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Three-manifolds are tantalizing objects. With physical
senses adapted to a three-dimensional physical world, we
might expect to have geometric intuition, yet few of us
can easily visualize how to rotate the Poincaré homol-
ogy sphere or navigate ℝ𝑃3. One trick for making three-
manifolds more accessible is cutting them into pieces: a
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lens space may be hard to imagine, but anyone who’s en-
joyed a donut or two can picture a pair of solid tori. De-
composing large complicated objects into smaller, simpler
pieces is ubiquitous in topology, but ultimately, the infa-
mous Pottery Barn aphorism kicks in: if you break it, you
fix it. Once we cut, we need to be able to glue these pieces
back together.

A map from the boundary of one manifold to another
“glues” the manifolds; more formally, we form the quo-
tient that identifies each point with its image. Surfaces are
only two-dimensional, but they are absolutely central to
the study of three-manifolds because they are the natural
domain and codomain for maps gluing three-manifolds
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along their boundaries. As we’ll show shortly, when the
pieces are simple enough, these gluing maps capture the
full complexity of the manifold.

To ensure the result of gluing is again a topologicalman-
ifold, the gluing map must be a homeomorphism, while
in the smooth category, a diffeomorphism is required. Fix-
ing an identification of each boundary component with
some model surface 𝑆 lets us view these gluing maps as
topological automorphisms of 𝑆, so they form a group.
It turns out to be most profitable to study a mutual quo-
tient of Homeo+(𝑆) and Diff

+(𝑆) called the mapping class
group. There are several standard notations for the map-
ping class group of a surface 𝑆, but we’ll stick with the easy-
to-remember “MCG(S).”

For topologists, the mapping class group is a tool to
study manifolds, but it appeals to many flavors of math-
ematicians for many different reasons. Group theorists
study it as an algebraic object, while the geometric inter-
pretation of mapping classes leads to connections with dy-
namics and Teichmüller space.

The mapping class group is well behaved in some ways,
while not so nice in others. For example, it’s finitely pre-
sented, but none of the presentations is particularly in-
tuitive or easy to state. One can’t do justice to such an
interesting object in just a few pages, but this has a sil-
ver lining: since completeness is impossible, I’ll declare
myself free to focus on a narrow but interesting piece of
the picture without guilt. I recommend [FM12] for a far
more thorough treatment, while this article will attempt
three goals: introduce the mapping class group of a sur-
face; describe some specific techniques for building three-
manifolds from mapping classes; and finally, explore a
relationship between algebraic structures in the mapping
class group and some geometric properties of the resulting
manifolds.

1. What is the Mapping Class Group?
Mapping class groups are defined for manifolds of any
dimension, but invoking the prerogative of low dimen-
sions, we’ll focus exclusively on mapping class groups of
surfaces. Given a smooth surface 𝑆, two diffeomorphisms
are isotopic if they are homotopic through a path of diffeo-
morphisms. This gives us a way to identify related func-
tions, and themapping class groupMCG(S) is the group of
isotopy classes of orientation-preserving diffeomorphisms.
There are alternative definitions: isotopy classes of home-
omorphisms form an isomorphic group, and MCG(S) can
also be identified with the 0𝑡ℎ homotopy group of the
space of diffeomorphisms of 𝑆. With an eye to a later ap-
plication, it will bemost useful for us to view each element
of MCG(S) as an equivalence class of diffeomorphisms

We’ll allow both closed surfaces and those with bound-
ary, but we’ll assume all surfaces are compact, orientable,

and connected. In the case that 𝑆 has non-empty bound-
ary, each diffeomorphisms must fix the boundary point-
wise.

An element of the mapping class group of 𝑆 is called
a mapping class, and the identity map on 𝑆 represents the
identity mapping class. With this first example in hand,
we need to find a second—and more interesting—one.
1.1. Dehn twists. Let 𝑆 be an annulus parameterized as

{(𝑡, 𝜙) | 𝑡 ∈ [0, 1], 𝜙 ∈ [0, 1]/0 ∼ 1}.

The map 𝜏(𝑡, 𝜙) = (𝑡, 𝜙 − 𝑡) is called a positive Dehn twist.
To see that 𝜏 is not isotopic to the identity, we consider
how it acts on curves in the surface —this is a technique
we rely on often. Let 𝛾 be the arc given by fixing 𝜙 = 𝜙0
and letting 𝑡 vary. The image of 𝛾 under 𝜏 shares the same
endpoints but wraps once around the annulus in the 𝑆1
direction. See Figure 1. As an oriented loop, 𝛾∪𝜏(−𝛾) gen-
erates𝜋1(𝑆; (0, 𝜙0)) ≅ ℤ, so the two arcs are not homotopic.
There’s no isotopy fixing the boundary that takes 𝜏(𝛾) to 𝛾,
so there’s certainly no isotopy taking 𝜏 to the identity on all
of 𝑆. This shows that a positiveDehn twist is a non-identity
element in the mapping class group of the annulus, and in
fact, it generates the entire group.

Figure 1. Left: 𝛾 connects the two boundary components of
the annulus. Right: the image of 𝛾 under a positive Dehn
twist.

To generalize this example to a more complicated set-
ting, pick a simple closed curve 𝐶 in an arbitrary surface
𝑆. The curve has an annular neighborhood in 𝑆 which
may be parameterized as above. Define a Dehn twist along
C to be a diffeomorphism which restricts to the annulus
as the Dehn twist defined above and extends smoothly to
the identity elsewhere. The mapping class of this diffeo-
morphism depends on the curve 𝐶: if 𝐶 bounds either an
embedded disc or a once-punctured disc in 𝑆, then rotat-
ing the disc defines an isotopy to the identity. We call such
curves inessential, and any Dehn twist along an inessential
curve lies in the trivial mapping class, as seen in Figure 2.

However, Dehn twists along essential curves are the
building blocks for the entire mapping class group:

Theorem ([Lic64], [Deh87]). Dehn twists generate
MCG(S).
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Figure 2. If 𝐶 bounds a disc, then a Dehn twist along 𝐶 is
isotopic to the identity.

This is a wonderful result, because it establishes that any
mapping class factors as a composition of simple maps,
but there’s an even better statement:

Theorem ([Hum79]). If 𝑆 has genus 𝑔 > 1, MCG(S) is gen-
erated by Dehn twists around the set of 2g+1 curves shown in
Figure 3.

Figure 3. The Humphries generators of MCG(S) are the
positive Dehn twists around the indicated curves.

Just as it might seem that mapping class groups are
too accessible to be interesting, we note that the relations
among distinct Dehn twists are many and varied. Some
of these take familiar forms: if 𝐶𝑖 and 𝐶𝑗 intersect exactly
once, then twists around these curves obey the braid rela-
tion: 𝜏𝑖𝜏𝑗𝜏𝑖 = 𝜏𝑗𝜏𝑖𝜏𝑖. Other relations are more surprising.
A Dehn twist around any boundary-parallel curve lies in
the center of themapping class group, but the “lantern rela-
tions” equate certain products of boundary parallel twists
with products of non-commuting Dehn twists. The sim-
plest lantern relation is shown in Figure 4.

a

b c

Figure 4. In the surface formed by removing three open discs
from a closed disc, the product of positive Dehn twists 𝜏𝑎𝜏𝑏𝜏𝑐
around the labeled curves equals the product of Dehn twists
around curves parallel to the four boundary components.

Although we’ve barely scratched the surface, this pro-
vides enough tools to move on to the promised topic of
this article: the relationship betweenmapping class groups
and three-manifolds. In the next section we’ll describe a
first technique for constructing a three-manifold from a
surface mapping class.

2. Building by Gluing
The two constructions coming next—mapping tori and
open book decompositions—each produce a closed, com-
pact, connected three-manifold. The input for each con-
struction is a specificmap, butmanifolds constructed from
diffeomorphisms in the same mapping class are diffeo-
morphic. Since manifolds in three-manifold topology are
often studied only up to diffeomorphism, it’s reasonable
to think of the manifold as the output of a mapping class
rather than its particular representative.
2.1. Construction I: The mapping torus. Using a surface
diffeomorphism to build a mapping torus is a simple way
to promote two-dimensional data to a three-dimensional
object.

Let ℎ be a diffeomorphism of a closed, compact surface
𝑆. The product 𝑆 × 𝐼 has two copies of 𝑆 as its boundary,
and the mapping torus 𝑇ℎ of ℎ is the closed manifold ob-
tained from 𝑆×𝐼 by identifying (𝑥, 1) ∼ (ℎ(𝑥), 0) for all 𝑥 in
𝑆. A manifold that can be constructed as a mapping torus
is said to be fibered, and each surface 𝑆 × {𝑡} in a fibered
manifold is called a fiber. Interestingly, a fibered manifold
may fiber in multiple ways, and there is a rich theory as-
sociated to understanding all possible fiberings of a fixed
manifold. However, we’ll bypass this rabbit hole in order
to begin probing how properties of a mapping class deter-
mine properties of three-manifolds. We’ll start with some
special types of classes known as periodic and reducible, re-
spectively.

a

Figure 5. Rotating the genus two surface by 𝜋 around the
indicated axis is periodic because it has order two, and it’s
reducible because it fixes the curve 𝑎.

The first definition is straightforward and makes sense
in purely group-theoretic terms: a mapping class is peri-
odic if it has finite order. For an easy example, consider
rotating a closed surface by 𝜋 as shown in Figure 5. A map-
ping class is reducible if it fixes the isotopy class of some
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collection of essential simple closed curves. In fact, the
previous example is also reducible, as it fixes the curve on
the surface labeled “a.” Within thismapping class onemay
select a representative that fixes 𝑎 pointwise, and if we cut
along the curve to create two new boundary components,
this diffeomorphism descends to a well defined mapping
class on each component of the new surface.

Mapping classes that are neither reducible nor periodic
are called pseudo-Anosov, and they can be identified inde-
pendently — as opposed to by a process of elimination
— using dynamics. The sorting of mapping classes into
periodic, reducible, and pseudo-Anosov is know as the
Nielsen-Thurston classification, and one of its most strik-
ing applications is the following result of Thurston:

Theorem ([Thu98]). The mapping torus 𝑇ℎ is a hyperbolic
three-manifold if and only if ℎ ∈ MCG(S) is pseudo-Anosov.

Hyperbolic manifolds are those admitting negative cur-
vature metrics, and the classification of three-manifolds in
terms of their supported metrics is one of the huge break-
throughs of modern topology. The program of proving
Thurston’s Geometrization Conjecture was completed by
Perelman in 2003 and included a proof of the infamous
Poincaré Conjecture, the only one of the million-dollar
Millennium Problems solved to date.

As noted above, Thurston’s theorem only tells us some-
thing about the manifolds which can be realized as map-
ping tori, and some three-manifolds simply don’t admit
any fibered structures. In order to relate mapping classes
to all three-manifolds, we need to consider a different con-
struction.
2.2. Construction II: Open books. Not every three-
manifold is fibered, but we’ll now see that every three-
manifold is “almost fibered.” That is, inside every closed,
oriented three-manifold one may find a collection of dis-
jointly embedded loops whose complement is fibered. As
a starting point, we’ll show how to build manifolds that
clearly have this structure.

As before, start by considering a mapping torus, but this
time, let ℎ be a diffeomorphism of a surface 𝑆 with non-
empty boundary. Since ℎ fixes the boundary pointwise,
each component of 𝜕𝑆 becomes a toroidal boundary com-
ponent in the mapping torus 𝑇ℎ. The boundary of 𝑇ℎ in-
herits a natural product structure 𝜕𝑆 × 𝐼/ ∼. To complete
the process of building a closed manifold, collapse the sec-
ond factor of each boundary component. Although the
surfaces 𝑆 × 𝑡 have distinct interiors, they now share the
same copy of 𝜕𝑆. These shared boundary curves form a
link in the manifold, called the binding, and the comple-
ment of the binding is fibered by copies of 𝑆 ⧵ 𝜕𝑆, which
are called the pages.

Although this seems more involved than constructing
the mapping torus of a closed surface, the binding always

pages

binding

Figure 6. Collapsing the binding of an open book.

collapses in the same way; thus, the complexity again lies
only in the choice of mapping class. The data (𝑆, ℎ) is
called an abstract open book, and we say that the manifold
built from this data has an open book decomposition. Not
only canwe constructmanifolds from abstract open books,
but up to diffeomorphism, every three-manifold can be re-
alised this way [Ale23].

It’s said that “classical” mathematics is anything pub-
lished before your own PhD, but open book decompo-
sitions are classical mathematics even by a more restric-
tive standard. The existence result above dates back to
the 1920’s, but the prominence of open book decompo-
sitions in twenty-first century topology stems from their
applications to contact geometry. We’ll begin the next sec-
tion wandering around an apparently new branch ofmath-
ematics before we can make the connection to open book
decompositions and the mapping class group. Be patient,
and enjoy the ride.

3. Contact Geometry
A contact structure on a smooth, orientable three-manifold
is a nowhere integrable oriented two-plane field. That
is, a contact structure is a two-plane field which can’t be
integrated,—even locally—to give a surface. The existence
of such two-dimensional objects stands in sharp contrast
to the one-dimensional case, as integral curves of vector
fields can always be found.

It’s not terribly difficult to imagine an integrable plane
field, as we can construct these directly. For example, on
any fibered manifold 𝑇ℎ we may take the tangent planes
to each of the fibers, and by construction these form an
integrable plane field. However, this is exactly the behavior
we need to exclude: there is no open subset of any surface
where the tangent planes and contact structure coincide.

To illustrate contact structures, we’ll start with an exam-
ple: the standard contact structure on ℝ3 is the kernel of the
one-form 𝑑𝑧 − 𝑦𝑑𝑥. At each point (𝑥, 𝑦, 𝑧), this form van-
ishes on the linearly independent vectors {𝜕𝑦, 𝑦𝜕𝑧 + 𝜕𝑥} in
the tangent space 𝑇 (𝑥,𝑦,𝑧)ℝ3. Notice that these vectors are
independent of the 𝑥- and 𝑧-coordinates, so it suffices to
understand how their span varies along the 𝑦-axis. At the
origin, the contact plane is horizontal, while it makes a
quarter twist as 𝑦 approaches ±∞. Translating this line of
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twisting planes horizontally and vertically exhaustsℝ3 and
completes the contact structure.

x

y

z

Figure 7. The standard contact structure restricted to the
𝑥𝑦-plane.

The technical tool proving the planes of the standard
contact structure are not tangent planes of any surface is
the Frobenius Integrability criterion. Qualitatively, the
twisting seen in this example is the obstruction to inte-
gration and characterizes all contact manifolds. In fact,
the standard contact structure provides a universal local
model, a statement made precise by the contact Darboux
Theorem. Like its symplectic analogue, the Darboux The-
orem states that one may associate to every point in a con-
tact manifold a diffeomorphism taking the contact planes
in a neighborhood of the point to the contact planes in a
neighborhood of the origin in the standard ℝ3. This gives
us a special family of charts to describe a contact manifold
and implies that contact planes always twist along parallel
curves.
3.1. Tight and overtwisted contact structures. Recall
that the planes in the kernel of 𝑑𝑧−𝑦𝑑𝑥make a half twist as
𝑦 varies from negative to positive infinity. In contrast, con-
sider the kernel of the one-form cos 𝑟𝑑𝑧 + 𝑟 sin 𝑟𝑑𝜃. This
contact structure is similarly invariant under translation
in the 𝑧-direction, but it sees the planes spinning count-
ably many times around each horizontal ray from the 𝑧-
axis. Contact structures always exhibit enough twisting to
preclude integrability, but as it turns out, more twisting
makes contact structures less interesting. A central theo-
rem in the field partitions all contact structures into two
classes, called tight and overtwisted.

Although we won’t state the precise definition of an
overtwisted contact structure here, we note that they’re
completely classified by algebraic topology: there’s a
unique overtwisted contact structure in every homotopy
class of two-plane fields [Eli89]. The tight contact struc-
tures — those that twist enough but not too much —
are far more mysterious. Intriguingly, some manifolds
have no tight contact structures, some have a unique tight
contact structure, and some have infinitely many [EH01],
[Eli92], [Kan97]. Tight contact structures are at the heart

of the field, and they tend to be more useful in applica-
tions and have more intriguing ties to other mathematical
objects. When meeting a new contact structure for the first
time, “Tight or overtwisted?” is the first question to ask.
3.2. Contact structure and open books. There are
many approaches to studying contact structures on three-
manifolds, but we’ll focus on the astonishing fact that the
data of an open book not only determines a manifold, but
also an equivalence class of contact structures on that man-
ifold. Before explaining this correspondence, observe that
if we can associate a contact three-manifold to any surface
mapping class we get a new version of themotivating ques-
tion: do structures in the mapping class group determine
phenomena in the world of contact manifolds? In many
cases the answer is yes, and this alchemy turning algebra
into geometry will be our final topic.

As claimed above, contact plane fields are character-
ized by their twisting, and an open book decomposition
localises this rotation in a neighborhood of the binding.
More precisely, we say that an open book decomposition
supports a contact structure on the ambientmanifold when-
ever two properties are satisfied. First, in a neighborhood
of the binding we require a standard model: after param-
eterizing each component of 𝐵 by 𝜗, there exists a neigh-
borhood 𝐷2 × 𝑆1 = {𝑟, 𝜃, 𝜗 | 𝑟 ∈ ℝ+, 𝜃, 𝜗 ∈ 𝑆1} where the
contact structure is the kernel of 𝑑𝜗+ 𝑟2𝑑𝜃 and 𝜕𝜗 induces
the boundary orientation on the page. This neighborhood
is invariant under rotation by 𝜗 and 𝜃, but the planes twist
radially with 𝑟. The second compatibility condition states
that this is “most” of the twisting: away from the binding,
there exists a vector field simultaneously transverse to the
pages and contact planes whose flow preserves the contact
planes. Informally, this prevents the contact planes from
rotating too much with respect to any page.

Theorem ([Gir02], [TW75]). Each open book supports a
unique isotopy class of contact structures.

In addition to making contact structures easier to visu-
alize, we’ll see next that open book decompositions are a
powerful technical tool.

4. Contact Properties and Mapping Classes
With the relationship between mapping classes and con-
tact three-manifolds in hand, it’s time to examine some
examples of structures on both sides of the equivalence.

Positive Dehn twists were defined above, and the in-
verse of a positive Dehn twist is unsurprisingly called a neg-
ative Dehn twist. In terms of coordinates, a negative Dehn
twist maps (𝑡, 𝜙) ∈ 𝐼 × 𝑆1 to (𝑡, 𝜙 + 𝑡). Mapping classes
which can be expressed as a product of Dehn twists of a
fixed sign form amonoid in themapping class group. One
can always associate a monoid to a subset of generators,
but these positive and negative monoids in the mapping
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class group determine fundamental properties of the asso-
ciated contact manifolds: if the mapping class ℎ lies in the
positive monoid in MCG(S), the contact manifold associ-
ated to the open book (𝑆, ℎ) always supports a tight contact
structure, and if ℎ ≠ 1 lies in the negative monoid, the
contact manifold associated to (𝑆, ℎ) always supports
an overtwisted contact structure [Gir02] [AO01] [LP01]
[Pla04].

Here, the contact phenomenon is a consequence of a
structure we could define purely algebraically, but in other
examples the algebraic substructure in the mapping class
group comes from the contact geometry. Just as a topo-
logical three-manifold can arise as the boundary of a four-
manifold, some contact structures are induced by realiz-
ing the ambient manifold as the boundary of a symplec-
tic four-manifold. There are several different notions of
such fillability, and for each flavor of fillability, consider
themapping classes whose associated open book supports
a fillable contact structure. For each surface 𝑆 and each no-
tion of fillability, these mapping classes form a monoid in
MCG(S) [BEVHM12], [EVHM15].
4.1. The Giroux correspondence. In general, the flow of
information from contact geometry back to the mapping
class group is rather subtle, as there are many distinct open
books which support the same contact manifold. Luckily,
the relationship among these open books is understood.
An operation called positive stabilization replaces the pair
(𝑆, ℎ) with a new open book (𝑆′, ℎ′) supporting the same
contact structure. The surface 𝑆′ is built from 𝑆 by attach-
ing a band along two intervals of the boundary. Since 𝑆
embeds into 𝑆′, ℎ naturally extends to a diffeomorphism
on the new, larger surface which we again call ℎ. Then ℎ′
is the composition 𝜏 ∘ ℎ for 𝜏 a positive Dehn twist along
some curve that runs once along the new band and closes
up in the original surface. This sounds complicated, but
the celebrated Giroux Correspondence says this single op-
eration captures the full complexity of the relationship:

Giroux Correspondence [Gir02]. Any two open book
decompositions supporting a fixed contact structure can
be made to agree after a finite sequence of positive stabi-
lizations.

Figure 8. This figure shows distinct stabilizations of an open
book with annular pages. The new monodromy is the
composition of the original monodromy with a postive Dehn
twist around the thin red curve.

Since 𝑆 embeds naturally into 𝑆′, stabilization provides
a framework for relating maps on different surfaces, and
indeed, structures in different mapping class groups. It’s
clear that any product of positive Dehn twists in MCG(S)
must stabilize to a product of positive Dehn twists in
MCG(S’), since stabilization simply adds an extra positive
factor. More interestingly, consider the fillability monoids
introduced in Section 4. Since these are defined by a prop-
erty of the supported contact structure, stabilization must
respect this structure, as well.

The Giroux Correspondence shows us that the relation-
ships between differentmapping class groups are central to
understanding how surface diffeomorphisms dictate con-
tact behavior. However, these relationships are not al-
ways so easy to understand. Another monoid of interest
in the mapping class group, Veer+, consists of right-veering
maps and strictly contains the monoid generated by posi-
tive Dehn twists. Mapping classes in the complement of
Veer+ always produce overtwisted contact structures, but
any mapping class can be promoted to something right-
veering with sufficiently many carefully chosen stabiliza-
tions [HKM07].

Theorem ([HKM07]). A contact structure is tight if and only
if the monodromy of every supporting open book lies in Veer+.

The notion of a right-veering monodromy is rather in-
tuitive, but replacing this condition with a more technical
one known as ‘consistency’ leads to a stronger result:

Theorem ([Wan15]). A contact structure is tight if and only
if the monodromy of any supporting open book is consistent.

Results like these help clarify two general types of ques-
tions we might ask.

1. Given a class of contact manifolds, can one character-
ize all the mapping classes which produce supporting
open books?

2. Can one start with some class of diffeomorphisms and
characterize all the contact structures supported by the
associated open books?

These are difficult questions, and there are interesting re-
sults even if the set ofmapping classes is dictated simply by
the surface. For example, every overtwisted contact struc-
ture can be supported by an open book built from a planar
page, but for an arbitrary tight contact structure it’s an open
question when this is possible [Etn04].

There are still more unknowns than knowns when it
comes to understanding the relationship between map-
ping class groups and contact geometry, which makes this
a wonderful sandbox in which to play.
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