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a Companion?
Anna Cadoret

The terminology “companion” (the English translation of
the French ”camarade”) refers to a celebrated conjecture
formulated by Deligne in his foundational paper “Weil II”
[Del80, Conj. (1.2.10)]. This conjecture lies at the inter-
section of Grothendieck’s theory of motives and the Lang-
lands program; it reflects the expectation that every finite-
dimensional continuous ℚℓ-representation of the abso-
luteGalois group of a finitely generated field𝐾 of character-
istic 𝑝 ≠ ℓ satisfying (very!) mild assumptions arises from
geometry in the sense that it is cut out by an algebraic cor-
respondence on the ℚℓ-cohomology group of a variety 𝑋
over 𝐾. In particular, such a representation should admit,
for every prime ℓ′ ≠ 𝑝, a ℚℓ′ -companion, namely the rep-
resentation cut out by the same algebraic correspondence
on the ℚℓ′ -cohomology group of 𝑋 . For function fields
of smooth varieties over a finite field, it is now a theorem.
In contrast, its number field analogue, the Fontaine-Mazur
conjecture [FM95], is still widely open.
Companions and motives. The story begins with the
strategy elaborated by Grothendieck to prove the Weil con-
jectures [Wei49]. Fix a finite field 𝑘 of characteristic 𝑝 and
for every integer 𝑛, let 𝑘𝑛 denote its degree-𝑛 extension.
A 𝑘-Weil number of weight 𝑤 ∈ ℤ is an algebraic num-
ber whose complex conjugates all have complex absolute

value |𝑘|
𝑤
2 . The Weil conjectures give precise estimates for

the number 𝑁𝑛(𝑋) of 𝑘𝑛-points on a smooth projective va-
riety 𝑋 of dimension 𝑑 over 𝑘. This is expressed in terms

of the zêta function 𝑍𝑋(𝑇) = 𝑒𝑥𝑝(∑𝑛≥1 𝑁𝑛
𝑇𝑛

𝑛
) as follows:
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there exists 𝑃1(𝑇), … , 𝑃2𝑑(𝑇) ∈ ℤ[𝑇] such that 𝑃0(𝑇) = 1−𝑇,
𝑃2𝑑(𝑇) = 1 − |𝑘|𝑑𝑇, and
[Rationality] 𝑍𝑋(𝑇) = ∏

1≤𝑤≤2𝑑
𝑃𝑤(𝑇)(−1)

𝑤+1
;

[Riemann hypothesis] the roots of 𝑃𝑤(𝑇) are 𝑘-Weil num-
bers of weight 𝑤;

[Funct. equation] 𝑍𝑋(
1

|𝑘|𝑑𝑇
) = 𝜖|𝑘|

𝑛𝜒(𝑋)
2 𝑍𝑋(𝑇),

with 𝜒(𝑋) = ∑
1≤𝑤≤2𝑑

(−1)𝑤𝑑𝑒𝑔(𝑃𝑤(𝑇)), 𝜖 = ±1.

What is hidden behind the formulation of the Weil
conjectures is the Lefschetz formula in algebraic topol-
ogy, which counts the number of fixed points of a
continuous endomorphism 𝐹 ∶ 𝑋 → 𝑋 on a com-
pact topological space 𝑋 as the alternating sum of its
traces ∑𝑤≥0 𝑇𝑟(𝐹∗|𝐻sing,𝑤(𝑋,ℚ)) on the singular homol-
ogy groups of 𝑋 . Observing that 𝑁𝑛(𝑋) is the number of
fixed points of the 𝑛th power Frobenius endomorphism
𝐹 ∶ 𝑋 → 𝑋 of 𝑋 on 𝑋(𝑘), Weil had the bright intuition that
there should exist a good cohomology theory for smooth
projective varieties over 𝑘 that could play the part of sin-
gular cohomology. In particular, the 𝑃𝑤(𝑇) appearing in
the expression of 𝑍𝑋(𝑇) should be the inverse characteris-
tic polynomials of 𝐹 acting on these prospective cohomol-
ogy groups.

The first part of the strategy was thus to construct a co-
homology theory for varieties over fields of characteristic
𝑝 > 0 satisfying the usual axioms of singular cohomol-
ogy (Kunneth formula, Poincaré duality, existence of cycle
class maps, etc.); such a good cohomology theory is now
called a Weil cohomology theory. This part of the problem
was solved by Grothendieck and his school during the 60s
with the formidable construction of étale cohomology and
its by-product ℓ-adic cohomology. The existence of ℓ-adic
cohomology was enough to solve the Weil conjectures ex-
cept for the Riemann hypothesis, which can now be refor-
mulated by saying that the roots of 𝑑𝑒𝑡(1−𝑇𝐹∗|𝐻𝑤(𝑋𝑘, ℚℓ))
are 𝑘-Weil numbers of weight 𝑤.
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To prove the Riemann hypothesis, it would be enough

to show that the normalized Frobenius |𝑘|−
𝑤
2 𝐹∗ arises

from an anti-autoadjoint operator on a ℚ-vector space
𝐻 equipped with a positive definite bilinear form and
such that 𝐻 ⊗ ℚℓ = 𝐻𝑤(𝑋𝑘, ℚℓ). This observation led
Grothendieck to formulate a coherent net of conjectures—
the standard conjectures—on algebraic cycles, from which
the above property of the normalized Frobenius should
follow straightforwardly [Kle68].

While the Riemann hypothesis was eventually proved
by Deligne using a wonderful combination of geometric
and analytic methods (relying deeply on the properties of
ℓ-adic cohomology!) [Del74], the standard conjectures
remain widely open. But this does not alter their signifi-
cance, which goes far beyond providing a conceptual proof
of the Riemann hypothesis. In the first place they reposi-
tion the original problem in a broader setting—the one
of pure motives, which can be roughly regarded as an at-
tempt to linearize the category SmP(𝐾) of smooth projec-
tive varieties over a field 𝐾. More precisely, Grothendieck
constructed a natural pseudo-abelian ℚ-linear ⊗-category
Mot𝐾—the category of puremotives over𝐾—which comes
with a ”linearization” ⊗-functor 𝔥 ∶ SmP(𝐾) → Mot𝐾 .
Assuming the standard conjectures, the category Mot𝐾 is
polarizable (hence semisimple), Tannakian, and, for ev-
ery Weil cohomology theory 𝐻 ∶ SmP(𝐾) → Vect𝑄 with
coefficients in a characteristic 0 field 𝑄, endowed with a 𝑄-
linear ”realization” fiber functor 𝐻 ∶ Mot𝐾 ⊗ℚ 𝑄 → Vect𝑄
such that 𝐻 ∘ 𝔥 = 𝐻 ∶ SmP(𝐾) → Vect𝑄. In particular, the
”linearization”⊗-functor 𝔥 ∶ SmP(𝐾) → Mot𝐾 can also be
regarded as a ”universal Weil cohomology” functor.

An important feature of Weil cohomologies is that they
usually factor through a natural ”enriched” Tannakian sub-
category 𝒯𝐻 ↪ Vect𝑄. E.g.,

(1) for 𝐾 = ℂ and singular cohomology 𝐻 = 𝐻sing ∶
SmP(𝐾) → Vectℚ, 𝒯𝐻sing

is the category ℚ-PHS of ℚ-

rational polarizable Hodge structures;
(2) for ℓ-adic cohomology𝐻 = 𝐻ℓ ∶ SmP(𝐾) → Vectℚℓ ,

𝒯𝐻ℓ is the category Repℚℓ
(𝜋1(𝐾)) of finite-dimensional ℚℓ-

vector spaces equipped with a continuous action of the ab-
solute Galois group 𝜋1(𝐾) of 𝐾.

As 𝐻 ∶ Mot𝐾 ⊗ℚ 𝑄 → Vect𝑄 induces an equivalence
onto its essential image 𝒯𝑒𝑠𝑠

𝐻 , understanding Mot𝐾 essen-
tially amounts to understanding 𝒯𝑒𝑠𝑠

𝐻 . This may sound
tautological since Grothendieck’s construction of Mot𝐾
tells us exactly what 𝒯𝑒𝑠𝑠

𝐻 should be. Namely, the mor-
phisms should be those induced by algebraic correspon-
dences and the objects should be those cut out by alge-
braic correspondences on the𝑄-vector spaces𝐻(𝑋) for𝑋 ∈
SmP(𝐾). However, this description is not really useful be-
cause we know almost nothing about algebraic correspon-
dences. The expected miracle is that, however, 𝒯𝑒𝑠𝑠

𝐻 can

be easily described as a subcategory of 𝒯𝐻 , at least under
suitable assumptions on 𝐾. For morphisms, one expects
𝐻 ∶ Mot𝐾 ⊗ℚ 𝑄 → 𝒯𝐻 to be fully faithful. This is a fancy
way to restate what is called, in (1) and when 𝐾 = ℂ, the
Hodge conjecture, and in (2) and when 𝐾 is finitely gen-
erated, the Tate conjecture. In (2), there is an additional
issue due to the fact that Mot𝐾 is conjecturally semisimple
while Repℚℓ

(𝜋1(𝐾)) is not. So the latter should be replaced
by the full subcategory Repℚℓ

(𝜋1(𝐾))𝑠𝑠 ↪ Repℚℓ
(𝜋1(𝐾)) of

semisimple representations of 𝜋1(𝐾). On the other hand,
𝒯𝑒𝑠𝑠
𝐻 should contain the 𝜋1(𝐾)-representations𝐻𝑤(𝑋𝐾 , ℚℓ)

for 𝑋 ∈ SmP(𝐾) but the semisimplicity of these is still a
widely open conjecture.

Anyway, assuming it, what remains to describe are the
simple objects in 𝒯𝑒𝑠𝑠

𝐻 or, as it is more convenient to work
with coefficients in an algebraically closed field, in𝒯𝑒𝑠𝑠

𝐻 ⊗𝑄.
This is the problem the companion conjecture answers
(implicitly) in the situation of (2) when 𝐾 has character-
istic 𝑝 > 0, i.e., is the function field 𝐾 = 𝜅(𝜂) of a smooth,
geometrically irreducible variety 𝑆 over a finite field 𝑘, with
generic point 𝜂.

Fix a prime ℓ ≠ 𝑝. From the construction of Mot𝐾 ,
the simple objects in 𝒯𝑒𝑠𝑠

𝐻ℓ ⊗ ℚℓ are 𝜋1(𝐾)-subquotients
𝑉ℓ of 𝐻𝑖(𝑋𝐾 , ℚℓ(𝑗)) for 𝑋 ∈ SmP(𝐾). As 𝑋 → 𝑠𝑝𝑒𝑐(𝐾)
extends to a smooth projective morphism 𝑓 ∶ 𝒳 → 𝑈
over a dense open subscheme 𝑈 ↪ 𝑆, such a 𝑉ℓ actually
arises as the stalk of a subquotient 𝒱ℓ of the ℚℓ-local sys-
tem 𝑅𝑖𝑓∗ℚℓ(𝑗). In particular, for every closed point 𝑠 ∈ |𝑆|
with residue field 𝑘(𝑠), the inverse characteristic polyno-
mial 𝑑𝑒𝑡(1 − 𝑇𝐹𝑠|𝒱ℓ,𝑠) of the geometric Frobenius 𝐹𝑠 at 𝑠
divides 𝑃𝑖,𝑗,𝑠(𝑇) ∶= 𝑑𝑒𝑡(1 − 𝑇𝐹𝑠|𝐻𝑖(𝑋𝑠, ℚℓ(𝑗)) which, ac-
cording to the Weil conjectures, has coefficients in ℤ and
is independent of ℓ, and its roots are 𝑘(𝑠)-Weil numbers of
weight 𝑖 − 2𝑗. Since the number field 𝑄𝑠, generated by the
roots of 𝑃𝑖,𝑗,𝑠, is a degree ≤ 𝑑𝑒𝑔(𝑃𝑖,𝑗,𝑠)! extension of ℚ, un-

ramified outside 𝑝, and since 𝑑𝑒𝑔(𝑃𝑖,𝑗,𝑠) = 𝑑𝑖𝑚𝐻𝑖(𝑋𝑠, ℚℓ(𝑗))
is independent of 𝑠, by Hermite-Minkowski, there are only
finitelymany possibilities for𝑄𝑠 as 𝑠 varies in the (infinite!)
set |𝑆|. This a fortiori implies that the field 𝑄𝒱ℓ (usually
called the field of coefficients or the field of traces of 𝒱ℓ),
generated by the coefficients of 𝑑𝑒𝑡(1 − 𝑇𝐹𝑠|𝒱ℓ,𝑠) when 𝑠
varies in |𝑆|, is a number field. Morally, 𝑄𝒱ℓ is the field

of definition of the motive 𝑉 ∈ Mot𝑘 ⊗ℚ ℚ from which
𝑉ℓ arises. Now, if we fix another prime ℓ′ ≠ 𝑝, one can
consider the ℓ′-adic realization 𝑉ℓ′ = 𝐻ℓ′(𝑉). Again, the
construction of Mot𝐾 shows that (up to replacing 𝑆 by a
dense open subscheme which only depends on 𝑉 and not
on ℓ) 𝑉ℓ′ also arises as the stalk of aℚℓ′ -local system𝒱ℓ′ on
𝑆 which is compatible with (or a companion / camarade
of) 𝒱ℓ in the sense that

𝑑𝑒𝑡(1 − 𝑇𝐹𝑠|𝒱ℓ,𝑠) = 𝑑𝑒𝑡(1 − 𝑇𝐹𝑠|𝒱ℓ′,𝑠), 𝑠 ∈ |𝑆|.
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So far, what we explained is that a simple object 𝑉ℓ in
𝒯𝑒𝑠𝑠
𝐻ℓ ⊗ℚℓ with finite determinant (to get rid of Tate twists)

should arise (after possibly shrinking 𝑆) as the stalk of a
simpleℚℓ-local system𝒱ℓ with finite determinant on 𝑆 sat-
isfying the following properties:
[Purity] the roots of 𝑑𝑒𝑡(1−𝑇𝐹𝑠|𝒱ℓ,𝑠) are 𝑘(𝑠)-Weil numbers
of weight 0, 𝑠 ∈ |𝑆|;
[Finiteness] 𝑄𝒱ℓ is a number field;

[Companion] for every prime ℓ′ ≠ 𝑝 there is a ℚℓ′ -local
system 𝒱ℓ′ on 𝑆 which is compatible with 𝒱ℓ.
The companion conjecture predicts that every simple ℚℓ-
local system on 𝑆 with finite determinant behaves as if it
were, indeed, arising from the ℓ-adic realization of a mo-
tive! Namely,

Conjecture 1 (Companion; [Del80, (1.2.10)]). Let 𝒱ℓ be a
simple ℚℓ-local system with finite determinant on 𝑆. Then 𝒱ℓ
satisfies the above properties [Purity], [Finiteness], and [Com-
panion].

So, if Repℚℓ
(𝜋1(𝐾))𝑠𝑠,ᵆ𝑟 ⊂ Repℚℓ

(𝜋1(𝐾))𝑠𝑠 denotes the
full subcategory of 𝜋1(𝐾)-representations which are un-
ramified over a dense open subscheme of 𝑆, what, in
essence, the combination of the standard conjectures, the
Tate conjecture, and the companion conjecture suggests
very strongly is that the ℓ-adic realization functor 𝐻ℓ ∶
Mot𝐾 ⊗ℚ ℚℓ → Repℚℓ

(𝜋1(𝐾))𝑠𝑠,ᵆ𝑟 is an equivalence of
categories. But while the standard and the Tate conjec-
tures are still widely open, Conjecture 1 is now a theo-
rem. The proof of Conjecture 1 runs over more than fourty
years with decisive contributions by several authors such as
Deligne, Drinfeld, and L. Lafforgue.
A few words about the proof. When 𝑆 is a curve, Con-
jecture 1 follows almost directly from the Langlands corre-
spondence for 𝐺𝐿𝑟 and the Ramanujan-Petersson conjec-
ture. To put it in a nutshell, if 𝔸𝐾 denotes the ring of adèles
of 𝐾, the former predicts that there exists a canonial bijec-
tion 𝜋 → 𝜎𝜋 / 𝜋𝜍 ← 𝜎 between isomorphism classes of au-
tomorphic cuspidal representations 𝜋 of 𝐺𝐿𝑟(𝔸𝐾) and of
simple rank-𝑟 representations 𝜎 in Repℚℓ

(𝜋1(𝐾))𝑠𝑠,ᵆ𝑟 char-
acterized by the fact that 𝜋 and 𝜎𝜋 have the same local
L-factors, while the latter predicts that the Hecke eigen-
values of 𝜋 are 𝑘-Weil numbers of weight 0. So in the
context of the Langlands program, the part of motives is
played by automorphic representations. This is not only
an analogy since the general strategy to prove instances
of the Langlands correspondence is to construct an al-
gebraic stack 𝑋 over 𝐾 whose compactly supported ℚℓ-
cohomology 𝐻𝑐(𝑋𝐾 , ℚℓ) is naturally equipped with an ac-
tion of 𝐺𝐿𝑟(𝔸𝐾) commuting with the one of 𝜋1(𝐾) and
realizes the correspondence in the sense that there exists
a family 𝜋 ⊗ 𝜎𝜋 of simple 𝐺𝐿𝑟(𝔸𝐾) × 𝜋1(𝐾)-constituents
of 𝐻𝑐(𝑋𝐾 , ℚℓ), indexed by the cuspidal automorphic

representations 𝜋 of 𝐺𝐿𝑟(𝔸𝐾) with 𝜋 and 𝜎𝜋 having the
same local L-factors. One expects those 𝜋 ⊗ 𝜎𝜋 to be cut
out by algebraic correspondences on 𝐻𝑐(𝑋𝐾 , ℚℓ). The first
breakthrough is due to Drinfeld, who proved the Lang-
lands correspondence for 𝐺𝐿2 in the late 70s and intro-
duced the stack of chtoucas to play the part of 𝑋 , and it
is probably Drinfeld’s work that led Deligne to formulate
Conjecture 1. Drinfeld’s proof was later generalized by
L. Lafforgue to 𝑟 ≥ 2, who also proved the Ramanujan-
Petersson conjecture [Laf02].

The proof of Conjecture 1 when 𝑆 is a curve is ”al-
most motivic” in the sense that it exhibits a potential
candidate—the stack of chtoucas—fromwhich one should
be able to construct explicitly the motive supporting 𝜎.
In constrast, for higher dimensional 𝑆, there is currently
no such constructive strategy to prove Conjecture 1 and,
just as for the Riemann hypothesis, the solution eventu-
ally came from a combination of geometric arguments,
relying on the curve case and the theory of weights de-
veloped in [Del80]. The basic strategy is to show that a
(semisimple)ℚℓ-local system 𝒱 on 𝑆 can be reconstructed
from the collection of its restrictions 𝜓∗𝒱 to smooth ir-
reducible curves 𝜓 ∶ 𝐶 → 𝑆 together with the obvious
glueing conditions 𝜓∗𝒱|𝐶×𝑋𝐶′ ≃ 𝜓′ ∗𝒱′|𝐶×𝑋𝐶′ . This is how
Deligne completed the proof of [Purity] and [Finiteness]
in Conjecture 1 [Del12] and how, building on this, Drin-
feld completed the proof of [Companion] [Dri12]. Along
the way, Deligne also proved that there are—up to twists—
only finitely many simple ℚℓ-local systems on 𝑆 and that
their number is independent of ℓ.
Beyond ℚℓ-local systems. The original formulation of
Conjecture 1 also included a vaguely formulated 𝑝-adic
part ”on espère des petits camarades cristallins.” And in-
deed, on top of ℓ-adic cohomology, one has now at dis-
posal other natural Weil cohomology theories for varieties
over fields of characteristic 𝑝 > 0—in particular crystalline
cohomology (with coefficients inℚ𝑝) and ultraproduct co-

homology (with coefficients in the ultraproducts ℚ𝔲, that
is, the quotients of ∏ℓ≠𝑝 𝔽ℓ by its non-principal maximal
ideals 𝔲) with natural notions of local systems. As pre-
dicted by the motivic picture drawn above, Conjecture 1
extends for 𝑝-adic and ultraproduct local systems (except
for the existence of ℚ𝑝-companions) by Abe, Abe-Esnault,
and Kedlaya in the 𝑝-adic setting and Cadoret in the ul-
traproduct setting. This generalized form of Conjecture
1 makes it possible to transfer properties of local systems
from one cohomological realm to the other. For instance,
Cadoret-Tamagawa used [Companion] to reduce the Tan-
nakian form of the Cebotarev density theorem forℚ𝑝- and

ℚ𝔲-local systems to the (classical) Cebotarev density the-
orem for ℚℓ-local systems [CT20]. In a slightly different
spirit, using the fact that rigid ℂ-local systems on a variety
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𝑋 overℂ can be ”specialized” toℚℓ-local systems on reduc-
tions of 𝑋 over finite fields and a beautiful counting argu-
ment based on [Companion], Esnault-Groechenig proved
Simpson’s integrality conjecture for cohomologically rigid
ℂ-local systems [EG18].
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