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Wetzel’s Cake Problem
Combinatorists and bakers alike know the sequence
1, 2, 4, 8, 16, … by heart. It continues, of course, with 31, for
its 𝑛th element 𝑐(𝑛) counts the pieces obtained from a disk-
shaped cake by cutting along all (𝑛

2
) lines determined by 𝑛

generic points on the cake’s boundary.

Figure 1. Cakes for 𝑛 = 1 through 6. The 𝑛 = 4 cake (bottom
left) has 𝑐(4) = 8 pieces. Using colors to ease counting, we see
that 𝑐(6) is odd: the pieces besides the central yellow triangle
partition into sets of six.

In fact, 𝑐(𝑛) is a polynomial [3]. We may compute 𝑐(𝑛)
by regarding a sliced cake as a planar graph, noting that
two cuts (and hence four boundary vertices) determine
each interior vertex, and applying Euler’s formula. One
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finds that 𝑐(𝑛) is (𝑛−1
0
) + ⋯ + (𝑛−1

4
), which explains why

𝑐(𝑛) initially coincides with 2𝑛−1.
Patterns do not always generalize. But then, how is

learning from data possible at all? That is, if from a col-
lection ℋ of possible patterns we find some 𝑓 ∈ ℋ that
matches or performswell on𝑁 observed data points, when
should we expect that 𝑓 matches unseen data? This ques-
tion motivates machine learning’s theory and guides its
practice.

Learning and Generalization
Let us explicitly frame a simple case of the problem. Say
that 𝒳 is a space of images, {±1} = {Cow,Dog} is a set of
labels, and we seek a classifier 𝑓 ∶ 𝒳 → {±1} that accords
with nature. More precisely, we model nature as a prob-
ability distribution 𝒟 over the space {±1} × 𝒳 of labeled
images and we fix a set ℋ ⊆ {±1}𝒳 of candidate classifiers.
With 𝒮 ∼ 𝒟𝑁 denoting 𝑁 samples drawn i.i.d. from 𝒟,
the training error of 𝑓 ∈ ℋ averages over the empirical
distribution 𝒮:

trn𝒮(𝑓) = ℙ(𝑦,𝑥)∼𝒮[𝑓(𝑥) ≠ 𝑦],

and the testing error averages over 𝒟:

tst(𝑓) = ℙ(𝑦,𝑥)∼𝒟[𝑓(𝑥) ≠ 𝑦].

To learn well is to map an 𝒮 to an 𝑓 with low testing er-
ror. We call amapℒ ∶ ({±1}×𝒳)𝑁 →ℋ a learning rule. ℒ
might be defined by an approximate minimization of the
training error over ℋ. Then the testing error decomposes
into the failures of trn𝒮 to estimate tst (generalization), of
ℒ to minimize trn𝒮 (optimization), and of ℋ to contain
nature’s truth (approximation):

tst(ℒ(𝒮)) = tst(ℒ(𝒮)) − trn𝒮(ℒ(𝒮)) gener.

+ trn𝒮(ℒ(𝒮)) − infℋ(trn𝒮(𝑓)) optim.

+ infℋ(trn𝒮(𝑓)) approx.

572 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 68, NUMBER 4



What is. . .

Focusing on the top term, we wonder when we may
bound the generalization gap

gap𝒮(ℒ) = tst(ℒ(𝒮)) − trn𝒮(ℒ(𝒮)).
When ℒ(𝒮) and 𝒮 are independent (e.g., if |ℋ| = 1),
trn𝒮(ℒ(𝒮)) is an unbiased estimate of tst(ℒ(𝒮)), so the
Weak Law controls gap𝒮. However, to reduce the approxi-
mation error we typically choose |ℋ| large; can we bound
the gap in this case, too? Wewill use the techniques of con-
centration and symmetrization to show that the answer is
YES for “finite-dimensional” ℋ.

Concentration
Lemma (Chernoff). The fraction of heads among𝑁 i.i.d. flips
of a biased coin exceeds its mean 𝑝 by 𝑔 with chance at most
exp(−𝑁𝑔2) for 0 ≤ 𝑝 < 𝑝 + 𝑔 ≤ 1.

Figure 2. We sample points uniformly at random on 𝑁 sticks,
each with three parts: green with length 1 − 𝑝, red with length
𝑝, and blue with length 𝑔. We call nonblue points boxed and
nongreen points hollow.

Proof. Let our coin flips arise from sampling points on
sticks (Figure 2), where green means tails, red means
heads, and we condition on the event that blues do not
occur. To show that less than (𝑝 + 𝑔)𝑁 = 𝑝′𝑁 flips are
heads is to show—given that all points are boxed—that
less than 𝑝′𝑁 points are red. For any 𝑀:

ℙ[𝑀 are red ∣ all are boxed]

= ℙ[all hollows are red ∣ 𝑀 hollow] ⋅ ℙ[𝑀 are hollow]
ℙ[all are boxed]

= (1 − 𝑔/𝑝′)𝑀 ⋅ (1 + 𝑔)𝑁 ⋅ ℙ[𝑀 are hollow].
We sum over 𝑀 ≥ 𝑝′𝑁, bound ℙ[⋯𝑝′𝑁⋯] ≤ 1, then in-
voke (𝑥 ↦ 𝑥𝑝′)’s concavity and exp’s convexity:

ℙ[at least 𝑝′𝑁 are red ∣ all are boxed]
≤ (1 − 𝑔/𝑝′)𝑝′𝑁 ⋅ (1 + 𝑔)𝑁 ⋅ ℙ[at least 𝑝′𝑁 are hollow]
≤ (1 − 𝑔)𝑁 ⋅ (1 + 𝑔)𝑁 = (1 − 𝑔2)𝑁 ≤ exp(−𝑁𝑔2). □

The Chernoff bound gives us the control over tails we
would expect from the Central Limit Theorem, but for fi-
nite instead of asymptotically large 𝑁. In particular, when
we learn from much but finite data, the training error will
concentrate near the testing error.

Indeed, for any 𝑓 ∈ ℋ, trn𝒮(𝑓) is the average of 𝑁 in-
dependent Bernoullis of mean tst(𝑓). So for finite ℋ, the
gap is probably small:

ℙ𝒮∼𝒟𝑁 [gap𝒮(ℒ) ≥ 𝑔]
≤ ∑

𝑓∈ℋ
ℙ𝒮∼𝒟𝑁 [tst(𝑓) ≥ trn𝒮(𝑓) + 𝑔]

≤ |ℋ| ⋅ exp(−𝑁𝑔2).
For example, ifℋ is parameterized by 𝑃 numbers, each

represented on a computer by 32 bits, then |ℋ| ≤ 232𝑃 and,
with probability 1 − 𝛿, the gap is less than

√(log(1/𝛿) + 32𝑃)/𝑁.
This bound’s sensitivity to the description length 32𝑃 may
seem artificial. Indeed, the various ℋ used in practice—
e.g., linear models or neural networks—depend smoothly
on their parameters, so the parameters’ least significant
bits barely affect the classifier. In other words, ℋ’s cardi-
nality is not an apt measure of its size. The VC-dimension
measures ℋ more subtly.

Symmetrization
Though ℋ may be infinite, the restriction ℋ𝑆 = {𝑓|𝑆 ∶
𝑓 ∈ ℋ} is finite for finite 𝑆. If we train and test on finitely
many points total, we may treat ℋ as finite. Thus, let us
estimate tst(𝑓), an expectation over all of𝒟, by trn ̌𝒮(𝑓), an
expectation over fresh samples ̌𝒮 ∼ 𝒟𝑁 independent of
the 𝒮 from which we learn.

To show that trn𝒮 + 𝑔 ≥ tst when evaluated at ℒ(𝒮), we
simply show that trn𝒮+𝑔/2 ≥ trn ̌𝒮 and that trn ̌𝒮+𝑔/2 ≥ tst.
The former usually holds, since |ℋ𝒮⊔ ̌𝒮| is finite; the latter
usually holds, since 𝒮 and ̌𝒮 are independent. Quantifying
with Chernoff, one finds that gap𝒮(ℒ) exceeds 𝑔 (provided

𝑔 ≥ 2/√𝑁) with chance at most

max
|𝒮|=| ̌𝒮|=𝑁

|ℋ𝒮⊔ ̌𝒮| ⋅ 2 exp(−𝑁𝑔2/16).

Thus we may control the gap by bounding 𝐻(𝑛) ≔
max|𝑆|=𝑛 |ℋ𝑆|. We have achieved this reduction by putting
the training and testing data on equal footing, hence the
name symmetrization [8].

To progress, we bound 𝐻(𝑛). It is clear that 𝐻(𝑛) ≤ 2𝑛.
In fact, when this bound is loose, it is very loose.

Lemma (Sauer and Shelah). Unless 𝐻(𝑛) = 2𝑛 for all 𝑛,
𝐻(𝑛) is bounded by a polynomial.
Proof. Consider ℋ𝑆 for |𝑆| = 𝑛. Ordering 𝑆, let us write
each 𝑓 ∈ ℋ𝑆 as a string of plus (+) and minus (−) signs.
We will count these strings by translating them from the

APRIL 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 573



What is. . .

alphabet {+, −} to the alphabet {■,□}. Intuitively, ■ rep-
resents “surprisingly +.” More precisely, we work from
left to right; whenever two (partially translated) strings dif-
fer only in their leftmost untranslated coordinate we over-
write the + in that coordinate with ■. Otherwise, we over-
write with □. See Figure 3.

+−−− □−−− □□−− □□□− □□□□
−+−− □+−− □■−− □■□− □■□□
−−+− □−+− □□+− □□■− □□■□
−−−+ → □−−+ → □□−+ → □□□+ → □□□■
−−++ □−++ □□++ □□■+ □□■■
−+++ □+++ □■++ □■□+ □■□■
++++ ■+++ ■□++ ■□□+ ■□□□

Figure 3. Translating elements of 𝐻𝑆 (left) to strings of choice
points (right). Each row corresponds to one of seven
classifiers and each column corresponds to one of four data
points. We color pairs of strings that differ in-and-only-in their
leftmost untranslated coordinate.

Each step of translation keeps distinct strings distinct.
Moreover, whenever some 𝑘 indices 𝑇 ⊆ 𝑆 of a translated
string are ■’s, |ℋ𝑇 | = 2𝑘. This is because ■’s mark choice
points where the classifiers attain both + and −. Now, ei-
ther 𝐻(𝑛) = 2𝑛 for all 𝑛 or there is a greatest 𝑘 for which
𝐻(𝑘) = 2𝑘. In the latter case, no translated string may have
more than 𝑘 ■’s. So ℋ𝑆 contains no more strings than
there are subsets in 𝑆 of size ≤ 𝑘. In turn, we may encode
each nonempty subset as the image of a function with a
size-𝑘 domain:

𝐻(𝑛) ≤ (𝑛0) +⋯+ (𝑛𝑘) ≤ 𝑛𝑘 + 1.

As with Wetzel’s Cake, what might have grown like 2𝑛
grows only polynomially. □

Since ℋ𝑆 grows no faster than the volume of a 𝑘-
dimensional solid of diameter |𝑆|, we call 𝑘 a dimension.

Definition. The Vapnik-Chervonenkis dimension
dim(ℋ) ofℋ ⊆ {±1}𝒳 is the supremal 𝑘 for which 𝐻(𝑘) ≔
max|𝑆|=𝑘 |ℋ𝑆| = 2𝑘.

Then gap𝒮(ℒ) exceeds 𝑔 with chance at most

(polynomial in 𝑁 of degree dim(ℋ))
⋅ (exponential decay in 𝑁𝑔2).

When 𝑁 ≫ dim(ℋ) log(𝑁), the gap is probably small and
generalizing from data is possible.

For example, if 𝒳 is a 𝑑-dimensional real vector space
and ℋ is a set of “linear classifiers,”

ℋ ⊆ {sign ∘ 𝜃 ∶ 𝜃 ∈ 𝒳∗},
then dim(ℋ) is at most 𝑑, because any 𝑑 + 1 points
𝑥0, 𝑥1, … , 𝑥𝑑 ∈ 𝒳 engage in a linear relation ∑𝑖∈𝐼 𝑐𝑖𝑥𝑖 =
∑𝑗∈𝐽 𝑐𝑗𝑥𝑗 with each 𝑐 positive, so no 𝑓 ∈ ℋ classifies every
𝑥𝑖 as + and every 𝑥𝑗 as −. A learned linear classifier will
hence generalize when 𝑁 ≫ 𝑑 log(𝑁).

Statistical Learning Theory
We’ve seen that finite VC-dimension implies that learning
will generalize. A converse also holds.

Theorem (Vapnik and Chervonenkis). The VC-dimension
ofℋ is finite if and only if for all distributions𝒟, learning rules
ℒ, and gap bounds 𝑔 > 0, the chance that gap𝒮(ℒ) exceeds 𝑔
tends to 0 as 𝑁 grows.

The VC theorem is but one result in statistical learning
theory, which abounds with variations on the theme that
gap𝒮 ≤ √log(|ℋ|/𝛿)/𝑁. For instance, viewing log(|ℋ|) as
the maximum entropy of ℒ(𝒮) ∈ ℋ, one may seek im-
provements given information-theoretic hypotheses. Re-
cent progress [6] uses themutual information between 𝒮 and
ℒ(𝒮). Or, absent prior knowledge of𝒟, one may seek post
hoc bounds by estimating properties of 𝒟 from 𝒮. For ex-
ample, margin bounds detect when 𝒟’s two classes are geo-
metrically well-separated and hence generalization is prob-
able [7].

Other work specifically analyzes deep neural networks
(nets). The VC bound is empirically very loose for nets:
though nets have nearly exponential 𝐻(𝑛) for typical data
sets [5], they achieve state-of-the-art testing errors onmany
real-world tasks [4]. A large 𝐻(𝑛) allows nets to model
complex patterns yet—in a phenomenon invisible to VC
theory—seems not to hinder generalization. Thus, the
mystery of modern learning: with deep neural networks,
may we continually halve our cake and eat it, too?

ACKNOWLEDGMENTS. We thank Arthur Ozga and
Joe Trate for testing this exposition in a high school
class. We believe the use of three-segment sticks and
{■,□}-encoding to present the VC bound in elementary
terms is new. For simplicity, we stated suboptimal con-
stants and neglected to distinguish sampling with and
without replacement.

The textbooks [7] and [8] both further explore con-
centration and symmetrization. As symmetrization en-
ables restriction to finite data sets, we may study it
via finite-dimensional geometry, whether through [7]’s
Rademacher complexities or [8]’s Gaussian widths.
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