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In this article, I’ll try to do two things. First, I’ll give
an informal and elementary introduction to the idea of
a moduli space, and then to moduli spaces of Riemann
surfaces and their Deligne-Mumford-Knudsen compactifi-
cations. There is nothing new in this first section of the
article, but I hope some people will enjoy it anyway.

Second, I’ll discuss some tropical geometry, assuming
no prior knowledge of the subject, and build up to some

Melody Chan is an associate professor of mathematics at Brown University. Her
email address is melody_chan@brown.edu.

Communicated by Notices Associate Editor Steven Sam.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2360

recent results on moduli spaces that were obtained us-
ing tropical techniques. We’ll encounter tropical curves,
weight filtrations, graph complexes, and more on the way.
Those who know the usual story of moduli spaces can start
at page 1706 for the second part of the article. The discus-
sion of new results begins on page 1710.

In case you are interested, I put some exercises, ranging
from elementary to not so elementary, at the end of the
article.

What is a Moduli Space?
Amoduli space is a parameter space—usually, a parameter
space for classes of geometric objects of interest. Think of
a moduli space like a mail-order catalog. Pointing to the
catalog conjures up a geometric object, off in a warehouse
somewhere.
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Figure 1. The (𝑚, 𝑏)-plane of nonvertical lines in ℝ2.

Furthermore, the catalog should be nicely organized.
Nearby points of the catalog specify “nearby” geometric
objects. Instead of a precise definition, let’s start with a
toy example to get some intuition. We ask:

(1) What is a moduli space of lines in ℝ2?

Actually, let’s back up even further, and start with a warm-
up question:

(0) What is a moduli space of nonvertical lines in
ℝ2?

An answer to question (0) is provided by the usual “𝑦 =
𝑚𝑥+𝑏” from high school—or “𝑦 = 𝑚𝑥+𝑐” if you’re from
theUK, or probably yet other conventions. A separate copy
of ℝ2, with coordinates called 𝑚 and 𝑏, will do to answer
question (0). In other words, by associating a point (𝑚, 𝑏)
with the line

{(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑦 = 𝑚𝑥 + 𝑏},
we regard this (𝑚, 𝑏)-plane as a “mail-order catalog” for
nonvertical lines. Look at Figure 1.

Next, how about question (1): how can we “glue in” a
space that parametrizes all vertical lines in the plane?

Elementary projective geometry provides an answer. Re-
gard the original ℝ2 as sitting at height 𝑧 = 1 inside ℝ3.
Then a line inℝ2 sweeps out a plane inℝ3 through 𝟎. Con-
versely, any plane inℝ3 through 𝟎, except for the plane 𝑧 = 0,
uniquely determines a line in ℝ2.

Next, the space of planes inℝ3 through 𝟎may be identi-
fied with the space of lines in (a dual copy of) ℝ3 through
𝟎, by associating to a plane 𝑎𝑥+𝑏𝑦+𝑐𝑧 = 0 the line through
(𝑎, 𝑏, 𝑐) and 𝟎.

Finally, the space of lines in ℝ3 through 𝟎 is exactly the
real projective plane ℝℙ2, obtained as 𝑆2/∼, where ∼ is an-
tipodal identification on the 2-sphere. One way to picture
ℝℙ2 is as a closed Northern hemisphere of the unit sphere
in ℝ3, with each antipodal pair of equatorial points iden-
tified. Just picture a line through 𝟎 in ℝ3 piercing the unit
sphere 𝑥2+𝑦2+𝑧2 = 1: it does so in two antipodal points.
Either exactly one of the two is in the open Northern hemi-
sphere, or both of them are equatorial.

Working backwards, we conclude that the moduli space
of lines in ℝ2 is ℝℙ2 minus a point—which is an (open)
Möbius strip. The (𝑚, 𝑏)-plane of nonvertical lines inside
it is then obtained by deleting a “line’s worth of lines,” cut-
ting the Möbius strip.

Onwards to a second toy example:

(2) What is a moduli space of triangles, i.e., for
isomorphism classes of Euclidean triangles?

Here we mean the familiar notion of triangles in the Eu-
clidean plane, with isomorphisms being isometries. This
is an excellent example to soak up at this point, as was
apparently suggested by M. Artin. It is an opportunity to
probe what we really mean by a moduli space, and shows
some of the limitations of moduli spaces and the necessity
of moduli stacks in certain situations. Here, the added sub-
tlety is that triangles can have automorphisms, unlike our
example above of lines together with embedding inℝ2, which
don’t.

I haven’t given myself enough space here to take up
moduli of triangles very much, but there is a really nice
article by K. Behrend [Beh14] introducing algebraic stacks
through this lens, and which is written to be accessible, at
least in part, to undergraduates. I’ll follow that article in
this section.

What do we really mean by a moduli space of triangles? The
most desirable situation would be to have a topological
space ℳ which is a moduli space of triangles in the fol-
lowing strong sense. Not only do

the points of ℳ correspond bijectively to isomor-
phism classes of triangles,

but also, for an arbitrary topological space 𝑆,
families of triangles over 𝑆, up to isomorphism,
should correspond bijectively to continuousmaps
𝑆 → ℳ,

where the bijection is required to take a family of triangles
over 𝑆 to the natural continuous map 𝑆 → ℳ sending 𝑠 ∈
𝑆 to the point of ℳ corresponding to the triangle over 𝑠.

Here, one has to have a robust notion of what a family
of triangles over 𝑆 is, and what an isomorphism between
two such is. You are invited to come up with your own pre-
cise definition of a family of triangles over 𝑆! Intuitively,
it should be a triangle sitting above each point of 𝑆, with
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Figure 2. There are six isomorphism classes of families of
(equilateral, side-length-1) triangles over a circle.

a coherent notion of how edge lengths vary continuously
as one walks around 𝑆.

No suchℳ can exist! Suppose instead it did exist. Look
at the family of triangles, over a line segment, drawn in
Figure 2. (Let’s just say all the triangles involved are equi-
lateral of equal side length 1.) No contradiction so far…
but now imagine all the ways of gluing the family over the
endpoints of the segment to produce a family of triangles
over 𝑆1. There are six ways to do this, corresponding to
the 3! bijections {𝑎, 𝑏, 𝑐} → {𝑎′, 𝑏′, 𝑐′}. Yet all six families of
triangles over 𝑆1 yield the same constant map 𝑆1 →ℳ.

At this point, rather than throwing up our hands and
giving up, there are two ways to proceed. Option 1: work
with the coarse moduli space, which is a space that, in a way
that can be made precise, comes closest among all spaces
to satisfying our two desired conditions. Option 2: pass to
an appropriate category of stacks, living with, and eventu-
ally embracing, the fact that one is no longer working with
an actual space.

A word on Option 2: a stack is a category ℳ together
with a functor from ℳ to the category 𝖳𝗈𝗉 of topologi-
cal spaces—or to 𝖲𝖼𝗁𝖾𝗆𝖾𝗌 or whatever kind of geometry
you’re interested in—satisfying some precise extra condi-
tionswewon’t get into. (One of them is called being fibered
in groupoids.)

For example, continuing to work over 𝖳𝗈𝗉, just as an ex-
ample, there is a category ℳ whose objects are families of
triangles 𝑇 → 𝑆, whose morphisms are pullback squares,
and whose functor to 𝖳𝗈𝗉 sends 𝑇 → 𝑆 to 𝑆.

This truly enlarges the category 𝖳𝗈𝗉 in the following
sense: given a fixed topological space 𝑀, one can soup it
up into a category (fibered in groupoids) over 𝖳𝗈𝗉. The
objects of the category are continuous maps 𝑆 → 𝑀, and
themorphisms are commuting triangles 𝑆′ → 𝑆 → 𝑀. The
functor to 𝖳𝗈𝗉 sends 𝑆 → 𝑀 to 𝑆.

This discussion is painfully brief, but I mention it in
case it is helpful. It used to bug me to no end to hear
people in graduate school say confidently, and cryptically,
“Okay, so this isn’t really a space, but let’s just pretend it is
a space” and I was like, “Pretend what is a space?” What is
it? Well, it’s a certain category, which generalizes the notion
of topological space, or scheme, or whatever, essentially by
a Yoneda embedding.

In any case, we shall be primarily interested in this arti-
cle inmoduli spaces, and their rational cohomology in par-
ticular, that are Deligne-Mumford stacks—very roughly, lo-
cally admitting a scheme covering space. In this situation,
the rational cohomology of the Deligne-Mumford stack
coincides with that of the coarse moduli space. So, hav-
ing made my excuses, I will now do the thing that bugged
me in graduate school, which is to refer to the coarse mod-
uli spaces and the stacks interchangeably and ambiguously
whenever it suits us to do so.

Again, I refer enthusiastically to [Beh14] for further
reading, as well as to Fantechi’s short article [Fan01].
Why moduli spaces? Many spaces of classical interest in
algebraic geometry may naturally be regarded as moduli
spaces: Grassmannians and flag varieties, Hilbert schemes,
moduli spaces of vector bundles, moduli spaces of abelian
varieties…Moduli spaces are interesting! Things thatmight
be simple when studied individually, such as a line in ℝ2,
are richer when studied in continuous families. (See Exer-
cise 1.)

In fact, sometimes one is forced to study families even
if one is solely interested only in the behavior of single
objects: the geometry of the moduli space itself can tell you
about the individual objects being parametrized.

Moduli spaces are also a natural setting in which inter-
section theory is useful. This is one of the reasons that
compact moduli spaces are paramount. Otherwise, inter-
sections can “escape to infinity.” Therefore, if our moduli
space is not compact, then we seek a compactification, ide-
ally a modular compactification. By this we mean an embed-
ding of the original space into a compact space which is it-
self a moduli space, for some geometrically natural class of
objects that enlarges the original. For example, ℝℙ2 com-
pactifies the moduli space of lines in ℝ2 by adding a single
point: the “line at infinity.” Technically, of course, every
space is tautologically a moduli space—for its own (func-
tor of) points.
What’s in this article. We will now put lines and trian-
gles aside, and turn to the main characters of this arti-
cle: the moduli spaces ℳ𝑔 and ℳ𝑔,𝑛 of Riemann sur-
faces, and their Deligne-Mumford-Knudsen compactifica-
tionsℳ𝑔 andℳ𝑔,𝑛. I will describe these spaces, as well as
some recent work, joint with S. Galatius and S. Payne. In
doing so, I shall attempt to illustrate another reason that
compactifications are useful: suitable compactifications can
provide insight into the topology of the space being compacti-
fied. The chain of reasoning we shall illustrate has many
main characters: Riemann surfaces and their moduli, trop-
ical curves and theirmoduli, dual complexes, mixedHodge
structures, graph complexes… These will all be introduced
in turn.

To close this section, let me also recommend D. Ben-
Zvi’s 2008 survey on moduli spaces [BZ08], which I
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discovered after drafting this article. That article takes a
very similar expository at the outset, including a similar
warm-up example of ℝℙ1. But it also discusses a range of
interesting but still accessible examples of moduli spaces.

Riemann Surfaces
The first main character of this article is the moduli space
ℳ𝑔,𝑛 of 𝑛-marked Riemann surfaces of genus 𝑔.

A Riemann surface is a compact, connected com-
plex manifold of complex dimension 1.

(In this article, we build “compact” and “connected” into
the definition of Riemann surface.) An 𝑛-marking of a Rie-
mann surface is simply a choice of an ordered 𝑛-tuple of
distinct points on it.

The most basic invariant of a Riemann surface is its
genus. That is, a Riemann surface is a compact, con-
nected oriented 2-manifold; the orientation comes from
its complex structure. Therefore it is homeomorphic to a
“𝑔-handled torus”—that is, the connect sum of 𝑔 tori—for
some integer 𝑔 ≥ 0. This number 𝑔 is its genus.

Here are just a few examples. First, we assert that there
is, up to isomorphism, just one Riemann surface of genus
0: the Riemann sphere, also known as the (complex) pro-
jective line ℙ1. Note that ℙ1 itself has a natural description
as a moduli space: it is the space of lines in ℂ2 through the
origin. (See Exercise 2.)

How about Riemann surfaces of genus 1? One may ob-
tain examples of the form ℂ/Λ, where Λ is a lattice—that
is, Λ is a discrete, finitely generated additive subgroup of
ℂ of rank 2. So ℂ/Λ is homeomorphic to a parallelogram
that has its two pairs of opposite sides glued appropriately.
Thus ℂ/Λ is a topological torus, of genus 1, with its com-
plex structure inherited from that on ℂ itself. Moreover,
these are all possible examples in genus 1: a Riemann sur-
face of genus 1 is, after choice of a basepoint, identified
isomorphically with its Jacobian variety via the Abel-Jacobi
map. So after choosing the basepoint, it is an abelian vari-
ety of dimension 1, and hence of the form ℂ/Λ.

How about Riemann surfaces of arbitrary genera? At
least in principle, one way to access them all is to exhibit
them as branched covers of ℙ1. Indeed, this approach plays
a prominent role historically. More specifically, suppose
you fix the following data arbitrarily:

• a number 𝑑 ≥ 1,
• distinct points 𝑝1, … , 𝑝𝑏 on ℙ1, and
• permutations 𝜎1, … , 𝜎𝑏 ∈ 𝑆𝑑 such that

⟨𝜎1, … , 𝜎𝑏⟩ is transitive and 𝜎1 ⋅ ⋯ ⋅ 𝜎𝑏 = id.
Now pick a basepoint on your ℙ1 distinct from the 𝑝𝑖’s,
together with based loops 𝛾𝑖 around the points 𝑝𝑖 whose
concatenation 𝛾1 ⋅ ⋯ ⋅ 𝛾𝑏 is topologically trivial. Then the
Riemann existence theorem implies that there is a unique
Riemann surface with a degree 𝑑 branched cover to ℙ1,

branched at the 𝑝𝑖 with monodromy around 𝛾𝑖 as speci-
fied by the permutations 𝜎𝑖.

The case 𝑑 = 2 is already nice to consider. Given an
even number, say 2𝑔+2, of points on ℙ1, there is a unique
branched cover of ℙ1 of degree 2, branched exactly over
these points: here each 𝜎𝑖 = (12) ∈ 𝑆2 for each 𝑖. A
Riemann surface obtained in this way is called hyperellip-
tic, and an Euler characteristic check—more precisely, the
Riemann-Hurwitz formula—shows that it has genus 𝑔.

We have now seen the definition of a Riemann surface.
However, an algebraic geometer might offer the following
definition instead:

A Riemann surface is a smooth, projective, con-
nected algebraic curve over ℂ.

Here, we have to live with an unfortunate terminology
clash: algebraic geometers call them curves, since they
have dimension 1 over ℂ; but topologically they are sur-
faces, of dimension 2 over ℝ. Sorry about that! I will tend
to stick to the terminology of curves as we go further.

The equivalence of the two definitions of Riemann sur-
face offered in this section—algebraic vs. analytic—is not
at all obvious. The proof relies on finding enough noncon-
stant meromorphic functions on a Riemann surface, via
the Riemann-Roch theorem.

There is much more to say about Riemann surfaces, but
I will forge ahead to a discussion of their moduli spaces.

The Moduli Spaces ℳ𝑔,𝑛
Fix numbers 𝑔, 𝑛 ≥ 0 with 2𝑔 − 2 + 𝑛 > 0. We now give a
rough definition:

ℳ𝑔,𝑛 denotes the moduli space of genus 𝑔, 𝑛-
marked Riemann surfaces.

We write ℳ𝑔 = ℳ𝑔,0. This definition is really a theo-
rem, which says that there exists a complex variety—more
precisely, a Deligne-Mumford stack—that can rightly be
called a moduli space, as discussed in the introduction.
First and foremost is the fact that the complex points ofℳ𝑔,𝑛
correspond to isomorphism classes of genus 𝑔, 𝑛-marked Rie-
mann surfaces. For a detailed history of the construction of
ℳ𝑔, you can see the interesting survey [Ji15].

Example (ℳ0,3). Let us begin with some examples, start-
ing with ℳ0,3. First, we have asserted that every Riemann
surface of genus 0 is isomorphic to ℙ1. Furthermore, Ex-
ercise 2, which appears at the end of the article, implies
that for any genus 0 Riemann surface 𝑋 and distinct points
𝑝1, 𝑝2, and 𝑝3 on 𝑋 , there is a unique isomorphism 𝑋 →
ℙ1 taking 𝑝1, 𝑝2, 𝑝3 to any fixed ordered triple of distinct
points of ℙ1. In other words, ℳ0,3 is a single point. And
the uniqueness mentioned above implies that ℳ0,3 really
is a point as a stack, with no automorphisms in its stack
structure.
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By the way, the discussion above hints at why we started
with 𝑛 = 3 when 𝑔 = 0, and more generally why we re-
quired 2𝑔 − 2 + 𝑛 > 0. Namely, this numerical condition
ensures that an 𝑛-marked Riemann surface of genus 𝑔 has
finitely many automorphisms. That finiteness condition
is necessary for the requirement that Deligne-Mumford
stacks admit what I roughly called a “scheme covering
space”: an étale, surjective morphism from a scheme.

Example (ℳ0,4). Next: what are the points of ℳ0,4? We
are really asking: what are all configurations of four dis-
tinct points 𝑝1, 𝑝2, 𝑝3, 𝑝4 on the projective line ℙ1, up to
isomorphism? This is a very good example to understand
completely.

Let us say the same answer in two ways. First, by Exer-
cise 2, we may assume that (𝑝1, 𝑝2, 𝑝3) = (0, 1,∞). Then
𝑝4 may vary freely. Thus ℳ0,4 is isomorphic to

ℙ1 − {0, 1,∞}.
Here is another way of saying the same thing. There

is a classical algebraic invariant of ordered quadruples of
points on ℙ1 called the cross ratio, which, by rewriting the
points of ℙ1 for short as 𝑎 = (𝑎 ∶ 1) and ∞ = (1 ∶ 0), is
expressed

cr(𝑎, 𝑏, 𝑐, 𝑑) = (𝑎 − 𝑑)(𝑏 − 𝑐)
(𝑎 − 𝑏)(𝑑 − 𝑐) .

The formula above should be interpreted as the appropri-
ate limit if one of 𝑎, 𝑏, 𝑐, 𝑑 is ∞. There are varying conven-
tions for the exact expression; I chose one which has the
property that

cr(0, 1,∞, 𝑑) = 𝑑.
Moreover, the cross ratio is a coordinate forℳ0,4, as you may
show in Exercise 3. The general case ofℳ0,𝑛 is in a similar
vein; see Exercise 4.

Example (ℳ1,1). What about a moduli space of elliptic
curves? When do two lattices Λ and Λ′ produce isomor-
phic Riemann surfaces ℂ/Λ ≅ ℂ/Λ′ of genus 1?

It is necessary and sufficient that there is a biholomor-
phism, i.e., complex-linear map, of ℂ to itself taking Λ to
Λ′. Using such a biholomorphism we may first assume
that Λ = ⟨1, 𝜏⟩ and Λ′ = ⟨1, 𝜏′⟩ for 𝜏, 𝜏′ in the complex
upper half-plane. Then a computation, which I omit but
can be found in standard sources, shows that ℂ/Λ ≅ ℂ/Λ′
if and only if 𝜏 and 𝜏′ are in the same SL2(ℤ)-orbit. Here,
SL2(ℤ) acts on the upper half-plane by Möbius transforma-
tions.

Soℳ1,1 is a quotient of the upper half-plane by SL2(ℤ).
(There is an oft-drawn picture of a fundamental domain
of this quotient; see, e.g., [Har77, Figure 16].) But al-
gebraically, a coarse moduli space for ℳ1,1 is given by
an affine line, parametrizing the 𝑗-invariant of the ellip-
tic curve. The precise relationship between these two de-
scriptions is not at all obvious. In particular, it is not

elementary, and is quite beautiful, to describe how 𝑗 may
be calculated from 𝜏. But this is beyond the scope of this
article.

Example (ℳ2). Just one more example. It is a standard
fact that every genus 2 Riemann surface is hyperelliptic, a
property that we previously discussed. Such curves admit
a unique degree 2 morphism to ℙ1 ramified at 2𝑔 + 2 = 6
points, called Weierstrass points. Thus ℳ2, at least as a vari-
ety, is a quotientℳ0,6/𝑆6: the moduli space of six distinct,
unlabelled, points on ℙ1.

Okay—these pleasant explicit descriptions ofℳ𝑔,𝑛 can’t
go on forever. For one thing, for larger 𝑔,ℳ𝑔,𝑛 is not even a
rational variety; for even larger 𝑔, it is not even unirational.
So, eventually, no nice descriptions (as rational varieties)
like what we have seen can possibly exist!

A Brief, Biased Survey of the Cohomology ofℳ𝑔
The spaceℳ𝑔 was already known to Riemann, who coined
the term “moduli” in his 1857 paper. The construction of
ℳ𝑔, as a stack over ℤ having the appropriate moduli func-
tor, was obtained a century later, thanks to Deligne and
Mumford. Yet the topology of moduli spaces of curves re-
mains largely a mystery, despite the fact thatℳ𝑔 is so well-
studied, and inhabits several different flavors of geometry,
topology, and physics.

In this article, we shall not focus on the constructions
of ℳ𝑔 and ℳ𝑔,𝑛—one can’t do everything! Very briefly,
though, there are a few ways of going about it. One of
them is constructing it as a quotient of a Hilbert scheme.
Basically, one finds all genus 𝑔 curves as embedded in a
projective space ℙ𝑁 by a suitable power of the canonical
bundle. All such embedded curves have the same Hilbert
polynomial; then ℳ𝑔 is obtained as the quotient of a sub-
variety of the relevant Hilbert scheme. The quotient is sim-
ply by automorphisms of ℙ𝑁 .

Another (nonalgebraic) perspective that we are giving
no time to, sadly, is the Teichmüller approach to ℳ𝑔,
namely realizing ℳ𝑔 as the quotient of Teichmüller space
by a properly discontinuous action of the mapping class
group Modg. From this, though, it follows that the ratio-
nal cohomology of ℳ𝑔 is the same thing as the rational
cohomology of Modg.

A few things we do know: ℳ𝑔 is a connected, indeed ir-
reducible, variety of complex dimension 3𝑔−3. This num-
ber 3𝑔 − 3 was already known to Riemann. Another thing
we know: Harer-Zagier proved that the orbifold Euler char-
acteristic of ℳ𝑔 is

𝜒orb(ℳ𝑔) =
𝐵𝑔

4𝑔(𝑔 − 1) , (1)

where 𝐵𝑔 denotes the 𝑔th Bernoulli number. They also
show that the (ordinary) Euler characteristic of ℳ𝑔 is
asymptotically the same.
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This tantalizing result suggests yet-to-be-uncovered
structure. It also shows that there is, asymptotically, lots
of cohomology! Indeed, asymptotically as 𝑔 → ∞, it fol-
lows from (1) that

(−1)𝑔+1𝜒(ℳ𝑔) ∼ 𝑔2𝑔

grows superexponentially.
On the other hand, the rational cohomology of ℳ𝑔 is

largely a mystery. It is entirely known only for 𝑔 ≤ 4.
Geometers have (rightly) devoted lots of attention to

the stable rational cohomology of ℳ𝑔. Harer, in 1985,
proved that 𝐻𝑖(ℳ𝑔; ℚ) is in fact independent of 𝑔 for 𝑔
sufficiently large. Subsequently, Mumford conjectured,
and Madsen-Weiss eventually proved, that the cohomol-
ogy ring 𝐻∗(ℳ𝑔; ℚ), regarded as a graded ℚ-algebra, is iso-

morphic in degrees up to
2
3
(𝑔−1) to the graded polynomial

algebra
ℚ[𝜅1, 𝜅2, …].

Here, 𝜅𝑖 ∈ 𝐻2𝑖(ℳ𝑔; ℚ) denotes the 𝑖th Miller-Morita-
Mumford kappa class. This polynomial algebra had already
been shown to be contained in the stable cohomology of
ℳ𝑔 by Miller and Morita at the time of Mumford’s conjec-
ture.

Here is a humbling realization. As you may check, the
stable cohomology ofℳ𝑔 grows only like (constant)√𝑔. (A
little more precisely, we are asserting that the vector space
dimension of the degree atmost

2
3
(𝑔−1) part ofℚ[𝜅1, 𝜅2, …],

with 𝜅𝑖 in degree 2𝑖, is bounded by constant⋅(constant)√𝑔+
constant.)

Therefore, the stable cohomology in fact occupies a van-
ishingly small proportion of the rational cohomology of
ℳ𝑔. By the end of this article we shall get our hands on
a newly discovered source of exponentially many of these
unstable cohomology classes.

Here is another humbling realization. Consider again
Harer-Zagier’s Euler characteristic ofℳ𝑔. Notice that when
𝑔 is even, 𝜒(ℳ𝑔) is a negative number with magnitude
growing superexponentially in 𝑔. That is to say: when 𝑔
is even and very large,ℳ𝑔 must have lots of rational coho-
mology in odd degree.

On the other hand, almost no explicit nonzero groups
𝐻𝑖(ℳ𝑔; ℚ) for 𝑖 odd are known to this day. In fact, as re-
marked by Harer-Zagier, at the time of their paper, none
were known. In 2005, O. Tommasi found one, show-
ing, en route to her calculation of the cohomology of
ℳ4 in the category of rational Hodge structures, that
dim𝐻5(ℳ4; ℚ) = 1 [Tom05].

By the end of this article we shall get our hands on a few
more nonzero, odd-degree rational cohomology groups of
ℳ𝑔. But we are definitely far from the end of the road here.

B. Farb refers to the problem of explicit unstable coho-
mology classes ofℳ𝑔 as the “darkmatter” problem forℳ𝑔:

we know there is a lot of it, but we don’t know explicitly
where. (Cohomology classes in odd degree are all exam-
ples of unstable classes: the stable cohomology ofℳ𝑔, be-
ing generated by 𝜅-classes, is entirely in even degree.) The
dark matter problem for ℳ𝑔 is yet another manifestation
of the usual difficulty in mathematics in overcoming the
gap between existence and construction.

The Deligne-Mumford-Knudsen
Compactification ℳ𝑔,𝑛
Other thanℳ0,3, the spacesℳ𝑔,𝑛 are not compact. A beau-
tiful modular compactification of ℳ𝑔 and ℳ𝑔,𝑛 was ob-
tained by Deligne-Mumford in 1969 and by Knudsen (in
the case of marked points), called the compactification by
stable curves, which we now discuss.

The insight of Deligne and Mumford was to en-
large the notion of a smooth, proper curve, to allow
nodal singularities—the mildest possible singularities—
with only finitely many automorphisms. Such curves are
called stable. To peek ahead at some pictures, see Figure 3.

Definition 1. A nodal curve of genus 𝑔 is a proper, con-
nected algebraic curve 𝑋 over ℂ with arithmetic genus
ℎ1(𝑋,𝒪𝑋) = 𝑔 whose only singularities, if any, are nodes.
A node is a complex point 𝑥 ∈ 𝑋 with analytic-local equa-
tion 𝑢𝑣 = 0: two branches meeting transversely.

Definition 2 (Marked points and stability). A nodal, 𝑛-
marked curve is a nodal curve 𝑋 as above with 𝑝1, … , 𝑝𝑛 ∈ 𝑋
distinct smooth complex points of 𝑋 . Simply put, you are
forbidden from marking a node.

Say (𝑋, 𝑝1, … , 𝑝𝑛) is stable if its automorphism group is
finite. That is, only finitely many automorphisms of 𝑋 fix
the 𝑝𝑖 pointwise. (Exercise 5.)

Definition 3. Fix 𝑔, 𝑛 ≥ 0 with 2𝑔 − 2 + 𝑛 > 0. Then
ℳ𝑔,𝑛 denotes the moduli space of 𝑛-marked stable curves
of genus 𝑔.

Again, this definition is really a remarkable theorem,
that a space (or Deligne-Mumford stack) that deserves to
be called a moduli space for stable curves really exists.

In fact, the boundaryℳ𝑔,𝑛⧵ℳ𝑔,𝑛 admits a stratification
in which the strata are assembled in a combinatorial way
from smaller moduli spaces ℳ𝑔′,𝑛′ . To describe the strati-
fication in a way that highlights its combinatorial nature,
we shall define the marked, vertex-weighted dual graph of a
stable curve. If (𝑋, 𝑝1, … , 𝑝𝑛) is a stable curve, its dual graph
is a triple

𝐆 = (𝐺,𝑚,𝑤)
as follows:

1. 𝐺 is a (multi)graph, with a vertex 𝑣 corresponding to
each irreducible component𝐶𝑣 of 𝑋 , and with an edge
between 𝑣 and 𝑤 for every node of 𝑋 on 𝐶𝑣 ∩ 𝐶𝑤.
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Figure 3. Above, the five strata of ℳ1,2. Below, the five stable
graphs of type (𝑔, 𝑛) = (1, 2), corresponding to the strata
depicted above. Marked points are drawn as labelled
“half-edges.”
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2. The marking function 𝑚∶ {1, … , 𝑛} → 𝑉(𝐺) sends
𝑚(𝑖) = 𝑣 when 𝑝𝑖 lies on 𝐶𝑣.

3. Theweight function𝑤∶ 𝑉(𝐺) → ℤ≥0 is given by setting
𝑤(𝑣) to be the genus of 𝐶𝜈

𝑣 , the normalization of 𝐶𝑣.
Let’s call a triple 𝐆 = (𝐺,𝑚,𝑤) arising in this way a sta-
ble graph. See Figure 3 for an example of the topological
types that arise when (𝑔, 𝑛) = (1, 2), together with the cor-
responding stable graphs. (Exercise 6.) Incidentally, sta-
bility amounts to the following purely combinatorial con-
dition on (𝐺,𝑚,𝑤): for every vertex 𝑣,

2𝑤(𝑣) − 2 + 𝑛𝑣 > 0,
where 𝑛𝑣 is the number of half-edges and marked points
at 𝑣.

Now fix a stable graph 𝐆, and ask: what is a moduli
space of stable curves with dual graph 𝐆? Our reference
here is [ACG11], by the way.

Informally speaking, a curve with dual graph 𝐆may be
specified by naming, for each 𝑣 ∈ 𝑉(𝐺), an 𝑛𝑣-marked,
genus 𝑤(𝑣) curve; in other words, a point ofℳ𝑤(𝑣),𝑛𝑣 . But
this is an overspecification, exactly by the action of the au-
tomorphisms of the combinatorial datum 𝐆 in its action
on ∏𝑣ℳ𝑤(𝑣),𝑛𝑣 .

0 0

Figure 4. A stable graph 𝐆 on the left, and the corresponding
stable curve in ℳ3.

Thus the claim is as follows. Let

ℳ̃𝐆 = ∏
𝑣∈𝑉(𝐺)

ℳ𝑤(𝑣),𝑛𝑣 .

Then
ℳ𝐆 = [ℳ̃𝐆/Aut(𝐆)]

is a moduli space of stable curves of dual graph 𝐆. To be
precise, the brackets here denote the quotient stack, which
is again a Deligne-Mumford stack. See [Beh14] for an ele-
mentary explanation of quotient stacks.

For example, let𝐆 be a graph with two vertices and four
parallel edges between them, with no markings or weights.
Then

ℳ𝐆 = [(ℳ0,4 ×ℳ0,4)/(𝑆2 × 𝑆4)].
A curve with dual graph 𝐆may be specified by four points
on each of twoℙ1’s, that is, choosing two cross ratios (𝛼, 𝛽),
and gluing. See Figure 4. Note thatℳ𝐆 has orbifold points,
e.g., along the diagonal 𝛼 = 𝛽. Indeed, such a curve is in
the closure of the hyperelliptic locus: it admits a nontrivial
automorphism exchanging the two ℙ1’s.

The previous example demonstrates, by the way, that
considering moduli spaces of marked curves ℳ𝑔,𝑛 is essen-
tial even just to describe the boundary strata of moduli
spaces of unmarked curves ℳ𝑔.

There are many nice surveys of ℳ𝑔,𝑛 from various
perspectives, including in previous issues of the Notices
[Vak03].

Tropical Curves
I want to (seemingly) switch gears and discuss the tropical
moduli space of curves, assuming no background in trop-
ical geometry.

But first: what is tropical geometry? Well, it depends
on whom you ask. Tropical geometry has connections
to many areas of mathematics: nonarchimedean geome-
try, mirror symmetry, combinatorics, optimization, even
economics. But I shall center our discussion primarily on
its connection with algebraic geometry, and in particular
its historical antecedents in the form of degeneration tech-
niques in algebraic geometry.

What do we mean by degeneration? The basic idea is
to get information on the generic behavior of a smooth
algebraic curve, say, by studying a one-parameter family of
curves, which degenerates in the limit to a singular curve,
instead. In general, the singular curve could have many
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Figure 5. The special fiber of the family of curves defined in
equation (2), consisting of four ℙ1’s, on the left; and the
associated tropical curve, on the right.

irreducible components, giving rise to a rich combinatorial
structure. The idea is then that properties of the smooth
fibers may be deduced from properties of the singular fiber.

For example, consider the family of projective plane
quartics 𝐶𝑡, parametrized by 𝑡 ∈ ℂ, defined by the equa-
tion

𝑡(𝑥4 + 𝑦4 + 𝑧4) + 𝑥𝑦𝑧(𝑥 + 𝑦 + 𝑧) = 0. (2)

When 𝑡 is nonzero but close to 0, the plane curve is
smooth. When 𝑡 = 0, the curve degenerates to the zero
locus of

𝑥𝑦𝑧(𝑥 + 𝑦 + 𝑧) = 0.
Thus the curve 𝐶0 over 𝑡 = 0 is the union of four projective
lines, with each pair meeting transversely at a point.

What, then, is tropical geometry? The following is a
slogan:

Tropical geometry is a very drastic degeneration
technique in algebraic geometry in which the
limiting object is entirely combinatorial.

To glimpse this principle, let us follow the example
above all the way into the tropical realm. One may as-
sociate a tropical curve to the family of curves in (2). It
is 𝐾4, the complete graph on four vertices, equipped with
edge lengths of 1. The edge lengths will not be justified
here. (But, roughly speaking, the edge lengths measure
the “speed of formation,” relative to 𝑡, of the six nodes in
the fiber over 𝑡 = 0.) The reason that the tropicalization
of the family (2) is a 𝐾4 is that there are four irreducible
components in the fiber over 𝑡 = 0, with each pair of them
meeting transversely once.

Now observe, for example, that the arithmetic genus, 3,
of the smooth curves 𝐶𝑡 is still visible in 𝐾4, which is a
tropical curve of genus 3. By the genus of a graph we mean
the number

𝑔(𝐺) = dim𝐻1(𝐺,ℚ)
= |𝐸(𝐺)| − |𝑉(𝐺)| + #{connected components of 𝐺}.

In summary, we have seen a small example of an invariant
of a smooth curve that can be detected by its tropicaliza-
tion. Of course, there are more novel applications of the
tropical point of view than rederiving the degree-genus for-
mula for plane curves. For further reading, see the survey
[BJ16] on degenerations of linear series, and the references
therein.

abstract embedded

algebraic

tropical

Table 1. Cartoons of abstract/embedded algebraic/tropical
curves of genus 3.

We now give the precise definition of a tropical curve.

A tropical curve is a pair (𝐆, ℓ), where
• 𝐆 is a stable graph, in the precise sense of the

previous section, and
• ℓ∶ 𝐸(𝐆) → ℝ>0 is a function on the edge set

of 𝐆.

A tropical curve is, more or less, a metric graph: think
of it as a combinatorial, or nonarchimedean, analogue of
a Riemann surface.

Given a one-parameter family of smooth curves over a
neighborhood of 𝑡 = 0, there is a precise way to associate a
tropical curve. It goes roughly as in the above example. But
see, e.g., [Cha17] and the references therein for the details,
especially regarding edge lengths.

Let me pause to explain something that might be mysti-
fying if you have seen talks on tropical geometry in which
tropical curves are drawn very differently, perhaps more
like the pictures in the bottom right of Table 1. If you have
seen no such talks, then skip to the next section.

Morally, the two different definitions of tropical curves,
on display in the bottom row of Table 1, arise in parallel to
the two different ways to think of algebraic curves in clas-
sical algebraic geometry, on display in the top row of the
figure. Algebraic curves can arise as subvarieties of projec-
tive spaces, given as the vanishing locus of homogeneous
polynomials. Or, they can be given as Riemann surfaces,
equipped with complex structure by specifying an appro-
priate sheaf of functions. (The original sin of drawing Rie-
mann surfaces as complex 1-dimensional manifolds, but
embedded curves as if they were real 1-dimensional mani-
folds, is on full display in the top row of Table 1.)

It is interesting to study all four squares in Table 1 and
their relationships with each other. For example, going
from the top left picture to top right “is” Brill-Noether the-
ory: the theory of embedding curves into projective space.
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And the corresponding theory of tropical linear series, go-
ing from the bottom left box to the bottom right, is very
interesting too; see [BJ16].

Going from the top right to the bottom right box is
the theory of “embedded” tropicalization of subvarieties
of toric varieties. This is the usual setting of introductions
to tropical geometry, e.g., [MS15].

But the focus of this article is about “abstract” tropical-
ization, i.e., getting from the top left box in Table 1 to the
bottom left box. I hope this helps explain the bigger pic-
ture.

Moduli Spaces of Tropical Curves
The tropical moduli space 𝑀trop

𝑔,𝑛 parametrizes isomor-
phism classes of 𝑛-marked tropical curves of genus 𝑔.
Roughly speaking, it is a combinatorial space, glued from
polyhedral cones, each cone parametrizing all possible
ways to “metrize” a stable graph. To peek ahead at a pic-
ture, see Figure 6.

Tropical moduli spaces of curves were constructed in
this form by Brannetti-Melo-Viviani, building on work of
Caporaso and Mikhalkin, and with antecedents in related
constructions of Gathmann-Markwig. Actually, many of
the ideas can be traced back even further to the work of
Culler-Vogtmann on Outer Space 𝑋𝑔, a space of marked
metric graphs of genus 𝑔 on which the outer automor-
phism group Out(𝐹𝑔) acts. There have been some results
on the precise connection between Outer Space and tropi-
cal moduli space and in bringing techniques from geomet-
ric group theory to play, but more attention is certainly
needed.

To define 𝑀trop
𝑔,𝑛 precisely, fix a stable graph 𝐆. (For ex-

ample, if (𝑔, 𝑛) = (1, 2), then pick one of the five stable
graphs in Figure 3.) What is a parameter space for all iso-
morphism classes of tropical curves of this combinatorial
type?

Our first guess might beℝ𝐸(𝐺)
>0 : that is, we specify a trop-

ical curve of type𝐆 by assigning a positive real number, in-
terpreted as a length, to each edge. But this overcounts be-
cause of automorphisms of𝐆. For example, for𝐆 as in the
top left of Figure 6, the two tropical curves given by edge
lengths (𝛼, 𝛽) and (𝛽, 𝛼) are isomorphic for any 𝛼, 𝛽 ∈ ℝ>0.
Thus a better parameter space would be

𝑀trop
𝐆 = ℝ𝐸(𝐺)

>0 /Aut(𝐆),

where the automorphism group Aut(𝐆) acts by permuting
coordinates.

Now we need to glue these spaces together. With fore-
sight, let us allow edge lengths to go to zero, with the un-
derstanding that such a point in the moduli space shall be
identified with the tropical curve obtained by contracting—
shrinking away—edges of length zero. (The weight of the
vertex resulting from contracting an edge is the sum of the

0 01 2
0 0

1

2

0
1

2

1 0
1

2

1
1

2

Figure 6. The tropical moduli space 𝑀trop
1,2 . Compare with

Figure 3.

weights of the endpoints—or𝑤(𝑣)+1 if the contracted edge
was a loop based at 𝑣.) Note, then, that contraction defines
a partial ordering on the stable graphs of type (𝑔, 𝑛); when
(𝑔, 𝑛) = (1, 2), the Hasse diagram of the resulting poset is
shown in Figure 3.

In other words, define

𝑀trop
𝑔,𝑛 = (∐

𝐆
ℝ𝐸(𝐺)
≥0 /Aut(𝐆)) / ∼,

where the equivalence relation is generated by contracting
zero-length edges, as described above. A picture of 𝑀trop

1,2
is shown in Figure 6.

To end this section, notice that 𝑀trop
𝑔,𝑛 is always con-

tractible. Indeed, it is an instance of a generalized cone
complex, i.e., glued from polyhedral cones via face mor-
phisms. And all connected generalized cone complexes,
being glued from cones, deformation retract to the cone
point.

On the other hand, the link of𝑀trop
𝑔,𝑛 at its cone point is

extremely interesting. Denote this link Δ𝑔,𝑛. The link is a

“cross-section” of𝑀trop
𝑔,𝑛 . Concretely,Δ𝑔,𝑛 may be identified

with the subspace of 𝑀trop
𝑔,𝑛 parametrizing tropical curves

having total edge length 1.
The spaceΔ𝑔,𝑛 plays a starring role in this article. To ade-

quately explain our interest in Δ𝑔,𝑛, we will stop to discuss
mixed Hodge structures on cohomology groups of com-
plex varieties.

The Weight Filtration
One of Deligne’s many significant contributions was the
theory ofmixed Hodge structures developed in the 1970s. At
its most basic level, this is some extra structure on the ratio-
nal cohomology of any complex variety, not just smooth
projective ones, where classical Hodge theory applies. It
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is something that can really depend on the complex struc-
ture of a variety, and not just on the homeomorphism type
of its underlying topological space.

First, recall the definition of a pure Hodge structure. A
pureHodge structure of weight 𝑛 ∈ ℤ is a finitely generated
free abelian group 𝐻ℤ together with a decomposition of

𝐻ℂ = 𝐻ℤ ⊗ℂ = ⨁
𝑝+𝑞=𝑛

𝐻𝑝,𝑞

such that 𝐻𝑞,𝑝 = 𝐻𝑝,𝑞.
Now suppose 𝑋 is a complex variety. No other require-

ments on 𝑋 are yet imposed; in particular we don’t require
that it be smooth or compact. A reasonable first example
to keep in mind is 𝑋 = (ℂ∗)𝑛, the algebraic torus, which is
smooth but isn’t compact.

Deligne defines a weight filtration on the rational singu-
lar cohomology of 𝑋

𝑊0 ⊂ ⋯ ⊂ 𝑊2𝑖 = 𝐻𝑖(𝑋;ℚ)
in such a way that the weight 𝑗 graded piece, namely

Gr𝑊𝑗 𝐻𝑖 ∶= 𝑊𝑗/𝑊𝑗−1,
is equipped with a pure Hodge structure of weight 𝑗. (In
fact, this pure Hodge structure is induced by a singleHodge
filtration on 𝐻𝑖(𝑋; ℂ) simultaneously for all the graded
pieces.) Thus it becomes interesting to study the weight fil-
tration on the rational cohomology of 𝑋 , as a finer invari-
ant than singular cohomology. For example, when 𝑋 =
ℳ𝑔,𝑛, in which weights is the superexponential growth of
Euler characteristic hiding? We really don’t know.

Though there are many things to say regarding mixed
Hodge theory, I shall specifically seek to promote the fol-
lowing “combinatorialist’s view” of the (associated graded
pieces of the) weight filtration—which was already present
in Deligne’s original work—as follows.

Suppose 𝑋 is smooth and 𝑋 ⊂ 𝑋 is a simple normal cross-
ings compactification of 𝑋 . What this means is:

1. 𝑋 is a smooth variety that is complete, i.e., it is com-
pact.

2. The irreducible components of the boundary 𝐷 = 𝑋 ⧵
𝑋 are smooth and intersect transversely.

Transverse means that analytically-locally at any point of 𝑋 ,
the boundary looks like the transverse intersection of some
number of hyperplanes inside an affine space. A good
example is the compactification of (ℂ∗)𝑛 ⊂ ℙ𝑛, whose
boundary is 𝑛+1 hyperplanes meeting transversely.

Say 𝐷1, … , 𝐷𝑡 are the irreducible components of the
boundary, and let 𝑑 denote the complex dimension of 𝑋 .
Then the weight 2𝑑−𝑗 graded piece Gr𝑊2𝑑−𝑗𝐻∗(𝑋;ℚ) can be
completely understood from the following data:

1. The rational cohomology groups

𝐻𝑗(𝐷𝑖0 ∩⋯ ∩ 𝐷𝑖𝑟 ; ℚ)

for all 𝑟; that is, the rational cohomology of all possi-
ble intersections of irreducible components. (I allow
the empty intersection 𝑟 = −1 and interpret it to be 𝑋
itself.)

2. The natural maps between these cohomology groups

𝐻𝑗(𝐷𝑖0 ∩⋯ ∩ 𝐷𝑖𝑗 ∩⋯ ∩ 𝐷𝑖𝑟 ; ℚ) → 𝐻𝑗(𝐷𝑖0 ∩⋯ ∩ 𝐷𝑖𝑟 ; ℚ)
obtained from dropping a term in the intersection in
all possible ways.

Here is the precise formulation of what I just said: con-
sider the chain complex

0 → 𝐻𝑗(𝑋;ℚ) 𝛿0−→⨁
𝑖0

𝐻𝑗(𝐷𝑖0 ; ℚ)

𝛿1−→ ⨁
𝑖0<𝑖1

𝐻𝑗(𝐷𝑖0∩𝐷𝑖1 ; ℚ)
𝛿2−→ ⋯ −→ 0.

(3)

Here, themaps 𝛿𝑖 are the sumof the restrictionmaps on co-
homology obtained by dropping one term in all possible
ways; these are summedwith signs based on the placement
of the term you are dropping. Then I assert that

Gr𝑊𝑗 𝐻𝑗+𝑖
𝑐 (𝑋;ℚ) ≅ ker 𝛿𝑖

im 𝛿𝑖−1
,

where the “𝑐” subscript denotes compactly supported co-
homology. A justification for this assertion is summarized
in [CGP21, §5]; see the references therein.

Finally, to get from compactly supported to singular
cohomology, use Poincaré duality, which respects mixed
Hodge structures, on the smooth manifold 𝑋 . We get

Gr𝑊2𝑑−𝑗𝐻2𝑑−𝑗−𝑖(𝑋;ℚ) ≅ (Gr𝑊𝑗 𝐻𝑗+𝑖
𝑐 (𝑋;ℚ))∗,

where 𝑑 is the (complex) dimension of 𝑋 . (Exercises 7, 8,
9.)

Before going further, let’s remark that the prominence
of normal crossings compactifications in the presenta-
tion above is reflective of Deligne’s original treatment.
Deligne originally defined the weight filtration on the co-
homology groups of a smooth variety in terms of a fil-
tration on the logarithmic de Rham cohomology of the
variety, defined with respect to a smooth normal cross-
ings compactification—very roughly, allowing differential
forms to have prescribed simple poles along the compact-
ification. It has to be proven that this construction is inde-
pendent of choice of compactification, but that is not the
hardest part.
Just the combinatorics, please. Returning to the main
storyline, consider the chain complex (3) above in the case
𝑗 = 0. It becomes entirely combinatorial! What I mean is
that each 𝐻0(𝑌;ℚ), where 𝑌 is anything, just counts the
number of connected components in 𝑌 .

To drive home the point, let’s pause for an important
definition: the dual complex of 𝐷, also known as the bound-
ary complex of the pair 𝑋 ⊂ 𝑋 . What we mean is the
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combinatorial space obtained by taking a vertex for every
irreducible component 𝐷𝑖0 , an edge for every irreducible
component of a pairwise intersection 𝐷𝑖0 ∩ 𝐷𝑖1 , a triangle
for every irreducible component of a triple intersection,
and so on. Denote the boundary complex by Δ(𝑋 ⊂ 𝑋).
For example, the boundary complex of (ℂ∗)𝑛 ⊂ ℙ𝑛 is the
boundary of an 𝑛-simplex.

Assume here that 𝑋 is connected, purely for expository
ease, and look at (3) when 𝑗 = 0 again. When 𝑗 = 0, the
chain complex (3) is the reduced cochain complex of the bound-
ary complex Δ(𝑋 ⊂ 𝑋). Do you agree?

Dualizing, we have a canonical identification

Gr𝑊2𝑑𝐻2𝑑−𝑖(𝑋;ℚ) ≅ 𝐻𝑖−1(Δ(𝑋 ⊂𝑋);ℚ). (4)

We call the cohomology in the 2𝑑-graded piece of
𝐻∗(𝑋;ℚ), as in the left-hand side of (4), the top-weight-
cohomology of 𝑋 . (It is a fact that cohomology never ap-
pears in weight > 2𝑑. Indeed, Poincaré duality tells us that
the weight (2𝑑 − 𝑖) cohomology pairs with compactly sup-
ported cohomology in weight 𝑖.)

If you haven’t been following closely, here is the main
point distilled down, and without mentioning weight
filtrations. The left-hand side of (4) is a quotient of
𝐻2𝑑−𝑖(𝑋;ℚ), since after all it is the top associated graded
piece of a filtration thereon. Therefore we have established
a canonical surjection

𝐻2𝑑−𝑖(𝑋;ℚ) ↠ 𝐻𝑖−1(Δ(𝑋 ⊂𝑋);ℚ), (5)

from the cohomology of the algebraic variety 𝑋 , with an
appropriate degree shift, to the homology of the combina-
torial space Δ(𝑋 ⊂ 𝑋).

Distilling (5) into a mnemonic device: if you want to
produce lots of cohomology on the algebraic side, it’s enough to
produce lots of homology on the combinatorial side.

To close this section, here are two technical remarks.
First, for applications, it is important to be able to handle
the more general case of a normal crossings compactifica-
tion, which means that the boundary components are no
longer required to be smooth. Second, one needs to work
in the generality of smooth, separated Deligne-Mumford
stacks.

The first technical remark is actually heftier than the sec-
ond. Both generalizations are needed for our intended ap-
plication to the case 𝑋 = ℳ𝑔,𝑛 of moduli spaces of curves.

The Top-Weight Cohomology of ℳ𝑔,𝑛
The discussion in the previous section onweight filtrations,
applied to 𝑋 = ℳ𝑔,𝑛, says roughly that to produce rational
cohomology on ℳ𝑔,𝑛 in top weight, it is sufficient to pro-
duce homology in the dual complex of the boundary of
ℳ𝑔,𝑛.

Let’s get right to the point of this section: an im-
portant theorem of Abramovich-Caporaso-Payne gives an
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Figure 7. The graph complex 𝐺(1,3).

identification

Δ𝑔,𝑛 ≅ Δ(ℳ𝑔,𝑛 ⊂ ℳ𝑔,𝑛)
of (the link of) the tropical moduli space of curves with
the dual complex of the boundary of ℳ𝑔,𝑛 [ACP15]. In
other words:

The boundary complex ofℳ𝑔,𝑛 ⊂ ℳ𝑔,𝑛 can itself
be interpreted as a combinatorial moduli space:
the moduli space of tropical curves.

This shift in perspective has been quite useful for coming
up with applications such as the ones I will discuss next,
and are a source of new applications to moduli spaces
other than ℳ𝑔,𝑛.

To summarize, we have a canonical surjection

𝐻6𝑔−6+2𝑛−𝑖(ℳ𝑔,𝑛; ℚ) ↠ 𝐻𝑖−1(Δ𝑔,𝑛; ℚ).
This pushes our interest to a space Δ𝑔,𝑛 that appears to

be almost asmysterious asℳ𝑔,𝑛. Indeed,Δ𝑔,𝑛 is largely still
mysterious. But a recent theorem, obtained in collabora-
tion with S. Galatius and S. Payne, relates the homology of
Δ𝑔,𝑛 to a certain graph complex à la Kontsevich. This pushes
the mystery yet further into the territory of graph complexes,
which we discuss next.

Graph Complexes
A graph complex is an umbrella term for a chain (or cochain)
complex of vector spaces that is generated by graphs with
certain labels or decorations, and often with boundary (or
coboundary) map defined by 1-edge-contraction. There
are many different flavors of graph complexes, and they
have myriad connections to geometry. The most directly
relevant one here is a graph complex denoted 𝐺(𝑔,𝑛). It
is a marked version of a graph complex 𝐺(𝑔) first studied
by Kontsevich, related to invariants of even-dimensional
manifolds and deformations of the operad 𝑒𝑛 of little 𝑛-
disks, due to Boardman-Vogt and May, for even 𝑛.

To give you a feel for graph complexes, let me actually
define 𝐺(𝑔,𝑛). You can follow along using the example in
Figure 7, which is the case (𝑔, 𝑛) = (1, 3).
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For integers 𝑔, 𝑛 ≥ 0with 2𝑔−2+𝑛 > 0, the generators of
𝐺(𝑔,𝑛) as a rational vector space are triples (𝐺,𝑚, 𝜔), where
𝐺 is a connected (multi)graph of first Betti number 𝑔, 𝜔 is
a total order on the edge set of𝐺, and𝑚∶ {1, … , 𝑛} → 𝑉(𝐺)
is a marking function, such that every vertex has valence at
least 3. (To calculate valence, loops count twice at their
base vertex, and each marking counts once.) We impose a
relation (𝐺,𝑚, 𝜔) = ±(𝐺′, 𝑚′, 𝜔′) whenever there is an iso-
morphism of marked graphs (𝐺,𝑚) → (𝐺′, 𝑚′); the sign
depends on whether 𝜔 and 𝜔′ are related by an even or
odd permutation under that isomorphism. In particular,
if (𝐺,𝑚) has an automorphism that acts as an odd permu-
tation on the edge set, then (𝐺,𝑚, 𝜔) = 0, and it never
appears in our graph complex. For example, graphs with
parallel edges are always zero in𝐺(𝑔,𝑛), since interchanging
two parallel edges is an odd permutation on the edge set.
𝐺(𝑔,𝑛) is graded by number of edges; to be very precise,

a graph with 𝑒 edges shall have homological degree 𝑒 −
2𝑔. The boundary map 𝜕 is a certain signed sum of 1-edge-
contractions. The signs ensure that 𝜕2 = 0. For details, you
can see [CGP]; or you can probably even decipher them
directly from the example in Figure 7.

Galatius, Payne, and I proved that

𝐻𝑘+2𝑔−1(Δ𝑔,𝑛; ℚ) ≅ 𝐻𝑘(𝐺(𝑔,𝑛)) (6)

for each 𝑘. (You should ignore the degree shift by 2𝑔 − 1;
it’s purely a matter of the grading convention.) This the-
orem is not obvious, but its format is not implausible,
at least after the fact. Indeed, the left-hand side features
a space of metric graphs, while the right-hand side fea-
tures a finite chain complex generated by graphs, suggest-
ing cellular homology. Indeed, we formulate our proof
by introducing the formalism of a cellular homology the-
ory for symmetric Δ-complexes: roughly like CW complexes,
but with self-identifications of simplices along automor-
phisms allowed.

For example, the graph complex𝐺(1,3) shown in Figure 7
has reduced homologyℚ in degree 1. Indeed, the “triangle
of marked points” is a nonzero cycle, since every 1-edge-
contraction of it has parallel edges and is therefore zero in
𝐺(1,3). This calculation is then consistent with the fact, not
too hard to check, that Δ1,3 ≃ 𝑆2.

At this point in the article, we have now established a
chain of identifications under which homology classes in
𝐺(𝑔,𝑛) produce classes of cohomology (in top weight) in
ℳ𝑔,𝑛. But how, explicitly? I’ll have to refer you to [CGP21]
for the details on how to construct explicitly a homology
class in ℳ𝑔,𝑛 from a cocycle on the tropical moduli space.

In the next section, we will deduce some notable conse-
quences of (6) as far as the cohomology of ℳ𝑔 and ℳ𝑔,𝑛
is concerned. But here is an aside to close this section.
It’s worth mentioning that historically, a different type
of graph complex, the complex of ribbon graphs (graphs

decorated with cyclic orderings of edges at each vertex),
was used to study the cohomology of ℳ𝑔,𝑛 for 𝑛 > 0:
ℳ𝑔,𝑛×ℝ𝑛

>0 has a well-known orbifold cell decomposition,
due to Strebel, Penner, and others, with cells indexed by
ribbon graphs of genus 𝑔 with 𝑛 punctures. The connec-
tion we make here, via degenerations and top-weight co-
homology, is different. (Note, however, that a framework
relating these two ways of associating graph complexes
to ℳ𝑔,𝑛 has been proposed by Andersson-Willwacher-
Živković [AWŽ20], and Kalugin has made progress in a re-
cent preprint.)

It is greatly fascinating that graph complexes of vari-
ous flavors arise quite so often in geometry, topology, and
physics.

The Grothendieck-Teichmüller Lie Algebra
Graph complexes have been studied intensively in recent
years, including in remarkable work of T. Willwacher
[Wil15], who finds a copy of the Grothendieck-
Teichmüller Lie algebra 𝔤𝔯𝔱1 in the cohomology of (un-
marked) graph complexes. More precisely, the dual graph
complex

𝖦𝖢 =∏
𝑔≥2

Hom(𝐺(𝑔), ℚ)

has a Lie algebra structure (the differential of this cochain
complex becomes “bracket with an edge”). Willwacher
proves that there is an isomorphism of Lie algebras

𝐻0(𝖦𝖢) ≅ 𝔤𝔯𝔱1.
This theorem is crucial to our story. Brown proved in

2012 [Bro12] that there is an injection

𝔽̂Lie(𝜎3, 𝜎5, 𝜎7, …) ↪ 𝔤𝔯𝔱1. (7)

The left-hand side is (the degree completion of) the
graded Lie algebra freely generated in degrees 3, 5, 7, … . The
Deligne-Drinfeld-Ihara conjecture states that this is an iso-
morphism. But in any case, the fact of the injection (7)
means, of course, that the dimensions of the graded pieces
of the right-hand side grow at least as fast as those of
the left-hand side. In fact, one deduces that the degree 𝑔
graded piece grows faster than 𝛽𝑔 for any 𝛽 < 𝛽0, where
𝛽0 ≈ 1.3247…. (This constant 𝛽0 appears mysterious when
presented out of the blue. It is the real root of 𝑡3−𝑡−1 = 0,
which is a cubic polynomial related in an appropriate way
to the Poincaré series 𝑡3/(1 − 𝑡2) of the graded vector space
⟨𝜎3, 𝜎5, 𝜎7, …⟩. See [CGP21] if you really want the details of
this calculation.)

The Grothendieck-Teichmüller Lie algebra was intro-
duced by Drinfeld in 1990, and explicitly described via
generators and relations by Furusho in 2010. It is related
to other parts of mathematics: multiple zeta values, little
2-disk operads, …. But the connection to 𝐻∗(ℳ𝑔; ℚ) that
we’re in the process of describing seems to be new. I think
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it’s fair to say that we as a community do not fully under-
stand what 𝔤𝔯𝔱1 is doing in the cohomology ofℳ𝑔, though
we would hope to be able to say something more soon.

Back to the Cohomology of ℳ𝑔
From the connections from moduli spaces of curves to
boundary complexes to tropical moduli spaces to Kontse-
vich graph complexes to the Grothendieck-Teichmüller Lie
algebra, all described throughout this article, we finally de-
duce the following theorem.

Theorem 4 ([CGP21]). We have

dim𝐻4𝑔−6(ℳ𝑔; ℚ) > 𝛽𝑔 + constant

for any 𝛽 < 𝛽0, where 𝛽0 ≈ 1.3247… is the real root of 𝑡3−𝑡−
1 = 0.

This is a previously unknown source of cohomology,
growing at least exponentially, and in fact it appears in top
weight. A few remarks are in order. First of all, this theo-
rem was not expected. Rather, a conjecture of Kontsevich
from about 25 years ago, along with a more recent conjec-
ture of Church-Farb-Putman, predicted eventual vanishing
of these cohomology groups. Both of these conjectures are
refuted by the theorem above.

The degree 4𝑔−6 in the theorem is also worth a remark.
Harer proved in 1986 that the virtual cohomological dimen-
sion (vcd) of ℳ𝑔 is 4𝑔 − 5. In case the definition is unfa-
miliar, you can use the following as a placeholder: “ℳ𝑔
successfully masquerades as a space of dimension 4𝑔 − 5,
from the point of view of cohomology with coefficients
in any local system of ℚ-vector spaces.” In particular, the
rational cohomology of ℳ𝑔 must vanish in degree above
4𝑔 − 5.

Moreover, it is known from theorems of Harer,
Church-Farb-Putman, and Morita-Sakasai-Suzuki that
𝐻4𝑔−5(ℳ𝑔; ℚ) = 0. This is no contradiction to the
vcd, since the statement pertains only to constant ℚ-
coefficients. (Indeed, Harer proves that 𝐻4𝑔−5(ℳ𝑔; St𝑔 ⊗
ℚ) ≠ 0, where St𝑔 = 𝐻2𝑔−2(𝐶𝑔; ℤ) is the Steinberg module.
Here, 𝐶𝑔 denotes the curve complex.) This is all to say that
the theorem above finds exponential growth in the next
highest degree: just one degree below the vcd.

There are yet more surprising consequences for the co-
homology of ℳ𝑔. An unpublished 2001 manuscript of
Bar-Natan–McKay undertakes computations of homology
of several graph complexes, including 𝐺(𝑔). Bar-Natan–
McKay’s computations, translated back through tropical
moduli spaces and boundary complexes over to the top-
weight cohomology of ℳ𝑔, imply that

𝐻15(ℳ6; ℚ), 𝐻23(ℳ8; ℚ), and 𝐻27(ℳ10; ℚ) are nonzero.
These mark the next progress, since Tommasi’s 2005 arti-
cle, on the problem that I mentioned earlier in this article:

of finding elusive, yet abundant, odd-degree cohomology
groups of ℳ𝑔.

By the way, it is fun to remark that Bar-Natan-McKay call
𝐺(𝑔) “the basic example”—it is 𝑏𝐻 in their notation—and
note that

“While simplest to define, Basic Graph Cohomol-
ogy does not appear in nature… 𝑏𝐻 is simpler than
its twist 𝐻, defined below. Why is it that 𝐻 is
related to so many things while 𝑏𝐻 is related to
none? What is 𝑏𝐻?”

By this point in the present article, the geometric signifi-
cance of 𝑏𝐻 as it relates to ℳ𝑔 is now evident.

Moreover, the computations of Bar-Natan–McKay
have more recently been extended by computations of
Willwacher, as reported in [KWŽ17]. These computations
would imply that

𝐻37(ℳ9; ℚ) and 𝐻31(ℳ10; ℚ) are nonzero—

except for the fact that the calculations there are only car-
ried out in floating point arithmetic, due to their size. So
they cannot be considered completely rigorous! So for
now, these two instances of nonzero cohomology groups
in odd degree are, officially, no more than strong suspi-
cions.

There are interesting consequences and computations
for the spacesℳ𝑔,𝑛 which I haven’t yet mentioned, includ-
ing a proof of a formula for the 𝑆𝑛-equivariant top-weight
Euler characteristic of ℳ𝑔,𝑛, in joint work of mine with
Faber, Galatius, and Payne. This intricate formula—which
is lovely to stare at, but too long to print here—was con-
jectured by Zagier in 2009, who arrived at it by looking at
the output of remarkable computer calculations that Faber
initially achieved up to 𝑔 = 8. (On the other hand, Za-
gier claims no memory of the conjecture now, as I under-
stand.) Actually, another formula for what turns out to
be the same data was previously obtained by Tsopméné-
Turchin [STT18], in the context of studying the topology
of spaces of string links. However, it is still a mystery as to
how to derive either formula from the other!

These topics would take us too far past the space limit,
so I refer to [CFGP,CGP] and the discussions therein.

Exercises
1. The tangent lines to the unit circle 𝑥2 + 𝑦2 = 1 form

a loop inside the moduli space of lines in ℝ2. Is this
loop nullhomotopic? What about when considered
inside ℝℙ2?

2. Recall that the automorphism group of ℙ1 is PGL2(ℂ),
acting on ℙ1 by multiplication. Verify that for any
three distinct points 𝑎, 𝑏, and 𝑐 of ℙ1, and any three
distinct points 𝑎′, 𝑏′, and 𝑐′, there is a unique auto-
morphism of ℙ1 taking 𝑎, 𝑏, 𝑐 to 𝑎′, 𝑏′, 𝑐′ in that order.
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3. Show that the cross ratio defines an (algebraic) map

{quadruples of distinct points in ℙ1}⟶ (ℙ1 − {0, 1,∞});

and the cross ratio is preserved under the action of an
automorphism of ℙ1.

4. For each 𝑛 > 3, construct ℳ0,𝑛 as a complement of
(𝑛−1
2
) hyperplanes in ℙ𝑛−3.

5. Argue that (ℙ1, 𝑝1, … , 𝑝𝑛) is stable if and only if 𝑛 ≥ 3.
6. Draw the analogues to Figure 3 for (𝑔, 𝑛) = (1, 3).
7. As a sanity check, recover the fact that 𝐻𝑘(𝑋;ℚ) is sup-

ported in weights 𝑘, … , 2𝑘 for a smooth variety 𝑋 .
8. Compute each Gr𝑊𝑗 𝐻𝑘((ℂ∗)𝑛; ℚ).
9. Argue that𝐻𝑘(𝑋;ℚ) is concentrated in weight 2𝑘 if 𝑋 is a

hyperplane arrangement complement in ℙ𝑛. Concen-
trated in weight 2𝑘means exactly thatGr𝑊𝑗 𝐻𝑘(𝑋;ℚ) ≠
0 only if 𝑗 = 2𝑘. Start with the case of transverse
arrangements, in which each subcollection of hyper-
planes intersects in expected dimension.
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