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Mathematical biology is unusual as a discipline in being
defined by its application area, rather than by the type of
mathematics involved. We are now in the era of mass data
gathering and cheap computation, revealing the messy
details of biological systems with unprecedented clarity.
Mathematical biologists are increasingly required to con-
front the essential randomness and uncertainty of the nat-
ural world; a challenge that brings with it the opportuni-
ties to ask and answer new questions, sometimes provid-
ing surprisingly simple explanations for complex natural
phenomena. In this article we survey the growing field of
stochastic mathematical biology, revealing the surprising
explanatory power of randomness in biology, and high-
lighting developments and challenges across a spectrum
of mathematical areas.
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Three Good Reasons

Modelling biological systems can be tricky. Feedback
loops operating across vastly disparate spatial and tempo-
ral scales give rise to the huge richness and complexity of
the living world. The process of abstracting from reality
to a model involves removing much of this intricate de-
tail. The more detail that has been discarded, the more the
model is said to be “simple.” The more simple a model is,
the better chance we have of analysing it with mathematics
to make predictions, gain deep understanding, and derive
general principles. Mathematical biologists face the chal-
lenge of constructing models that are simple enough to be
amenable to analysis, but that still retain the essential fea-
tures of the biological system under study.

There is one particularly powerful abstraction that is
performed routinely and often subconsciously: we replace
quantities with our expectation of those quantities, often
without regard for the error. This has entered the public
consciousness recently with attention on the basic repro-
ductive number of COVID-19. Any single transmission
of the coronavirus is governed by a sequence of events
across vastly different scales (subcellular to intercontinen-
tal) which is so complicated as to be completely unpre-
dictable. Yet these personal stories are aggregated at a pop-
ulation level to produce a single number quantifying the
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rate of new infections and thus the exponential growth of
the disease. When mathematical models are used to in-
form decision-making affecting lives and livelihoods, we
face a challenging task to publicly justify the chosen mod-
els and to explain the uncertainties in our predictions.

By relaxing the assumption of perfect predictability and
embracing stochastic thinking, mathematical biology can
better model biological systems, can expand the breadth
and sophistication of predictions made, and can expose
the counterintuitive ways that randomness brings emer-
gent order to the natural world. These are three good rea-
sons to study stochastic mathematical biology which we
explore here.

First, all biological systems are inherently stochastic.'
Plant and animal cells are complicated and crowded en-
vironments, with myriad competing and complementary
processes and events taking place, where precise measure-
ments are difficult to make. Births and deaths of organ-
isms, which ultimately drive the dynamics of whole popu-
lations and the evolution of species, are unpredictable in
their timing, causes, and consequences. Interactions be-
tween species determine the fate of entire ecosystems, but
they are both notoriously difficult to quantify and contin-
gent on unpredictable environmental factors. Empirical
scientists deal with these uncertainties using statistics. For
mathematical modellers, the correct proxy is the use of
random variables to replace unknowns. In this way un-
certainty can be carried forward through the model in a
quantifiable way.

Second, stochastic models offer the possibility of inter-
rogating a rich set of questions including: (i) what is the
distribution of possible outcomes or future states?; (ii) what is
the probability of transitioning between two distant states?; and
(iii) how long must we wait for a certain event to occur? In a
biological context, the answers can have particular signifi-
cance, such as: (i) how many species will be supported in an
ecosystem?; (ii) what is the probability that cancerous epithelial
cells become migratory?; or (iii) over what time frame do we ex-
pect a mutation to occur in a particular gene? A great deal of
the power of stochastic mathematical biology comes from
the ability to formulate and answer such questions.

Third, we note that the inclusion of stochastic effects in
simple models can often enhance their explanatory power.
In what follows, we showcase several examples from a
range of different biological applications. We will take care
to explore the different forms of stochasticity that may ap-
pear in a model. One important example is demographic
noise: randomness in the timing of individual events that
can play out at the population level to dramatically affect

'From the Greek stokhastikos meaning “guessable,” we use the word stochastic
to encompass randomness in parameter values, unknown initial data, the tim-
ing of and outcome of events, the predictions made by models, and any other el-
ement of uncertainty.
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system behaviour. Another is randomness in model pa-
rameters, in which incomplete information about the en-
vironment or interactions within a system give rise to an
ensemble of potential realisations whose statistics must be
calculated.

Many different areas of mathematics have important
contributions to make in this growing field; the remain-
der of this paper is organised by mathematical discipline
to emphasise this point, and we pose open questions in
each. A few key recent references are highlighted through-
out; a more comprehensive reading list for interested re-
searchers is available online [KCR21]. We conclude by dis-
cussing further exciting directions for study, including de-
velopments that may come with the synthesis of different
forms of stochasticity within the same model.

Probability

The construction and analysis of probabilistic models of
populations was pioneered around the turn of the 20th
century by early proponents of theoretical population ge-
netics, who were keen to understand the factors driving
changes in gene-frequencies.’ It is perhaps no surprise that
many of these researchers were in fact statisticians, includ-
ing Ronald Fisher and Sewall Wright, although other math-
ematicians such as the self-affirmed number theorist G. H.
Hardy were also influential [KCR21]. As a result, the im-
portance of demographic stochasticity (though not named
in these terms at the time) was appreciated in theoretical
population genetics from its inception. It took decidedly
longer for these ideas to filter out into the realms of ecol-
ogy and biochemistry.

The most simple probabilistic population models are
branching processes, which keep track of the family tree of a
growing population. In the famous Galton-Watson pro-
cess, the number of individuals in generation n + 1 is
given by a sum of independent and identically distributed
random variables, one for each member of generation n.
Nearly 150 years from its inception, probabilists are still
finding interesting things to say about this model, which
is a cornerstone of applied probability theory. The analysis
of more complex branching processes (for example involv-
ing multiple types, or changing environments) gives im-
portant insights into the behaviour of biological growth of
various kinds, including the early development of disease
outbreaks [BD95], or metastatic cancer [YJB*10].

The main strategy in the analysis of branching pro-
cesses is to exploit the independence of different branches
of the tree. This is also the main limitation, as the

2Sadly, some of this early work is linked to the racist and ableist eugenics move-
ment. Institutions (arguably including mathematics as a whole) whose repu-
tations have long benefitted by association with the groundbreaking theoretical
contributions made at the time now face an awkward reckoning with the ugly
historical context.
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theories developed diverge from reality at the point that
interaction between branches becomes important. Pos-
sible examples of such interactions include competition
for limited resources in the growth of populations, or
self-reinforcement leading to choice-based swarming be-
haviour (e.g., foraging in ant colonies).

Challenge: Develop tools to compute the long-
time behaviour of locally and non-locally interacting
branching processes.

Statistical Mechanics

When populations are naturally limited to a known size, a
different probabilistic construction is preferred. Suppose
one is interested in a population of discrete “individuals”
of one or more types, represented by a “state vector” of
integers n, encoding the number of individuals of each
type at a given moment. These “types” could be species
abundances [ZGG*19] (e.g., the number of foxes and rab-
bits), genotypes [SST20] (i.e., the number of individuals
carrying a specific genetic variant), protein molecules in a
cell [JG20] (which can exist at very low numbers), or any
number of other biological populations of interest. We
could then consider the time-evolution of the probability
P,(t) of being in some state n at time ¢:

B = S )Py 0~ T P ©L (1)

n'#n
where T(n’|n) are transition rates that govern the probabil-
ity per unit time of transitioning from a state n’ to a state n.
Although equation (1) (known as Kolmogorov’s forward
equation, or the master equation) describes a continuous
time process on a discrete state space, discrete time and
continuous state space descriptions can be set up analo-
gously. Models of this type are often referred to as Individ-
ual Based Models (IBMs) as they take account of the inter-
actions between discrete individuals. They are also called
stochastic compartmental models when considering pop-
ulations divided into compartments (e.g., representing the
stages of infection in an epidemic) with random move-

ments between them.

Solutions to the above problems often come down to
solving a large set of simultaneous equations across the
different values of n. For instance, the stationary proba-
bility distribution can be obtained from taking the limit
t - oo in (1), and tells us about the equilibrium distri-
bution that the system would reach at long times (e.g.,
the probability of observing a given number of species on
an island once migrations to and from a mainland have
been allowed to equilibrate). Analogous (although more
involved) expressions exist for hitting probabilities and hit-
ting times, which respectively tell us about the probabil-
ity of reaching some threshold state (e.g., passing a critical
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Figure 1. Top: Kimura’s neutral theory of evolution predicts
that neutral mutations (see equation (2)) should accumulate
at a fixed rate (see theoretical blue and orange dashed lines
and corresponding blue and orange markers from stochastic
simulations). This linear pattern has been observed across
scales from animal haemoglobin to influenza viruses. In red,
we show how this predictability can be used to construct a
“molecular clock”: if the number of substitutions for two
species (red disks) is known, along with the time since their
divergence (e.g., from the fossil record), then an inferred
substitution rate (red dashed line) can be used to estimate the
divergence time for a third related species with known
genetics (red circle). Such methods have recently been used
to estimate the divergence time of human coronavirus
SARS-CoV-2 from animal viruses. Bottom: Hubbell’s neutral
theory of biodiversity predicts the distribution of species
abundances (see theoretical green lines and corresponding
markers from stochastic simulations). Multiple studies have
used such models to understand the mechanisms underlying
ecological diversity, from marine phytoplankton to
Amazonian tree communities, to the human gut microbiome.

number of infections in an epidemic model) or the time
taken to get there (e.g., for a resistant strain of bacteria
to displace its ancestors). As a consequence, for general
systems the best that may be hoped for is a set of recur-
rence relations that can be evaluated numerically. How-
ever in one-dimensional systems (in which the vector n is
replaced by a single abundance n) closed-form solutions
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are often more forthcoming. This has led to a particular
focus on models consisting of two classes of individuals
(e.g., cooperators and defectors in a model of social con-
flict) within a population of fixed size, N (i.e., where the
number of individuals of the two classes is given by n and
N —n).

While closed-form solutions for these quantities of in-
terest are difficult to obtain for general multivariate sys-
tems, a particular class of these systems, neutral models,
are often more amenable to analysis. These neutral mod-
els assume that all the classes in the population behave
in an equivalent manner under exchange. For instance,
in a neutral model of population genetics, the probabil-
ity transition rate from a state '’ = (...,n;,..,nj,..) to a
staten’ = (...,n; + 1,...,n; — 1,..) (i.e, the probability of a
birth-death event that increases the number of a gene vari-
anti and decreases that of variant j) is given simply by the
product of their frequencies:

T(nn') = -2 (2)

where N = 7, ny is a constant. This enforced symmetry
increases the ease with which such multivariate problems
can be handled.

Far from being simply a concession to analytic tractabil-
ity, such neutral models have been instrumental in ad-
vancing our understanding of emergent biological patterns
in the natural world. In the late 1960s Motto Kimura,
building on the early work of Fisher and Wright, demon-
strated that just such a model as that illustrated in equa-
tion (2) was capable of explaining the “molecular clock”
in evolution, whereby mutational differences between dis-
tinct lineages accumulate linearly with time (see Figure 1).
Three decades later, Stephen Hubbell took a very similar
approach to explain the log-normal distribution of species
abundances recurrent in ecological data (see Figure 1).
While debate still rages about the appropriate messages
to take home from neutral models, whether they are in-
dicative of a true underlying absence of structure or sim-
ply serve as null hypotheses for more complex theories,
they have continued to provide insights in a broad range
of fields, including the evolution of language, ancestral
“sexes,” and even internet memes [KCR21].

Challenge: Stepping up significantly in complexity
from IBMs are so-called Agent-Based Models, com-
posed of interacting agents with complicated inter-
nal logic. Work on these models is almost entirely
simulation-driven, leaving open important questions
about underlying reasons for observed behaviour. To
what extent can statistical mechanics methods be ap-
plied here?
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Stochastic Dynamical Systems

While probabilistic modelling flourished in the early popu-
lation genetics community, contemporary ecological, epi-
demiological, and physiological theory is rooted in the
analysis of differential equations. Amongst some of the
most famous successes of this work involve the emer-
gence of patterns in time, as well as in space (see the sec-
tion, PDEs and Related Fields, below). Such results can
loosely be thought of as modern stochastic analogues of re-
sults such as deterministic Lotka-Volterra predator-prey cy-
cling (which was thought to explain empirically observed
temporal oscillations in predator-prey abundances?). Re-
cently, researchers in a field broadly described as applied
stochastic analysis have been revisiting the foundational
assumptions of these models, and finding that a proper
treatment of demographic noise reveals surprising new be-
haviours.

From a Kolmogorov's forward equation of the form of
equation (1), various techniques exist to extract a stochas-
tic differential equation (SDE) representative of the be-
haviour for large but finite population size. The typical
form is

€
VN

where the vector field f(x) can be crudely understood
as controlling the “deterministic component” of the dy-
namics, and 7(7) is a series of multiplicative Gaussian
white noise terms with zero mean and with a correlator
(ni(0m; (")) = B;j(x)8 (r — ). The structure of both f and
B is derived from the set of possible events in the underly-
ing (so-called “microscopic”) probabilistic model.

Analysis of the deterministic system & = f(x) provides
insight into the dynamics in the limit of infinite popula-
tion size. However, “infinite” is often not a good proxy
for “large,” and the behaviour (even on average) of an en-
semble of populations may be very different to the infinite
system limit due to demographic noise.

So how can we extract usable predictions from equa-
tion (3)? In the one-dimensional case, essentially all ques-
tions of interest can be answered by integration. Alterna-
tively, if f is linear and B constant, then equation (3) de-
scribes an Ornstein-Ulhenbeck process, for which a com-
plete characterisation is known. In all other cases, the
main line of attack available is to somehow reduce the
multivariate non-linear stochastic dynamical system to an
effective system that is either univariate or linear.

We first address linearisation, with the aid of an illustra-
tive example: Lotka-Volterra predator-prey cycling. Simple

dx; .
d_l'l = fl(x) + ni(T), 1= 1,2,...,5, (3)

3These periodic fluctuations became apparent from data collected by fur trading
companies in North America during the 1800s. Despite the ecological devasta-
tion this industry caused, these detailed data sets have continued to find use in
modern ecological studies.
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Figure 2. Noise-induced selection for cooperation. Panel A: A
model in which cooperators (blue) and defectors (red)
compete for resources on a series of patches. Cooperators
reproduce more slowly, but can reach larger numbers on each
patch by efficiently sharing resources [CRMT16]. Panel B: A
discrepancy between deterministic and stochastic
formulations of the model arises; stochastic fluctuations (red
arrows) are equally probable in either direction from a
deterministic slow manifold (black solid line), yet “kick” the
stochastic system along fast manifolds (dashed lines) in a
different direction (blue arrows, here bias towards the right)
to that predicted deterministically [PR17]. Panel C: The
cumulative result of these “kicks” is that while a deterministic
model robustly predicts that cooperators should be driven to
extinction, an equivalent stochastic model shows that
cooperators can in fact fixate.

deterministic ODE models of the situation feature either
neutral cycling (which is unstable to pertubations and thus
leads to species extinction) or damped oscillations that die
out as the system approaches a stable fixed point of co-
existence between predators and prey (and thus does not
match empirically observed oscillations). More complex
models feature limit cycles that predict unreasonably low
species abundances at certain points in the cycle. This
difficulty in recapitulating periodic fluctuations in abun-
dances with simple ecological models persisted until 2005,
with the seminal work of McKane and Newman [MNO5]
analysing stochastic fluctuations in an individual-based
Lotka-Volterra model.

For large but finite population sizes, demographic noise
repeatedly “kicks” the system away from equilibrium, re-
exciting the damped oscillations present in the determin-
istic limit. The essential features of these so-called quasi-
cycles are captured in the power spectrum of fluctuations
(the Fourier transform of the time-series autocorrelation
function). McKane and Newman showed how the power
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spectrum can be computed from an analysis of the lin-
earised form of the SDE system. A short form of their result
is as follows: if x* solves f(x*) = 0, then introducing fluc-
tuations £ = \/N(x — x*), one may expand in large N to
find & = A +7(t). Here A is the Jacobian matrix of f at x*,
and the noise has covariance matrix B = B(x*). Standard
computations then yield the power spectrum

P(w) = (A — iw) ' B(AT + iw)~L. (4)

A peak in the power spectrum implies the presence of
quasi-cycles in the population dynamics with that fre-
quency. This approach has since seen application to a
wide range of situations in stochastic mathematical biol-
ogy, from the seasonality of measles to synchronised oscil-
lations in neural networks [KCR21].

Challenge: In models with many interacting types
(e.g., species in a complex ecosystem), the matrix func-
tion (4) is impossible to evaluate by hand. What other
theoretical approaches are possible in this regime?

A second approach to analysing stochastic dynamical
systems is to reduce their dimension. This is usually
achieved through a separation of time scales argument
using the theory of slow manifolds. If one can identify
quantities that are approximately conserved on short time
scales, it is possible to integrate out faster fluctuations.
This technique is well understood in deterministic dynam-
ical systems, but an important difference occurs when ap-
plied to stochastic systems: the second-order features of
the approach to the slow manifold contribute a biasing
term to the reduced dimension model that must be care-
fully computed. A systematic procedure for this is laid out
in [PR17], leveraging powerful results of Katzenburger.

A large class of important biological models exhibit
natural timescale separation between the fast response of
ecology and slow adaptation via evolution. Surprising
and sometimes counterintuitive results have been found
in models of the evolution of cooperation (see Figure 2),
viral strain evolution, sex chromosome evolution, and oth-
ers [KCR21].

Challenge: Away from ecological/evolutionary dy-
namics, most biological models do not have a clean
separation of time-scales that is known in advance.
Can we develop more widely applicable techniques to
reduce the dimension of complex models?

PDEs and Related Fields

In the 50s, Turing introduced the concept of spatial pat-
terns that are induced by a diffusion process of an acti-
vating and inhibiting component (e.g., prey and predator
species). At the time, this mechanism was hypothesized
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to explain the origin of animal coat patterns. While mod-
ern experimentation has revealed that animal coat patterns
in fact have a genetic basis, emergent Turing patterns have
helped explain many other phenomena, from vegetation
patterning to mussel distribution on the sea bed [KCR21].

Although it is a simple mathematical model that sug-
gests how certain natural patterns could emerge, the Tur-
ing model has been highly criticised for its restrictive as-
sumptions (e.g., the diffusive rate of the inhibitor is re-
quired to be much larger than of the activator, and of-
ten parameter choices are more sensitive than robust pat-
terns in nature would suggest). However, in the context
of individual-based models, stochastic Turing patterns have
been reported to emerge in a far greater range of parame-
ters. With a proper treatment of noise, it appears the sim-
ple mechanism proposed by Turing is more robust than
previously thought.

Butler and Goldenfeld [BG09] introduced a spatial
predator-prey model, and investigated the stochastic ef-
fects of demographic noise. Besides the temporal oscil-
lations of species abundances, it was shown that persis-
tent perturbations, coming from intrinsic noise, can sus-
tain transient patterns that would otherwise decay in a de-
terministic model. This phenomenon has become known
as a stochastic Turing pattern. Beyond being merely a math-
ematical curiosity, recent studies have provided evidence
that stochastic Turing patterns could potentially explain
observed phenomena across many scales, from the coexis-
tence of trees and grass in the mesic savannah [MGCL13],
to spatial correlations in gene expression in synthetic bac-
terial populations [KML*18].

Interestingly, the rigorous mathematical treatment of
noise in spatial systems lags some way behind that of non-
spatial SDEs. The reason for this is the well-known diffi-
culty in the formal interpretation of stochastic PDEs. This
question has been the subject of intense recent work since
the breakthrough of regularity structures and paracon-
trolled calculus, although interest in the area is presently
almost completely confined to applications in physics.

Challenge: What do the new tools for rigorous analy-
sis of SPDEs have to say about applications in stochas-
tic mathematical biology?

Stochastic spatial models also occur naturally in the
study of biological motion, in particular when consider-
ing the collective behaviour of groups of animals. Here
the stochasticity and randomness can take many different
forms and often depend on the model itself, with noise of-
ten turning out to be a necessary ingredient to reproduce
complex observed behaviours. These models are mainly
investigated through computational simulations, a para-
digm dating back to Reynold’s “boids” program written
in 1968. In many models, noise is added to choice of
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direction of the moving of individuals that make up the
swarm. Alternatively, something as simple as randomising
the order of update events when individuals adjust their
trajectories can introduce enough of a stochastic element
to achieve “realistic” behaviours.

Data from animal experiments support the modelling
of update events as themselves being random. Yates et
al. [YEE*09] used a coarse-grained model to estimate the
drift and diffusion coefficients in a 1D model of marching
locusts; their findings suggest that randomness in locust
decision-making is increased when the alignment is low.
This model included intrinsic noise in the form of ran-
dom diffusion, though Bode et al. [BFJW10] reproduced
the same behaviour using asynchronous updating rules
instead, from which the stochastic behaviour emerges.
Whatever the source, it is believed that noise is a crucial
mechanism that allows marching locusts to spontaneously
change direction.

Recently Biancalani et al. [BDM14] have shown that
noise not only drives a system to switch between sta-
ble states, but can create these states in the first place.
Their model investigated the foraging behaviour of an ant
colony that switched between food sources; similar effects
have recently been observed in experiments on the noise-
induced schooling of fish [JMAK*20].

Challenge: Swarming animals are often engaged in
decision-making processes (foraging, predators avoid-
ance, etc.) at both collective and individual levels.
How does the interplay of spatial motion and demo-
graphic noise affect the flow of information and emer-
gent behaviours?

Random Matrix Theory

The above examples all concern random effects that play
out over observable time scales. Some random and un-
predictable effects develop so slowly (for example through
evolution) that they should be treated as essentially static.
The most important example in this class is the heteroge-
neous characteristics of, and interactions between, species
in an ecosystem. The goal of research in this direction is
to make predictions about ecosystem stability with only
incomplete and uncertain data on its makeup.

In 1972, based on the work of Gardner and Ashby,
Robert May introduced the framework of Random Matrix
Theory to the world of theoretical ecology. The model
proposes that random coefficients in a community matrix
(which captures the interaction strength between differ-
ent species in an ecosystem) could replace parameters that
would otherwise be too difficult to estimate in practice.
Building on the insights developed by Wigner, May de-
rived a stability criterion for such random ecosystems:

oVNC < d, (5)
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where N is the number of species within the ecosystem, C
is the probability that a pair of species interact with each
other, and o2 is the variance of interaction strength. The
parameter d > 0 on theright-hand side is the magnitude of
the negative diagonal elements of the community matrix
(d = 1, in the model proposed by May). According to
this circular law, all eigenvalues of the community matrix

lie with high probability within a disk of radius oy/NC,
centered at —d on the real axis of the complex plane. In
other words, if the inequality in (5) is met, all eigenvalues
have negative real part, and thus the community matrix is
considered locally stable.

The criterion derived by May implies that complexity
(i.e., a large number of species, high connectance, or di-
verse species interactions) decreases the stability of an
ecosystem. However, this result contradicted the com-
mon intuition that large and diverse ecosystems are con-
sidered more stable, where the removal of a single link
can easily be compensated. This discrepancy ignited a
complexity-stability debate that has raged ever since. How-
ever the model introduced by May clearly serves best as a
null model, rather than an accurate representation of real
ecosystems.

The simplistic assumptions that make up the random
community matrix are insufficient for characterising real
structured ecosystems. Instead, one seeks the missing
mechanisms that could be key for explaining the stabil-
ity of complex ecosystems we observe in nature. Such im-
provements to the random matrix model of ecosystems in-
clude accounting for topological structure and the effect of
intraspecies competition. Amongst the most influential re-
cent work has been that of Allesina and Tang [AT12], who
investigated how the structure of pairwise ecological inter-
actions within ecosystems could affect stability.

Instead of assigning fully random interaction coeffi-
cients, they allowed to vary the proportion of predator-
prey pairs, relative to mutualistic and competitive interac-
tions. With this new random matrix set up, the stability
criterion derived from the circular law in (5) is modified
to become an elliptic law for local stability. Given a larger
proportion of predator-prey interactions, the eigenvalue
distribution of the random matrix is stretched along the
imaginary axis, forming an ellipse. Therefore, the stabil-
ity criterion that requires the real part of all eigenvalues to
be negative relaxes. The opposite holds true for systems
with large proportions of symmetric interactions such as
mutualism and competition. This simple yet powerful ran-
dom matrix model explains mathematically how predator-
prey interactions promote stability of ecosystems, an in-
sight that has been supported by other theoretical stud-
ies [Gal18].

While the random matrix model of species interactions
is an abstraction of real ecosystems, interrogation of this
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model has furthered our understanding of the basic princi-
ples behind ecosystem dynamics. Interestingly, it has been
shown that a large set of different ecosystem models can be
reduced to a single model based on just a few statistical pa-
rameters [BABL18]. Progress is also beginning to be made
in the challenging task of connecting to empirical studies
to shed light on the key features that set real ecosystems
apart from their model counterparts [JPR*15], and poten-
tially infer structural features of interaction matrices from
timeseries data [KYCR21].

Challenge: Can we robustly interrogate real data with
RMT models, and vice versa?

An Invitation

Stochasticity has been shown to operate across a huge
range of scales in mathematical biology, from intracellular
physiological processes and the transmission of genes gov-
erning evolution, to the species interactions that govern
ecosystem stability and the diversity of life on earth. In
this article we discussed examples of mathematical mod-
els that have been studied previously from a deterministic
point of view, and we showed how more recent studies
that incorporate stochasticity in these models open up a
new range of questions to interrogate about the biolog-
ical system at hand. Encouraged by this perspective on
mathematical biology, we have illustrated how interrogat-
ing the effect of this stochasticity requires drawing on a
range of mathematical subdisciplines, including probabil-
ity, statistical mechanics, stochastic and partial differential
equations, and random matrix theory.

Despite a rich history of the application of these tech-
niques in mathematical biology, the field of stochastic
mathematical biology remains remarkably fertile. Perhaps
due to the perceived technical difficulty of addressing these
probabilistic problems in biological modelling, there re-
main a number of open problems, some of which we have
sought to highlight in the course of this article. Interest-
ingly, many of these do not require an overly complicated
approach that covers all details of the underlying biolog-
ical processes. Instead, mechanistically minimal models
that are informed by key empirical insights from biologists
have been shown to hold surprising explanatory power.
Progress does however require knowledge of the compar-
atively sophisticated mechanics of stochastic processes. It
is in this spirit that we offer this invitation to mathemati-
cians across disciplines to join us in working in this excit-
ing field.
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