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Evolution can be defined as the process of cumulative
change in characteristics of populations over many gener-
ations [6]. At the heart of any evolutionary process lies
a reproducing population whose dynamics generate the
biological diversity and selection forces that drive change.
These processes are strongly shaped by the spatial structure
of the population, which can influence both the tempo-
ral dynamics and overall direction of evolutionary progres-
sion. Cancer initiation, driven by the stochastic accumula-
tion of oncogenic mutations and their subsequent clonal
expansion, is an evolutionary process that often occurs
within the regulated spatial structure of an epithelial tissue.
Since tissue spatial structure (i.e., geometry and reproduc-
tion/death dynamics) can vary between sites in the body
and cancer types, some interesting and important ques-
tions arise: how does the spatial population structure of a
tissue influence the process of carcinogenesis? Specifically,
how does spatial structure affect the timing, survival, and
spread of advantageous oncogenic mutations, and how do
these variations materialize into clinically-relevant differ-
ences in incidence, recurrence rates, and resection guide-
lines?

The majority of human cancers originate from struc-
tured epithelial tissue, which covers the outer and inner
surfaces of organs and blood vessels. In typical stratified
epithelial tissue, stem cells proliferate along the bottom
(basal) layers and continually replenish the upper layers
with differentiated cells that lose their ability to proliferate
(Figure 1(a)) [3, 10]. Since the accumulation and spread
of mutations is driven by the proliferating basal cells, the
spatial structure of the basal zone (which may be of vary-
ing cellular thickness) is the appropriate setting to study
the process of carcinogenesis in the epithelial tissue. In
1977 Williams and Bjerknes proposed a two-dimensional
model of clonal expansion of advantageous mutants, in
which normal and faster-proliferating mutant cells re-
side on a regular lattice. Upon cell division, a daughter
cell replaces a neighboring cell chosen uniformly at ran-
dom. The same model also arose independently in the
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interacting particle systems community and is widely
known as the biased voter model. Bramson and Griffeath
[1, 2] showed in 1980–1981 that under the biased voter
model, an advantageous mutant clone conditioned upon
survival eventually assumes a convex, symmetric shape
whose diameter grows linearly in time. More recently, us-
ing a one-dimensional lattice model, Komarova [11] an-
alyzed the timing of cancer initiation, assuming that only
two oncogenicmutations are required for cancer initiation.
Durrett and Moseley [4] extended Komarova’s work to two
and three dimensions assuming a selectively neutral first
step.

A key component of understanding the impact of spa-
tial structure on carcinogenesis is characterizing the sur-
vival and expansion dynamics of a single advantageous
mutant in a structured population. Although this problem
is motivated by the study of cancer initiation, the theoret-
ical results are more generally applicable to understand-
ing invasion dynamics in spatially structured populations.
In recent work with Einar Gunnarsson, Kevin Leder, and
Kathleen Storey, we examined the effect of the basal zone
geometry, in addition to proliferation and selection char-
acteristics of the tissue and mutants, on the speed of ad-
vantageous mutation expansion in epithelial basal zones
[7]. In particular the propagation speed of a premalignant
mutant clone was determined as a function of a small mu-
tant selective advantage and the number of layers in the
basal zone, which enables comparison of cancer evolution
between different types of epithelial cancer. These results
were obtained using a spatially explicit model of cell divi-
sion and replacement, where cells live on a set of stacked
two-dimensional integer lattices representing a multilay-
ered basal zone, and cellular birth and death dynamics fol-
low biased voter rules (see Figure 1).

In particular, let ℤ𝑤 ∶= ℤ mod 𝑤 denote the additive
group of integers modulo 𝑤 ≥ 1. The epithelial basal
zone is represented as the set ℤ2 × ℤ𝑤 of 𝑤 layers of two-
dimensional integer lattices, with a periodic boundary con-
dition along the third dimension. For each site 𝑥 ∈ ℤ2×ℤ𝑤,
we define its neighborhood as 𝒩(𝑥) ∶= {𝑥 ± 𝑒𝑖 ∶ 𝑖 = 1, 2, 3},
where 𝑒𝑖 is the 𝑖th unit vector, and addition along the third
dimension is carried out modulo 𝑤. To model the spread
of premalignant fields, we define the biased voter model
on ℤ2 ×ℤ𝑤 as follows. Each site in ℤ2 ×ℤ𝑤 is occupied by
either a type-0 cell, representing a normal cell, or a type-1
cell, representing a premalignant mutant cell. Type-1 cells
have fitness advantage 𝛽 > 0 over type-0 cells, meaning
that type-1 cells divide at exponential rate 1 + 𝛽, while
type-0 cells divide at rate 1. Upon cell division at site
𝑥 ∈ ℤ2 × ℤ𝑤, one daughter cell stays at site 𝑥, while the
other daughter cell replaces a neighboring cell at a site
𝑦 ∈ 𝒩(𝑥) chosen uniformly at random (Figure 1(b)).

Let 𝜉𝐴𝑡 denote the set of sites inℤ2×ℤ𝑤 occupied by type-
1 cells at time 𝑡, given the initial condition 𝜉𝐴0 = 𝐴 with
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Figure 1. (a) Cross-section of the stratified squamous epithelium of the esophagus. A basal zone, which consists of several layers
of stem and stem-like cells, continually replenishes the upper layers with more differentiated cells. Figure adapted from [7].
(b) Model dynamics for the 𝑤 = 3 case (basal zone consists of three layers). When the black cell in the middle divides, one
daughter cell remains at the site and the other replaces one of six neighboring cells chosen uniformly at random.

𝐴 ⊆ ℤ2 × ℤ𝑤. Suppose the system starts out with a single
type-1 cell at the origin, i.e., 𝐴 = {0}. If the mutant does
not die out, it can be shown that the shape theorem [1,2]
extends to ℤ2×ℤ𝑤, i.e., 𝜉0𝑡 asymptotically assumes a shape
𝐷(𝛽). 𝐷(𝛽) is a stack of convex and symmetric sets defined
in [1] as a unit ball under a norm induced by 𝜉0𝑡 , and it
expands linearly in time along the first two dimensions.
To determine the rate of expansion of the mutant clone 𝜉0𝑡 ,
we denote the radius of 𝐷 = 𝐷(𝛽) by 𝑐𝑤(𝛽), and define it
in terms of the projection of 𝐷 onto the 𝑥-axis as

{𝑥 ∈ ℝ ∶ (𝑥, 𝑦, 𝑧) ∈ 𝐷} =∶ [−𝑐𝑤(𝛽), 𝑐𝑤(𝛽)] 𝑒1, (1)

where 𝑒1 = (1, 0, 0). We determine 𝑐𝑤(𝛽) as a function of a
small selective advantage 𝛽 > 0 and tissue thickness 𝑤 ≥ 1.
In particular, let 𝑝𝑤 be the probability that a cell giving
birth on ℤ2 × ℤ𝑤 replaces a cell occupying the same layer.
Then, as 𝛽 → 0,

𝑐𝑤(𝛽) ∼ 𝑝𝑤√𝜋𝑤𝛽/√log(1/𝛽).
This core result can be leveraged to characterize the im-

pact of tissue structure, geometry, and maintenance dy-
namics on cancer initiation and recurrence risks. To do
this we append to the model the stochastic accumulation
of oncogenic mutations following a spatial Poisson pro-
cess. We utilize a model approximation in which mutant
expansion, conditioned on nonextinction, proceeds deter-
ministically based on the speed results obtained from the
biased voter dynamics. This approximate model is ana-
lytically tractable enough to obtain results on the timing
of cancer initiation, geometry and heterogeneity of prema-
lignant fields, and recurrence risk after surgery [5,8,9,12].
These analyses can also be extended to study the variations
in tissue maintenance dynamics and their impact on the
cancer initiation process.
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