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The last decades have seen an extremely fruitful interplay
between Riemann surfaces and graphs with a metric. A de-
formation process called tropicalisation transforms the for-
mer into the latter. Under this process, additional struc-
ture on the Riemann surfaces yields additional structure
on the metric graphs. For instance, meromorphic func-
tions on Riemann surfaces yield piecewise linear functions
onmetric graphs. In thismanner, theorems in algebraic ge-
ometry have deep combinatorial consequences; and con-
versely, combinatorial arguments can be used to prove the-
orems in algebraic geometry.
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This interplay has inspired the development of a stand-
alone theory of metric graphs that has strong parallels to
the theory of Riemann surfaces. Milestones are a Riemann-
Roch formula, an Abel-Jacobi theorem, a theory of har-
monic morphisms, and a Riemann-Hurwitz formula for
metric graphs [BN07, GK08,MZ08, BN09], which closely
resemble their classical counterparts for Riemann surfaces.

The purpose of this article is to discuss another beauti-
ful parallel: that of maps where the geometry of the target
space is as simple as possible. We summarise the story for
Riemann surfaces in Section 1, and for metric graphs in
Section 2. In both settings, the number of preimages of
any point of the target space, counted with multiplicities,
is a constant called the degree of the map. The minimal de-
gree of such a map is called the gonality of the source space.
This is a rough measure of the complexity of the space.

The gonality of a Riemann surface is bounded from
above by a function of a topological invariant of the
Riemann surface: its genus. In groundbreaking work
Baker [Bak08] and Caporaso [Cap14] showed that under
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tropicalisation, the gonality either remains constant or de-
creases. This leads to a similar topological upper bound
for the gonality of a metric graph. In Section 3 we outline
how such a tropicalisation process works, and how it inter-
acts with the gonality.

The upper bound on the gonality of metric graphs is a
purely combinatorial statement whose proof, up to now,
depended on algebraic geometry. We have recently com-
pleted a purely combinatorial construction of maps wit-
nessing the gonality bound [DV21, Var20]. The technical
details of our construction are somewhat daunting—and
indeed, we hope that this exposition might incite interest
that leads to a simplification!—but the key ideas are very
simple, and we discuss these in Section 4.

While the notion of gonality for metric graphs was in-
spired by algebraic geometry, it is related to the purely
combinatorial graph notion of treewidth and to spectral
graph theory; we briefly review these connections in Sec-
tion 2.

1. Gonality of Riemann Surfaces
Recall that a Riemann surface is a connected complexman-
ifold of complex dimension one, hence real dimension
two. We restrict our attention to compact Riemann sur-
faces. As a topological space, such a surface is uniquely
determined by its genus, which counts the holes in the sur-
face.

In this setting, the space with the simplest geometry
is the unique Riemann surface of genus 0: the Riemann
sphere ℙ1 = ℂ ∪ {∞}. Any compact Riemann surface 𝑋
admits a branched cover to ℙ1, i.e., a holomorphic map 𝜙
that, near any 𝑝 ∈ 𝑋 , can be expressed as 𝑧 ↦ 𝑧𝑒 for some
choice of local coordinates. The integer 𝑒 is independent
of the choice of local coordinates and is called the ramifi-
cation index of 𝜙 at 𝑝. If 𝑒 > 1, then 𝜙 is called ramified
at 𝑝. The set of points where 𝜙 is ramified is finite.

For a classical example, consider the elliptic curve 𝑋 =
ℂ/Λ, the quotient of ℂ by a lattice Λ ∶= ℤ1+ℤ𝜏 in ℂ. The
Weierstrass ℘-function defined as

℘(𝑧) = 1
𝑧2 + ∑

𝜆∈Λ⧵{0}
( 1
(𝑧 + 𝜆)2 −

1
𝜆2 )

turns out to be holomorphic around all 𝑧 ∉ Λ and has
a pole of order 2 at all 𝑧 ∈ Λ. Furthermore, it is doubly
periodic with periods 1 and 𝜏, and hence factors through
a meromorphic function 𝑋 → ℂ of degree 2 with a dou-
ble pole at 0. This function extends to a holomorphic
map 𝑋 → ℙ1 with four index-two ramification points: the
points {0, 1/2, 𝜏/2, 1/2 + 𝜏/2} + Λ.

The gonality of a compact Riemann surface 𝑋 is the
lowest degree of a surjective holomorphic map from 𝑋
onto ℙ1. A Riemann surface 𝑋 has gonality 1 if and only
if it is isomorphic to ℙ1, and the gonality of any elliptic

curve is 2. The fundamental relation between gonality and
genus is the following.

Theorem 1. The gonality of a compact Riemann surface 𝑋 of
genus 𝑔 is at most 1 + ⌈𝑔/2⌉, with equality if 𝑋 is sufficiently
general. Moreover, if 𝑔 is even and 𝑋 is sufficiently general,
then the number of holomorphic maps to ℙ1 of degree 1 + 𝑔/2
from 𝑋 to ℙ1, counted modulo automorphisms of ℙ1, equals the
𝑔/2th Catalan number 𝐶𝑔/2.

Compact genus-𝑔 Riemann surfaces are parameterised
by a complex algebraic variety of dimension 3𝑔 − 3, called
the moduli space of genus-𝑔 Riemann surfaces, and the pred-
icate “sufficiently general” in Theorem 1 means “for all 𝑋
in an open dense subset of the moduli space.” In fact, a
genus-𝑔 Riemann surface can have gonality much smaller
than 1 + ⌈𝑔/2⌉. For example, for every 𝑔 ≥ 1 there exist
gonality-2 Riemann surfaces of genus 𝑔. These so-called
hyperelliptic curves can be obtained by compactifying the so-
lution set in ℂ2 of an equation 𝑦2 = 𝑓(𝑥), with 𝑓 a square-
free polynomial of degree 2𝑔 + 1 or 2𝑔 + 2. By Theorem 1,
hyperelliptic curves are quite atypical in the moduli space.

The Catalan numbers 𝐶𝑛 =
1

𝑛+1
(2𝑛
𝑛
) appear throughout

mathematics. We will use the fact that 𝐶𝑛 is the number of
Dyck paths: sequences 𝑝0, 𝑝1, … , 𝑝2𝑛 in ℤ2 with 𝑝0 = (0, 1),
𝑝2𝑛 = (2𝑛, 1), 𝑝𝑖−𝑝𝑖−1 ∈ {(1, 1), (1, −1)} (“up” and “down”
steps, respectively), such that 𝑝𝑖 lies strictly above the 𝑥-
axis for all 𝑖.

Theorem 1 is part of Brill-Noether theory, an area of al-
gebraic geometry that has its roots in the late 19th century
and is still very active today. The existence of branched
covers of the given degree was already established by Rie-
mann, and this was later generalised by Kempf [Kem71]
and Kleiman-Laksov [KL72]. The Catalan count was estab-
lished, in the more general setting of Brill-Noether theory,
by Griffiths-Harris [GH80]. Moreover, by [EH87], when 𝑔
is even, there exists an irreducible variety mapping onto
the moduli space of compact genus-𝑔 Riemann surfaces
whose fibre over a sufficiently general Riemann surface
consists of 𝐶𝑔/2 points corresponding to the holomorphic
maps of that surface onto ℙ1. Our construction sketched
in Section 4 yields a metric-graph analogue of this variety.

2. Gonality of Metric Graphs
Now we introduce metric graphs and their maps. Let
𝐺 = (𝑉, 𝐸) be a finite, connected, undirected graph; mul-
tiple edges and loops are allowed, and we require that 𝐺
has at least one edge. For every 𝑒 ∈ 𝐸 choose a length
ℓ(𝑒) ∈ ℝ>0. Construct a topological space by taking a real
interval 𝐼𝑒 ∶= [0, ℓ(𝑒)] for each 𝑒 ∈ 𝐸 and glueing these
together in the manner prescribed by 𝐺. Equipped with
the shortest-path metric, this topological space is what we
call a metric graph Γ. We call the pair (𝐺, ℓ) a model for Γ.
Distinct models may yield isometric metric graphs.
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Figure 1. The map 𝜙 is harmonic near 𝑝. The numbers
indicate slopes and we have 𝑚𝜙(𝑝) = 3.

Every point 𝑝 in Γ has a neighbourhood isometric to
a star of 𝑘 line segments glued along a common center,
where the isometry maps 𝑝 to the center of the star. The
number 𝑘 is called the valency val(𝑝) of 𝑝, and the line seg-
ments are called the directions from 𝑝.

A harmonic map 𝜙 from Γ to another metric graph Σ is
a continuous map that, outside a finite number of points
in Γ, is linear with nonzero integral slopes with respect to
the metrics on Γ and Σ, and which satisfies the following
balancing condition: for each 𝑝 ∈ Γ and each direction 𝑑
from 𝜙(𝑝), the sum of the slopes of 𝜙 along all directions
from 𝑝 that map onto 𝑑 is independent of 𝑑—i.e., replac-
ing 𝑑 by a different direction from 𝜙(𝑝) yields the same
sum of slopes, which we denote 𝑚𝜙(𝑝). See Figure 1 for
an illustration of the balancing condition and see Figures 2
and 3 for examples of harmonic maps.

We will see in Section 3 that harmonic maps between
metric graphs arise as limits of holomorphic maps be-
tween Riemann surfaces. For now, a more direct motiva-
tion for the definition is as follows: for each real-valued
function 𝑓 defined in an open neighbourhood 𝑈 of 𝜙(𝑝)
that satisfies the mean-value property, i.e., whose average
over the points at distance 𝜖 from 𝑞 ∈ 𝑈 equals 𝑓(𝑞) for
any sufficiently small 𝜖 > 0, the pullback 𝑓∘𝜙 also satisfies
the mean-value property.

By an iterative application of the balancing condition,
one finds that 𝜙 is surjective and that, moreover, the num-
ber

∑
𝑝∈Γ∶𝜙(𝑝)=𝑞

𝑚𝜙(𝑝)

is the same for all 𝑞 ∈ Σ. This number is called the degree
𝑑𝜙 of 𝜙. The idea that balancing implies surjectivity with
fibres of equal total multiplicity will reappear in a higher-
dimensional setting in Section 4.

To tighten the analogy with holomorphic maps even
further, one introduces the Riemann-Hurwitz inequality,
which requires that at each 𝑝 ∈ Γ the harmonic map 𝜙
satisfies the condition

val(𝑝) − 2 ≥ 𝑚𝜙(𝑝) ⋅ (val(𝜙(𝑝)) − 2).

Figure 2. Top: a metric graph of genus 2 called the double
lollipop. Bottom: a picture suggesting a tropical morphism of
degree 2 from that graph to a line segment. The edge and
vertex colours match, the slope is 1 on the red edge and the
green edge, and the slope is 2 on the blue edge; to illustrate
this, that edge is depicted fatter in the picture below. These
slopes ensure balancing at the light-blue and red vertices.
The black numbers label edges of the tree below (a path with
three edges), the white numbers label edges of the metric
graph above.

The origin of this inequality is that the left-hand side
minus the right-hand side plus one is the tropical ana-
logue of the ramification index of 𝜙 at 𝑝, which should,
of course, be positive. Note that at all but finitely many
points 𝑝, both sides are equal to zero, and hence 𝜙 has
ramification index 1 there. A harmonic map 𝜙 that sat-
isfies the Riemann-Hurwitz inequality at every point 𝑝 is
called a tropical morphism. The map in Figure 2 is a tropi-
cal morphism—e.g., in the red vertex the inequality reads
3 − 2 ≥ 2 ⋅ (2 − 2)—and so is the map in Figure 3.

Like compact Riemann surfaces, the metric graph Γ has
a genus, defined as the first Betti number of Γ, which equals
|𝐸| − |𝑉| + 1 in any model (𝐺, ℓ) of Γ with 𝐺 = (𝑉, 𝐸). The
simplest metric graphs are those of genus 0. They are the
metric trees and play the role of ℙ1. We now introduce an
equivalence relation under which all metric trees turn out
to be equivalent, so that we may think of them as different
representatives of the tropical analogue of ℙ1.

Pick a point 𝑝 in Γ and attach a new line segment to
Γ at 𝑝; the segment has no other points glued to Γ, and
we therefore call it a dangling segment in the new metric
graph Γ̃. A graph Γ̃′ that can be obtained from Γ by a
sequence of operations consisting of attaching and/or re-
moving dangling segments is called a tropical modification
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Figure 3. A metric graph of genus 4 on the top, and a tropical
morphism of degree 3 from a modification to a tree on the
bottom. The edge and vertex colours match, the slope is 1
everywhere, and the dangling edges in the modification are
depicted in transparent yellow. The black numbers label
edges of the tree below, the white numbers label edges of the
metric graph above.

of Γ. Tropical modification is a ubiquitous operation in
tropical geometry, where two different tropicalisations of
the same algebraic variety often differ only by a tropical
modification.

Every metric graph Γ has a tropical modification Γ̃ that
admits a tropical morphism to a metric tree. Indeed, to
construct a tropical morphism to a line segment pick any
𝑝 ∈ Γ and pin Γ to a pinboard with a thumbtack at 𝑝,
letting the rest of Γ hang down along a vertical line seg-
ment Δ = [0, 𝑏] under the force of gravity. This yields the
map Γ → Δ that sends each 𝑞 ∈ Γ to its distance from 𝑝; it
has slope 1 everywhere. By adding suitable dangling edges,
this map can be made to satisfy the balancing condition,
as well as the Riemann-Hurwitz inequality; see Figure 4.

The tropical morphism to a tree thus constructed typ-
ically does not have the minimal possible degree, but at
least ensures that the minimal degree exists. We therefore
may define the gonality of Γ as

min{𝑑𝜙 ∣ 𝜙 ∶ Γ̃ → Δ} ∈ ℤ≥0,

where Γ̃ ranges over all tropical modifications of Γ, Δ
ranges over all metric trees, and 𝜙 ranges over all tropical
morphisms from Γ̃ to Δ.

The gonality of Γ is equal to 1 if and only if Γ is a metric
tree, and is equal to 2 if and only if a tropical modification

Figure 4. A degree-4 tropical morphism from a modification
of the double lollipop graph to a line segment. The dangling
segments are dashed.

Γ̃ of Γ admits an isometric involution 𝜎 such that Γ̃/𝜎 is a
metric tree; the moduli space of such tropical hyperelliptic
curves is studied in [Cha13].

Over the last years, the gonality of metric graphs has
been the subject of research in combinatorics and com-
puter science: the gonality of Γ is bounded from below
by the treewidth of 𝐺 for any model (𝐺, ℓ) of Γ [vDdBG20],
and also—like for Riemann surfaces [YY80]—by an expres-
sion involving its volume and the smallest positive eigen-
value of the Laplace operator of Γ [AK16]. Moreover, like
treewidth, gonality is NP-complete [Gij15,BvdWvdZ19].

Figure 3 shows that the genus-4 graph on the top has
gonality at most 3. This is predicted by the following ana-
logue of Theorem 1.

Theorem 2. The gonality of a metric graph Γ of genus 𝑔 is at
most 1 + ⌈𝑔/2⌉, with equality if Γ is sufficiently general. More-
over, if 𝑔 is even and Γ is sufficiently general, then the number
of tropical morphisms 𝜙 ∶ Γ̃ → Δ of degree 1 + 𝑔/2, where Γ̃ is
a tropical modification of Γ and Δ is a metric tree, equals 𝐶𝑔/2,
when counted up to simultaneous tropical modification of Γ̃
and Δ, as well as with certain multiplicities.

Genus-𝑔 metric graphs Γ, up to modifications, are pa-
rameterised by a space of real dimension (3𝑔−3), themod-
uli space of genus-𝑔 metric graphs, and “sufficiently general”
means “for all Γ in some open dense subset of that space.”

For 𝑔 ≥ 2, that moduli space is glued from polyhedral
cones ℝ𝐸(𝐺)

>0 of dimension ≤ 3𝑔 − 3, one for each genus-𝑔
graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) in which all vertices have valency
at least 3; see [Cap12], where a genus-𝑔 metric graph is
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called a pure tropical curve. As we move a vector ℓ through
the cone ℝ𝐸(𝐺)

>0 , the metric graph with model (𝐺, ℓ)moves
through the moduli space.

The existence in Theorem 2 of a tropical morphism of
degree 1+⌈𝑔/2⌉ to a tree from somemodification of Γ is due
to Caporaso [Cap14], following work by Baker on the ex-
istence of special divisors on metric graphs [Bak08]. They
deduce this from Theorem 1 via a degeneration process, a
variant of whichwe review in the next section. The fact that
a sufficiently general genus-𝑔 metric graph has gonality
equal to 1 + ⌈𝑔/2⌉ follows from their work combined with
work by Cools-Draisma, who, following ideas from Grig-
ory Mikhalkin, do a careful parameter count in [CD18]. In
Section 4, we sketch our new contribution to this area: a
purely combinatorial proof of Theorem 2, which comes
with the bonus of the Catalan count.

3. Tropicalisation
In this section, we sketch how Theorem 1 implies part
of Theorem 2; more precisely, how the existence of holo-
morphic maps 𝑋 → ℙ1 of degree 1 + ⌈𝑔/2⌉ for compact
Riemann surfaces of genus 𝑔 implies the existence of a
tropical morphism Γ̃ → Δ from a tropical modification
Γ̃ of any genus-𝑔 metric graph Γ to some tree Δ. Instead
of following the more algebro-geometric approaches in
[Bak08, Cap14], we discuss the hyperbolic-geometric ap-
proach taken in [Lan20]. Among other things, the latter
paper gives a new viewpoint on Mikhalkin’s groundbreak-
ing work on phase-tropical curves [Mik06].

First, at the combinatorial level, there is a straightfor-
ward reduction to the case of even 𝑔 ≥ 2 and to metric
graphs Γ that only have points of valency 2 or 3; we assume
this throughout the remainder of this paper.

The metric graph Γ can be realised as a tropical limit of
a family of compact Riemann surfaces that we will con-
struct now; we refer to [Lan20] for details on this notion of
convergence. The Riemann surfaces in the family are built
up from pairs of pants 𝑃2𝛼,2𝛽,2𝛾 as in Figure 5, obtained by
glueing two copies of the unique right-angled hyperbolic
hexagon with three alternating sides of lengths 𝛼, 𝛽, 𝛾 > 0
along the remaining three sides. Such a pair of pants has
a canonical complex structure.

Let (𝐺 = (𝑉, 𝐸), ℓ ∈ ℝ𝐸
>0) be the model of Γ in which

each 𝑣 ∈ 𝑉 has valency 3, and let 𝑐(𝑒) > 0 be a positive
real number for each 𝑒 ∈ 𝐸; the relation between 𝑐 and
ℓ will be explained below. Then we construct a compact
Riemann surface 𝑋𝑐 as follows. For each 𝑣 ∈ 𝑉 , incident
to 𝑒1, 𝑒2, 𝑒3 ∈ 𝐸, take a copy 𝑃𝑣 of 𝑃𝑐(𝑒1),𝑐(𝑒2),𝑐(𝑒3), and glue
these |𝑉| pairs of pants together along their boundary cy-
cles in the manner prescribed by 𝐺: if 𝑒 = 𝑣𝑤 ∈ 𝐸, then
𝑃𝑣 and 𝑃𝑤 are glued along their boundary cycle of circum-
ference 𝑐(𝑒); if 𝑣 = 𝑤 so that 𝑒 is a loop, then we glue two
legs of 𝑃𝑣. There is one (real) degree of freedom in each

Figure 5. The pair of pants 𝑃2𝛼,2𝛽,2𝛾 glued from two geodesic
hyperbolic hexagons.

of these 3𝑔 − 3 glueings, namely, the angle under which
the cycles are glued. These twists and the cycle lengths are
the Fenchel-Nielsen coordinates on Teichmüller space. For
our purposes, however, we ignore the twists.

The resulting structure𝑋𝑐 inherits the structure of a com-
plex manifold from the hexagons, and is hence a compact
Riemann surface. We call 𝐶𝑒 ⊆ 𝑋𝑐 the image of the bound-
ary cycle corresponding to 𝑒 ∈ 𝐸.

Now we choose 𝑐 via the formula

𝑐𝑡(𝑒) ∶=
2𝜋2

ℓ(𝑒) log(𝑡) . (1)

Then, as we let 𝑡 tend to ∞, the 𝑐𝑡(𝑒) tend to zero and the
Riemann surface 𝑋𝑡 ∶= 𝑋𝑐𝑡 tropically converges to the metric
graph Γ in the sense of [Lan20, Definition 1.1]. This con-
vergence is related to, but different from, convergence in
the Gromov-Hausdorff sense; see [Lan20, Remark 3.12].

Next, let 𝜓𝑡 ∶ 𝑋𝑡 → ℙ1 be a holomorphic map of degree
1 + 𝑔/2; these exist by Theorem 1. We sketch how, in the
limit for 𝑡 → ∞, these yield a tropical morphism from Γ
to a tree. For this take 𝑡 ≫ 0. Then the boundary cycles
𝐶𝑒 have disjoint images ̃𝐶𝑒 ∶= 𝜓𝑡(𝐶𝑒) ⊆ ℙ1, 𝑒 ∈ 𝐸. A
priori, each ̃𝐶𝑒 is only an immersed circle in ℙ1. But it
can be shown that after a suitable deformation of the 𝐶𝑒,
their images ̃𝐶𝑒 are disjoint, closed circles on the sphere
ℙ1; we assume this from now on. Note that each ̃𝐶𝑒 may
be covered multiple times by 𝐶𝑒. Make a graph 𝑇 whose
vertices are the connected components of ℙ1⧵⋃𝑒∈𝐸

̃𝐶𝑒 and
two are connected by an edge if they have a common ̃𝐶𝑒 in
their boundary. The fact that ℙ1 has genus 0 implies that
𝑇 is a tree.

For each 𝑒 ∈ 𝐸, 𝜓−1𝑡 ( ̃𝐶𝑒) is a disjoint union of circles
in 𝑋𝑡; one of these is 𝐶𝑒, and the other circles are disjoint
from all boundary cycles. Cut up 𝑋𝑡 along all of these (old
and new) circles and construct 𝐺′ = (𝑉 ′, 𝐸′) from the con-
nected components of the cut-up 𝑋𝑡, like we constructed
𝑇 from the cut-up ℙ1. Then 𝐺′ = (𝑉 ′, 𝐸′) is obtained from
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𝐺 by subdividing edges and attaching dangling trees. Each
edge 𝑒′ ∈ 𝐸′ corresponds to a circle 𝐶𝑒′ in 𝑋𝑡 mapping to
some circle ̃𝐶𝑒; let 𝑚𝑒′ ∈ ℤ≥1 be the topological degree of
the restriction 𝜓𝑡|𝐶𝑒′

∶ 𝐶𝑒′ → ̃𝐶𝑒.
The formula for 𝑐𝑡(𝑒) in (1) guarantees that 𝜓𝑡 tropically

converges to a tropical morphism 𝜙 from a modification
Γ′ of Γ, with underlying graph 𝐺′, to the metric tree (𝑇, ℓ𝑇)
for a suitable edge length vector ℓ𝑇 [Lan20]. The tropical
morphism 𝜙 is linear on the open line segment in Γ cor-
responding to an edge 𝑒′ in 𝐺′, with slope equal to 𝑚𝑒′ .
In particular, the balancing condition and the Riemann-
Hurwitz condition are immediate here.

On the other hand, if a point 𝑝 in Γ′ corresponds to a
vertex 𝑣′ ∈ 𝑉 ′ of 𝐺′ and hence to a connected component
𝑈 of 𝑋𝑡 ⧵⋃𝑒′∈𝐸′ 𝐶𝑒′ , then the balancing condition and the
Riemann-Hurwitz inequality at 𝑝 follow from the fact that
the restriction 𝜓𝑡|𝑈 ∶ 𝑈 → 𝜓𝑡(𝑈) is a branched cover be-
tween Riemann surfaces with boundary.

This concludes our discussion of the relation between
Theorems 1 and Theorem 2.

4. Proof Sketch of Theorem 2
In this section, we sketch our new, purely combinatorial
proof of Theorem 2. As in the previous section, we assume
that 𝑔 is even and that all points in Γ have valency 2 or 3.
Full-dimensional families of morphisms. Consider a
triple (Γ, Δ, 𝜙 ∶ Γ̃ → Δ) of a trivalent genus-𝑔 metric
graph Γ, a metric tree Δ, and a tropical morphism 𝜙 ∶
Γ̃ → Δ, where Γ̃ is a tropical modification of Γ. Let
(𝐺 = (𝑉(𝐺), 𝐸(𝐺)), ℓΓ ∈ ℝ𝐸(𝐺)

>0 ) be the model of Γ for
which each 𝑣 ∈ 𝑉(𝐺) has valency 3. We will say that points
of Γ̃ lie above their images under 𝜙 in Δ. The first key idea
in our proof is to look at such triples that move in a family
of the right dimension, namely, 3𝑔−3—recall from Section 2
that this is the dimension of the moduli space of genus-𝑔
metric graphs, and equal to |𝐸(𝐺)|.

“Moving in a (3𝑔 − 3)-dimensional family” is to be un-
derstood as follows. Call 𝑝 ∈ Δ ordinary if 𝑝 has valency
2 in Δ and a sufficiently small open interval 𝐼 around 𝑝 in
Δ has the property that 𝜙−1(𝐼) is a disjoint union of open
intervals, each mapped bijectively onto 𝐼 with some inte-
ger slope; and call 𝑝 special otherwise. The special points
are those above which the combinatorics of 𝜙 changes. If
we delete from Δ all special points 𝑝, then our first require-
ment is that Δ decomposes into 3𝑔 − 3 open intervals. We
write 𝐸(𝑇) for the set of these intervals; 𝐸(𝑇) is the edge set
of a tree 𝑇, a model of Δ, and we let ℓ∆ ∈ ℝ𝐸(𝑇)

>0 be the
edge length vector for the metric graph Δ.

Now each edge in Γ passes above one or more of the
edges in Δ, possibly multiple times and with different
slopes. Consequently, each edge length in Γ is a non-
negative rational linear combination of the edge lengths
in Δ. We record the coefficients of these combinations in

Figure 6. The edge labelled 2 in the tree in Figure 3 has been
contracted to obtain 𝜙0.

an 𝐸(𝐺)×𝐸(𝑇)-matrix 𝐴𝜙, so that ℓΓ = 𝐴𝜙ℓ∆. Our second
requirement is that 𝐴𝜙 is a nonsingular matrix. If both re-
quirements are fulfilled, then we say that the triple moves
in a family of the right dimension 3𝑔 − 3.

For instance, in Figures 2 and 3, the matrix 𝐴𝜙 equals

[
2 0 0
0 1/2 0
0 0 2

] ,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

respectively, relative to the labellings of the edges in 𝐺 (in
white) and 𝑇 (in black) indicated there, and both of these
matrices are nonsingular (3𝑔 − 3) × (3𝑔 − 3)-matrices.

Balancing. Aswe vary ℓ∆ in the coneℝ𝐸(𝑇)
>0 , its image ℓΓ =

𝐴𝜙ℓ∆ moves through an open cone 𝐶𝜙 in ℝ𝐸(𝐺)
>0 , which

maps to an open subset of the moduli space of genus-𝑔
graphs. For instance, in Figure 3, one facet of that cone is
given by the condition

ℓΓ(𝑒2) + ℓΓ(𝑒3) − ℓΓ(𝑒1) > 0. (2)

This expresses that, for this combinatorial type of tropical
morphisms, the orange edge with the white label 1, which
is mapped onto the edges of the tree with the black labels
1 and 3, has length less than the sum of the lengths of the
yellow edge (white label 2, mapped onto black 1 and 2)
and the green edge (white label 3, mapped onto black 2
and 3).

The second key ingredient in our proof is a careful anal-
ysis of what happens when a single entry of ℓ∆ becomes
zero. Call the resulting vector ℓ∆0 and set ℓΓ0 ∶= 𝐴𝜙ℓ∆0 ,
and let 𝜙0 ∶ Γ̃0 → Δ0 be the corresponding tropical mor-
phism. See Figure 6.

If the nonzero entries of ℓ∆0 are sufficiently general,
then there are two possibilities: either ℓΓ0 has only positive
entries, or precisely one entry is zero. In the former case,
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Figure 7. 𝜙2 and 𝜙3 with 𝜙0 as limit upon contracting the edge
labelled 2.

the metric graph Γ0 still has the same (trivalent) combina-
torial structure as Γ—this is what happens in Figure 6—
while in the latter case, Γ0 has precisely one vertex of va-
lency 4.

In either case, we construct all combinatorial types of
tropical morphisms 𝜙1, … , 𝜙𝑘, with 𝜙1 equal to 𝜙, that have
𝜙0 as a limit when shrinking one edge of the underlying
tree with 3𝑔−3 edges. This can be done since all the axioms
for a tropical morphism can be checked locally, so we need
only to study local changes in the combinatorics of 𝜙0 near
the vertex corresponding to the shrunk edge. The matrices
𝐴𝜙𝑙 are all equal to𝐴𝜙 except in the column corresponding
to the edge of the tree that needs to be shrunk to arrive
at 𝜙0.

Ideally, from among the 𝜙𝑙, we would like to keep only
those that move in a family of the right dimension. How-
ever, in the first case, where Γ0 is still trivalent, this can-
not be done via local combinatorial arguments: the non-
singularity of the matrix 𝐴𝜙𝑙 depends on the global struc-
ture of the morphism 𝜙𝑙. However, it turns out that this
is irrelevant for our approach: using local combinatorial
arguments and the fact that the matrices 𝐴𝜙𝑙 all agree out-
side one column, we show that there exist positive rational
numbers 𝑞1, … , 𝑞𝑘 > 0 such that the balancing equation

𝑞1 det(𝐴𝜙1) +⋯+ 𝑞𝑘 det(𝐴𝜙𝑘) = 0 (3)

holds; a 𝜙𝑙 that does not move in a family of the right di-
mension contributes zero to this equation. Since det(𝐴𝜙1)
is nonzero, the balancing equation implies that there ex-
ists at least one 𝑙 > 1 for which 𝜙𝑙 moves in a family of the

right dimension, and indeed one for which det(𝐴𝜙1) and
det(𝐴𝜙𝑙 ) have opposite signs.

In our running example, 𝑘 equals 3 and 𝜙2, 𝜙3 are seen
in Figure 7. Furthermore, we have

𝐴𝜙2 = 𝐴𝜙3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 1 0 0 0 2 0 0 0
0 1 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the balancing equation reads

2−6 det(𝐴𝜙1) + 2−6 det(𝐴𝜙2) + 2−6 det(𝐴𝜙3)
= 2 + (−1) + (−1) = 0.

In this example, the matrices 𝐴𝜙2 and 𝐴𝜙3 turn out to be
the same, and indeed the tropical morphisms 𝜙2 and 𝜙3
have the same combinatorics; but they differ whenwe keep
track of the (colours of the) edges of Γ—blue and purple
are swapped—and therefore need to be counted both.

A similar analysis can be done in the second case, where
Γ0 has a four-valent vertex. In that case, around Γ0 there are
precisely three combinatorial types of metric graphs, corre-
sponding to the three different groupings of the four edges
into two pairs. Here we find positive rational numbers 𝑞𝑖
such that 𝑞𝑖 det(𝐴𝜙𝑖 ) is independent of 𝑖.

Finally, in both cases, it turns out that the numbers 𝑞𝑖
can be chosen to depend on the morphism 𝜙𝑖 only (not
on the limit that we are considering), and such that the
𝑞𝑖 det(𝐴𝜙𝑖 ) are certain integers. We call their absolute value
the multiplicity of the morphism 𝜙𝑖. Then our result shows
that the sum of the multiplicities of the morphisms Γ̃′ → Δ′
near 𝜙0 is constant (independent of Γ).

In our running example, these multiplicities are 2 for
𝜙1, where (2) holds; and 1 for both 𝜙2 and 𝜙3, where the
opposite of (2) holds—so we see that the open cone in
ℝ𝐸(𝐺)
>0 parameterised by 𝐴𝜙1 is adjacent to, and “balances

out,” the two (identical) cones parameterised by 𝐴𝜙2 , 𝐴𝜙3 .
Just like the balancing condition for a harmonic mor-

phism between metric graphs ensures that the morphism
is surjective and has fibres of the same total multiplic-
ity, our higher-dimensional balancing condition implies
that each genus-𝑔 metric graph admits the same number
of degree-(1 + (𝑔/2)) tropical morphisms to a tree, when
counted with multiplicities. Note that the multiplicities
are nonzero only for tropical morphisms that move in
a family of the right dimension, so “accidental” tropical
morphisms, for instance those from a hyperelliptic graph
to a tree, will not be counted here.
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Figure 8. Top: a caterpillar of genus 6. Bottom: one of its
𝐶3 = 5 tropical morphisms to a metric tree.

The two remaining ingredients in our proof of Theorem
2 are: first, that the space of such morphisms 𝜙 ∶ Γ̃ → Δ is
connected, and second, that the correct count is the Cata-
lan number 𝐶𝑔/2. The connectedness follows from two
facts: first, that the space of metric graphs of genus 𝑔 is con-
nected through codimension 1 (indeed, this is true even when
restricting to graphs with higher connectivity [Cap12]);
and second, an analysis of a special class of graphs dis-
cussed in the next paragraph.
Caterpillars of loops. Consider a “caterpillar of 𝑔 loops”:
a metric graph ΓCL whose underlying graph 𝐺CL is ob-
tained by taking a path 𝑣0, 𝑒1, 𝑣1, … , 𝑒𝑔−1, 𝑣𝑔−1 of 𝑔−1 edges
and attaching loops to 𝑣0 and 𝑣𝑔−1; and lollipops (bridges
leading to a loop) to the remaining 𝑣𝑖. See Figure 8.

Given a tropical morphism 𝜙 ∶ Γ̃CL → Δ from a trop-
ical modification of Γ to a metric tree, it turns out that
𝜙 is linear on each edge 𝑒𝑖; let 𝑚𝜙(𝑒𝑖) denote its slope.
Then we show that the sequence (0, 1), (1,𝑚𝜙(𝑒1)), … , (𝑔 −
1,𝑚𝜙(𝑒𝑔−1)), (𝑔, 1) is a Dyck path. Conversely, given aDyck
path, there is a unique tropical morphism from amodifica-
tion of ΓCL to a metric tree whose slopes along the edges 𝑒𝑖
are the second coordinates of the points in the Dyck path.

For instance, in Figure 8, if we let 𝑣0 be the red ver-
tex and 𝑣𝑔−1 = 𝑣5 be the orange vertex, then the slopes
along 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5 are 2, 3, 4, 3, 2, so the Dyck path is
(0, 1), (1, 2), (2, 3), (3, 4), (4, 3), (5, 2), (6, 1).

The multiplicities of all these tropical morphisms turn
out to be 1. So ΓCL admits precisely 𝐶𝑔/2 tropical mor-
phisms from modifications to trees. Furthermore, all 𝐶𝑔/2
Dyck paths are connected to each other via moves that
change an occurrence of up-down into down-up or vice
versa. We show that these moves can be realised via the
type of moves on tropical morphisms discussed in the pre-
vious subsection. Together with the balancing formula (3),
this implies that the space of morphisms from (modifica-
tions of) genus-𝑔metric graphs tometric trees thatmove in
a family of dimension 3𝑔 − 3 is connected, and that a gen-
eral metric graph of genus 𝑔 has precisely 𝐶𝑔/2 such mor-
phisms. This concludes our proof sketch of Theorem 2.

An animation of a random walk through the space of
tropical morphisms in the genus-4 case can be found at
https://mathsites.unibe.ch/jdraisma/Movie
Genus4.mp4.

5. Conclusion
We have given a brief account of classical and recent de-
velopments on gonality for Riemann surfaces and metric
graphs, with a focus on our new combinatorial proof of
Theorem 2.

We conclude this exposition with four questions that
we would very much like to see settled:

1. Our proof, while conceptually very simple, requires
the analysis of a large number of different cases. Does
there exist a more straightforward proof of the balanc-
ing equation (3), which is the core of the proof?

2. What is the algebro-geometric interpretation of the
multiplicities in the balancing condition?

3. Baker conjectured [Bak08], roughly speaking, that
when Γ has integral edge lengths, then 𝜙 ∶ Γ′ → Δ
can also, in a suitable sense, be chosen integral. Can
this be proved or disproved using our methods? Our
intuition is that tropical morphisms of higher multi-
plicity might not always be chosen integral, but we do
not have a precise statement to this effect.

4. If 𝜙 ∶ Γ̃ → Δ is a degree-𝑑 tropical morphism from a
modification of a metric graph Γ to a tree Δ, then the
fibre over any 𝑞 ∈ Δ, with each 𝑝 ∈ 𝜙−1(𝑞) counted
with multiplicity 𝑚𝜙(𝑝), is a divisor of rank at least one
on Γ̃ in the sense of [Bak08], and can be made into
a rank-one divisor on Γ by replacing all 𝑝 on dan-
gling trees to the points where those trees are attached
to Γ. So in particular, our theorem gives a combina-
torial proof of the theorem from [Bak08] that there
exists a divisor on any genus-𝑔 metric graph Γ of de-
gree equal to 1 + ⌈𝑔/2⌉ and rank at least 1. Does there
exist a generalisation of our proof to the existence of
higher-rank divisors on metric graphs?

The last question seems very challenging indeed; we
are not aware of a combinatorial-geometric notion of
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morphisms from metric graphs into higher-dimensional
tropical projective spaces that might facilitate such a gen-
eralisation.
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