Recent Developments

in Ricci Flows

Richard H. Bamler

1. Introduction

The beginning of the new millennium marked an impor-
tant point in the history of geometric analysis. In a se-
ries of three very condensed papers [Per02, Per03b, Per03a],
Perelman presented a solution of the Poincaré and Ge-
ometrization Conjectures. These conjectures—the for-
mer of which was 100 years old and a Millennium
Problem—were fundamental problems concerning the
topology of 3-manifolds, yet their solution employed Ricci
flow, a technique introduced by Hamilton in 1982, that
combines methods of PDE and Riemannian geometry (see
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below for more details). These spectacular applications
were far from coincidental as they provided a new perspec-
tive on 3-manifold topology using the geometric-analytic
language of Ricci flows.

It took several years for the scientific community to di-
gest Perelman’s arguments and verify his proof. This was
an exciting time for geometric analysts, since the new tech-
niques generated a large number of interesting questions
and potential applications. Amongst these, perhaps the
most intriguing goal was to find further applications of
Ricci flow to problems in topology.

This goal will form the central theme of this article. We
will first summarize the important results pertaining to
Perelman’s work. Next, we will discuss more recent re-
search that stands in the same spirit; first in dimension 3,
leading, amongst others, to the resolution of the General-
ized Smale Conjecture, and, second, work in higher dimen-
sions, where topological applications may be forthcoming.
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There are also many other interesting recent applications
of Ricci flows, which are more of a geometric or analytic na-
ture, and which we won't have space to cover here, unfortu-
nately. Among these are, for example, work on manifolds
with positive isotropic curvature, smoothing constructions
for limit spaces of lower curvature bounds, lower scalar cur-
vature bounds for C%-metrics, as well as work on Kihler-
Ricci flow.!

2. Riemannian Geometry and Ricci Flow
A Riemannian metric g on a smooth manifold M is
given by a family of inner products on its tangent spaces
T,M, p € M, that can be expressed in local coordinates
(x1,..,x") as
g =, g;dx dx,
Lj
where g;; = gj; are smooth coefficient functions. A metric
allows us to define notions such as angles, lengths, and
distances on M. One can show that the metric g near any
point p € M looks Euclidean up to order 2; that is, we can
find suitable local coordinates around p such that
gij = 8;j + 0(r?).

The second-order terms can be described by an invariant
called the Riemann curvature tensor Rmy;;, which is inde-
pendent of the choice of coordinates up to a simple trans-
formation rule. Various components of this tensor have
local geometric interpretations. A particularly interesting
component is called the Ricci tensor Ric;j, which arises
from tracing the k, [ indices of Rm;;;. This tensor roughly
describes the second variation of areas of hypersurfaces un-
der normal deformations.

A Ricci flow on a manifold M is given by a smooth fam-
ily g(t), t € [0,T), of Riemannian metrics satisfying the
evolution equation

Expressed in suitable local coordinates, this equation
roughly takes the form of a non-linear heat equation in
the metric coefficients:

0:8ij =Agij"'-

In addition, if we compute the time derivative of the Rie-
mannian curvature tensor ng(t), we obtain

0; Rmyg ) = YAN Rmyy) +Q(ng(t)), (2.3)

where the last term denotes a quadratic term; its exact
form will not be important in the discussion below. Equa-
tions (2.2), (2.3) suggest that the metric g(t) becomes
smoother or more homogeneous as time moves on, simi-
lar to the evolution of a heat equation, under which heat
is distributed more evenly across its domain. On the

(2.2)

LFor a slightly expanded version of this text with more than 20 references see
[https://arxiv.org/abs/2102.12615.
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other hand, the last term in (2.3) seems to indicate that—
possibly at larger scales or in regions of large curvature—
this diffusion property may be outweighed by some other
non-linear effects, which could lead to singularities.

But we are getting ahead of ourselves. Let us first state
the following existence and uniqueness theorem, which
was established by Hamilton [Ham82] in the same paper
in which he introduced the Ricci flow equation.

Theorem 2.1. Suppose that M is compact and let g, be an
arbitrary Riemannian metric on M (called the initial condition).
Then:

1. The evolution equation (2.1) combined with the initial
condition g(0) = g, has a unique solution (g(t))se(o,1) for
some maximal T € (0, oo].

2. If T < oo, then we say that the flow develops
a singularity at time T and the curvature blows up:
maxys [Rmg| t—/—T> 0.

The most basic examples of Ricci flows are those in
which g, is Einstein, i.e., Ricg, = Ag,. In this case the flow
simply evolves by rescaling:

g(t) = (1 —21t)g,. (2.4)
So for example, a round sphere (4 > 0) shrinks under the
flow and develops a singularity in finite time, when the
diameter goes to 0. On the other hand, if we start with
a hyperbolic metric (1 < 0), then the flow is immortal,
meaning that it exists for all times, and the metric expands
linearly. In the following we will consider more general
initial metrics g, and hope that—at least in some cases—
the flow is asymptotic to a solution of the form (2.4). This
will then allow us to understand the topology of the un-
derlying manifold in terms of the limiting geometry.

3. Dimension 2
In dimension 2, Ricci flows are very well behaved.

Theorem 3.1. Any Ricci flow on a compact 2-dimensional
manifold converges, modulo rescaling, to a metric of constant
curvature.

In addition, one can show that the flow in dimension 2
preserves the conformal class; i.e., for all times ¢ we have
g(t) = f(t)g, for some smooth positive function f(t) on
M. This observation, combined with Theorem 3.1, can in
fact be used to prove the Uniformization Theorem.?

Theorem 3.2. Each compact surface M admits a metric of con-
stant curvature in each conformal class.

This is our first topological consequence of Ricci flow.
Of course, the Uniformization Theorem has already been

2The proof of Theorem 3.1, which was established by Chow and Hamilton
[Cho91, Ham88|, relied on the Uniformization Theorem. This dependence
was later removed by Chen, Lu, and Tian [CLTO06].
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Figure 1. Different singularity formations in the rotationally symmetric case, depending on the choice of the radii r;,r,,73. The
flows depicted on the top are the corresponding singularity models. These turn out to be the only singularity models, even in

the non-rotationally symmetric case (see Subsection 4.3).

known for about 100 years. So in order to obtain any new
topological results, we will need to study the flow in higher
dimensions.

4. Dimension 3

In dimension 3, the behavior of the flow—and its singu-
larity formation—becomes far more complicated. In this
section, we will first discuss an example and briefly review
Perelman’s analysis of singularity formation and the con-
struction of Ricci flows with surgery. We will keep this part
short and only focus on aspects that will become impor-
tant later; for a more in-depth discussion and a more com-
plete list of references see the earlier Notices article [And04].
Next, we will focus on more recent work by Kleiner, Lott,
and the author on singular Ricci flows and their unique-
ness and continuous dependence, which led to the resolu-
tion of several longstanding topological conjectures.
4.1. Singularity formation—an example. To get an idea
of possible singularity formation of 3-dimensional Ricci
flows, it is useful to consider the famous dumbbell ex-
ample (see Figure 1). In this example, the initial mani-
fold (M, g;) is the result of connecting two round spheres
of radii r;,r; by a certain type of rotationally symmetric
neck of radius r, (see Figure 1). So M ~ S° and g, =
f*(s)gs2 + ds? is a warped product away from the two end-
points.

It can be shown that any flow starting from a metric of
this form must develop a singularity in finite time. The sin-
gularity type, however, depends on the choice of the radii
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1, 1y, r3. More specifically, if the radii ry, r,, r; are compara-
ble (Figure 1, left), then the diameter of the manifold con-
verges to zero and, after rescaling, the flow becomes asymp-
totically round—just as in Theorem 3.1. This case is called
extinction. On the other hand, ifr, <« 1y, r; (Figure 1, right),
then the flow develops a neck singularity, which looks like
around cylinder (S? X R) at small scales. Note that in this
case the singularity only occurs in a certain region of the
manifold, while the metric converges to a smooth metric
everywhere else. Lastly, there is also an intermediate case
(Figure 1, center), in which the flow develops a singular-
ity that is modeled on the Bryant soliton—a one-ended
paraboloid-like model.

Tr----------- o

0

Figure 2. A Ricci flow M x [0, T) that develops a singularity at
time T and a sequence of points (x;, ;) that “run into a
singularity.” The geometry in the parabolic neighborhoods
around (x;,t;) (rectangles) is close to the singularity model
modulo rescaling if i > 1.
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4.2. Blow-up analysis. Perelman’s work implied that the
previous example is in fact prototypical for the singularity
formation of 3-dimensional Ricci flows starting from gen-
eral, not necessarily rotationally symmetric, initial data. In
order to make this statement more precise, let us first recall
a method called blow-up analysis, which is used frequently
to study singularities in geometric analysis.

Suppose that (M, (g(t));efo,1)) is a Ricci flow that devel-
ops a singularity at time T < oo (see Figure 2). Then we
can find a sequence of spacetime points (x;, t;) € Mx[0,T)
such that 4; := |Rm|(x;,t;) = oo and t; /' T, we will say
that the points (x;,¢;) “run into a singularity.” Our goal
will be to understand the local geometry at small scales
near (x;, t;) for large i. For this purpose, we consider the
sequence of pointed, parabolically rescaled flows

(M, (gi(1) = LigAi 't + t:))re(—n,e,,01> (Xi5 0))-
Geometrically, the flow (gj(¢)) is the result of rescaling dis-
tances by /1}/ 2, times by 4; and an application of a time-
shift such that the point (x;, 0) in the new flow corresponds
to the point (x;,¢;) in the old flow. The new flow (g;(¢))
still satisfies the Ricci flow equation and it is defined on
larger and larger backwards time-intervals of size 4;t; — 0.
Moreover, we have |Rm|(x;,0) = 1 on this new flow. Ob-
serve also that the geometry of the original flow near (x;, ¢;)
at scale 1;7* < 1 is a rescaling of the geometry of (g}(t))
near (x;,0) at scale 1.

The hope is now to apply a compactness theorem (a la
Arzela-Ascoli) such that, after passing to a subsequence, we
have convergence

(M, (gg(t))te[_/lizti,o]’ (xi, 0))
i——>—0: (Moo’(goo(t))tﬁo7(xoo70))' (41)

The limit is called a blow-up or singularity model, as it gives
valuable information on the singularity near the points
(x;,t;). This model is a Ricci flow that is defined for all
times t < 0; it is therefore called ancient. So in summary, a
blow-up analysis reduces the study of singularity formation
to the classification of ancient singularity models.

The notion of convergence in (4.1) is a generalization of
Cheeger-Gromov convergence to Ricci flows, due to Hamil-
ton. Instead of demanding global convergence of the met-
ric tensors, as in Theorem 3.1, we only require convergence
up to diffeomorphisms here. We roughly require that we
have convergence

* ! Cloc
$i8i() —— 8o (4.2)
on My X (—o0,0] of the pullbacks of gj(t) via (time-
independent) diffeomorphisms ¢; : U; — V; C M that
are defined over larger and larger subsets U; C M, and sat-
isfy ¢;(xs) = x;. We will see later (in Section 5) that this
notion of convergence is too strong to capture the more
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subtle singularity formation of higher-dimensional Ricci
flows and we will discuss necessary refinements. Luckily,
in dimension 3 the current notion is still sufficient for our
purposes, though.

4.3. Singularity models and canonical neighborhoods.
Arguably one of the most groundbreaking discoveries
of Perelman’s work was the classification of singularity
models of 3-dimensional Ricci flows and the resulting
structural description of the flow near a singularity. The
following theorem® summarizes this classification.

Theorem 4.1. Any singularity model (M, (86 (t))¢<0) 0b-
tained as in (4.1) is isometric, modulo rescaling, to one of the
following:
1. A quotient of the round shrinking sphere (S>,
(1 - 4t)gs3).
2. The round shrinking cylinder (S> xR, (1 —2t)gs2 + gr)
or its quotient (S? X R)/Z,.
3. The Bryant soliton (Mgyy, (8gry(1))).

Note that these three models correspond to the three
cases in the rotationally symmetric dumbbell example
from Subsection 4.1 (see Figure 1). The Bryant soliton in
3. is a rotationally symmetric solution to the Ricci flow on
R3 with the property that all its time-slices are isometric to
a metric of the form

8Bry = fZ(V)gsz + dr?, fr) ~ \/;

The name soliton refers to the fact that all time-slices of
the flow are isometric, so the flow merely evolves by pull-
backs of a family of diffeomorphisms (we will encounter
this soliton again at the end of this article).

It turns out that we can do even better than Theorem 4.1:
we can describe the structure of the flow near any point
of the flow that is close to a singularity—not just near the
points used to construct the blow-ups. In order to state the
next result efficiently, we will need to consider the class of
x-solutions. This class simply consists of all solutions listed
in Theorem 4.1, plus an additional compact, ellipsoidal
solution (the details of this solution won't be important
here*). Then we have the following theorem.

Theorem 4.2 (Canonical Neighborhood Theorem). If
(M, (g(O)tefo,1)), T < o0, is a 3-dimensional Ricci flow and
€ > 0, then there is a constant r.,,(g(0), T,€) > 0 such that
for any (x,t) € M X [0, T) with the property that

r= |Rm|_l/2(x’ t) < Tean

3 Perelman proved a version of Theorem 4.1 that contained a more qualitative
characterization in case 3., which was sufficient for most applications. Later,
Brendle | Bre20] showed that the only possibility in case 3. is the Bryant soliton.
4This solution does not occur as a singularity of a single flow, but can be ob-
served as some kind of transitional model in families of flows that interpolate be-
tween two different singularity models.
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Figure 3. A schematic depiction of a Ricci flow with surgery.
The almost-singular parts Mgimost-sing: i-€., the parts that are
discarded under each surgery construction, are hatched.

the geometry of the metric g(t) restricted to the ball
Byiy(x,e7'r) is e-close® to a time-slice of a x-solution.

Let us digest the content of this theorem. Recall that the

norm of the curvature tensor |Rm|, which can be viewed as
a measure of “how singular the flow is near a point,” has
the dimension of length ™2, so r = |Rm|~"/2 can be viewed
as a “curvature scale.” So, in other words, Theorem 4.2
states that regions of high curvature locally look very much
like cylinders, Bryant solitons, round spheres, etc.
4.4. Ricci flow with surgery. Our understanding of the
structure of the flow near a singularity now allows us to
carry out a so-called surgery construction. Under this con-
struction (almost) singularities of the flow are removed, re-
sulting in a “less singular” geometry, from which the flow
can be restarted. This will lead to a new type of flow that
is defined beyond its singularities and which will provide
important information on the underlying manifold.

Let us be more precise. A (3-dimensional) Ricci flow with
surgery (see Figure 3) consists of a sequence of Ricci flows

(M1, (€1 (D)iero, 1) Mz, (82()ierry, 150)s
(M3, (&83(D)ieiT,, 3 -

which live on manifolds M;,M,,... of possibly differ-
ent topology and are parameterized by consecutive time-
intervals of the form [0, T} ], [T}, T3], ... whose union equals
[0, 00). The time-slices (M;, g;(T;)) and (M;,&i+1(T;)) are
related by a surgery process, which can be roughly summa-
rized as follows. Consider the set Myjmost.sing € M; of
all points of high enough curvature, such that they have

3Similar to (4.2), this roughly means that there is a diffeomorphism between an
¢~ L-ball in a x-solution and this ball such that the pullback of r~2g(t) is e-close

. -1 . .
in the CI€ 1-sense to the metric on the x-solution.
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a canonical neighborhood as in Theorem 4.2. Cut M;
open along approximate cross-sectional 2-spheres of diam-
eter rgurg(7;) < 1 near the cylindrical ends of Majmost-sings
discard most of the high-curvature components (includ-
ing the closed, spherical components of My est-sing), and
glue in cap-shaped 3-disks to the cutting surfaces. In doing
so we have constructed a new, “less singular,” Riemannian
manifold (M;,1,g;;+1(T;)), from which we can restart the
flow. Stop at some time T;,, > T;, shortly before another
singularity occurs and repeat the process.

The precise surgery construction is quite technical and
more delicate than presented here. The main difficulty in
this construction is to ensure that the surgery times T; do
not accumulate, i.e., that the flow can be extended for all
times. It was shown by Perelman that this and other diffi-
culties can indeed be overcome.

Theorem 4.3. Let (M, g) be a closed, 3-dimensional Riemann-
ian manifold. If the surgery scales rgu.5(T;) > 0 are chosen suf-
ficiently small (depending on (M, g) and T;), then a Ricci flow
with surgery with initial condition (M, g,(0)) = (M, g) can be
constructed.

Note that the topology of the underlying manifold M;
may change in the course of a surgery, but only in a con-
trolled way. In particular, it is possible to show that for any
i the initial manifold M; is diffeomorphic to a connected
sum of components of M; and copies of spherical space
forms S3/T and S% x S!. So if the flow goes extinct in finite
time, meaning that M; = @ for some large i, then

My ~ #5_)(S3/T)#m(S* x SY). (4.3)

Perelman moreover showed that if M; is simply connected,
then the flow has to go extinct and therefore M; must be
of the form (4.3). This immediately implies the Poincaré
Conjecture—our first true topological application of Ricci
flow.

Theorem 4.4 (Poincaré Conjecture). Any simply connected,
closed 3-manifold is diffeomorphic to S>.

On the other hand, Perelman showed that if the Ricci
flow with surgery does not go extinct, meaning if it exists
for all times, then for large times ¢t > 1 the flow decom-
poses the manifold (at time ¢) into a thick and a thin part:

Minick(t) W Minin(0), (4.4)

such that the metric on My (t) is asymptotic to a hyper-
bolic metric and the metric on M, (¢) is collapsed along
fibers® of type S1,S52, or T?. A further topological analy-
sis of these induced fibrations implied the Geometrization

The precise description of these fibrations is a bit more complex and omitted
here. In addition, Mjck(t) and Mnin(t) are separated by embedded 2-tori
that are incompressible, meaning that the inclusion into the ambient manifold
is an injection on 7.

VoLUME 68, NUMBER 9



Figure 4. lllustration of a singular Ricci flow given by a Ricci
flow spacetime. The arrows indicate the time-vector field 4.

Conjecture—our second topological application of Ricci
flow.

Theorem 4.5 (Geometrization Conjecture). Every closed 3-
manifold is a connected sum of manifolds that can be cut along
embedded, incompressible copies of T? into pieces which each
admit a locally homogeneous geometry.

4.5. Ricci flows through singularities. Despite their spec-
tacular applications, Ricci flows with surgery have one ma-
jor drawback: their construction is not canonical. In other
words, each surgery step depends on a number of auxiliary
parameters, for which there does not seem to be a canoni-
cal choice, such as:

« The surgery scales rgug(T;), i.e., the diameters of
the cross-sectional spheres along which the mani-
fold is cut open. These scales need to be positive
and small.

« The precise locations of these surgery spheres.

Different choices of these parameters may influence the fu-
ture development of the flow significantly (as well as the
space of future surgery parameters). Hence a Ricci flow
with surgery is not uniquely determined by its initial met-
ric.

This disadvantage was already recognized in Perelman’s
work, where he conjectured that there should be another
flow, in which surgeries are effectively carried out automat-
ically atan infinitesimal scale (think “rgy., = 0”), or which,
in other words, “flows through singularities.”

Perelman’s conjecture was recently resolved by Kleiner,
Lott, and the author [BK17b, KL17].”

"The “existence” part is due to Kleiner and Lott and the “uniqueness” part is
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Theorem 4.6. There is a notion of singular Ricci flow (through
singularities) such that:

1. For any compact, 3-dimensional Riemannian manifold
(M, g) there is a unique singular Ricci flow M whose initial
time-slice (M, g¢) is (M, g).

2. Any Ricci flow with surgery starting from (M, g) can
be viewed as an approximation of M. More specifically, if
we consider a sequence of Ricci flows with surgery starting
from (M, g) with surgery scales max; rgy(t) — 0, then
these flows converge to M in the local C*®-sense.®

In addition, the concept of a singular Ricci flow is far
less technical than that of a Ricci flow with surgery—in fact,
we will be able to state its full definition here. To do this,
we will first define the concept of a Ricci flow spacetime. In
short, this is a smooth 4-manifold that locally looks like a
Ricci flow, but which may have non-trivial global topology
(see Figure 4).

Definition 4.7. A Ricci flow spacetime consists of:

1. A smooth 4-dimensional manifold M with bound-
ary, called spacetime.

2. A time-functiont : M — [0, 00). Its level sets M, :=
t~1(t) are called time-slices and we require that M, =
oM.

3. Atime-vector field 3; on M with ;-t = 1. Trajectories
of 9, are called worldlines.

4. A family g of inner products on kerdt C TM,
which induce a Riemannian metric g; on each time-
slice M;. We require that the Ricci flow equation
holds:

L5,8: = —2Ricy, .

By abuse of notation, we will often write M instead of
(Ma ta ata g)

A classical, 3-dimensional Ricci flow (M, (g(t))ie(o,1))
can be converted into a Ricci flow spacetime by setting
M = M X [0,T), letting t,d; be the projection onto the
second factor and the pullback of the unit vector field on
the second factor, respectively, and letting g; be the metric
corresponding to g(t) on M X {t} ¥ M. Hence worldlines
correspond to curves of the form ¢t — (x,t).

Likewise, a Ricci flow with surgery, given by
flows  (My, (81(1))sefo,1,1)s (M2, (&2(D))set,,151)s - €an  be
converted into a Ricci flow spacetime as follows. Consider
first the Ricci flow spacetimes M; x [0, T;], M, X [Ty, Tz], ...
arising from each single flow. We can now glue these flows
together by identifying the set of points U;~ € M;x{T;} and
Ut C M, X {T;} that survive each surgery step via maps
¢; : U- — U;". The resulting space has a boundary that

due to Kleiner and the author. Part 2. of Theorem 4.6 follows from a combi-
nation of both papers.
8More details on this convergence will be given in the end of this subsection.
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consists of the time-0-slice M; x {0} and the points
8i = (M; X {T}\ U7 ) U M X {T}\ U),

which were removed and added during each surgery step.
After removing these points, we obtain a Ricci flow space-
time of the form:

M= (Ml X [0, Tl] U¢l M2 X [Tl’ TZ] U¢2 )

\(S1USU--). (4.5)

Note that for any regular time ¢t € (T;_;, T;) the time-slice
M is isometric to (M;j, g;(¢)). On the other hand, the time-
slices My, corresponding to surgery times are incomplete;
they have cylindrical open ends of scale & rguo(T)).

The following definition captures this incompleteness.

Definition 4.8. A Ricci flow spacetime is r-complete for
some r > 0 if the following holds. Consider a smooth
path y : [0,s9) = M with the property that

inf )|Rm|_1/2(y(s)) >r

s€[0,s9
and:

1. y([0,1)) € M, is contained in a single time-slice
and its length measured with respect to the metric g;
is finite, or

2. yisaworldline; i.e., a trajectory of +0,.

Then the limit lim, -z y(s) exists.

So M being r-complete roughly means that it has only
“holes” of scale < r. For example, the flow from (4.5) is
C max; Iy,4(t)-complete for some universal C < co.

In addition, Theorem 4.2 motivates the following defi-
nition.

Definition 4.9. A Ricci flow spacetime is said to satisfy the
e-canonical neighborhood assumption at scales (ry, r,) if for any
point x € M, with r := [Rm|~"2(x) € (r;,1,) the metric g,
restricted to the ball Bg, (x,e71r) is e-close, after rescaling
by r=2, to a time-slice of a x-solution.

We can finally define singular Ricci flows (through sin-
gularities), as used in Theorem 4.6.

Definition 4.10. A singular Ricci flow is a Ricci flow space-
time M with the following two properties:

1. TItis O-complete.

2. Foranye > 0and T < oo thereis an r(e,T) > 0
such that the flow M restricted to [0, T) satisfies the
e-canonical neighborhood assumption at scales (0, r).

See again Figure 4 for a depiction of a singular Ricci
flow. The time-slices M; for ¢ < Ty develop a cylindrical
region, which collapses to some sort of topological dou-
ble cone singularity in MTsing at time Tjjpg. This singular-
ity is immediately resolved and the flow is smooth for all
t> Tsing-
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Let us digest the definition of a singular Ricci flow a bit
more. It is tempting to think of the time function t as a
Morse function and compare critical points with infinites-
imal surgeries. However, this comparison is flawed. First,
by definition t cannot have critical points since d;t = 1.
In fact, a singular Ricci flow is a completely smooth object.
The “singular points” of the flow are not part of M, but can
be obtained after metrically completing each time-slice by
adding a discrete set of points. Second, it is currently un-
known whether the set of singular times, i.e., the set of
times whose time-slices are incomplete, is discrete.

Similar notions of singular flows have been developed
for the mean curvature flow (a close cousin of the Ricci
flow). These are called level set flows and Brakke flows.
However, their definitions differ from singular Ricci flows
in that they characterize the flow equation at singular
points via barrier and weak integral conditions, respec-
tively. This is possible, in part, because a mean curvature
flow is an embedded object and its singular set has an an-
alytic meaning. By contrast, the definition of a singular
Ricci flow only characterizes the flow on its regular part. In
lieu of a weak formulation of the Ricci flow equation on
the singular set, we have to impose the canonical neigh-
borhood assumption, which serves as an asymptotic char-
acterization near the incomplete ends.

Finally, we will briefly explain how singular Ricci flows

are constructed and convey the meaning of part 2. of The-
orem 4.6. Fix an initial time-slice (M, g) and consider a
sequence of Ricci flow spacetimes M/ that correspond to
Ricci flows with surgery starting from (M, g), with surgery
scale max; rgyyg j(£) — 0. It can be shown that these flows
are Cmax; rgyrg j(£)-complete and satisfy the e-canonical
neighborhood assumption at scales (C; max; rgurg, j(£), %),
where C, C,,7; do not depend on j. A compactness the-
orem implies that a subsequence of the spacetimes M/
converges to a spacetime M, which is a singular Ricci flow.
This implies the existence of M; the proof of uniqueness
uses other techniques, which are outside the scope of this
article.
4.6. Continuous dependence. The proof of the unique-
ness property in Theorem 4.6, due to Kleiner and the au-
thor, implies an important continuity property [BK19],
which will lead to further topological applications. To
state this property, let M be a compact 3-manifold and for
every Riemannian metric g on M let M# be the singular
Ricci flow with initial condition (M3, g) = (M, g).

Theorem 4.11. The flow M8 depends continuously on g.

Note that the topology of the flow M# may change as
we vary g and the continuity holds for the entire flows—
past potential singularities. We therefore have to choose
an appropriate sense of continuity in Theorem 4.11 that
allows such a topological change. This is roughly done via
a topology and lamination structure on the disjoint union
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Figure 5. A family of singular Ricci flows starting from a continuous family of initial conditions.

L], M8, transverse to which the variation of the flow can
be studied locally.

Instead of diving into these technicalities, let us dis-
cuss the example illustrated in Figure 5. In this exam-
ple (g)sef0,1] denotes a continuous family of metrics on
S3 such that the corresponding flows M* := M&s inter-
polate between a round and a cylindrical singularity. For
s € |0, %) the flow M?® can be described in terms of a con-

ventional, non-singular Ricci flow (gf) on M and the con-
tinuity statement in Theorem 4.11 is equivalent to contin-
uous dependence of this flow on s. Likewise, the flows M?*
restricted to [0, Tsjng) can again be described by a contin-
uous family of conventional Ricci flows. The question is
now what happens at the critical parameter s = % where
the type of singularity changes. The uniqueness property
guarantees that the flows M* for s / % and s \, % must

1
limit to the same flow M2. The convergence is locally
smooth, but the topology of the spacetime manifold M?*
may still change.
4.7. Topological applications. Theorem 4.11 provides us
a tool to deduce the first topological applications of Ricci
flow since Perelman’s work.

The first example of such an application concerns the
space of metrics of positive scalar curvature Metpgc (M) C
Met(M) on a manifold M, which is a subset of the space of
all Riemannian metrics on M (both spaces are equipped
with the C*-topology). Since the positive scalar curva-
ture condition is preserved by Ricci flow, Theorem 4.11
roughly implies that—modulo singularities and the associ-
ated topological changes—Ricci flow is a “continuous de-
formation retraction” of Metpgc(M) to the space of round
metrics on M. This heuristic was made rigorous by Kleiner
and the author [BK19] and implied the following theorem.

Theorem 4.12. For any closed 3-manifold M the space
Metpgc (M) is either contractible or empty.
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The study of the spaces Metpgc(M) was initiated by
Hitchin in the 70s and has led to many interesting results—
based on index theory—which show that these spaces have
non-trivial topology when M is high dimensional. Theo-
rem 4.12 provides the first examples of manifolds of di-
mension > 3 for which the homotopy type of Metpgc (M)
is completely understood; see also prior work by Marques
[Mar12].

A second topological application concerns the diffeo-
morphism group Diff(M) of a manifold M, i.e., the space
of all diffeomorphisms ¢ : M — M (again equipped with
the C*-topology). The study of these spaces was initiated
by Smale, who showed that Diff(S?) is homotopy equiva-
lent to the orthogonal group O(3), i.e., the set of isome-
tries of S2. More generally, we can fix an arbitrary closed
manifold M, pick a Riemannian metric g, and consider the
natural injection of the isometry group

Isom(M, g) — Diff(M). (4.6)

The following conjecture allows us to understand the ho-
motopy type of Diff(M) for many important 3-manifolds.

Conjecture 4.13 (Generalized Smale Conjecture). Suppose
that (M3, g) is closed and has constant curvature K = +1. Then
(4.6) is a homotopy equivalence.

This conjecture has had a long history and many in-
teresting special cases were established using topological
methods, including the case M = S* by Hatcher and the
hyperbolic case by Gabai. For more background see the
first chapter of [HKMR12].

An equivalent version of Conjecture 4.13 is that The-
orem 4.12 remains true if we replace Metpgc(M) by the
space Metg_. (M) of constant curvature metrics. This was
verified by Kleiner and the author [BK17a, BK19], which
led to the following.

Theorem 4.14. The Generalized Smale Conjecture is true.
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The proof of Theorem 4.14 provides a unified treatment
of all possible topological cases and it can also be extended
to other manifolds M. In addition it is independent of
Hatcher’s proof, so it gives an alternative proof in the S3-
case.

5. Dimensions n > 4

For a long time, most of the known results of Ricci flows in
higher dimensions concerned special cases, such as Kihler-
Ricci flows or flows that satisfy certain preserved curvature
conditions. General flows, on the other hand, were rel-
atively poorly understood. Recently, however, there has
been some movement on this topic—in part, thanks to
a slightly different geometric perspective on Ricci flows
[Bam20b, Bam20a, Bam20c]. The goal of this section is to
convey some of these new ideas and to provide an outlook
on possible geometric and topological applications.

5.1. Gradient shrinking solitons. Let us start with the
following basic question: what would be reasonable sin-
gularity models in higher dimensions? One important
class of such models are gradient shrinking solitons (GSS).
The GSS equation concerns Riemannian manifolds (M, g)
equipped with a potential function f € C*(M) and reads:

1
Ric+V2f — 58=0.

This generalization of the Einstein equation is interesting,
because it gives rise to an associated self-similar Ricci flow:

g(0) = |t|$ig,

where (¢; : M — M), is the flow of the vector field |¢|V f.
A basic example of a GSS is an Einstein metric (Ric =

t <o,

%g), for example a round sphere. In this case g(t) just
evolves by rescaling and becomes singular at time 0. A
more interesting class of examples are round cylinders
§k22 Rk, where

1 n
g=2k—Dgse +gunis f=7 > *.
i=k+1

In this case [t|Vf generates a family of dilations on the
R"~k factor and

g(t) = 2(k — 1)|t|gsk + grn—k>

which is isometric to |¢|g. In dimensions n < 3, all (non-
trivial”) GSS are quotients of round spheres or cylinders.
However, more complicated GSS exist in dimensions n >
4.

By construction, GSS (or their associated flows, to be
precise) are invariant under parabolic rescaling. So the
blow-up singularity model of the singularity at time 0

9Euclidean space R" equipped with f = irz is called a trivial GSS.
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(taken along an appropriately chosen sequence of base-
points) is equal to the flow itself. Therefore every GSS does
indeed occur as a singularity model, at least of its own flow.

Vice versa, the following conjecture, which we will keep
vague for now, predicts that the converse should also be
true in a certain sense.

Conjecture 5.1. For any Ricci flow “most” singularity models
are gradient shrinking solitons.

This conjecture has been implicit in Hamilton’s work
from the 90s and a similar result is known to be true for
mean curvature flow. In the remainder of this section we
will present a resolution of a version of this conjecture.

5.2. Examples of singularity formation. Let us first dis-
cuss an example in order to adjust our expectations in re-
gards to Conjecture 5.1. In [App19], Appleton constructs
a class of 4-dimensional Ricci flows'® that develop a sin-
gularity in finite time, which can be studied via the blow-
up technique from Subsection 4.2—this time we even al-
low the rescaling factors to be any sequence of numbers
A; = oo, not just A; = |Rm|"?(x;, t;). Appleton obtains the
following classification of all non-trivial blow-up singular-
ity models:

1. The Eguchi-Hanson metric, which is Ricci flat and as-
ymptotic to the flat cone R*/Z,.

2. The flat cone R*/Z,, which has an isolated orbifold
singularity at the origin.

3. The quotient Mg,y/Z, of the Bryant soliton, which
also has an isolated orbifold singularity at its tip.

4. The cylinder RP3 X R.

Here the models 1. and 2. have to occur as singularity
models, and it is unknown whether the models 3. and 4.
actually do show up. The only gradient shrinking solitons
in this list are 2. and 4. Note that the flow on R*/Z, is
constant, but each time-slice is a metric cone, and therefore
invariant under rescaling. So we may also view this model
as a (degenerate) gradient shrinking soliton (in this case
f=13r).

It is conceivable that there are Ricci flow singularities
whose only blow-up models are of type 1. or type 2.
In addition, there are further examples in higher dimen-
sions [Sto19] whose only blow-up models that are gradi-
ent shrinking solitons must be singular and possibly de-
generate. This motivates the following revision of Conjec-
ture 5.1.

Conjecture 5.2. For any Ricci flow “most” singularity models
are gradient shrinking solitons that may be degenerate and may
have a singular set of codimension > 4.

19The flows are defined on non-compact manifolds, but the geometry at infinity
is well controlled.
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5.3. A compactness and partial regularity theory. The
previous example taught us that in higher dimensions it
becomes necessary to consider non-smooth blow-up lim-
its. The usual convergence and compactness theory of
Ricci flows due to Hamilton from Subsection 4.2, which
relies on curvature bounds and only produces smooth lim-
its, becomes too restrictive for such purposes. Instead,
we need a fundamentally new compactness and partial regu-
larity theory for Ricci flows, which will enable us to take
limits of arbitrary Ricci flows and study their structural
properties. This theory was recently found by the author
[Bam20b, Bam20a, Bam20c| and will lie at the heart of a
resolution of Conjecture 5.2.

Compactness and partial regularity theories are an im-
portant feature in many subfields of geometric analysis.
To gain a better sense for such theories, let us first review
the compactness and partial regularity theory for Einstein
metrics''—an important special case, since every Einstein
metric corresponds to a Ricci flow. Consider a sequence
(M;, g, x;) of pointed, complete n-dimensional Einstein
manifolds, Ricg, = 4;8;, |4;] < 1. Then, after passing
to a subsequence, these manifolds (or their metric length
spaces, to be precise) converge in the Gromov-Hausdorff
sense to a pointed metric space

GH
(M;, dg;, x;) 7 X, d, xq).

If we now impose the non-collapsing condition

volB(x,r) >v >0

(5.1)

for some uniform r, v > 0, then the limit admits a regular-
singular decomposition

X=RUS
such that the following hold:

1. R can be equipped with the structure of a Riemann-
ian Einstein manifold (R, g.,) in such a way that the
restriction d|5 equals the length metric dy_. In other
words, (X, d) is isometric to the metric completion of
(R,dg ).

2. We have the following estimate on the Minkowski di-
mension of the singular set:

dimy, S <n-—4.

3. Every tangent cone (i.e., blow-up of (X, d) pointed at
the same point) is in fact a metric cone.
4. We have a filtration of the singular set

SOc8lc-.-c8*=8

such that dimy; 8 < k and such that every x € 8%\
8k=1 has a tangent cone that splits off an R¥-factor.

WThis theory is due to Cheeger, Colding, Gromov, Naber, and Tian.
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Interestingly, compactness and partial regularity theo-
ries for other geometric equations (e.g., minimal surfaces,
harmonic maps, mean curvature flow, ...) take a simi-
lar form. The reason for this is that these theories rely
on only a few basic ingredients (e.g., a monotonicity for-
mula, an almost cone rigidity theorem, and an e-regularity
theorem), which can be verified in each setting. A the-
ory for Ricci flows, however, did not exist for a long time,
because these basic ingredients are—at least a priori—not
available for Ricci flows. So this setting required a different
approach.

Let us now discuss the new compactness and partial reg-
ularity theory for Ricci flows. Before we begin, note that
there is an additional complication: parabolic versions of
notions like “metric space,” “Gromov-Hausdorff conver-
gence,” etc. didn't exist until recently, so they—and a the-
ory surrounding them—first had to be developed. We will
discuss these new notions in more detail in Subsection 5.5.
For now, let us try to get by with some more vague expla-
nations.

The first result is a compactness theorem. Consider a
sequence of pointed, n-dimensional Ricci flows

(M, (8i(D))te(-T;,00> (Xi,0))s
where we imagine the basepoints (x;,0) to live in the final
time-slices, and suppose that T, := lim;_, ., T; > 0. Then
we have the following.

Theorem 5.3. After passing to a subsequence, these flows [F-
converge to a pointed metric flow:

(M3, (&1(0), (51, 0)) —=> (X, ()

Here a “metric flow” can be thought of as a parabolic
version of a “metric space.” It is some sort of Ricci flow
spacetime (as in Definition 4.7) that is allowed to have sin-
gular points; think, for example, of isolated orbifold sin-
gularities in every time-slice as in Appleton’s example (see
Subsection 5.2), or a singular point where a round shrink-
ing sphere goes extinct. The term “[F-convergence” can be
thought of as a parabolic version of “Gromov-Hausdorff
convergence.”

The next theorem concerns the partial regularity of the
limit in the non-collapsed case, which we define as the case
in which

Neyo () 2 =Y, (5-2)
for some uniform constants r, > 0 and Y, < oo. This
condition is the parabolic analogue to (5.1). The quan-
tity N, (r?) is the pointed Nash-entropy, which is related
to Perelman’s W-functional; it was rediscovered by work
of Hein and Naber. Assuming (5.2), we now have the fol-
lowing theorem.

Theorem 5.4. There is a regular-singular decomposition
X=RUYS
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such that:

1. The flow on R can be described by a smooth Ricci
flow spacetime structure. Moreover, the entire flow X is
uniquely determined by this structure.

2.  We have the dimensional estimate

3. Tangent flows (i.e., blow-ups based at a fixed point of
X) are (possibly singular) gradient shrinking solitons.

4. There is a filtration 8° C --- C 8"~% = 8 with similar
properties as in the Einstein case.

A few comments are in order here. First, note that the
fact that X is uniquely determined by the smooth Ricci
flow spacetime structure on R is comparable to what we
have observed in dimension 3 (see Subsection 4.5), where
we didn’t even consider the entire flow X. Second, prop-
erty 2. involves a parabolic version of the Minkowski di-
mension that is natural for Ricci flows; a precise definition
would be beyond the scope of this article. Note that the
time direction accounts for 2 dimensions, which is natural.
An interesting case is dimension n = 3, in which we obtain
that the set of singular times has dimension < %; this is in
line with what is known in this dimension. Lastly, in prop-
erty 3. the role of metric cones is now taken by gradient
shrinking solitons; these are analogues of metric cones, as
both are invariant under rescaling.

The dimensional bounds in Theorem 5.4 are optimal.
In Appleton’s example, the singular set $ may consist of an
isolated orbifold point in every time-slice; so its parabolic
dimension is 2 = (4 +2) — 4. On the other hand, a flow on
S%2x T? develops a singularity at a single time and collapses
to the 2-torus T2, which again has parabolic dimension 2.
5.4. Applications. Theorems 5.3 and 5.4 finally enable
us to study the finite-time singularity formation and long-
time behavior of Ricci flows in higher dimensions.

Regarding Conjecture 5.2, we roughly obtain the follow-
ing theorem.

Theorem 5.5. Suppose that (M, (g(t))efo,1)) develops a sin-
gularity at time T < oo. Then we can extend this flow by a
“singular time-T-slice” (M, dr) such that the tangent flows at
any (x, T) € My are (possibly singular) gradient shrinking soli-
tons.

Regarding the long-time asymptotics, we obtain the fol-
lowing picture, which closely resembles that in dimen-
sion 3; compare with (4.4) in Subsection 4.4.

Theorem 5.6. Suppose that (M, (g(t))»o) is immortal. Then
for t > 1 we have a thick-thin decomposition

M = Mpjck () U Mpin(t)

such that the flow on Mnick(t) converges, after rescaling, to
a singular Einstein metric (Ricy = —g) and the flow on
Minin(t) is collapsed in the opposite sense of (5.2).
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Theorems 5.5 and 5.6 essentially generalize Perelman'’s
results to higher dimensions.

5.5. Metric flows. So what precisely is a metric flow? To
answer this question, we will imitate the process of passing
from a (smooth) Riemannian manifold (M, g) to its metric
length space (M, d,). Here a new perspective on the geom-
etry of Ricci flows will be key.

Our goal will be to turn a Ricci flow (M, (g(¢));er) into
a synthetic object, which we call “metric flow.” To do this,
let us first consider the spacetime X := X X I and the
time-slices X', := X X {t} equipped with the length met-
rics d; = dg(;). It may be tempting to retain the product
structure X X I on X, i.e., to record the set of worldlines
t — (x,t). However, this turns out to be unnatural. In-
stead, we will view the time-slices (X}, d;) as separate, met-
ric spaces, whose points may not even be in 1-1 correspon-
dence to some given space X.

It remains to record some other relation between these
metric spaces (Xy, d;). This will be done via the conjugate
heat kernel K(x, t;y,s)—an important object in the study
of Ricci flows. For fixed (x,t) € M X I and s < t this ker-
nel satisfies the backwards conjugate'? heat equation on a
Ricci flow background:

(=05 — A\g(s) + Rgs))K(x, £5-,5) = 0, (5.3)

centered at (x, t). This kernel has the property that for any
(x,t)and s < t

/ K(x,t;-,5)dg(s) =1,
M

which motivates the definition of the following probabil-
ity measures:

dV(x,t);s = K(x, t;-,5)dg(s), Vix,t)t = Oy

This is the additional information that we will record. So
we can now define metric flow.

Definition 5.7. A metric flow is (essentially'?) given by a
pair

((xt’ dt)tel’ (Vx;s)xext,s<t,sel)
consisting of a family of metric spaces (X;,d;) and proba-
bility measures v,.; on X, which satisfy certain basic com-
patibility relations.

So given points x € X}, y € X at two times s < ¢, it is
not possible to say whether “y corresponds to x.” Instead,
we only know that “y belongs to the past of x with a prob-
ability density of dv,.4(y).” This definition is surprisingly
fruitful. For example, it is possible to use the measures vy
to define a natural topology on X and to understand when
and in what sense the geometry of time-slices X'; depends
continuously on t.

12(5.3) is the I2-conjugate of the standard (forward) heat equation and
K(-,+;y,t) is a heat kernel placed at (y, t).
BThis is a simplified definition.
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Figure 6. The Bryant soliton (green) and a conjugate
(backward) heat kernel (orange) starting at the point xgy at
time 0.

The concept of metric flows also allows the defini-
tion of a natural notion of geometric convergence—I[F-
convergence—which is similar to Gromov-Hausdorff con-
vergence. Even better, this notion can be phrased in terms
of a certain dp-distance, which is similar to the Gromov-
Hausdorff distance, and the Compactness Theorem 5.3
can be expressed as a statement on the compactness of a
certain subset of metric flow (pairs),'* just as in the case of
Gromov-Hausdorff compactness.

Lastly, we will sketch an example that illustrates why
it was so important that we have divorced ourselves from
the concept of worldlines. Consider the Bryant soliton
(Mpry, (8Bry(t))i<o) (see Figure 6). Recall that every time-
slice (Mgyy, ggry(t)) is isometric to the same rotationally
symmetric model with center xgy. By Theorems 5.3 and
5.4 any pointed sequence of blow-downs (1; — 0),

(Mgry, (47 8ry(A;2))i<0» (XBry, 0));

F-converges to a pointed metric flow X that is regular on
a large set. What is this F-limit X? For any fixed time
t < 0, the sequence of pointed Riemannian manifolds
(Mpyy» A78ry(A721), Xpyy) converges to a pointed ray of the
form ([0, ),0). This seems to contradict Theorem 5.4.
However, here we have implicitly used the concept of
worldlines, because we have used the point (xg,y, t) corre-
sponding to the “official” basepoint (xg,y, 0) at time ¢. In-
stead, we have to focus on the “past” of (xg,y, 0), i.e., the re-
gion of (Mpyy, A7gpry(1; *t)) where the conjugate heat ker-
nel Y (xpry 00272t 18 concentrated. This region is cylindrical

of scale ~ 4/|t|, because the conjugate heat kernel “drifts
away from the tip” at an approximate linear rate. In fact,
one can show that the blow-down limit X is isometric to
a round shrinking cylinder that develops a singularity at

14Strictly speaking, F-convergence and dg-distance concern metric flow pairs,
(X, (vxy)), where the second entry serves as some kind of substitute of a
basedpoint.
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time 0. While this may seem slightly less intuitive at first,
it turns out to be a much more natural way of looking at
it.

5.6. What's next? This new theory demonstrates that, at
least on an analytical level, Ricci flows behave similarly
in higher dimension as they do in dimension 3. How-
ever, while there are only a handful of possible singularity
models in dimension 3, gaining a full understanding of
all such models in higher dimensions (e.g., classifying gra-
dient shrinking solitons) seems like an intimidating task.
Some past work in dimension 4 (e.g., by Munteanu and
Wang) has demonstrated that most non-compact gradient
shrinking solitons have ends that are either cylindrical or
conical. This motivates the following conjecture.

Conjecture 5.8. Given a closed Riemannian 4-manifold
(M, g) there is a certain kind of “Ricci flow through singulari-
ties” in which topological change occurs along cylinders or cones
and in which time-slices are allowed to have isolated orbifold
singularities.

Showing the existence of such a flow would be an ana-
lytical challenge, given that the construction in dimension
3 already filled several hundred pages. However, we cur-
rently don’t see a reason why such a flow should not exist.

Even more exciting would be the question of what such
a flow (or an analogue in higher dimensions) would ac-
complish on a topological level. It is unlikely that it would
allow us to prove the smooth Poincaré Conjecture in di-
mension 4, because even in the best possible case, such a
flow seems to provide insufficient topological information.
A more feasible application would be the %—Conjecture,

which claims the following inequality between second
Betti number and signature of closed, spin 4-manifolds:

b (M) 2 5 lo(M). (54)
This conjecture is the missing piece in the classification
of closed, simply connected, smooth 4-manifolds up to
homeomorphy (due to Donaldson, Freedman, and Kirby).
At least on a heuristic level, it would be suited for a Ricci
flow approach since (closed) Einstein manifolds and spin
gradient shrinking solitons automatically satisfy (5.4)—
due to the Hitchin-Thorpe inequality in the Einstein case
or the fact that gradient shrinking solitons have positive
scalar curvature. Other potential applications would be
questions concerning the topology of 4-manifolds that ad-
mit metrics of positive scalar curvature. Lastly, there also
seems to be potential in Kihler geometry, for example to-
wards the Minimal Model Program and the Abundance
Conjecture.

Time will tell how far Ricci flow methods will take us
precisely. Almost 20 years ago, geometric analysts and
topologists were busy digesting Perelman’s work on the
Poincaré and Geometrization Conjectures, thus closing an
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important chapter in the field. Today, we have good rea-
sons to be optimistic that further topological applications
are on the horizon. The field certainly still has an exciting
future ahead and hopefully encourages further research
and collaboration between geometers, analysts, topolo-
gists, and complex geometers.
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