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of linear algebra has led to the explosion of career oppor-
tunities in data science, signal processing, cryptography, 
computer science, and quantum computing. Research into 
the teaching of linear algebra continues to provide new 
insight into better ways of sharing linear algebraic knowl-
edge and ways of thinking with students. Technology has 
become accessible and affordable for most students, and 
as such, should be used as an asset in teaching and learn-
ing. Modern applications have grown and can motivate 
learning and insights into the workings of linear algebraic 
ideas. Hence, the teaching of linear algebra has become 
increasingly important in this quantitatively driven world.

In 1993, Carlson, Johnson, Lay, and Porter [1] initiated 
the first Linear Algebra Curriculum Study Group (LACSG) 
to examine the role of the first course in linear algebra in 
the mathematics curriculum and offered numerous recom-
mendations intended to better meet the needs of students 
and client disciplines at that time. The recommendations 
in [1] were a major step in raising awareness and signifi-
cantly impacted linear algebra education both nationally 
and internationally. For example, special sessions on the 
learning and teaching of linear algebra were added to the 
programs of national and international meetings (e.g., the 
Joint Mathematics Meetings, International Linear Algebra 
Society meetings), and several important introductory 
linear algebra textbooks adopted the LACSG recommen-
dations (e.g., [2]). Many of these recommendations are 
still relevant today; however, the field of linear algebra 
has continued to grow since those recommendations were 
published in 1993. New enabling technologies have been 
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trade-off between run time and storage costs? Scalability is 
an important consideration. Can an algorithm that works 
on a small scale be implemented on a larger scale? Linear 
algebraic ideas, such as the notion of linear independence, 
help us avoid redundancy. Eigentheory is much richer 
than the “fixed direction” of a linear transformation and 
has a wide variety of uses in practice such as compressing 
data or identifying the essential components of the system 
under study. Matrix multiplication and factorizations are 
also used to manipulate and understand data and signals. 
The critical thinking skills developed in proof writing help 
individuals in industry assess the validity of algorithms and 
ideas, work with abstract variables, and understand what 
different components in a system are contributing to its 
behavior. The advice we received from our industry experts 
certainly supports a review of the mathematical curriculum 
and where linear algebra fits in the broader scheme. 

Although calculus is currently the mathematical starting 
point for almost all STEM students, much of the mathemat-
ics currently used in industry has its foundation in linear 
algebra. Offering linear algebra to incoming freshmen, 
with a second course offered to juniors or seniors, would 
benefit students who will use linear algebraic ideas in their 
careers and elsewhere in their studies. An introductory lin-
ear algebra course provides foundational material for many 
mathematics courses, as well as programs addressing The 
Quant Crunch. Although many universities use calculus as 
a prerequisite for linear algebra, this is rarely based on any 
specific mathematical need; most often, it is an expression 
of a desire for mathematical maturity or the use of calcu-
lus to filter enrollment for other mathematics courses. We 
suggest that linear algebra serves to foster mathematical 
maturity at least as well as calculus. Indeed, in some ways, 
it is a better vehicle because it starts with simple arithmetic 
(in the form of row reduction) and builds to very high-level 
abstractions (high-dimensional vector spaces, null spaces, 
linear independence, coordinate free linear operators, etc.). 
Hence it provides an appropriate foundation for courses 
such as discrete math, graph theory, combinatorics, and 
many areas of data analytics. Reviewing the list of topics 
and level of sophistication asked for by our industry ex-
perts, LACSG 2.0 has observed that second (and even third) 
courses in linear algebra are needed. Quantitative under-
standing is gaining importance in many disciplines outside 
of mathematics. All of them will benefit from additional 
theoretical and numerical understanding of linear algebra. 

Research-based Insights on Teaching  
and Learning in Linear Algebra
An increasing number of research studies regarding teach-
ing and learning in linear algebra have been conducted 
since the publication of the recommendations in [1]. These 
studies range from fine-grained investigations of students’ 
cognition to instructional interventions and curriculum 

invented and are widely available, older technologies have 
improved or become obsolete, research in linear algebra 
has blossomed, and the application areas of linear algebra 
have continued to expand. 

In 2018, funded by the National Science Foundation 
(DUE-1822247), experts from around the nation were 
invited to a 2-day workshop to re-evaluate the important 
work begun in [1], nearly thirty years ago. As a result, the 
LACSG 2.0 (the authors of this paper) was formed to revisit 
and update the recommendations in [1]. The new recom-
mendations suggest teaching linear algebra sooner in the 
curriculum, removing calculus as a prerequisite, consider-
ing the needs of industry, being aware of the latest research 
in linear algebra education, taking advantage of technology 
in teaching, motivating concepts with applications, and 
developing second courses in linear algebra. The purpose 
of this paper is to communicate the LACSG 2.0 recommen-
dations to mathematics program leaders and instructors of 
linear algebra for their consideration.

Advice from Industry
In the IBM publication The Quant Crunch: How Demand for 
Data Science Skills is Disrupting the Job Market, the authors 
challenge higher education to respond to the “demand 
for a new breed of professionals skilled in data analytics, 
machine learning, and artificial intelligence” [3, p. 3]. To 
address the skills gap created by an explosion of careers 
involving analysis of data, a strong foundation in linear 
algebra is paramount. Students preparing for jobs in Sili-
con Valley recognize that a proof-based second course in 
linear algebra is highly valued by potential employers, as 
evidenced, for example, by the 700 plus students a year 
registering for such classes at UC Berkeley. The LACSG 2.0 
team met with industry representatives from Amazon, Goo-
gle, Juniper, Schweitzer, Nordstrom, Boeing, and Microsoft 
from the Seattle-Portland area in the Fall of 2019 and heard 
from this group that students need a thorough grounding 
in both abstract and numerical linear algebra. 

Our industry experts suggested giving students more 
pathways into diverse mathematical ideas, including linear 
algebra. They pointed out that decisions about what and 
how to teach mathematics need to focus more on how 
ideas are currently used in industry and not necessarily on 
how they were developed. For example, many students are 
still taught Cramer’s rule but not LU decompositions, even 
though the far more efficient LU decomposition is used 
extensively to solve systems of equations, and Cramer’s 
Rule almost never is. The experts we spoke with saw the 
ability to experiment and play with data and ideas as an 
essential skill. Students need to be able to formulate their 
own observations and explore their validity—and linear 
algebra provides a beautiful framework for this type of 
mathematical exploration. They suggested that discussion 
of data structures is also important. How do we manage the 
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sense of concepts and how their mathematical insights can 
be leveraged in helping them grow in their linear algebra 
reasoning. 

The role of graphical representations of R2 and R3 in 
teaching and learning linear algebra has also been the focus 
of investigation for many researchers. For example, recent 
studies illustrate that using dynamic geometry software to 
introduce and explore linear algebra concepts can result in 
a robust understanding of those concepts at the introduc-
tory level (e.g., [10]). Focused on vector spaces beyond R2 
and R3, other researchers caution that an overreliance on 
geometry may restrict students’ ability to abstract linear 
algebraic concepts and ideas (e.g., [11]). Taken together, 
the consideration of the role of geometry in linear algebra 
is a good example of how the course type and population 
(e.g., introductory versus advanced course, mathematics 
versus other STEM majors) are factors in considering which 
research recommendations are most appropriate for a given 
course. 

Research on teaching and learning in linear algebra is a 
growing area in mathematics education. We recommend 
that learning about research findings can help linear algebra 
instructors be mindful of students’ thought processes and 
needs and possible challenges with certain concepts. For 
example, the notion of solution being the set of all nonzero 
vectors x that satisfy a matrix equation is different than what 
students previously encountered, such as solving for the 
specific real-valued x that satisfies the equation cx = d; thus, 
solution strategies that were previously successful may not 
apply in linear algebra. This is apparent when students, for 
instance, try to “cancel” the vector v from both sides of the 
equation when they encounter Av= 2v [12]. One teaching 
suggestion is to emphasize that in the eigen equation, 
there are multiple objects (matrix, vector, and scalar) to 
coordinate in different ways (matrix-vector multiplication, 
scalar-vector multiplication), yet the result of these differing 
operations is the same object, a vector [6]; this may help 
combat the understandable instinct to “cancel the vector” 
from the eigen equation by conceptually reasoning that a 
matrix cannot equal an eigenvalue.

In conclusion, the various teaching implications re-
ported from these studies, as well as resources and curric-
ulum materials supported by research (e.g., [5]; [13]) can 
benefit instructors to reflect on their own teaching practices 
as they prepare students for future job markets. A more ex-
tensive list of research papers on the teaching and learning 
of linear algebra can be found in [9]. Certainly, there is still 
much to investigate regarding best practices for teaching 
linear algebra in the 21st century in ways that promote deep 
understanding for all students. For example, there is much 
to learn about the role of technology and visualization, as 
well as how to meet the needs of students in other disci-
plines such as engineering, physics, or computer science.

development based on research about how students learn 
linear algebraic concepts (e.g., [4]; [5]) and have helpful 
implications for teaching linear algebra concepts at the 
undergraduate level. As noted by Schoenfeld [6], the pure 
purpose of mathematics education research as a scientific 
discipline is “to understand the nature of mathematical 
thinking, teaching, and learning,” and the applied purpose 
is “to use such understandings to improve mathematics 
instruction” (p. 641). In this section, we highlight a small 
subset of this research corpus to encourage the reader to 
explore how research findings in this area can be leveraged 
towards improving the educational experiences and suc-
cesses of linear algebra students in the 21st century. 

The early work on teaching linear algebra raised aware-
ness of the complexity involved in students developing 
a conceptual understanding of elementary notions. For 
example, Dorier, Robert, Robinet, and Rogalski [7] noted 
that in France, “The general attitude of teachers consists 
more often of a compromise: there is less and less empha-
sis on the most formal part of the teaching (especially at 
the beginning), and most of the evaluation deals with the 
algorithmic tasks connected with the reduction of matri-
ces of linear operators” (p. 28). As a result, students may 
develop computational skills but lack conceptual under-
standings of core elementary linear algebra notions (e.g., 
linear dependence and subspaces). One rather straightfor-
ward recommendation, therefore, is to not teach purely 
algorithmically. Furthermore, Dorier and colleagues found 
that students’ difficulty with the formalism of vector space 
theory was not solely an issue with formalism in general but 
with its specific role in linear algebra. They recommended 
the consideration of what they call the meta-lever, in which 
instructors consider what their students know mathemat-
ically to use as a lever towards deepening not only their 
mathematical understanding but also their notion of the 
nature of mathematics itself. Other early studies indicated 
that instructors may inadvertently blend various contexts, 
modes of description, and notation and should be aware 
that it is not trivial for some students to recognize the 
same concept in different contexts or notations (e.g., [8]). 
For example, instructors might seamlessly treat a vector in 
R2 as both a point and an arrow (two different geometric 
modes of description) or treat a vector as an n-tuple and as 
an element of a vector space denoted with a symbol such as 
v (algebraic mode and abstract mode, respectively). 

Since the publication of these studies, many researchers 
have examined a wide variety of topics in linear algebra. 
Stewart, Andrews-Larson, and Zandieh [9] identified more 
than 50 empirical studies published within a selected list 
of peer-reviewed mathematics education journals over the 
period of 2009–2017. Although many of these contempo-
rary research papers investigate and help us understand 
students’ difficulties with learning linear algebra, many 
others focus on characterizing the ways students make 
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Second Courses in Linear Algebra
A single semester course cannot possibly cover all the 
important topics in linear algebra. We recommend that 
students planning to pursue a graduate degree in mathe-
matics or a career in any type of quantitative analysis take 
at least two courses in linear algebra. Students majoring in 
computer science, physics, economics, and other subjects 
using mathematical models may also benefit greatly from 
two or more courses in linear algebra.

A second course in linear algebra might focus far more 
on vector spaces, linear maps, and proofs than a typical 
first course that focuses on Rn, matrices, and computations. 
The context for the second course should include complex 
vector spaces (and possibly vector spaces over an arbitrary 
field) as well as real vector spaces. The following topics (see 
Table 2) can be included and explored in depth in a second 
course aimed at math majors and other students who want 
to learn the powerful tools of linear algebra.

Other second courses may want to focus more on nu-
merical linear algebra. In addition to some of the topics 
above, the following topics (see Table 3) can be included 
in a course with an emphasis on numerical linear algebra.

First Courses in Linear Algebra
While we are conscious of students’ mathematical matu-
rity and preparedness for college courses, we believe that 
linear algebra can be successfully learned by students with 
proficiency in high school algebra. Hence, we recommend 
that linear algebra could be offered profitably without a 
calculus prerequisite. Burazin, Jungić, and Lovrić [14] stated 
“We have heard strong views suggesting that perhaps the 
time has come to abandon calculus and restructure first-
year mathematics around a different paradigm, such as 
mathematical modeling, problem-solving, or mathematical 
thinking” (p. 67). Indeed, restructuring first year math-
ematics to give students early exposure to linear algebra 
should be a high priority for mathematics departments. 
The models from some countries around the world (e.g., 
New Zealand and Ireland) show that both calculus and 
linear algebra are offered in the first year and often in the 
first semester. We also recommend that future high school 
mathematics teachers should take at least one linear alge-
bra course. 

We recommend that the following topics (see Table 
1) should be considered for inclusion in a first course in 
linear algebra.

Table 1. Topics appropriate for a first course.
	• Systems of linear equations.
	• Properties of Rn. Linear independence, span, bases, 

and dimension.
	• Matrix algebra. Column space, row space, null space.
	• Linear maps. Matrices of a linear map with respect to 

bases; the advantages of a change of basis that leads 
to a simplified matrix and simplified description of 
a linear map.

	• Matrix multiplication and composition of linear 
maps, with motivation and applications.

	• Invertible matrices and invertible linear maps.
	• Eigenvalues and eigenvectors.
	• Determinant of a matrix as the area/volume scaling 

factor of the linear map described by the matrix. 
	• The dot product in Rn. Orthogonality, orthonormal 

bases, Gram-Schmidt process, least squares.
	• Symmetric matrices and orthogonal diagonalization. 

Singular value decomposition.
	• Orthogonal and positive definite matrices.

Table 2. Topics appropriate for a second course.
	• Abstract vector spaces. Subspaces, linear indepen-

dence, span, bases, and dimension in the context of 
abstract vector spaces.

	• Linear maps between vector spaces; the null space 
and range of a linear map. The matrix of a linear map 
with respect to a basis; rank and nullity of a matrix.

	• Invertibility of matrices and linear maps.
	• Eigenvalues, eigenvectors, and diagonalization.
	• Matrix factorizations.
	• Inner product spaces. Orthogonality and orthonor-

mal bases. Gram-Schmidt process for constructing 
orthonormal bases.

	• Orthogonal projections and best approximations. 
Upper-triangular matrices with respect to an ortho-
normal basis (Schur’s theorem).

	• Finite-dimensional spectral theorem. Singular values 
and singular value decomposition. Low-rank approx-
imation of linear maps. Pseudo-inverses.

	• Positive operators. Unitary operators.
	• Geometric multiplicity as dim null (T − λI); algebraic 

multiplicity as dim null (T − λI)n. Generalized eigen-
vectors. Jordan form. 

	• Minimal polynomial, characteristic polynomial, and 
diagonalizability.

	• Determinant and trace as product and sum of ei-
genvalues. 

	• Tensors and multilinear algebra.
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discuss when exact results are possible and when exact re-
sults are not possible. Conversely, a course with an applied 
focus can address topics from numerical linear algebra in 
the context of a particular software.

Applications
Linear algebraic ideas are fundamental in understanding 
and solving a plethora of real-world problems, particularly 
in our increasingly digital world. Additionally, the majority 
of students populating linear algebra courses (especially 
first semester courses) are from engineering, science, busi-
ness, etc., rather than being primarily from mathematics as 
they were two or three decades ago. Consequently, to better 
address evolving student needs and increase student en-
gagement, most linear algebra courses should purposefully 
include more and better applications to provide motivation 
of, the context for, and examples of the ideas being taught.

Applications are too numerous in type and number to 
list more than a few. These might include the Google Page 
Rank Algorithm, linear programming, traffic/network flow, 
sports bracketology/predictions, predator/prey models, 
medical imaging, balancing chemical reaction equations, 
Markov chains, the Leontief Input-Output Model, etc. Of 
course, which applications are employed will depend on 
instructor interests and/or on the needs/interests of the 
students in class. 

Applications and examples can introduce, motivate, and 
provide context for a specific concept or for several ideas 
simultaneously. To illustrate this, we briefly discuss one 
such example. A discussion of least squares could ultimately 
include the properties of vectors, and the specific concepts 
of orthogonality, orthogonal projections, projecting a vec-
tor onto the column space of a matrix, the least squares 
solution, and the extension of these ideas to functions, 
etc. Rather than immediately jumping into the discussion 
and assuming students care about vectors, orthogonality, 
etc., one could begin by giving the motivating example of 
trying to fit a straight line to a given set of points [15]. For 
example, we can attempt to find the straight line y = mx + 
b that fits the points (1,1), (2,2) and (3,4). This results in 
the system of equations

m(1) + b = 1
m(2) + b = 2 ,
m(3) + b = 4

that is, 

Undergraduate Research
Students who have taken a second course in linear algebra 
should be encouraged to consider following up with a 
research project. Undergraduate research is a high impact 
educational practice, and many institutions now consider 
such experiences invaluable for student engagement and 
retention. Linear algebra provides numerous research topics 
and problems accessible for undergraduates. For example, 
the natural correspondence between matrices and graphs 
gives a range of possible research questions that students 
can investigate; other topics could include problems on 
theoretical or numerical aspects of linear algebra. These 
projects are best done in collaboration. Students can 
explore small order examples and formulate conjectures 
for arbitrary order using numerical simulations and then 
work together on establishing proofs of their conjectures 
or constructing counterexamples. 

Technology 
Interactive student experiments, admittedly in low dimen-
sions, can provide insight. For example, in a first course, 
input a 2 × 2 matrix and then drag the head of a unit vec-
tor around a circle until the vector and the matrix-vector 
product align. Then you have an eigenvector of the matrix 
and the associated eigenvalue. In a second course, have the 
three matrices of the singular value decomposition operate 
successively on a unit sphere and the three vectors of the 
standard basis. The matrices’ effects, as a rotation, scaling, 
and rotation, are then very evident. Programs with extensive 
symbolic, graphical, numerical, and exact routines include 
GeoGebra, Matlab, Mathematica, Maple, and Sage. These 
allow students to actively explore and discover patterns, 
make conjectures, and determine or verify results, quickly 
and correctly. For example, it takes only basic numerical 
experimentation to discover if the determinant function is 
additive and/or multiplicative. Computations such as the 
factored characteristic polynomial and factored minimal 
polynomial of a 10 × 10 matrix become straightforward. 
Instructors can compute multiple examples in class, mod-
eling the same sorts of explorations. Using software that 
performs exact rational arithmetic can allow a course to 

Table 3. A list of topics in a second course focused on 
numerical linear algebra. 

	• Matrix decompositions: LU, QR, Cholesky, Schur.
	• Computation of singular value decomposition.
	• Computation of eigenvalues and eigenvectors.
	• Implementation of Gram-Schmidt process.
	• Error analysis.
	• Solutions of large systems of linear equations. Tech-

niques that work with sparse matrices.
	• Iterative and randomized methods in numerical 

linear algebra.

1  1
2  1
3  1

1
2
4

m
b

= ,
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which we denote Ax = b. That is, we want to build (as a 

linear combination) the vector        using the columns 

of A. Since b is not in the column space of A, we do the 
best we can: we project b onto Col A, which leads to the 
best fit (least squares) solution, that is, the line that best 
fits the points. So how do we find the vector b̂  in Col A 
that is “closest” to b? (And how do we even define “clos-
est”?) Because the two column vectors are from R3, this 
problem is easily visualized: we are trying to determine 
the position b̂ “on the floor” (in the column space of A) 
that is closest to the point/vector b. So how can we tell 
which point/vector “on the floor” is closest to b? It is the 
point b̂ directly “underneath” point/vector b. What does 
“underneath” mean? It means we want to find b̂  so that 
b − b̂  is perpendicular (in R3, and orthogonal in general) 
to Col A, the two-dimensional plane generated by the two 
columns of A. Without the need to get into all the details 
at this point, students can already see that there are certain 
concepts that we will need to understand in order to solve 
this problem: vectors, orthogonality (including in higher 
dimensions), projecting one vector onto a collection of 
other vectors, and so on. Students consequently will have 
more motivation to learn the ideas they are soon to explore, 
and they have a problem that is both important and simple 
to provide context for those ideas.

The Role of Linear Algebra in Other Disciplines 
Students majoring in disciplines other than mathematics 
make up a majority of those taking a first course in linear 
algebra. Depending upon the clientele, courses offered 
should find a balance between abstraction, concrete matrix 
manipulations, and application. Although the range of top-
ics emphasized in different courses varies from discipline 
to discipline, mathematical reasoning and creative thinking 
are important components in a linear algebra course. We 
recommend a set of core topics for a first linear algebra 
course (see core topics section). Additional topics may be 
added depending on program needs of students.

Future Work
It has been almost three decades since the publication 
of the work of the first LACSG [1]. During this time, the 
tools available to aid teaching and the needs of industry 
have expanded dramatically. We expect these trends to 
continue and probably accelerate. By no means does this 
paper capture everything the linear algebra community will 
need or hope for in the coming years. It is intended only 
as a starting point, a vehicle to express our thoughts and 
vision. We wish to draw some attention to important issues 
concerning the curriculum and teaching. For example, we 
hope that this document might serve as a guide for creating 
high-quality resources and teaching materials designed to 
facilitate the abstract and conceptual understanding so 
necessary to the future success of our students. This work 
will be supplemented by an edited volume to enable the 
mathematics community to react, elaborate, and generate 
more ideas that are both practical and thought-provoking. 
We believe collaborating and working together on instruc-
tional matters will have a positive effect on linear algebra 
students’ success.

The LACSG 2.0 committee invites the mathematics 
community to carefully consider and examine the recom-
mendations with surveys and follow-up studies and is not 
expecting the faculty to follow a prescribed set of guidelines.

References
[1] D. Carlson, C. R. Johnson, D. C. Lay, and A. Porter, The 

linear algebra curriculum study group recommendations for the 
first course in linear algebra, The College Mathematics Jour-
nal 24 (1993), no. 1, 41–46. 

[2] D. Lay, Linear Algebra and its Applications, Pearson, 1994.
[3] S. Miller and D. Hughes, The quant crunch: How the de-

mand for data science skills is disrupting the job market, Burn-
ing Glass Technologies, 2017.

[4] M.O.J. Thomas and S. Stewart, Eigenvalues and eigenvec-
tors: Embodied, symbolic and formal thinking, Mathematics 
Education Research Journal 23 (2011), 275–296.

[5] H. Salgado and M. Trigueros, Teaching eigenvalues and ei-
genvectors using models and APOS Theory, The Journal of 
Mathematical Behavior 39 (2015), 100–120.

[6] A. Schoenfeld, Purposes and methods of research in math-
ematics education, Notices of the AMS 47 (2000), no. 6, 
641–649.

[7] J. L. Dorier, A. Robert, J. Robinet, and M. Rogalski, On a 
research program about the teaching and learning of linear al-
gebra in first year of French Science University, International 
Journal of Mathematical Education in Sciences and Tech-
nology 31 (2000), no. 1, 27–35.

1
2
4

=b

ACKNOWLEDGMENT. This material is based upon 
work supported by the National Science Foundation 
under Grant No. DUE-1822247. Any opinions, findings, 
and conclusions, or recommendations expressed in this 
material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation.

Figure 1.



EDUCATION

May 2022	  Notices of the American Mathematical Society	   819

[8] J. Hillel, Models of description and the problem of represen-
tation in linear algebra, in: Jean-Luc Dorier (Ed.), On the 
teaching of linear algebra, Kluwer Academic Publishers, 
Dordrecht, 2000, 191–207.

[9] S. Stewart, C. Andrews-Larson, and M. Zandieh, Linear al-
gebra teaching and learning: Themes from recent research and 
evolving research priorities, ZDM Mathematics Education 
51 (2019), no. 7, 1017–1030, DOI 10.1007/s11858-019-
01104-1. 

[10] G. Caglayan, Is it a subspace or not? Making sense of sub-
spaces of vector spaces in a technology-assisted learning envi-
ronment, ZDM Mathematics Education 51 (2019), no. 7, 
1215–1237.

[11] G. Harel, Varieties in the use of geometry in the teaching of 
linear algebra, ZDM Mathematics Education 51 (2019), no. 
7, 1031–1042.

[12] F. Henderson, C. Rasmussen, G. Sweeney, M. Wawro, 
and M. Zandieh, Symbol sense in linear algebra, Proceedings 
of the 13th Annual Conference on Research in Undergrad-
uate Mathematics Education, Raleigh, NC, 2010. http://
sigmaa.maa.org/rume/crume2010

[13] M. Wawro, M. Zandieh, C. Rasmussen, and C. Andrews- 
Larson, Inquiry oriented linear algebra: Course materials, 
2013. Available at http://iola.math.vt.edu. This work 
is licensed under a Creative Commons Attribution-Non-
Commercial-ShareAlike 4.0 International License.
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