joppe W. Bos
During his time at MSR, Peter continued collaborations
with researchers world-wide and was a regular long-term
guest at various universities and research institutes in Eu-
rope. I have fond memories of Peter’s visit during my PhD
at the laboratory for cryptologic algorithms at the École
Polytechnique Fédérale de Lausanne (EPFL) in Switzer-
land. When bringing Peter to his hotel it was always a chal-
lenge to bring his considerable suitcase on the Lausanne
metro since regular cabs were simply not up to the task.

During this time we worked on computational ap-
proaches to compute a 112-bit elliptic curve discrete log-
arithm (at the time a computational new record) using a
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Figure 3. Peter’s Techfest puzzle to explain the Number Field
Sieve.

cluster of 215 PlayStation 3 game consoles with an interest-
ing instruction set [BKK+12]. This was an effort which is
equivalent to about 14 full 56-bit DES key searches. In or-
der to utilize all computational power one had to compute
using the single-instruction, multiple data (SIMD) para-
digm: performing identical steps on multiple streams of
data. During the computation of the binary version of
the Euclidean algorithm one needs to compute the trailing
zero bit count of a positive integer 𝑘 (or stated differently,
determining the maximum 𝑖 such that 2𝑖 divides 𝑘). This
can be done efficiently using a loop but does not work well
with SIMD. Peter loved these type of puzzles and studied
the instruction set manual of the Cell processor (the one
used in the gaming console) and quickly presented an ele-
gant SIMD-friendly solution that the trailing zero bit count
of a positive integer 𝑘 can be computed using the popula-
tion count of ̄𝑘 ∧ (𝑘−1) (where ̄𝑘 is the one’s complement
of 𝑘). These beautiful computational gems contributed to
the overall performance of the project.

The collaboration continued when I was a research in-
tern at Microsoft Research in 2011 under the supervision
of Peter. The topic was (of course) related to integer factor-
ization and Peter would make sure “his” student would be

welcome at MSR and attend all the social events in order
to make the most out of his stay.

A typical example of Peter’s ability with numbers was
when we were investigating some divisibility properties of
the cardinality of elliptic curve groups modulo primes. A
curve which seems to have favorable properties was de-

fined using a curve parameter 𝑑 = − ( 77
36
)
4
. One morning

Peter entered my office and casually remarked on how in-

teresting it was that one could write 𝑑 as −(𝑔
2−1
2𝑔

)
4
(which

is indeed true for 𝑔 = 9
2
). Spotting this pattern in a series

of a single element turned out to be the key to prove this
particular curve property [BBB+13, Corollary 3.5].

In 2012 I joined MSR’s Cryptography Research Group
as a post-doctoral researcher and had the opportunity to
work with Peter on a daily basis. Over time my wife and
I started to assist Peter with weekly chores such as grocery
shopping: he always insisted on paying for our lunch that
Saturday or Sunday to “even things out.”

Peter started weekly bridge lessons to teach me and sev-
eral other MSR crypto colleagues the basics of the game
and the various bidding conventions. It was clear from the
start that the ability and experience of Peter playing bridge
was well beyond what I could ever hope to achieve. He
was a very patient teacher.

Peter was a great mentor, colleague, and friend and I
will miss his practical jokes.

4. Betty Montgomery
Peter Lawrence Montgomery was my brother-in-law. He
was the oldest of three boys and grew up in a quiet suburb
of north San Rafael, California, called Terra Linda. Pete
and I were the same age, and I met him when we were 21
when I started dating his younger brother, John. There was
no mistaking that Peter was “different.” On first meeting,
people might have mistakenly thought he was intellectu-
ally disabled, but if you took the time to get to know him,
you would discover one of the keenest minds imaginable,
and one of the kindest people you could ever meet. Pete
was childlike in many ways: his language skills, both ver-
bal and written, were like those of a young child, so he was
handicapped to some degree in that regard. But, of course,
that was balanced by the fact that he was to become one
of the greatest mathematical geniuses of our time. He was
clearly a savant.

His early life was troubled as he tried to come to terms
with a world that didn’t understand him, nor did he under-
stand the world. Once he got past his teen years, however,
he found his niche in the mathematical world where he
was accepted and appreciated. Many years later I would
read an article that articulated a condition on the autism
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spectrum called Asperger’s. It was clear that this condition
matched Peter’s symptoms, and it gave us an understand-
ing of his condition.

Peter adored my children—his niece Heather and his
nephew Page. Whenever we would visit each other, we
spent hours on jigsaw puzzles and complicated card games
like Liverpool. He would take the kids on long walks
around town until he wore them out, and I would get a
phone call from some store to come pick them up because
the kids were too tired to walk home. No one seemed to
mind, though. One thing he liked to do was name all of
the states that had a particular letter in their names. When
the kids would quickly tire of this, Peter was understanding
and would find another way to connect with them. With
the adults, he loved to play bridge. It was difficult to play
bridge with him, however, because he would memorize
each card as it was played and calculate who had what
cards. Then, if you were his partner and lost, he would
critique what mistakes you made one by one. He didn’t
really care what people were doing. As long as he was in
your company, Peter seemed content.

Pete loved a good joke and had a good sense of hu-
mor. Every St. Patrick’s Day he would cook breakfast—
always the same—scrambled eggs and milk—both dyed
green with food coloring, and toast with green mint jelly.
He enjoyed practical jokes, and always kept people on their
toes. When he received his doctorate from UCLA, the pre-
senter was shorter than Pete, so Pete walked squatted down
the length of the stage to receive his diploma at eye level
to the presenter.

Peter had a very practical mind and he was eccentric. He
never wore glasses but used amagnifying glass instead. We
had to encourage him to wear a belt because he thought a
rope did just as well. He didn’t appreciate entertainment.
We took him to Disneyland, but he couldn’t understand
why people wasted electricity on the opening and closing
of the eye on Geppetto’s whale. Pete couldn’t understand
why people needed aquariums, or museums. Nor did he
watch any TV or go tomovies. His world, his language, was
math, and in that world he was in his element and he was
happy.

He also had attachments to things. When he moved to
the Seattle area, he had a huge collection of nickels that
filled a backpack. He couldn’t take them on the plane
for some reason, so rather than cash them in, he took a
bus holding that backpack the entire time. He hoarded ev-
erything, even a sandwich sign he once wore every day as
he walked to work in an area of Huntsville, Alabama, that
didn’t have sidewalks. The sign said: “Where’s my lane?”
He had an article written up about him in the local news-
paper where he was fondly spoken of as a well-known and
beloved eccentric while living there.

Then came the time some years back when Peter had a
seizure and he was left brain damaged. It seemed such a
cruel thing to happen to a person with his superior capac-
ity for knowledge. My daughter, who is a clinical neuropsy-
chologist, did what she could to get him the right help in
Seattle where she did her residency, but there wasn’t much
they could do. Pete went to live with his two brothers after
that, and he needed 24-hour care for the rest of his life. I
mourned for Peter then, I mourned for Peter during those
years of incapacity, and I mourn for Peter still. Yet in spite
of everything that limited him, Peter did what all of us
hope to do, what all of us wish we could say at the end
of our days. Peter made a difference.

5. Mathematical Contributions
Peter has made significant contributions to computational
number theory which are described in detail in the book
dedicated to this topic [BL17]. Let us highlight a subset of
Peter’s contributions here.

Integer factorization algorithms can be divided into two
categories: 1) general purpose integer factorization algo-
rithms where the run-time depends on the size of the in-
teger to be factored; 2) algorithms where the run-time
mainly depends on the size of the unknown prime divisor
of the integer to be factored. Peter was heavily involved in
optimizations, from both amathematical and an engineer-
ing perspective, to obtain new integer factoring records for
both categories. Many of his techniques were specifically
designed to speed up integer factorization but turned out
to have much larger implications in the field of cryptogra-
phy.
Algebraic-group factorization algorithms. One of the ap-
proaches where the run-time depends mainly on the size
of the unknown prime divisor was proposed in the 1970s
by John Pollard. The idea behind Pollard’s 𝑝−1 integer fac-
torization method is to find prime factors 𝑝 of the integer
𝑛 for which the groups (𝐙/𝑝𝐙)∗ have 𝐵1-powersmooth or-
der, so that 𝑝 can be found in time mostly linear in the
largest prime factor of 𝑝 − 1. Similarly, Hendrik Lenstra’s
elliptic curvemethod (ECM) for integer factorization is the
asymptotically fastest method to find relatively small fac-
tors of large integers. ECM works analogously to Pollard’s
method, but replaces the fixed group (𝐙/𝑝𝐙)∗ of order 𝑝−1
by elliptic curve groups with orders behaving like random
integers close to 𝑝.

For these algorithms, one can extend the computation
to a second stage by selecting a bound 𝐵2 > 𝐵1 and look-
ing for a factor 𝑝 of 𝑛 for which the largest prime factor of
𝑝−1 is ≤ 𝐵2 and the second largest prime factor of 𝑝−1 is
≤ 𝐵1. Pollard already suggested that one could use a cir-
cular convolution to evaluate a polynomial along a geo-
metric progression to do this efficiently without providing
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further details. These details were made explicit by Mont-
gomery and Silverman in [MS90] for the Pollard 𝑝 − 1
method, but they posed an open problem as to how the
method could bemade to work for ECM. Enabling this fast
second stage for the ECM method was the topic of Peter’s
PhD thesis [Mon92]. Almost 16 years after his dissertation
he returned to this topic with Kruppa and looked into fur-
ther space-efficient optimization techniques [MK08].
Montgomery curves. Inspired by the use of elliptic curves
in cryptography for the ECM integer factoring, Koblitz and
Miller independently proposed using the group of points
on an elliptic curve defined over a finite field as the ba-
sis for discrete logarithm cryptosystems, now known as
elliptic curve cryptography (ECC). Peter proposed mul-
tiple techniques [Mon87] to optimize the ECM method
which turned out to have a significant impact on the prac-
tical deployment of ECC as well. Peter writes, “The au-
thor later discovered an alternative parametrization that re-
quires no inversions.” This parametrization, now known
as the Montgomery curve, in combination with the pro-
posed scalar multiplication algorithm, now known as the
Montgomery ladder, allows scalar multiplication on the el-
liptic curve without using both of the curve coordinates.
This omission of one coordinate results in record-setting
arithmetic counts to implement this scalar multiplication.
This resulted in a constant-time speed-up of both ECM
and ECC, since for themost commonly used cryptographic
schemes, only one coordinate is needed as the outcome of
the key-exchange method.

Much later, an efficient and secure Montgomery curve
was proposed by Bernstein in [Ber06] and has become the
de facto standard in public-key cryptography: it is used
to secure your internet connection and your social mes-
saging applications. The regular structure of the Mont-
gomery ladder also turned out to be one of the fundamen-
tal tools used to harden cryptographic implementations
against side-channel attacks: attacks which use physical fea-
tures of an implementation, such as the elapsed time or
power consumption, to break its security.
General factorization algorithms. General purpose inte-
ger factorization methods all follow Maurice Kraitchik’s
variation of Pierre de Fermat’s method by looking for a
congruence of squares. The idea is to construct pairs of
integers 𝑥, 𝑦 such that 𝑥2 ≡ 𝑦2 mod 𝑛. Since 𝑛 divides
𝑥2−𝑦2 = (𝑥−𝑦)(𝑥+𝑦) it follows that if 𝑛 ≠ ±𝑦 mod 𝑛, then
gcd(𝑥 − 𝑦, 𝑛) is a nontrivial factor of 𝑛. For the (General)
Number Field Sieve (NFS), one needs to find good poly-
nomials satisfying certain conditions and with an above-
average probability of resulting in smooth integers. Pe-
ter played a significant role in polynomial selection and
distinguishing more effective parameters for the Number

Field Sieve. This has grown into an active area of research
(cf. [Cox15] and related work). Next, these polynomials
are used to generate a large number of outputs which need
to be checked for smoothness. In the early days of the
NFS, Peter’s optimizations to the line-siever implementa-
tion were broadly used in a number of integer factoriza-
tions [BMtR+96]. After collecting relations, one needs to
find a subset such that their product is a square. This is
done by looking at the exponents of the prime factorsmod-
ulo two and finding dependencies. These exponent vectors
are very sparse, and straightforwardmethods like Gaussian
elimination do not take advantage of this sparseness. For
example, in the RSA-768 factorization, the exponent vec-
tors had 144 nonzero coefficients out of the 2 ⋅ 108 in total.
Peter introduced a sequence of subspaces of dimension
larger than one for the Lanczos algorithm; this resulted in
the block Lanczos method [Mon95] which is very efficient
on modern computers and has been used in many factor-
ization records. The final step in the Number Field Sieve is
the square root computation of a huge algebraic number
given as a product of a lot of small ones. A general effi-
cient solution to compute this in practice was provided by
Montgomery in [Mon94].
Montgomery multiplication. Peter is probably most well
known for his technique to compute modular multiplica-
tion on modern computer architectures without using ex-
pensive divisions. Multiplication and division algorithms
have significantly different performance characteristics on
almost all computer architectures. Multiplication can be
up to ten times faster depending on the target architec-
ture. This was the motivation for Montgomery to devise
specific code sequences to performdivision by invariant in-
tegers usingmultiplication [GM94]. These code sequences
are applied in compilers to create faster compiled binaries.
Similar motivation gave rise to his arguably most famous
work: in order to accelerate modular multiplication on
modern computer platforms, andmotivated to put unused
registers to work [BL17], Montgomery introduced a mod-
ular reduction technique now known asMontgomery reduc-
tion in his seminal 2.5 page article [Mon85]. The main
idea behind this approach is to change the representatives
of the residue classes and change the modular multiplica-
tion accordingly. This change of residue class ensures that
the multiplication of two inputs in Montgomery form cor-
responds to the desired result in Montgomery form. The
main idea is to choose a Montgomery radix 𝑟 larger than
and coprime to the modulus 𝑚. Then 𝑐𝑟−1 mod 𝑚 can be
computed with

𝑑 = (𝑐 + 𝑚 (𝜇𝑐 mod 𝑟)) /𝑟
which uses the precomputed value 𝜇 = −𝑚−1 mod 𝑟.
Whenever 0 ≤ 𝑐 < 𝑚2, then 0 ≤ 𝑑 < 2𝑚. The division

APRIL 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 543



by 𝑟 is an exact division, and when 𝑟 = 2𝑤, this division
by 𝑟 is a simple right shift by 𝑤 bits and reduction modulo
𝑟 is extracting the 𝑤 least significant bits: both operations
are essentially for free on modern computer architectures.
This essentially computes a multiplication modulo 𝑚 at
the cost of two multiplications. Due to the overhead of
changing representations, Montgomery arithmetic is best
when used to replace a sequence of modular multiplica-
tions, since this overhead is amortized. A typical use-case
scenario is for example when computing a modular expo-
nentiation as required in the widely used RSA cryptosys-
tem.
Cryptographic pairings. When Peter came to Microsoft
in the late 1990s, he worked on writing bignum, to pro-
vide an implementation of RSA-based cryptosystems. He
implemented several approaches to modular multiplica-
tion and reduction, includingMontgomerymultiplication.
Starting in 1999, working together with the second au-
thor, Peter focused on building and optimizing the Ellip-
tic Curve Library for Microsoft, which started shipping in
Windows Vista in 2005. From there it was ported to many
other products and we worked on optimizations for dif-
ferent platforms. For example, he wrote optimized assem-
bly code for the ECC library on the ARM platform, which
we transferred to the Windows CE mobile division. Al-
though he had enabledMontgomerymultiplication as one
option, in some of the main instances we chose not to use
it based on performance comparisons with other options.
Although (weighted) projective coordinates were a com-
mon choice at the time due to the highly specialized NIST
primes, we often chose configurations with affine coordi-
nates because Peter had implemented an extremely fast
modular inversion, and modular multiplication was not
that fast for general primes. The ratio ofmodular inversion
to multiplication in his code was more like 5 ∶ 1 instead
of 80 ∶ 1 which was reported in external publications at
the time.

Just as the Montgomery ladder does not need the 𝑦-
coordinate of the elliptic curve point for scalar multiplica-
tion, in [ELM03] we introduced the double-and-add trick
for affine coordinates which saves a multiplication in com-
bined elliptic curve operations by not computing the inter-
mediate 𝑦-coordinate. Peter was interested in optimizing
scalar multiplication using different bases (such as base-
2 or base-3 expansions of a scalar), and in [CJLM06] we
presented a combined ternary/binary method to perform
efficient scalarmultiplication using a variant of the double-
and-add trick which is faster whenever a field inversion is
more expensive than six field multiplications.

In 2001, new cryptographic applications of pairings on
elliptic curves were introduced. Pairings on elliptic curves
are bilinear maps from the group of points on an ellip-

tic curve to the multiplicative group of a finite field, most
notably the Weil and Tate pairings. Initial applications in-
cluded one-round tripartite Diffie-Hellman key exchange,
identity-based encryption, and short signatures, and ad-
ditional constructions followed, such as attribute-based
encryption, functional encryption, and partial homomor-
phic encryption. All cryptographic applications of pair-
ings rely on the ability to construct suitable elliptic curves,
to compute in the groups involved, and algorithms for
the pairing computation itself. In [ELM04] we introduced
the squared Weil and Tate pairings for elliptic and hyper-
elliptic curves, which achieve cancellation of vertical line
function contributions because they only depend on the 𝑥-
coordinates, which are equal for a point and its negative.
Simultaneous inversion. Several other ideas from Peter’s
work played a role in optimizing algorithms for pairing
computation. In addition to fast modular inversion, Peter
also introduced the widely used simultaneous inversion
trick, which can be applied to pairing computation as ex-
plained in [LMN10]. Inversion-sharing for pairing compu-
tation can be advantageous for computing multiple pair-
ings or for computing products of pairings, which is use-
ful for batch verification of signatures, for example. Finite
field extension arithmetic is required for pairing compu-
tation, since the torsion points involved are often defined
over an extension of the base field. In [LMN10], we also
proposed to compute inverses in extension fields by using
towers of extension fields and successively reducing inverse
computation to subfield computations via the norm map.
This technique drastically reduces the ratio of the costs of
inversions to multiplications in extension fields. This tech-
nique tips the scales in favor of affine coordinates when
the extension degree is large, which is now increasingly the
case in the era of quantum computers. Peter wrote the first
version of the elliptic curve pairing library for Microsoft.

Peter worked on the IEEE 1363 Elliptic Curve Standard,
and we proposed alternate point compression techniques
for elliptic curves and Jacobians of hyperelliptic curves for
the 1363a 2004 version of the standard. Peter often car-
ried around to meetings his printed out and marked-up
versions of the IEEE 1363 Elliptic Curve Standard and/or
his printout of the bignum code.

Peter liked to use Maple to experiment, and he had ex-
perimented with searching through many possibilities to
find advantageous formulas for 5-, 6-, and 7-term Karat-
suba formulas ([Mon05]) which were useful for polyno-
mial multiplication and extension field arithmetic.

Peter was well known for his great sense of humor, prac-
tical jokes, and his talent with numbers. With his positive
attitude he was an example to visiting students and interns.
As a mentor, colleague, and friend he was always liked. We
will miss him.
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