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In the early part of the 20th century huge advances were
made in theoretical physics that have led to vast mathe-
matical developments and exciting open problems. Ein-
stein’s development of relativistic theory in the first decade
was followed by Schrödinger’s quantum mechanical the-
ory in 1925. Einstein’s theory could be used to describe
bodies moving at great speeds, while Schrödinger’s theory
described the evolution of very small particles. Both mod-
els break down when attempting to describe the evolution
of small particles moving at great speeds. In 1927, Paul
Dirac sought to reconcile these theories and introduced
the Dirac equation to describe relativistic quantum me-
chanics.

Dirac’s formulation of a hyperbolic system of partial
differential equations has provided fundamental models
and insights in a variety of fields from particle physics and
quantum field theory to more recent applications to nano-
technology, specifically the study of graphene.
Dirac equation. To formulate the Dirac equation consis-
tent with a quantum mechanical interpretation, the wave
function at time 𝑡 = 0 should determine the wave func-
tion at all times, and hence the model needs to be first
order in time [Tha92]. In addition, it should conserve
the 𝐿2 norm of solutions. Dirac combined the quantum
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mechanical notions of energy and momentum operators
𝐸 = 𝑖ℏ𝜕𝑡, 𝑝 = −𝑖ℏ∇𝑥 with the relativistic Pythagorean en-
ergy relation 𝐸2 = (𝑐𝑝)2+(𝐸0)2, where 𝐸0 = 𝑚𝑐2 is the rest
energy.

Inserting the energy and momentum operators into the
energy relation leads to a Klein–Gordon equation

−ℏ2𝜓𝑡𝑡 = (−ℏ2Δ𝑥 +𝑚2𝑐4)𝜓.
The Klein–Gordon equation is second order, and does not
have an 𝐿2-conservation law. To remedy these shortcom-
ings, Dirac sought to develop an operator1

𝐷𝑚 = −𝑖𝑐ℏ𝛼1𝜕𝑥1 − 𝑖𝑐ℏ𝛼2𝜕𝑥2 − 𝑖𝑐ℏ𝛼3𝜕𝑥3 +𝑚𝑐2𝛽
which could formally act as a square root of the Klein–
Gordon operator, that is, satisfy𝐷2

𝑚 = −𝑐2ℏ2Δ+𝑚2𝑐4. This
is possible if the coefficients 𝛼𝑗 , 𝛽 are 4 × 4 matrices satis-
fying 𝛼2𝑗 = 𝛽2 = 𝐼 and the anticommutation relationship
(for 𝑗 ≠ 𝑘)

𝛼𝑗𝛼𝑘 = −𝛼𝑘𝛼𝑗 , 𝛼𝑗𝛽 = −𝛽𝛼𝑗 .
Typically the Pauli matrices,

𝜎1 = [ 0 −𝑖
𝑖 0 ] , 𝜎2 = [ 0 1

1 0 ] , 𝜎3 = [ 1 0
0 −1 ] ,

are used to formulate the Dirac system

𝑖ℏ𝜓𝑡(𝑥, 𝑡) = ( − 𝑖𝑐ℏ
3
∑
𝑘=1

𝛼𝑘𝜕𝑥𝑘 +𝑚𝑐2𝛽)𝜓(𝑥, 𝑡), (1)

where

𝛽 = [ 𝐼ℂ2 0
0 −𝐼ℂ2

] , 𝛼𝑖 = [ 0 𝜎𝑖
𝜎𝑖 0 ] .

1For concreteness, we only consider the case of three spatial dimensions, that is,
when 𝑥 ∈ ℝ3.
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For notational convenience we choose physical units
𝑐 = ℏ = 1, and denote ∑3

𝑘=1 𝛼𝑘𝜕𝑥𝑘 = 𝛼 ⋅ ∇, to write the
equation as

𝑖𝜓𝑡(𝑥, 𝑡) = (−𝑖𝛼 ⋅ ∇ + 𝑚𝛽)𝜓(𝑥, 𝑡). (2)

By the representation (2), it is clear that the Dirac op-
erator does not act on a complex-valued wave function as
the Schrödinger operator does, but rather acts on spinor
fields. That is, the solution to (2) is a ℂ4-valued function.

In contrast to the Schrödinger model, in which the free
operator 𝐻0 = −Δ is nonnegative, the free Dirac operator
𝐷𝑚 = −𝑖𝛼 ⋅ ∇ + 𝑚𝛽 is unbounded both above and below.
In particular, the spectrum is 𝜎(𝐷𝑚) = (−∞,−𝑚] ∪ [𝑚,∞).

These peculiarities lead to an ambiguity in the physical
interpretation of the solution 𝜓. One interpretation is that
the solution couples the evolution of a quantum particle
with its antiparticle, namely coupling the evolution of elec-
trons and positrons [Tha92]. This interpretation predicted
the existence of the positron before its discovery in 1932.

The unboundedness in both directions creates chal-
lenges in the analysis of perturbations. For nonlinear per-
turbations, the concentration-compactness method fails
for Dirac as it relies on the operator being bounded below.
Moreover, one cannot define the Friedrichs extension for
symmetric perturbations of Dirac operators since they are
not bounded below [RS79].
The Dirac equation as a dispersive PDE. The Dirac equa-
tion is an example of a dispersive partial differential equa-
tion. By dispersive, we mean equations for which different
frequency components of the initial data (wave) propagate
with different velocities. We can envision the solution as
being made up of wave packets, where the frequency of vi-
bration is directly related to the speed at which the wave
packet moves.

A model dispersive PDE is the free Schrödinger equa-
tion:

𝑖𝜓𝑡 = −Δ𝜓. (3)

A plane wave of the form 𝜓(𝑥, 𝑡) = exp(𝑖𝑘 ⋅ 𝑥 − 𝑖𝜔𝑡) for-
mally solves the equation provided that the “dispersion
relation,” 𝜔 = |𝑘|2, holds. Writing exp(𝑖𝑘 ⋅ 𝑥 − 𝑖𝜔𝑡) =
exp(𝑖𝑘 ⋅ (𝑥 − 𝑘𝑡)), this relationship may be interpreted as
saying the speed of the wave is equal to the frequency of
vibration.

Using Fourier transform techniques, we can represent
the initial data 𝜓(𝑥, 0) = 𝑓(𝑥) as a superposition of plane
waves exp(𝑖𝑘 ⋅ 𝑥) for a broad class of initial data. Now,
the dispersion relation dictates that higher frequency (|𝑘|
large) portions of the solution move more quickly than
lower frequency portions of the solution. A by-product is
that a concentrated initial profile 𝑓(𝑥) will spread out, be-
coming smaller and smoother in some sense. The smooth-
ing effect is more subtle compared to parabolic equations

such as the heat equation since the linear evolution pre-
serves the 𝐿2-based Sobolev norms. Various quantifica-
tions of this decay and smoothing for linear equations are
useful in the study of nonlinear counterparts. Heuristi-
cally, for equations with power nonlinearities the nonlin-
ear terms become smaller compared to the linear terms
due to the decay.

The best way to measure this spread is to use the Fourier
transform techniques to represent the solution of (3) as a
convolution integral. For 𝑥 ∈ ℝ𝑛,

𝜓(𝑥, 𝑡) = (−4𝜋𝑖𝑡)−
𝑛
2 ∫

ℝ𝑛
𝑒𝑖|𝑥−𝑦|2/4𝑡𝑓(𝑦) 𝑑𝑦. (4)

Using (4), one can see the global dispersive estimate

‖𝑒𝑖𝑡∆𝑓‖𝐿∞𝑥 ≤ 𝐶𝑛|𝑡|−
𝑛
2 ‖𝑓‖𝐿1𝑥 .

This 𝐿1 → 𝐿∞ bound reflects the dispersion present in the
Schrödinger equation, since the sup norm decays in time
as the waves of varying frequencies spread out in space.
These estimates can be used to obtain Strichartz estimates
of the form

‖𝑒𝑖𝑡∆𝑓‖𝐿𝑞𝑡 𝐿𝑟𝑥 ≤ 𝐶‖𝑓‖𝐿2𝑥
for admissible exponents 𝑞, 𝑟 ≥ 2, (𝑞, 𝑟, 𝑛) ≠ (2,∞, 2), with
2
𝑞
= 𝑛( 1

2
− 1

𝑟
).

Strichartz estimates were first obtained by Strichartz via
Fourier restriction theory of Stein. Later, it was established
that they can be obtained using 𝐿1 → 𝐿∞ estimates. These
mixed space-time estimates provide another way to quan-
tify the dispersive nature of the equation, and are ubiqui-
tous in the study of nonlinear equations.

One can also measure the dispersion via smoothing es-
timates. Since a wave packet with frequency 𝑘 moves with
speed∼ |𝑘| it spends at most∼ |𝑘|−1 units of time on a ball
of radius one. Averaging in time implies the Kato smooth-
ing estimate

‖⟨𝑥⟩−
1
2−𝜖(−Δ)

1
4 𝑒𝑖𝑡∆𝑓‖𝐿2𝑡,𝑥 ≤ 𝐶‖𝑓‖𝐿2𝑥 .

This estimate can be interpreted to say that on average the
solution is half a derivative smoother than the initial data.

The dispersion in the Dirac equation is weaker than
that in the Schrödinger due to the hyperbolic nature of
the equation. Since the square of the free Dirac operator
𝐷2
𝑚 = −Δ + 𝑚2 is a diagonal system of Klein–Gordon op-

erators, there is finite speed of propagation and the large
frequency behavior of solutions does not travel arbitrarily
fast as in the Schrödinger evolution. This leads to weaker
time decay and loss of derivatives in dispersive estimates.
Linear perturbations. To account for particle interactions
or external electromagnetic fields in three dimensions, one
perturbs (1) with a 4 × 4 matrix-valued potential, i.e.,

𝑖𝜓𝑡 = (𝐷𝑚 + 𝑉)𝜓. (5)
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For simplicity, we will assume that 𝑉 is Hermitian. Un-
der mild decay and local singularity assumptions on 𝑉
the perturbed Dirac operator 𝐻 ∶= 𝐷𝑚 + 𝑉 is essentially
self-adjoint, and 𝜎𝑒𝑠𝑠(𝐻) = 𝜎(𝐷𝑚) by Weyl’s Theorem. In
contrast to other dispersive equations, such perturbations
can produce infinitely many eigenvalues in the spectral
gap (−𝑚,𝑚) [Tha92]. Faster decay of the potential en-
sures there are only finitelymany eigenvalues [EGT19]. See
[GM01] for a more thorough discussion of further spectral
issues.

Dispersive estimates discussed in the previous section
for (5) do not hold in general if the operator 𝐻 has eigen-
values. One can project onto the continuous spectrum to
recover dispersive estimates, though threshold eigenvalues
or resonances (at energies 𝜆 = ±𝑚) are known to affect the
time decay [EGT19].

One can study the perturbed evolution through a gener-
alized eigenfunction expansion, or through the resolvent
operators and functional calculus techniques. The free re-
solvent operators are defined by ℛ0(𝑧) = (𝐷𝑚 − 𝑧)−1 for
𝑧 ∈ ℂ ⧵ 𝜎(𝐷𝑚). Recalling that 𝐷𝑚 = −𝑖𝛼 ⋅ ∇ +𝑚𝛽, and the
the anticommutation relations of the Pauli matrices, we
see that 𝐷2

𝑚 = −Δ +𝑚2, and

(𝐷𝑚 − 𝜆)(𝐷𝑚 + 𝜆) = −Δ +𝑚2 − 𝜆2.
Formally, this leads us to the relationship

ℛ0(𝜆) = (𝐷𝑚 + 𝜆)𝑅0(𝜆2 −𝑚2), (6)

where 𝑅0(𝑧) = (−Δ − 𝑧)−1 is the Schrödinger resolvent.
By Agmon’s limiting absorption principle for Schrödinger
operators, we can define the limiting operators as 𝑧 ap-
proaches the essential spectrum from the upper and lower
half plane.

In the massive case, when 𝑚 > 0 for |𝜆| close to 𝑚, the
dominant contribution of the Dirac resolvent behaves like
the Schrödinger resolvent. This leads to a generic time-

decay rate of size |𝑡|−
3
2 in three spatial dimensions. When 𝜆

is away from the threshold energies ±𝑚, solutions behave
like solutions to a Klein–Gordon equation; hence smooth-
ness of the initial data is required to obtain a time-decay.
In the massless case, 𝑚 = 0, the equation behaves like the
wave equation which has decay rate |𝑡|−1 in ℝ3.

Although the relationship between the resolvents, (6),
leads one to expect that there should be analogous results
for the dynamics of solutions to the Dirac equation to
those known about the Schrödinger equation, at least at
the linear level, the analysis of the Dirac equation presents
many nontrivial technical challenges.

Perturbations of linear differential operators with the
Coulomb potential appear naturally in many areas of
physics. For the Dirac operator in ℝ3 the Coulomb po-
tential takes the form 𝑉(𝑥) = 𝛾

|𝑥|
𝐼4 models electric and/or

gravitational interaction between the electron and proton

in hydrogenic atoms. The gradient scales like
1
|𝑥|

, so the

Coloumb potential is critical for the Dirac operator. The
coupling constant 𝛾 determines whether the correspond-
ing operator is well-defined or not. In fact, 𝐷𝑚 + 𝛾

|𝑥|
𝐼4 is

essentially self-adjoint if and only if |𝛾| ≤ √3
2

[Tha92].
A similar situation occurs for the Schrödinger opera-

tor with inverse square potential, −Δ + 𝛽
|𝑥|2

. This opera-

tor is essentially self-adjoint in ℝ3 if 𝛽 ≥ 3
4

[RS79]. For

− 1
4
≤ 𝛽 < 3

4
, one can define Friedrichs extension since

−Δ + 𝛽
|𝑥|2

remains a positive operator. Since the Dirac op-

erator is unbounded below, the Friedrichs extension can
not be defined. There are infinitely many self-adjoint ex-

tensions if |𝛾| > √3
2
. However, when

√3
2
< |𝛾| < 1, there

is a unique distinguished self-adjoint extension analogous
to the Friedrichs extension; see, e.g., [Gal17].
Nonlinear models. Often a nonlinear Schrödinger equa-
tion is formed by adding a nonlinear term:

𝑖𝑢𝑡 = −Δ𝑢 ± 𝑓(𝑢)𝑢,
typically of the form 𝑓(𝜏) = |𝜏|𝛾. There are more choices
for how to create the nonlinearity out of the ℂ4-valued
spinor. The Soler model from quantum field theory is

𝑖𝜓𝑡 = 𝐷𝑚𝜓 − 𝑓(𝜓∗𝛽𝜓)𝜓, (7)

with 𝑓 real-valued satisfying 𝑓(0) = 0, 𝜓∗ = 𝜓𝑇 , and 𝛽
is the matrix used in defining the Dirac operator. One-
dimensional analogues of this model include the Gross–
Neveu and massive Thirring equations for scalar and vec-
tor self-interaction, respectively. The Soler model is well-
posed provided the initial data has enough Sobolev regu-
larity, 𝜓(𝑥, 0) ∈ 𝐻𝑠(ℝ𝑛) for 𝑠 > 𝑛

2
[BC19]. The Thirring

and Soler (with 𝑓(𝜏) = 𝜏) nonlinearities are Lorentz co-
variant and exhibit a null-structure, comparable to other
geometric nonlinear wave equations.

Scattering results, that is, the series of conclusions that
large-time behavior of solutions approaches that of a free
wave, are known for (7) with 𝑓(𝜏) = 𝜏 in low dimensions
provided the initial data is small in an appropriate Sobolev
norm [BH15].

A solitary wave is a solution of (7) of the form

𝜓(𝑥, 𝑡) = 𝜙(𝑥)𝑒−𝑖𝜔𝑡,
where𝜔 is a real-valued parameter and 𝜙 solves a stationary
nonlinear Dirac equation. Such solitary waves are known
to exist for broad classes of nonlinearities, but the stabil-
ity results are less developed. Linearizing about such sta-
tionary solutions leads to linear equations of the form con-
sidered in (5). Spectral stability is known for classes of
nonlinearity 𝑓 that are polynomial-like [BC19]. Stronger
stability results, such as orbital and asymptotic stability of
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these solutions for general 𝑓 is thus far incomplete and less
developed than other dispersive equations [Dod19]. One
cannot use the concentration-compactness arguments that
are standard for other dispersive equations [NS11], among
other challenges. Although, somehow unexpectedly, there
seems to be a lack of blow-up phenomenon in nonlinear
Dirac equations which commonly occurs in other disper-
sive nonlinear models [BC19].
Honeycomb potentials. Finally, we briefly note the ap-
pearance of a two-dimensional Dirac equation in the study
of waves in periodic structures inspired by the study of
graphene, a material with layers of hexagonal lattices of
carbon atoms. The evolution of waves in graphene is mod-
eled by a two-dimensional Schrödinger equation −Δ + 𝑉
with a periodic “honeycomb” potential, i.e., 𝑉 is periodic,
even, and invariant under 2𝜋/3 rotations. In contrast to
the previous discussion, 𝑉 does not decay as |𝑥| → ∞.

When decomposing the solution of the Schrödinger
equation into Floquet-Bloch states there are Dirac points
of the honeycomb structure, where the dispersion sur-
faces intersect. This leads to an intersection of succes-
sive spectral energy bands at some energy 𝜇 and the time-
independent operator −Δ + 𝑉 − 𝜇 has a two-dimensional
nullspace spanned by Φ1(𝑥), Φ2(𝑥). A wave-packet spec-
trally localized at this energy is of the form (with 𝛿 a small
parameter)

𝜓(𝑥, 𝑡) ≈ 𝑒𝑖𝜇𝑡
2
∑
𝑗=1

𝛿𝛼𝑗(𝛿𝑥, 𝛿𝑡)Φ𝑗(𝑥),

where 𝛼𝑗 are the amplitudes. Writing 𝛼 = (𝛼1, 𝛼2) ∈ ℂ2,
the evolution of 𝛼 is governed by a two-dimensional Dirac
equation with zeromass. The dynamics of such wave pack-
ets is believed to be responsible for the remarkable prop-
erties of graphene [FW14].
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