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1. The Keplerian and Newtonian Paradigms
Ever since the time of Newton, there have been two differ-
ent paradigms for doing scientific research: the Keplerian
paradigm and the Newtonian paradigm. In the Keplerian
paradigm, or the data-driven approach, one extracts scien-
tific discoveries through the analysis of data. The classical
example is Kepler’s laws of planetarymotion. Bioinformat-
ics provides a compelling illustration of the success of the
Keplerian paradigm in modern times. In the Newtonian
paradigm, or the first-principle-based approach, the objec-
tive is to discover the fundamental principles that govern
the world around us or the things we are interested in. The
best example is theoretical physics through the work of
Newton, Maxwell, Boltzmann, Einstein, Heisenberg, and
Schrödinger. It is still a major playground for some of the
best minds today.

The data-driven approach has become a very powerful
tool with the advance of statistical methods and machine
learning. It is very effective for finding the facts, but less
effective for helping us to find the reasons behind the facts.

The first-principle-based approach aims at understand-
ing at the most fundamental level. Physics, in particular,
is driven by the pursuit of such first principles. A turn-
ing point was in 1929 with the establishment of quantum
mechanics: as was declared by Dirac [2], with quantum
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mechanics, we already have in our hands the necessary
first principles for much of engineering and the natural sci-
ences except physics at exceptional scales.

However, as was also pointed out by Dirac, the mathe-
matical problem that describes the laws of quantum me-
chanics is exceptionally complicated. One of the difficul-
ties is that it is a many-body problem: with the addition
of one electron, the dimensionality of the problem goes
up by 3. This is the dilemma we often face in the first-
principle-based approach: it is fundamental but not very
practical. Consequently in practice we often have to aban-
don the rigorous and elegant theories and resort to ad hoc
and nonsystematic approximations. The price we pay is
not just the lack of rigor and elegance, but also the reliabil-
ity and transferability of the results.

Applied math has developed along a similar line. Since
the first principles of physics are formulated in terms of
partial differential equations (PDEs), the analysis and nu-
merical algorithms for PDEs has occupied a central role
in applied math, particularly during the period from the
1950s to the 1980s. The objective is three-fold: solv-
ing practical problems, understanding themathematics be-
hind them, providing physical insight into these practical
problems. A very compelling success story is fluidmechan-
ics. Not only has fluid mechanics been a major driving
force for the study of PDEs, the fact that fluid mechanics
research has largely become a computational discipline is
also testimony to the success of the numerical algorithms
that have been developed. The study of these PDEs and
the numerical algorithms have been a central theme in ap-
pliedmath formany years and it is still an active area today.
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When I was a graduate student at UCLA, we were
proudly told that we belonged to the camp of “Courant-
style applied math.” This term was coined to make a
distinction with the “British-style applied math.” Both
focused on fluid mechanics. The British-style champi-
oned physical insight and asymptotics. The leaders, Taylor,
Batchelor, C. C. Lin, Lighthill, et al., were not only great ap-
plied mathematicians but also leading theoretical fluid dy-
namists. It is also known that they generally did not hold
numerics and rigorous analysis in very high regard. The
Courant-style championed numerics and theorems (“the-
orem provers”). Its philosophy was that as long as the un-
derlying PDEs and numerical algorithms are solid, much
can be learned through computing. After all, the physi-
cal processes are very complicated; one cannot go very far
without computing. Some of their leaders, such as von
Neumann, Courant, Friedrichs, and Lax, are not only great
applied mathematicians, but also great pure mathemati-
cians. The fact that the feud between these two schools was
considered the main animosity in applied math speaks for
the dominance of fluid mechanics during those times.

The card-carrying data-driven research community has
been statistics. For whatever reason, until quite recently,
statistics has developed pretty much independently of ap-
plied math, and in fact, independently of mathematics. It
was very rare that a math department or applied math pro-
gram contained statistics. It is only in recent years that
there has been a call for change.

This does not mean that the applied math community
has not been interested in the data-driven approach. To
the contrary, since the late 1980s, with research work on
wavelets and compressed sensing, signal and image pro-
cessing has taken a center stage in applied math. In fact,
this applied math version of a data-driven approach has
been among the most productive areas of applied math in
the last thirty years.

Neither does it mean that fluid mechanics was the only
successful area for applied mathematicians interested in
PDEs. In fact, some would argue that solid mechanics was
equally successful: after all it was from solid mechanics
that the finite element method, one of the most impor-
tant success stories in appliedmathematics, was originated.
Another success story is numerical linear algebra: one just
has to look at how popular Matlab is to appreciate its wide-
spread impact. This list goes on.

2. Crisis for the “Courant-style Applied Math”
Unfortunately for my generation of “Courant-style” ap-
plied mathematicians, the dominance and success in fluid
mechanics presentedmore of a challenge than an opportu-
nity. The ground work for PDEs and fluid mechanics was
already laid down by the generations before us. We were
left to either address the remaining problems, such as tur-
bulence, or conquer new territory. Both have proven to be

difficult, not to mention reproducing the kind of success
that applied math had before in fluid mechanics.

Indeed after fluid mechanics, the Courant-style applied
math has spread to many other scientific and engineer-
ing disciplines, such as material science, chemistry, biol-
ogy, neuroscience, geoscience, and finance, with a lot of
success. But generally speaking, the degree of success in
these areas has not matched what we saw in fluid me-
chanics. Our contributions are welcomed, but they tend
to be incremental rather than transformative. As a result,
to deal with the central issues that they face, scientists or
practitioners often have to resort to ad hoc approxima-
tions which are both unreliable and unpleasant. This situa-
tion is found in quantum mechanics, molecular dynamics,
coarse-grained molecular dynamics, studies of chemical
reactions, complex fluids models, plasticity models, pro-
tein structure and dynamics, turbulencemodeling, control
problems, dynamic programming, etc.

The central difficulty for most, if not all, of these prob-
lems is that they are intrinsically high-dimensional prob-
lems, and we are haunted by the curse of dimensionality.

For most of the problems listed above, the high dimen-
sionality is the result of the multiscaled nature of the prob-
lem, and one glimpse of hope was brought by the idea of
multiscale, multiphysics modeling. By lumping together
the inessential degrees of freedom at small scales, one
should be able to directly use the more reliable microscale
models to come up with much more efficient algorithms
for the macroscale process we are interested in. Although
very promising, so far the success of multiscale modeling
has been limited due to the following:
1. The microscale models themselves are often not that

reliable. For example when studying crack propa-
gation, we often use molecular dynamics as the mi-
croscale model. But the accuracy of these models for
processes that involve bond breaking is often ques-
tionable.

2. Even though multiscale modeling can drastically re-
duce the size of the microscale simulation required, it
is still beyond our current capability.

3. Machine Learning Comes to the Rescue
The heart of the matter for the difficulties described above
is our limited ability to handle functions ofmany variables,
and this is exactly where machine learning can make a dif-
ference. By providing the ability to approximate functions
of many variables, things that were considered impossible
before become highly likely now.

Before machine learning, the one area in which func-
tions of many variables were handled quite routinely was
numerical integration. In statistical physics, we almost
take for granted our ability to compute integrals of func-
tions of millions of variables and forget to notice how re-
markable this actually is. This is made possible by the
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Monte Carlo algorithm and the variance reduction tech-
niques that have been developed throughout the years. For
one thing, in contrast with the grid-based algorithms such
as Simpson’s rule, the rate of convergence of the Monte
Carlo algorithm is independent of the dimension.

Approximating functions in high dimensions is a much
more difficult task, and the success of machine learning
did not come easy [6]. Although neural networks models
were discovered a long time ago, it was only recently that
their full potential in approximating functions of many
variables was recognized. However, during a short pe-
riod of time, we have already seen a number of remark-
able achievements made on several long-standing prob-
lems with the help of machine learning, with many more
that promise to come in the near future.

The integration of machine learning into applied math
will change both disciplines in a fundamental way. In
the following, we will discuss some specific examples to
illustrate the impact this will have on scientific computing,
modeling, machine learning, and pure mathematics.

4. Control Theory and PDEs in High Dimension
One of the first successful applications of machine learn-
ing in scientific computing is a deep-learning-based algo-
rithm for high-dimensional control problems [5]. To be-
gin with, it is interesting to note that the term “curse of di-
mensionality” was first coined by Richard Bellman in the
context of dynamic programming [1]. Indeed, the dimen-
sionality of the Bellman equation is the same as that of the
state space of the control problem: if we are interested in
controlling a PDE, the Bellman equation is infinite dimen-
sional. This has severely limited the application of “first-
principle-based” control theory and many practical prob-
lems have to be solved using ad hoc ansatz, just like what
is done for quantum many-body problems.

Within the framework of closed loop control, the op-
timal policy function is a function of the state. If one
parametrizes this policy function by a neural network,
then there is a very nice similarity between stochastic con-
trol and deep learning: the cost function of the control
problem is the loss function; the dynamical system for the
control problem plays the role of the deep residual net-
work; the noise in the dynamical system plays the role of
training data that allows us to use the stochastic gradient
descent algorithm for training. With this deep-learning-
based algorithm, one can handle quite routinely stochas-
tic control problems in hundreds and even higher dimen-
sions [5]. It has also been extended to deterministic con-
trol problems [7] and general nonlinear parabolic PDEs.

These algorithms have opened the door to dealing with
real-world control problems and high-dimensional PDEs.
This is an exciting new possibility that should impact (and
to some extent has already impacted) economics, finance,
operational research, and a host of other disciplines.

5. Machine Learning Assisted Modeling
In physics we are used to first-principle-based models.
These models are not only widely applicable but also sim-
ple and elegant. Schrödinger’s equation is a good example.
Unfortunately as was pointed out earlier, solving practical
problems using these models can be an exceedingly diffi-
cult task. For this reason, seeking simplified models has
been a constant theme in physics, and science in general.
However, as we have experienced with turbulence models,
it is often very hard to come up with such simplified mod-
els if we do not resort to ad hoc approximations.

Machine learning is poised to provide a major boost to
our ability to develop such physics-basedmodels. This can
happen and is already happening in three different ways.
First, it provides the missing tool that can help to turn the
dreams of multiscale modeling into reality. Secondly, it
provides a framework for developing models directly from
data. Thirdly, it may provide a very powerful tool for inte-
grating physical models with observations, along the lines
of data assimilation.

However, fitting data is one thing, constructing inter-
pretable and truly reliable physical models is a quite dif-
ferent matter. Let us first discuss the issue of interpretabil-
ity. It is well known that machine learning models carry
a reputation of being “black boxes,” and this has created
a psychological barrier for using machine learning to help
develop physical models. To overcome this barrier, note
that interpretability should also be understood in relative
terms. Take Euler’s equation for gas dynamics as an ex-
ample. The equations themselves are clearly interpretable
since they represent nothing but the conservation of mass,
momentum, and energy. But it is less critical whether the
details of the equation of state can be interpreted. In-
deed for complex gases, the equation of state might be
in the form of a code that comes from interpolating ex-
perimental data using splines. Whether the coefficients of
these splines are interpretable is not our real concern. The
same principle should apply for machine-learning-based
models. While the fundamental starting point of these
models should be interpretable, just like the conservation
laws in gas dynamics, the detailed form of the functions
that enter into these models do not all have to be inter-
pretable. These functions often represent some constitu-
tive relations just like the equation of state for gas dynam-
ics.

Turning now to the issue of reliability. Ideally we want
ourmachine-learning-basedmodel to be as reliable as gen-
eral physical models such as the Navier-Stokes equation,
for all practical purposes. Tomake this happen, two things
are crucial. The first is that the machine-learning-based
model has to satisfy all physical constraints such as the
ones coming from symmetries and conservation laws. The
second is that the data we use to train the model has to be
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rich enough to adequately represent all the physical situ-
ations encountered in practice. Since labeling the data is
almost always very expensive, selecting a good dataset that
is both small and representative is a very important compo-
nent for developing such models. We will say more about
this in the next section.

These ideas have already been successfully applied to a
number of problems, including molecular dynamics and
rarefied gas dynamics [4]. In the case of molecular dynam-
ics, machine learning, combined with high performance
computing, has made it possible to simulate systems with
hundreds of millions of atoms with ab initio accuracy, an
improvement of five orders of magnitude (see [4] for refer-
ence).

These new developments are already quite exciting. But
the impact of machine learning assisted modeling will be
felt themost in areas such as biology and economics where
first-principle-based modeling is difficult. Some exciting
progress is already underway in these areas.

6. A New Frontier in Machine Learning
The integration of machine learning with applied math
also leads to some new opportunities in machine learning.
Here we discuss a couple.
6.1. Concurrent machine learning. In most traditional
machine learning settings, the training data is either gener-
ated beforehand or passively observed. This is usually not
the case when machine learning is applied to solving prob-
lems in scientific computing or computational science. In
these situations, the training data is often generated on
the fly. To make an analogy with multiscale modeling, in
which one distinguishes sequential multiscale modeling
with concurrentmultiscalemodeling according towhether
the multiscale models are generated beforehand or on the
fly, we call this style of machine learning concurrent ma-
chine learning. As was observed earlier, generating a mini-
mal but representative dataset is a key issue in concurrent
machine learning.

To this end, one needs an efficient procedure for explor-
ing the state space and a criterion for deciding whether a
new state encountered should be labeled or not. One ex-
ample is the EELT algorithm suggested in [4].
6.2. “Well-posed” formulation of machine learning. Be-
sides being surprisingly powerful, neural-network-based
machine learning is also quite fragile—its performance de-
pends sensitively on the hyperparameters in the model
and the training algorithm. In many situations, parameter
tuning is still quite an art even though with accumulated
experience, this situation is steadily improving.

Part of the reason is that in machine learning, mod-
els and algorithms are constructed before the formulation
of the problem is carefully thought out. Just imagine
what would happen if we try to model physical processes

without constructing the PDE models beforehand. Indeed
having a PDE model to begin with and making sure that
PDE model is well-posed is one of the most important
lessons that we learned in the Courant-style applied math.

This motivates the question: can we formulate “well-
posed” models of machine learning? The expectation is
that if we begin with nice continuous formulations and
then discretize to obtain practical models and algorithms,
the performance would be more robust with respect to the
choice of the hyperparameters. Some initial attempts have
been made in [3] along this line. Interestingly, a byprod-
uct of the work in [3] is that neural network models are
quite natural and inevitable, since the simplest continu-
ous models and discretizations always lead to nothing but
neural network models in one form or another. Despite
this, this way of approaching machine learning does gen-
erate new models and algorithms. More importantly, it
encourages us to look for first principles and allows us to
think outside the box of neural network models.

A close analogy is found in image processing, say de-
noising. The standard way of denoising is to directly apply
carefully designed filters to the image and see what hap-
pens. This approach has been very effective, particularly
with advanced wavelet-based filters. Another approach is
to write down a mathematical model for denoising, typ-
ically in the form of a continuous variational problem,
then discretize and solve the discretized model with opti-
mization algorithms. Thewell-knownMumford-Shah and
Rudin-Osher-Fatemi models are examples of such mathe-
matical models. One may question the validity of these
mathematical models, but having a well-defined mathe-
matical model to begin with clearly has its advantage. For
one thing, it has helped to turn image processing into in-
teresting PDE problems. It has also motivated people to
think about the fundamental principles behind image pro-
cessing, even though not much progress has been made
along this line.

The hope is that this new mathematical understanding
and formulation will not only help to foster the current
success of machine learning but also extend its success to
a broad spectrum of other disciplines. After all, machine
learning is about function approximation, a very basic is-
sue in mathematics. Having new ways to represent and ap-
proximate functions that are particularly effective in high
dimension should surely have a significant and broad im-
pact.

7. High-Dimensional Analysis
It is not just the application areas that will experience the
impact, mathematics itself will also feel the impact, partic-
ularly analysis.

Machine learning has brought out a host of new anal-
ysis problems in high dimensions, from approximat-
ing functions to approximating probability distributions,
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dynamical systems, and solving PDEs and Bellman-like
equations. Studying these problems will inevitably give
rise to a new subject in mathematics: high-dimensional
analysis.

In this direction, the one area that has already received
serious attention in mathematics is high-dimensional in-
tegration. The analysis of Monte Carlo methods, particu-
larly Markov chain Monte Carlo, has been an active area
in probability theory and mathematical physics for quite
some time.

Integration is the most elementary problem in analysis.
One can ask many more advanced questions about func-
tions, probability distributions, dynamical systems, calcu-
lus of variations, and PDEs. For example, an important
question is to characterize the complexity of these objects.
At an abstract level, complexity should be defined by the
difficulty with which the given object is approximated by
simple elementary objects. For example, for functions, the
elementary objects can be polynomials, piecewise polyno-
mials, or neural networks. For probability distributions,
the elementary objects can be mixtures of Gaussians.

Take for example the complexity of functions. Classi-
cally, this is done through smoothness, namely, howmany
times the function can be differentiated. Many hierarchies
of function spaces have been defined along this line, such
as the 𝐶𝑘 spaces, Sobolev spaces, and Besov spaces. In
low dimensions, this makes perfect sense. Indeed one can
show that functions in these spaces are characterized by the
rate of convergence when they are approximated by some
classes of elementary functions such as piecewise polyno-
mials or trigonometric functions.

Results of this type suffer from the curse of dimen-
sionality. Indeed it has become increasingly clear that
smoothness-based concepts are not the right way for
measuring the complexity of functions in high dimen-
sions. Rather one should measure the complexity of high-
dimensional functions by whether they can be efficiently
approximated by a particular neural network-like model.
In this way, one obtains the reproducing kernel Hilbert
space (RKHS), Barron space, multilayer spaces, and flow-
induced space, each of which is naturally associated with
a particular class of machine learning models.

What about PDEs in high dimensions? A natural ques-
tion is whether we can develop a regularity theory for cer-
tain classes of PDEs in the function spaces mentioned
above. If we can, this means that one should be able to
efficiently approximate the solutions of these PDEs using
the correspondingmachine learningmodel. This problem
is particularly important for the Hamilton-Jacobi-Bellman
equation.

8. Applied Math as a Mature
Scientific Discipline

Can applied math become a unified subject with a small
number of major components, like pure math? Can we
have a reasonably unified curriculum to educate applied
mathematicians? These questions have long been difficult
to address. Looking back, it is clear that the situation just
wasn’t ripe. On one hand, applied math is truly very di-
verse, touching upon almost every discipline in science
and engineering. Seeking unity and a unified curriculum
is undoubtedly a difficult task. On the other hand, the
fact thatmajor components such asmachine learning were
missing from the core of applied math means that it just
wasn’t ready. Just imagine what pure math would be like
without algebra.

The situation has changed. Withmachine learning com-
ing into the picture, allmajor components of appliedmath
are now in place. This means that applied math is finally
ready to become a mature scientific discipline. Yes new
directions will continue to emerge, but there are reasons
to believe that the fundamentals will more or less stay
the same. These fundamentals are: (first-principle-based)
modeling, learning, and algorithms.
8.1. The main components of applied math. Algebra,
analysis, geometry, and topology constitute the main com-
ponents of pure math. For physics, they are classical
mechanics, statistical mechanics, electromagnetism, and
quantum mechanics. What are the main components of
applied math? The following is a proposal. It is not meant
to be the final word on the subject, but a starting point for
further discussion.

Applied math has three major components.
1. First-principle-based modeling, which includes the

(physical) models themselves and the analytical tools for
these models. To put it simply, the former is about physics
and the latter is about differential equations.

The principles behind the physical models are the fun-
damental laws and principles of physics: the physical setup
(e.g., classical vs. quantum, inertia dominant vs. over-
damped), the variational principles, the conservation laws,
etc.

These first principles are formulated in terms of varia-
tional problems or differential equations. Therefore we
need analytical tools for dealing with these mathematical
problems. Asymptotic methods can quickly capture the
essence of the problem and give us much needed insight.
Rigorous theorems can help to put things on a solid foot-
ing, in addition to shedding light on the problem.

2. Data-drivenmethods. By far themost important part
of data-driven methods is machine learning. But also in-
cluded are statistics and data (e.g., image) processing.

3. Algorithms. Here we have in mind both algorithms
for first-principle-based applications and data-driven
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applications. Luckily, there is a lot in common for the
algorithms in both areas. One example is optimization
algorithms. Not only have they played a pivotal role be-
hind the success of machine learning, many first-principle-
based models are formulated as variational problems for
which optimization algorithms are needed.
8.2. Curriculum and education. Most, if not all, leading
universities have rather mature pure math undergraduate
and graduate programs. Very few have mature applied
math programs. Worse than that, in some cases, applied
math courses are taught as a set of tricks, not a unified sub-
ject. One example is the “Mathematical Modeling” course.
Although this is meant to be a basic introductory course
for applied math, it is often taught as a set of examples,
without a coherent big picture. The lack of mature applied
math undergraduate programs is the one single most im-
portant obstacle for applied math, because it hinders our
ability to attract young talents.

With the major components of applied math being
clear, we can now design a unified curriculum for applied
math. Naturally this curriculum centers on the threemajor
components discussed above. We briefly discuss each.

Modeling has two parts: The physical principles for the
models, and the mathematical tools for analyzing these
models. The former is like the fundamentals of physics,
taught to mathematicians. The latter is applied analysis,
including ODEs and PDEs, calculus of variations, analy-
sis of probability distributions, asymptotics, and stochas-
tic analysis. Each can be covered by a year-long course.

Learning really means data analysis. It consists of ma-
chine learning, data processing, and statistics. There are
already mature courses for data processing and statistics
suitable for applied mathematicians. The situation for ma-
chine learning is different. It is routinely taught in a style
suited for computer scientists. We need a way to teach
this to mathematicians. At this point, the mathematical
perspective of machine learning is not yet a mature sub-
ject, but this situation is improving very quickly. We be-
lieve that a reasonable mathematical introduction to a ma-
chine learning course will be developed soon and it can be
taught as a one-semester course.

Algorithms has two parts: Algorithms for continuous
objects and algorithms for discrete objects. The former
is covered by the numerical analysis course offered in
math departments. The latter is covered by the algo-
rithms/discrete math course, typically taught in computer
science departments. With machine learning, these two
parts are coming together so it is important to teach them
in a more unified fashion.

Developing all these courses will take a huge amount of
effort, but we should and can make it happen.

9. Applied Math as the Foundation
for Interdisciplinary Research

With such a program in place, applied math will become
the foundation for interdisciplinary research. After all,
modeling, learning, and algorithms are the fundamental
components of all theoretical interdisciplinary research.
The applied math program described above will help to
systematize the training of students as well as the organi-
zation of interdisciplinary research programs. Should this
become reality, it will be a turning point in the history of
interdisciplinary research.

All this will take time. For one thing, we need to start
from the basics, the training of young students. But before
we have a chance to train them, we have to be able to at-
tract them to applied math. The one thing that I have been
very impressed by, being a faculty member at Princeton for
over twenty years, is how number theory has been able to
attract talent. I now believe, to my own surprise, that ap-
pliedmath has the potential to do the same. Appliedmath
shares all the major features that are particularly appealing
to young students: the simplicity and elegancy of the prob-
lems (e.g., machine learning) and the challenge that these
problems pose (e.g., turbulence), with the added bonus
that it is one of the main avenues towards the most excit-
ing new developments in science and technology. We are
beginning to see this change at the graduate level.

In the history of science, there were two periods of time
that made the most impact for applied mathematics. The
first was the time of Newton, during which it was estab-
lished that mathematics should be the language of science.
The second was the time of von Neumann, during which
it was proposed that numerical algorithms should be the
main bridge between mathematics and science. Now the
third time is at the horizon, a timewhen all themajor com-
ponents of applied math are in place, to form the foun-
dation of not only interdisciplinary scientific research but
also exciting technological innovation. This is truly an ex-
citing time. Let us all work together to make this a reality!
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