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everyone has the same opportunities, regardless of gender, 
ethnicity, religion and culture.” Any person, regardless of 
nationality or domicile, can join the ArPS. A nominal fee of 
fifty euros is charged for annual membership. Founding of 
the Arab Physical Society is of immense interest to the sci-
entific community worldwide, particularly to the diaspora 
from numerous countries residing in the Middle East. The 
number of such residents is over thirty-five million. The 
science news from the region of the Middle East has been 
encouraging. As an example, we note that the 2022 King 
Faisal International Prize in the field of mathematics was 
awarded to Martin Hairer and Nader Masmoudi of Tunisia. 
Masmoudi also holds the post of a distinguished professor 
of mathematics at the Center for Stability, Instability, and 
Turbulence in the New York University’s Abu Dhabi campus 
in UAE. Arab diaspora (numbering eight million outside 
of the Middle East) can look forward to contributing to the 
Middle Eastern region through the ArPS. 

Further Reading 
[1] S. A. Khan, Ahmed Hassan Zewail (1946–2016), Current 

Science 111 (2016), no. 5, 936–937. 
[2] S. A. Khan, 2022 King Faisal International Prize for Science 

and Medicine, Current Science 122 (2022), no. 5, 508. 
[3] H. Barcelo and S. Kennedy, Maryam Mirzakhani: 1977–

2017, Notices Amer. Math. Soc. 65 (2018), no. 10, 1221–
1247. 

[4] S. A. Khan, Maryam Mirzakhani (1977–2017), Current Sci-
ence 113 (2017), no. 5, 982–983.  

—Sameen Ahmed Khan, Dhofar University,  
Salalah, Sultanate of Oman 
rohelakhan@yahoo.com  

http://orcid.org/0000-0003-1264-2302

Establishment of the Arab Physical Society
As a regular reader of AMS Notices for decades, I would like 
to share the news of the establishment of the Arab Physi-
cal Society (ArPS, https://www.arabphysicalsociety 
.org/). On Thursday, April 7th, 2022, the Arab Physical 
Society was formally launched in a day-long online event. 
The event was marked by presentations by a Fields Medallist 
(Edward Witten, 1990), Nobel Laureates (Gerard ‘t Hooft, 
1999, Takaaki Kajita, 2015, and Roger Penrose, 2020), Wolf 
Prize Winners (Pablo Jarillo-Herrero, 2020), along with 
Dirac Medallists (Edward Witten, 1985, John Ellis, 2005, 
and Charles Kane, 2012). The eminent speakers covered 
topics of contemporary interest from physics, mathematical 
physics, and applied mathematics. Jordan’s Prince Hassan 
Ben Talal, a long-time supporter of science, delivered the 
opening address. Over 1,700 people attended the event. 

On June 7th, 2021, the Arab Physical Society (ArPS) was 
registered as a non-governmental and non-profit organi-
zation. The newly created organization already has four 
hundred members. The mission of the ArPS is to “Promote 
excellence and creativity in the field of physics for the 
benefit of the Arab region and humanity, it encourages 
scientific and research collaboration among researchers 
and students in the Arab region.” Along with physics, 
related areas including mathematical physics, applied 
mathematics, and some areas of engineering are within 
the domain of ArPS. Like its counterparts, ArPS has clear-
cut plans to organize scientific and educational activities; 
establish peer-reviewed journals; and importantly promote 
interaction among individuals, institutions, and organiza-
tions. In order to achieve these goals, ArPS has established 
a strong organizational structure through its Governing 
Council, Advisory Committee, and Focal Point. From the 
onset, ArPS is paying attention to diversity and gender. 
This is evident by the fact that each of the aforementioned 
governing bodies have seven members of which three are 
women. The Advisory Committee comprises of members 
from institutions in Egypt, Jordan, Libya, Morocco, Pales-
tine, Qatar, and Syria. The founding president of ArPS is 
Shaaban Khalil, a high-energy physicist. He is the director 
of the Fundamental Physics Center at the Zewail City of 
Science and Technology in Egypt. The ArPS is, according 
to its website, also keen to foster diversity “to ensure that 

http://orcid.org/0000-0003-1264-2302
https://www.arabphysicalsociety.org/
https://www.arabphysicalsociety.org/


A WORD FROM...
Jennifer J. Quinn, President of the MAA

The opinions expressed here are not necessarily those of the Notices or the AMS.
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I believe myself to be an optimist. Yet, I cannot overlook issues in the mathematics commu-
nity and the academy that need improvement. No one person has a solution—especially 
not me. A first step is awareness and a willingness to engage.

When you scan the mathematics environment, what do you see? Admittedly, impres-
sions are biased by personal experiences. I am a full professor at a primarily undergraduate, 
urban-serving, public institution and president of a sister mathematics association. I have 
observed:
• Declining membership in professional organizations. Membership concerns have been 
a frequent topic of discussion by the societies involved in the Conference Board of the 
Mathematical Sciences.1 In her 2018 State of the AMS report, Catherine Roberts wrote “we 
saw an increase in the number of regular members for the first time in at least eight years. 
Although our total membership numbers continued to decline (as is being experienced 
across all professional societies, so this is not unique to the AMS), numbers decreased at 
a slower rate than in previous years.”2

• A greater reliance on non-tenure track faculty to support the educational duties at institutions of higher 
learning. Using the most recent data available (2016), AAUP found that 73% of instructional positions at 
all US institutions of higher education were off the tenure track.3 This erosion in the tenure system weak-
ens protections for academic freedom. Typically, non-tenure track faculty cost less, teach more, and have 
fewer protections in their positions.

• Lack of recognition of contributions outside of traditional scholarship. Peer-reviewed publications 
remain the gold standard for achievement—even at some institutions that provide minimal support for 
scholarship. Successfully fulfilling academic responsibilities, typically to include scholarship, teaching, 
and service, should lead to promotion. Academic responsibilities temporarily shifted during the once-in-
a-century disruption to education due to COVID-19. The Herculean efforts in instruction that allowed 
universities to continue offering courses uninterrupted were rewarded with a pat on the back, a recommen-
dation of more self-care, and for many faculty, a pause on their tenure clock. The loss of research progress 
during lockdown disproportionately affected women and faculty of color.4 Institutional understanding and 
short-term flexibility are a start but continued emphasis on achievement as measured through traditional 
scholarship fails to recognize the emergency shift of academic responsibilities undertaken at the behest 
of these institutions during a global pandemic.

Jennifer J. Quinn is the president of the MAA and a professor at the University of Washington Tacoma. Her email address is jjquinn@uw.edu. 
1See for example the May 2019 or December 2020 CBMS agendas available at https://www.cbmsweb.org/council-meeting-materials/.
2C. Roberts, Report of the Executive Director: State of the AMS, 2018, Notices Amer. Math. Soc. 66 (2019), no. 7, 1115.
3Data Snapshot: Contingent Faculty in US Higher Ed, published October 11, 2018, https://www.aaup.org/news/data-snapshot 
-contingent-faculty-us-higher-ed#.YjjES-rMJD9.
4A. Tugend, On the Verge of Burnout Covid19’s impact on faculty well-being and career plans, Chronicle of Higher Education, 2020.
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• An exponential growth in publications. The number of journal articles indexed annually by Mathematical 
Reviews has doubled over the last 19 years with a growth rate of 3.6%.5 Changes in the professoriate have not 
kept pace. According the 2015 CBMS Survey of Undergraduate programs, the number of full-time faculty in 
mathematics and statistics departments grew from 28,500 to 33,500 faculty over the same approximate period, 
between 2000 and 2015.6

• An environment that is not welcoming to everyone. Climate surveys confirm that harassment, discrimination, 
and bias persist in academia.7 Despite an increased emphasis on inclusion, humanity, anti-racism statements, 
codes of conduct, and welcoming environment policies, the underlying systems are flawed and need change.

I see these five issues as the result of people, either individually or institutionally, giving too much or too little value 
to the subject under consideration. When a mathematician chooses not to join a professional organization, they are 
making a determination of worth. It could be because of a generational shift (the iTunes mentality of buying a single 
song rather than the whole album), a technological shift (increased access to information on the internet previously only 
available through membership), or unfamiliarity with the myriad ways associations support mathematicians and advance 
the understanding of mathematics and its impact on the world. When institutional leaders lean heavily on non-tenure 
track faculty for financial flexibility, they are valuing the bottom line over long term commitments to and stability of 
their faculty. When academic culture supports a publish-or-perish paradigm, it overvalues peer-reviewed scholarship, 
sometimes to the exclusion of achievements in public scholarship, teaching innovation, mentorship, institution building, 
or service to various communities. It pushes aspiring professionals to seek minimal-publishable-units, perhaps fueling 
the proliferation of publications. Finally, when an institutional culture intentionally or unintentionally perpetuates an 
unwelcoming environment, it undervalues its members and denies them equitable opportunities to learn, use, and con-
tribute to the mathematical sciences.

Academia is a strange and hierarchical entity—rooted in privilege and intentional exclusion. Prior to 1773, graduates 
of Harvard were arranged “according to the dignity of birth, or to the rank of [their] parents.”8 To this day, everything 
and everyone is ranked according to some metric of merit and those not at the apex can be made to feel less than or 
unwelcome. Now we rank students by test scores or GPA, faculty by publications or citation indices, and institutions by 
Carnegie Classification or status on the annual lists of “Best Universities and Colleges.”

Initially, I thought the problem lay in the hierarchy itself,9 but on reflection that was naive. Proposing an alternate 
structure was unrealistic—especially when experts in organizational behavior say hierarchies are inevitable in complex 
societies10 and philosophers have yet to identify an unambiguous example of a self-organizing (non-hierarchical) society.11 
Organizational psychologist Harold Leavitt said, “We cling to hierarchies because our place in a hierarchy is, rightly or 
wrongly, a major indicator of our social worth.”12 So eliminating the hierarchy is out.

The Carnegie Foundation for the Advancement of Teaching has done something interesting; it is changing the hierarchy. 
Its classification system was never intended as an indicator of institutional prestige, only a tool for educational-research 
comparison. Recently in partnership with the American Council on Education, they rethought the classifications. Beginning 
is 2023, the Social and Economic Mobility Classification will be launched to recognize and reward institutions committed 
to and succeeding in creating better futures for diverse, inclusive student populations. US secretary of education Miguel 

5E. Dunne, Looking at the Mathematics Literature, Notices Amer. Math. Soc. 66 (2019), no. 2, 227–230, https://www.ams.org/journals 
/notices/201902/rnoti-p227.pdf.
6R. Blair, E. K. Kirkman, and J. W. Maxwell, Statistical Abstract of Undergraduate Programs in the Mathematical Sciences in the United States 
Fall 2015 CBMS Survey, AMS, 2018, p. 32, https://www.ams.org/profession/data/cbms-survey/cbms2015-Report.pdf.
7E. B. Stolzenberg, M. K. Eagan, H. B. Zimmerman, J. Berdan Lozano, N. M. Cesar-Davis, M. C. Aragon, and C. Rios-Aguilar, Undergraduate teaching 
faculty: The HERI Faculty Survey 2016–2017, Los Angeles: Higher Education Research Institute, UCLA, 2019.
8https://www.harvard.edu/about-harvard/harvard-history/#1600s
9I said as much in the December 2021–January 2022 MAA Focus President’s Message: “Don’t Let Us Get Sick.”
10B. Sutton, Hierarchy is Good. Hierarchy is Essential. And Less Isn’t Always Better, eCorner, Stanford University, April 7, 2016, https://ecorner 
.stanford.edu/articles/hierarchy-is-good-hierarchy-is-essential-and-less-isnt-always-better/.
11K. A. Appiah, Digging for Utopia, New York Review of Books, December 16, 2021, https://www.nybooks.com/articles/2021/12/16/david 
-graeber-digging-for-utopia/.
12H. J. Leavitt, Top Down: Why Hierarchies are Here to Stay and how to Manage Them More Effectively, Harvard Business Press, 2005, p. 35.

https://www.ams.org/journals/notices/201902/rnoti-p227.pdf
https://www.ams.org/journals/notices/201902/rnoti-p227.pdf
https://www.ams.org/profession/data/cbms-survey/cbms2015-Report.pdf
https://ecorner.stanford.edu/articles/hierarchy-is-good-hierarchy-is-essential-and-less-isnt-always-better/
https://ecorner.stanford.edu/articles/hierarchy-is-good-hierarchy-is-essential-and-less-isnt-always-better/
https://www.nybooks.com/articles/2021/12/16/david-graeber-digging-for-utopia/
https://www.nybooks.com/articles/2021/12/16/david-graeber-digging-for-utopia/
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A. Cardona said of this change, “Colleges and universities need to reimagine themselves around inclusivity and student 
success, not selectivity and reputation.”13

Similarly, I propose rethinking the meaning of ‘merit’ in the academy so we can impart greater worth to everyone within 
the hierarchy. In practice, determination of merit becomes a self reinforcing cycle—what you reward, you get more of. If 
respect in the hierarchy is only earned through publication, then we get more publication accompanied by a proliferation 
of predatory publication practices.14 If contributions essential to your institution’s mission and core values are ignored 
or devalued, who will engage in the necessary work?

Amartya Sen argues that measuring merit in fixed, absolute terms reflects values and priorities of the past and often 
comes in conflict with contemporary objectives and views of a good society.15 To promote mathematics and welcome 
more practitioners, I ask that we work together to modernize our disciplinary metrics and match merit to mission.

To create improved systems, reimagined around inclusivity and not selectivity, will require hard work. Modernizing 
disciplinary metrics can impel progress towards diversity, equity, and inclusion; safeguard academic freedom; and support 
career promotion pathways for non-tenure track faculty. More people might take up the work, if they knew that their 
contributions would be valued. Change can occur locally at the individual and institutional level or nationally through 
professional organizations, as evidenced by the partnership between the Carnegie Foundation and the American Council 
on Education. When you are ready to be part of enacting change, you can find support and resources through associations 
like AMS or MAA.16 If you find these resources valuable and you don’t already belong, please consider joining.

13K. Mangan, New Carnegie Classification Will Reflect Social and Economic Mobility, Chronicle of Higher Education, February 9, 2022.
14D. S. Chawla, Hundreds of ‘predatory’ journals indexed on leading scholarly database, Nature, February 8, 2021, https://www.nature.com 
/articles/d41586-021-00239-0.
15A. Sen, Merit and Justice, In: K. J. Arrow, et al., Meritocracy and Economic Inequality, Princeton: Princeton University Press, 2000.
16See for instance, the statements and guidelines from the MAA at https://www.maa.org/programs-and-communities/professional-development 
/committee-on-faculty-and-departments or the AMS at https://www.ams.org/about-us/governance/policy-statements/sec-ams 
-policystatements.

https://www.maa.org/programs-and-communities/professional-development/committee-on-faculty-and-departments
https://www.maa.org/programs-and-communities/professional-development/committee-on-faculty-and-departments
https://www.ams.org/about-us/governance/policy-statements/sec-ams-policystatements
https://www.ams.org/about-us/governance/policy-statements/sec-ams-policystatements
https://www.nature.com/articles/d41586-021-00239-0
https://www.nature.com/articles/d41586-021-00239-0
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A.T.V.’s for (Geometric)
Off-roading: A Gentle

Introduction to Arithmetic
Toric Varieties

Patrick K. McFaddin
1. Introduction
A fundamental problem in mathematics is how to deter-
mine whether a given finite collection of polynomials has
a common solution, and how to quantify and qualify the
shape of this solution set in a meaningful way. Indeed,
linear algebra is the study of polynomials of degree one,
and the theory of quadratic forms investigates polynomi-
als of degree two. In general, this is the staring point of
algebraic geometry and the theory of algebraic varieties. Over
the past few centuries, algebraic geometers have developed
a wide array of tools called invariants for studying such
geometric objects. Invariants are pieces of data (numbers,
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sets, groups, vector spaces, categories) associated to mathe-
matical objects which produce the same output on objects
which are effectively identical, i.e., those which are isomor-
phic in the appropriate sense. In other words, invariants
are those associations which are invariant under isomor-
phism.

Invariants help us distinguish algebraic varieties which
have distinct geometric properties, greatly improving our
ability to classify them. To study varieties, it is necessary
to study their invariants, how to effectively compute them,
and what information they reflect about the algebra, ge-
ometry, and arithmetic of a given variety. Often one gains
a great deal of insight by computing invariants on large
classes of particularly nice varieties. Toric varieties defined
over the complex numbers have proved to be an extremely
useful class of geometric objects to test the flexibility and
robustness of a slew of algebro-geometric invariants. Our
understanding of divisor class groups, Picard groups, al-
gebraic 𝐾-theory, derived categories, moduli problems,
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geometric invariant theory, and the minimal model pro-
gram has been greatly improved by investigating these in-
variants for toric varieties [CLS11].

Combinatorial
algebraic
geometry

Arithmetic
geometry

Spherical and
toric varieties

Algebraic
groups and

twisted forms

Arithmetic
toric varieties

⊆ ⊆

To investigate the utility and limitations of these in-
variants in the arithmetic case, i.e., for varieties over non-
algebraically closed fields, one aims to find a similarly use-
ful class of varieties. Simply taking the naive, analogous
definition of toric varieties over arbitrary fields yields a the-
ory which is too similar to the complex case and fails to
faithfully reflect arithmetic. Instead, one looks to twisted
forms of toric varieties, which we call arithmetic toric vari-
eties. For such varieties, the combinatorial nature of com-
plex toric varieties persists, but additional Galois-theoretic
analysis plays a crucial role. The study of arithmetic toric
varieties is then reduced to understanding combinatorial
objects (fans, cones, etc.) and how Galois groups asso-
ciated to certain field extensions act on these objects. In
this way, arithmetic toric varieties serve as a convenient
bridge between arithmetic and combinatorial algebraic ge-
ometry, which we hope to exploit to study derived invari-
ants. By veering off of the geometrically beaten path with
our A.T.V.’s, we hope to gain deeper insight into various in-
variants and their limitations in reflecting arithmetic data.
Here we highlight two properties of interest in the arith-
metic setting: the existence of rational points and rationality.
The first is the problem of determining whether a collec-
tion of polynomials admits a common solution. The sec-
ond focuses on how to parametrize the solution set of a
collection of polynomials using only rational functions.

The purpose of this manuscript is to give a small sam-
pling of the theory of arithmetic toric varieties, focusing
on simple examples in low dimension using explicit poly-
nomial equations. Even with this restricted “cheat-sheet”
type viewpoint, there is hope that the reader may glean a
general sense of the analysis of such objects. While some
topics are only glossed over, and some terminology is de-
fined in a colloquial manner, we hope that thismanuscript

serves as an invitation to the reader to look more deeply
into these topics and ideas.

A second goal is to highlight the class of arithmetic
toric varieties as the most natural testing ground to study
the limitations of algebro-geometric invariants in the arith-
metic setting. There is already a rich history of such work,
including the analysis of del Pezzo surfaces and Severi-
Brauer varieties. Using more recent work which system-
atically investigates arithmetic toric varieties using Galois
(and non-ablelian) cohomology [Dun16,ELFST14,MP97],
we hope to gain new insights into this class of objects. We
point out one particular success story in this line of inves-
tigation concerning the invariant given by the coherent de-
rived category. It has been found that unless the derived
category has a fine decomposition into very simple pieces,
it does not generally reflect rationality properties well. This
yields a broader understanding of the derived category as
an arithmetic invariant. On the other hand, one might
share the author’s disappointment that the derived cate-
gory is not better suited to this task. C’est la vie! Our hope
is that the class of arithmetic toric varieties will be used to
probe other invariants in an analogous fashion.
Organization. We begin by recalling some basic termi-
nology from the theory of algebraic varieties and their
arithmetic, including a discussion of algebraic groups and
twisted forms. In Section 3, we discuss toric varieties de-
fined over the complex numbers, introducing the combi-
natorial description of these geometric objects in low di-
mension. In Section 4, arithmetic toric varieties are in-
troduced and examples are provided. In Section 5, we re-
port on recent results which provide insight into the use
of arithmetic toric varieties in studying the limitations of
the derived category as an arithmetic invariant of smooth
projective varieties.
Notation and conventions. All rings are associative with
identity and all vector spaces are finite-dimensional. A
monoid is a set together with an associative binary opera-
tion which admits an identity element. Given a field 𝑘, a
𝑘-algebra is a ring which also admits the structure of a 𝑘-
vector space, and these operations are compatible. A divi-
sion ring (resp., division 𝑘-algebra) is a ring (resp., 𝑘-algebra)
in which every non-zero element has a multiplicative in-
verse. Given two objects 𝐴 and 𝐵 in the same category, we
use Hom(𝐴, 𝐵) to denote the collection of all morphisms
(i.e., structure preserving functions) from 𝐴 to 𝐵. Through-
out, we let ℂ denote the field of complex numbers, and
𝑘 ⊆ ℂ a Galois extension of fields.

2. Varieties, Groups, and Twisted Forms
Let us begin by giving an overview of varieties defined over
the field of complex numbers. An affineℂ-variety is a subset
of ℂ𝑛 of the form

𝐕(𝐼) = {𝐚 = (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ℂ𝑛 ∣ 𝑓(𝐚) = 0 for all 𝑓 ∈ 𝐼}
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for some ideal 𝐼 ⊴ ℂ[𝑥1, … , 𝑥𝑛]. Given a finite set of poly-
nomials 𝑓1, .., 𝑓𝑚 ∈ ℂ[𝑥1, … , 𝑥𝑛], we similarly define the
variety given by the set of simultaneous zeros of all the 𝑓𝑖,
i.e., 𝐕(𝑓1, … , 𝑓𝑛) = {𝐚 ∈ ℂ𝑛 ∣ 𝑓𝑖(𝐚) = 0 for all 𝑓𝑖}. This coin-
cides with the variety associated to the ideal generated by
the 𝑓𝑖, and any variety is given by the vanishing of finitely
many polynomials, a consequence of theHilbert Basis The-
orem [Eis95, Thm. 1.2].

Conversely, given any affine ℂ-variety 𝑉 ⊆ ℂ𝑛, we ob-
tain the defining ideal of 𝑉

𝐈(𝑉) = {𝑓 ∈ ℂ[𝑥1, … , 𝑥𝑛] ∣ 𝑓(𝐚) = 0 for all 𝐚 ∈ 𝑉}.
The quotient ring ℂ[𝑉] ≔ ℂ[𝑥1, … , 𝑥𝑛]/𝐈(𝑉) is the coordi-
nate ring of 𝑉 . Notice that if 𝑊 ⊆ 𝑉 is an inclusion of
affine ℂ-varieties, then 𝐈(𝑉) ⊆ 𝐈(𝑊). The constructions 𝐈
and𝐕 are are inverses of one another if we restrict to a nice
class of ideals. Indeed, for any ideal 𝐼 ⊴ ℂ[𝑥1, … , 𝑥𝑛], we
have

𝐈(𝐕(𝐼))=√𝐼={𝑓 ∈ ℂ[𝑥1, … , 𝑥𝑛] ∣ 𝑓𝑚 ∈ 𝐼 for some 𝑚 ∈ ℤ}
by Hilbert’s Nullstellenstatz [Eis95, Thm. 1.6]. This re-
sult, which crucially relies on the fact thatℂ is algebraically
closed, yields a bijective correspondence between affine va-
rieties and radical ideals (i.e., ideals satsifying 𝐼 = √𝐼). In
other words, the geometric object, given by solution sets
of polynomials, completely determines the underlying al-
gebraic data, and vice versa.

The naturalmaps between affineℂ-varieties are given by
polynomial functions. If 𝑉 ⊆ ℂ𝑛 and 𝑊 ⊆ ℂ𝑚 are affine
ℂ-varieties, a morphism or regular function 𝜑 ∶ 𝑉 → 𝑊 has
both geometric and algebraic descriptions:

1. Geometric: A function 𝜑 ∶ 𝑉 → ℂ is regular if there is
a polynomial 𝐹 ∈ ℂ[𝑥1, .., 𝑥𝑛] such that 𝜑(𝑥) = 𝐹(𝑥)
for all 𝑥 ∈ 𝑉 . A function 𝜑 ∶ 𝑉 → 𝑊 is regular if there
exist regular functions 𝜑1, .., 𝜑𝑚 ∶ 𝑉 → ℂ such that
𝜑(𝑥) = (𝜑1(𝑥), … , 𝜑𝑚(𝑥)) for all 𝑥 ∈ 𝑉 .

2. Algebraic: A regular function 𝑉 → 𝑊 is equivalent
to the data of a ℂ-algebra homomorphism ℂ[𝑊] →
ℂ[𝑉]. If 𝜑 ∶ 𝑉 → 𝑊 is a regular function, the cor-
responding ℂ-algebra homomorphism is defined as
𝜑∗(𝑓) = 𝑓 ∘ 𝜑, for 𝑓 ∈ ℂ[𝑊].

An isomorphism of affine ℂ-varieties is a regular map
which has a regular inverse. Equivalently, an isomorphism
of affine ℂ-varieties 𝑉 and 𝑊 is given by an isomorphism

of ℂ-algebras ℂ[𝑊] ∼−→ ℂ[𝑉]. A general ℂ-variety is a space
which locally looks like an affine ℂ-variety, i.e., each point
has a neighborhood which is isomorphic to an affine ℂ-
variety. If 𝑉 and 𝑊 are ℂ-varieties, a function 𝜑 ∶ 𝑉 → 𝑊
is regular if for each 𝑥 ∈ 𝑉 and any affine open sub-
set 𝑉 ⊆ ℂ𝑚 containing 𝜑(𝑥), there is a neighborhood
𝑥 ∈ 𝑈 ⊆ 𝑉 such that 𝜑(𝑈) ⊆ 𝑉 and 𝜑 ∶ 𝑈 → 𝑉 is regular.
This is analogous to the definition of a manifold, which is
locally Euclidean space.

In the case where the base field is not algebraically
closed, the Nullstellensatz no longer holds, and the geo-
metric data of the variety is not enough to fully determine
its underlying algebraic structure. For this reason, our def-
inition of 𝑘-variety centers on algebraic data. For our pur-
poses, we adopt (a simplified version of) the approach
given in [Bor91,Spr98] using 𝑘-structures on varieties.

A 𝑘-structure on a ℂ-algebra 𝐴 is a 𝑘-subalgebra 𝐴𝑘 ⊆ 𝐴
such that the homomorphism ℂ⊗𝑘 𝐴𝑘 → 𝐴 is an isomor-
phism. If 𝐴 is a ℂ-algebra with 𝑘-structure 𝐴𝑘 and 𝐽 ⊴ 𝐴,
then 𝐽 is defined over 𝑘 if 𝐽 ∩ 𝐴𝑘 generates 𝐽 as an ideal.
If 𝜑 ∶ 𝐴 → 𝐵 is a homomorphism of ℂ-algebras with 𝑘-
structures 𝐴𝑘 and 𝐵𝑘, then 𝑓 is defined over 𝑘 if 𝜑(𝐴𝑘) ⊆ 𝐵𝑘.
An affine ℂ-variety 𝑉 ⊆ ℂ𝑛 is defined over 𝑘 if there exist
𝑓1, … , 𝑓𝑚 ∈ 𝑘[𝑥1, … , 𝑥𝑛] such that 𝑉 = 𝐕(𝑓1, … , 𝑓𝑚). From
this perspective, 𝑘-varieties are given by ℂ-varieties whose
defining polynomials are elements of 𝑘[𝑥1, … , 𝑥𝑛], and we
use this perspective onward.

Definition 2.1 (Affine 𝑘-variety). An affine 𝑘-variety is a
finite collection of polynomials

𝑋 = {𝑓𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛]}.
Such a collection gives rise to the following algebraic and
geometric data:

1. Algebraic: The defining ideal 𝐈(𝑋) = (𝑓1, … , 𝑓𝑚) and
coordinate ringℂ[𝑋], which admits a 𝑘-structure given
by 𝑘[𝑋] ∶= 𝑘[𝑥1, … , 𝑥𝑛]/𝐈(𝑋) ⊆ ℂ[𝑋]. Relative to this
𝑘-structure, the ideal 𝐈(𝑋) is defined over 𝑘.

2. Geometric: The set of 𝑘-rational points (or simply
𝑘-points) is given by

𝑋(𝑘) ∶= {𝐚 ∈ 𝑘𝑛 ∣ 𝑓𝑖(𝐚) = 0 for all 𝑓𝑖} ⊆ 𝑘𝑛.
More generally, for any field extension 𝑘 ⊆ 𝐹, the set
of 𝐹-points is given by

𝑋(𝐹) ∶= {𝐚 ∈ 𝐹𝑛 ∣ 𝑓𝑖(𝐚) = 0 for all 𝑓𝑖}.
Notice that the solution set of the defining equations

of a variety is just one piece of information that we can
extract. The ability to consider the set of solutions over
extensions of 𝑘 allow us to probe deeper questions about
the arithmetic of varieties.

We may refer to a variety by describing its set of points,
but will often remind the reader of its full variety structure
when necessary, i.e., we write 𝑋 = {𝑓𝑖 = 0} to denote a
variety 𝑋 defined by {𝑓𝑖}. In certain cases, e.g., the point-
less conic of Example 2.4, varieties may have no points
at all, yet still provide interesting examples of “geometric
objects,” via their algebraic and arithmetic data. In these
cases (especially in Section 4) it is necessary to include the
full variety structure.

The sets given by the collection of common zeros
of finitely many polynomials are the closed sets in a
topology on 𝑘𝑛 called the Zariski topology. If we view a
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polynomial 𝑓 ∈ 𝑘[𝑥1, .., 𝑥𝑛] as a function 𝑘𝑛 → 𝑘, then
the Zariski topology is the coarsest topology in which all
polynomials are continuous [Kem11, Rmk 3.3(g)]. Alge-
braic varieties are often described in terms of sets together
with this topology. For instance, the set 𝑘𝑛 together with
its Zariski topology is the variety 𝔸𝑛𝑘 called affine 𝑛-space.
We can also describe it using a (quite trivial!) polynomial
equation.

Example 2.2 (Affine space). Consider the 𝑘-variety 𝔸𝑛𝑘
whose defining polynomial is the 0 polynomial in
𝑘[𝑥1, … , 𝑥𝑛]. Since every element of 𝑘𝑛 vacuously satis-
fies this equation 0 = 0, the 𝑘-points of 𝔸𝑛𝑘 are given by
𝔸𝑛𝑘(𝑘) = 𝑘𝑛. We will often denote this variety simply by 𝑘𝑛,
e.g., ℂ𝑛 denotes the variety 𝔸𝑛ℂ and ℝ𝑛 denotes 𝔸𝑛ℝ.

Note that any affine variety 𝑋 can be viewed as a sub-
variety of affine space. This is easiest to see on points. In-
deed, a point of𝑋 is a simultaneous solution of its defining
equations. But such solutions are elements of 𝑘𝑛 = 𝔸𝑛𝑘 by
definition.

Example 2.3 (Circle group). Consider the ℝ-variety 𝑋 =
{𝑥2 + 𝑦2 − 1 = 0}. Then 𝑋(ℝ) is given by the unit circle
in ℝ2. For that reason, we denote this variety by 𝑆1. It
also has the structure of a group, which comes from the
action of rotation matrices on the coordinates 𝑥, 𝑦 of the
ambient space ℝ2 = 𝔸2ℝ, and we call this variety the circle
group. We will encounter a few other algebraic groups below
(Example 2.5 and Subsection 2.1).

Example 2.4 (Pointless real conic). Consider theℝ-variety
𝑋 = {𝑥2 + 𝑦2 + 1 = 0}. Then 𝑋(ℝ) = ∅, so there exist
ℝ-varieties which have no ℝ-points, a fact we all remem-
ber from solving equations in grade school! Even though
this variety has no points, it is still useful to view it as a
one-dimensional geometric object, i.e., a curve. This is the
benefit of remembering its defining equation (i.e., its full
structure as a variety). This reflects the arithmetic complex-
ity of ℝ versus that of ℂ, particularly the fact that ℂ is al-
gebraically closed while ℝ is not. We expect arithmetically
complicated fields to admit many examples of such vari-
eties.

Example 2.5 (Multiplicative group). Consider the ℝ-
variety 𝑋 = {𝑥𝑦 − 1 = 0}. The set of ℝ-points of 𝑋 is given
by a hyperbola in ℝ2. Projecting this hyperbola onto the
𝑥-axis gives us ℝ∗ = ℝ ⧵ {0}. This variety is called the mul-
tiplicative group and is an algebraic group, i.e., it simulta-
neously has the structure of an affine variety and a group.
When we wish to remember its structure as a variety (i.e.,
its defining equation), wewill denote it by𝔾𝑚 or𝔾𝑚,ℝ. We
will also denote this variety by ℝ∗, since this set defines its
ℝ-points.

The defining equation of 𝔾𝑚,ℝ is equivalent to 𝑦 = 𝑥−1,
and so this variety is often described by the polynomial
ring ℝ[𝑥, 𝑥−1]. This gives an intuitive understanding of

how polynomial functions define our varieties. When we
restrict our attention to non-zero elements of ℝ = 𝔸1ℝ,
both 𝑥 and

1
𝑥

are well-defined functions which satisfy the

relation 𝑥 ⋅ 1
𝑥
= 1. Conversely, the one-dimensional geo-

metric space on which both 𝑥 and
1
𝑥

are well-defined is
given by the non-zero elements of ℝ. We also realize 𝔾𝑚,ℝ
as an open subset of the affine line. In the Zariski topology,
the polynomial function 𝑓(𝑥) = 𝑥 has zero set {0}, which
is a closed set. Its complement is then the open set ℝ∗, a
quasi-affine variety.

We may equally well view 𝑋 as a variety over ℚ or ℂ, or
any field 𝑘; they all contain 0 and 1, and this is all that is
needed for its defining equation. In these cases, we write
𝔾𝑚,ℚ,𝔾𝑚,ℂ, or𝔾𝑚,𝑘 but will also useℚ∗,ℂ∗, and 𝑘∗, respec-
tively. We also refer to the multiplicative group as the one-
dimensional torus. This moniker is discussed in Section 3.

Definition 2.6. Let 𝑋 and 𝑌 be affine 𝑘-varieties. A mor-
phism 𝑋 → 𝑌 is given by the data of a ℂ-algebra homo-
morphism 𝜑 ∶ ℂ[𝑌] → ℂ[𝑋] which is defined over 𝑘, i.e.,
𝜑 satisfies 𝜑(𝑘[𝑌]) ⊆ 𝑘[𝑋]. A morphism 𝑋 → 𝑌 is an iso-
morphism if the corresponding map of ℂ-algebras is an
isomorphism defined over 𝑘.

A morphism 𝑋 → 𝑌 of 𝑘-varieties defined over 𝑘 in-
duces a function 𝑋(𝐹) → 𝑌(𝐹) on 𝐹-points for any 𝑘 ⊆ 𝐹,
which makes senses even if the domain has no points (by
including the empty set as a subset). A nice class of ex-
amples is provided by twisted-linear subvarieties of Severi-
Brauer varieties [GS06, §5.1]. If the domain has a point,
the image of this point is then a point in the codomain.
This is a useful fact that can be used to argue the non-
existence of morphisms between 𝑘-varieties, e.g., any ℝ-
variety which has ℝ-points cannot admit a morphism to
the pointless ℝ-conic in Example 2.4.

Examples 2.3 and 2.4 above show us the difficulty in
determining when a 𝑘-variety admits rational points. In-
deed, the circle group and pointless conic have nearly iden-
tical defining equations, but starkly contrasting algebro-
geometric properties; one has lots ofℝ-points and a group
structure while the other has neither.

A related problem is to determine when a given va-
riety contains a dense open subset which is isomorphic
to an open subset of affine space 𝔸𝑛𝑘. Such varieties are
called rational, and this property is equivalent to having a
parametrization by rational functions. Such varieties have
lots of rational points, corresponding to all the points of
𝔸𝑛𝑘. Again, 𝑆1 and the pointless conic are quite distinct in
this regard. The variety 𝑆1 is rational (stereographic projec-
tion onto a line is one way to see this), while the pointless
conic is not rational since it does not have any rational
points.
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Determining whether a given variety is rational (or
unirational, stably rational, retract rational) is a long-
standing problem in arithmetic and algebraic geome-
try. Recent work has invoked the use of sophisticated
(co)homological techniques, including Chow groups,
unramified cohomology, and derived categories (see
[AB17, Pir18] for surveys on these topics). In Section 5
we provide a discussion on a particular success story in the
theory of derived categories.
2.1. Algebraic groups. Since our main objects of interest
are certain varieties which admit a group structure (and
partial compactifications thereof), we give a formal defini-
tion of algebraic groups, their morphisms, and additional
examples.

Definition 2.7. An algebraic group or group variety over 𝑘 is
a 𝑘-variety𝐺 which also admits the structure of a group. In
other words, an algebraic group is a variety together with
the following regular maps (morphisms in the category of
varieties)

1. group multiplication 𝑚 ∶ 𝐺 × 𝐺 → 𝐺
2. inclusion of the identity element 𝑒 ∶ ∗ → 𝐺
3. inversion inv ∶ 𝐺 → 𝐺.

Here, ∗ denotes the variety which consists of a single point,
e.g., {𝑥 = 0} ⊆ 𝔸1𝑘. These maps are then required to satisfy
additional compatibility properties, mimicking the usual
group axioms and which we leave to the reader. We note
that if 𝐺 is an algebraic group, its set of points 𝐺(𝑘) has a
group structure (in the usual sense of abstract groups), but
this does not fully define the algebraic group structure on
𝐺. Given algebraic groups 𝐺 and 𝐻, an algebraic group mor-
phism 𝜑 ∶ 𝐺 → 𝐻 is a regular map which preserves the al-
gebraic group structure, i.e., a homomorphism of groups.

Example 2.8 (General linear group). Consider the poly-
nomial ring 𝑅 = 𝑘[𝑥11, 𝑥12, … , 𝑥𝑛𝑛, 𝑦] in 𝑛2 + 1 variables,
and let 𝑋 = (𝑥𝑖𝑗) be the matrix of indeterminates. The de-
terminant of 𝑋 is a polynomial, so that det(𝑋)𝑦 − 1 ∈ 𝑅.
Let GL𝑛,𝑘 denote the affine 𝑘-variety defined by this poly-
nomial. Notice that its 𝑘-points GL𝑛(𝑘) are given by pairs
(𝑀, 𝑑) where 𝑀 is an invertible 𝑛 × 𝑛 matrix with entries
in 𝑘 and 𝑑 = det(𝑀)−1. Since invertibility of a matrix is
equivalent to its determinant being non-zero, the defin-
ing equation recovers the usual definition encountered in
group theory. Moreover, this description realizes GL𝑛,𝑘 as

a subvariety of 𝔸𝑛2+1𝑘 .

Example 2.9 (Algebraic tori). It wasmentioned above that
𝔾𝑚,𝑘 = 𝑘∗ is also an algebraic group. In fact, we can real-
ize it as a subvariety of GL𝑛,𝑘. Indeed, if we take our matrix
of variables 𝑋 , to be the diagonal matrix diag(𝑥11, 1, … , 1),
then the equation det(𝑋)𝑦 = 1 becomes 𝑥11𝑦 = 1. But
this is exactly the defining equation of 𝔾𝑚,𝑘 = 𝑘∗ (apart
from the names of our indeterminants). More generally,

𝔾𝑛
𝑚,𝑘 = 𝔾𝑚,𝑘 × ⋯ × 𝔾𝑚,𝑘 is the subvariety of GL𝑛,𝑘

where we take our matrix of variables to be 𝑋 =
diag(𝑥11, 𝑥22, … , 𝑥𝑛𝑛).
Example 2.10 (Determinant, special linear group). The de-
terminant map det ∶ GL𝑛,𝑘 → 𝔾𝑚,𝑘 defines a morphism of
algebraic groups and has kernel SL𝑛,𝑘, the affine 𝑘-variety
given by det(𝑋) = 1. If we consider the 𝑘-points of each of
these algebraic groups, we recover our usual determinant
map det ∶ GL𝑛(𝑘) → 𝑘∗, which has kernel SL𝑛(𝑘).
2.2. Twisted forms. For 𝑘 ⊆ ℂ, any 𝑘-variety may be con-
sidered as a ℂ-variety simply by viewing the defining equa-
tions as having coefficients in ℂ. We denote this ℂ-variety
by 𝑋ℂ. The process of enlarging the field of coefficients of
a given variety is called base extension or extension of scalars.

Example 2.11. Let ℝ∗ = {𝑢𝑣 − 1 = 0} be the real multi-
plicative group and let 𝑆1 = {𝑥2 + 𝑦2 − 1 = 0} be the circle
group. As ℝ-varieties, these are non-isomorphic. Indeed,
one may consider the invariant given by the number of
connected components of ℝ-points. On the other hand,
we note that the defining equations yield isomorphic vari-
eties when we view them as polynomial equations over ℂ,
i.e., after extending scalars. Indeed, the equation 𝑢𝑣−1 = 0
over ℂ defines the variety 𝔾𝑚,ℂ = ℂ∗, and we have an iso-
morphism ℂ∗ ≅ 𝑆1ℂ given by 𝑢 ↦ (𝑥+ 𝑖𝑦) and 𝑣 ↦ (𝑥− 𝑖𝑦).

Since varieties defined over ℂ are completely deter-
mined by their geometric structure, we view 𝑋ℂ as a geo-
metric “shadow” of 𝑋 , and use its nicer geometric proper-
ties to extract information about𝑋 . For this reason, proper-
ties of 𝑘-varieties andmorphisms which hold overℂ are of-
ten labelled as geometric. In the above example, ℝ∗ and 𝑆1
are geometrically isomorphic since they are isomorphic over
ℂ.

How can we get a handle on systematically studying ex-
amples of geometrically isomorphic varieties? One solu-
tion is to parametrize the collection of all such varieties
in a way that reduces the study of 𝑘-varieties 𝑋 to under-
standing their geometric avatar 𝑋ℂ, and the arithmetic re-
lationship between 𝑘 andℂ. This can be achieved using the
theory of Galois cohomology. Given a Galois field extension
𝑘 ⊆ ℂ, the Galois group Gal(ℂ/𝑘) = {𝜎 ∈ Aut(ℂ) ∣ 𝜎|𝑘 = id𝑘}
is the set of those field automorphisms of ℂ which fix 𝑘
pointwise. If 𝑋 is a 𝑘-variety, the action of the Galois group
on ℂ induces an action on 𝑋ℂ, where an automorphism
𝜎 ∈ Gal(ℂ/𝑘) is applied to the coefficients of the defining
polynomial equations.

Example 2.12. Consider the ℝ-variety 𝑋 = {𝑥2 + 𝑦2 =
0}. The ℝ-points of 𝑋 are given by 𝑋(ℝ) = {(0, 0)}. If we
consider 𝑋 as a ℂ-variety, then we get a factorization of its
defining equation. That is, 𝑋ℂ = {(𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 0}.
This variety consists of two pieces, given by {𝑥 = 𝑖𝑦} and
{𝑥 = −𝑖𝑦}. The Galois group Gal(ℂ/ℝ) ≅ ℤ/2 acts on 𝑋ℂ via
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conjugation, and this action swaps its two components. It
also acts on the ℂ-points, e.g., (𝑖, −1) ↦ (−𝑖, −1).
Definition 2.13 (Twisted form). Let𝑋 be a 𝑘-variety (resp.,
𝑘-algebra). A twisted form of 𝑋 is a 𝑘-variety (resp. 𝑘-
algebra) 𝑌 such that 𝑋ℂ ≅ 𝑌ℂ. We let Tw(𝑋) denote the
set of isomorphism classes of twisted forms of 𝑋 . This set
is pointed, i.e., it comes with a canonical distinguished ele-
ment given by 𝑋 itself.

Example 2.14. As we saw in Example 2.11, the variety 𝑆1
is a twisted form of ℝ∗. Indeed, we have 𝑆1ℂ ≅ ℂ∗ ≅ (ℝ∗)ℂ.
This is a complete list, so that Tw(ℝ∗) = {ℝ∗, 𝑆1}, and the
distinguished element is ℝ∗.

There is a natural (in the technical sense of the word)
way to parametrize the collection of twisted forms of a
given variety. This comes from the theory of profinite
group cohomology and its application in the case of Ga-
lois groups associated to field extensions provides an in-
valuable tool in the study of twisted forms.

Theorem 2.15 ([Ser79, Ser02]). There is a bijection of
pointed sets Tw(𝑋) ≅ 𝐻1(𝑘, Aut(𝑋)).

Let us roughly define 𝐻1(𝑘,Aut(𝑋)), following [Jah00].
Given a finite group 𝐺, a 𝐺-group 𝑀 is a group with an ac-
tion of 𝐺 such that 𝑔 ⋅ (𝑎𝑏) = (𝑔 ⋅ 𝑎)(𝑔 ⋅ 𝑏) for all 𝑎, 𝑏 ∈ 𝑀
and 𝑔 ∈ 𝐺, so that the group structure of 𝑀 is compatible
with the group action of 𝐺. A cocycle from 𝐺 to𝑀 is a func-
tion 𝜑 ∶ 𝐺 → 𝑀 such that 𝜑(𝑔ℎ) = 𝜑(𝑔)𝑔 ⋅ 𝜑(ℎ). This may
be viewed as a twisted version of a group homomorphism,
where the twisting occurs when moving an application of
𝜑 past 𝑔. Two cocycles 𝜑 and 𝜓 are cohomologous if there
is an element 𝑏 ∈ 𝑀 so that 𝜓(𝑔) = 𝑏−1𝜑(𝑔)𝑔 ⋅ 𝑏 for all
𝑔 ∈ 𝐺 (a “twisted conjugate”). This defines an equivalence
relation on cocycles, and the set of equivalence classes is
denoted 𝐻1(𝐺,𝑀). This set is pointed by the trivial cocy-
cle given by 𝜑 ∶ 𝐺 → 𝑀 via 𝜑(𝑔) = 𝑒 for all 𝑔 ∈ 𝐺.
We extend this definition to profinite groups, i.e., (projec-
tive) limits of finite groups, by taking the colimit of infla-
tion maps over all open normal subgroups of 𝐺. Given a
Galois extension 𝑘 ⊆ ℂ, the group Gal(ℂ/𝑘) is profinite.
If 𝑋 is a 𝑘-variety, the automorphism group Aut(𝑋ℂ) of
𝑋ℂ is a Gal(ℂ/𝑘)-group, so we can consider its first group
cohomology 𝐻1(Gal(ℂ/𝑘),Aut(𝑋ℂ)), which we denote by
𝐻1(𝑘,Aut(𝑋)) as above.

The advantage of the above result is that we have a
purely algebraic and functorial method to parameterize
the collection of all twisted forms of a given variety (as
long as it is nice enough; Theorem 2.15 holds for quasi-
projective varieties where Aut(𝑋) is an algebraic group).
This makes analysis of such twisted forms much more sys-
tematic.

Example 2.16. A classical example of the above
framework is the bijective correspondence between

Severi-Brauer varieties and central simple algebras. A
Severi-Brauer variety 𝑋 is a twisted form of projective space,
i.e., 𝑋ℂ ≅ ℙ𝑛−1ℂ . A central simple algebra 𝐴 is a twisted form
of a matrix algebra, i.e., 𝐴 ⊗𝑘 ℂ ≅ 𝑀𝑛(ℂ). The automor-
phism group of both the matrix algebra 𝑀𝑛(ℂ) and pro-
jective space ℙ𝑛−1ℂ is the projective linear group PGL𝑛(ℂ).
Thus, we get bijections

Tw(𝑀𝑛(ℂ)) ≅ 𝐻1(𝑘,PGL𝑛) ≅ Tw(ℙ𝑛−1ℂ ),
and therefore a bijection between Severi-Brauer varieties
and central simple algebras. This assoication has an ex-
plicit description in low dimension (see Example 4.6).

3. Toric Varieties
We discuss the beautiful class of toric varieties via low-
dimensional examples. Our goal is to put forth the sys-
tematic combinatorial description of these varieties using
cones and fans. The standard references for this mate-
rial are [Ful93, CLS11]. Throughout this section we only
work over the field ℂ, and so will almost solely work
with rational points. As such, we let ℂ∗ = ℂ ⧵ {0} de-
note the multiplicative group 𝔾𝑚,ℂ, which we also call
the one-dimensional algebraic torus. More generally, we let
(ℂ∗)𝑛 = 𝔾𝑛

𝑚,ℂ denote the 𝑛-dimensional algebraic torus.
The reason we use the term “torus” in this context (at the
risk of ignoring the true etymology) is that the topologi-
cal circle is a deformation retract of ℂ∗. Since products of
the topological circle are called tori, it is natural to view
products of ℂ∗ as algebraic tori.

Definition 3.1 (Toric variety). A torus is any algebraic
group 𝑇 isomorphic to 𝔾𝑛

𝑚,ℂ = (ℂ∗)𝑛. A toric variety is a
variety 𝑋 that contains a torus 𝑇 as a dense open subset so
that the natural group multiplication 𝑇 × 𝑇 → 𝑇 extends
to an action 𝑇 × 𝑋 → 𝑋 of 𝑇 on 𝑋 .

The fact that 𝑋 contains a torus as a dense open set al-
lows us to view toric varieties as (partial) compactifications
of tori, i.e., varieties which look nearly identical to (ℂ∗)𝑛,
but which have some or all of the holes filled in. It turns
out that our most basic examples of algebraic varieties are
toric.

Example 3.2 (Affine space). Affine 𝑛-space has the struc-
ture of a toric variety. We have a dense open inclusion
(ℂ∗)𝑛 ⊆ ℂ𝑛 = 𝔸𝑛ℂ. The action of (ℂ∗)𝑛 is via scaling,
i.e., for (𝜆1, … , 𝜆𝑛) ∈ (ℂ∗)𝑛 and (𝑎1, … , 𝑎𝑛) ∈ 𝔸𝑛𝑘 , we have
(𝜆1, … , 𝜆𝑛) ⋅ (𝑎1, … , 𝑎𝑛) = (𝜆1𝑎1, … , 𝜆𝑛𝑎𝑛). This clearly ex-
tends the group multiplication of (ℂ∗)𝑛.
Example 3.3 (Projective space). Projective 𝑛-space is de-
fined via an equivalence relation on punctured affine space
𝔸𝑛+1ℂ ⧵{𝟎}, identifying any two points which are scalar mul-
tiples of one another. Points of ℙ𝑛ℂ are denoted [𝑥0 ∶ 𝑥1 ∶
𝑥2 ∶ ⋯ ∶ 𝑥𝑛], so that [𝑥0 ∶ ⋯ ∶ 𝑥𝑛] = [𝜆𝑥0 ∶ ⋯ ∶ 𝜆𝑥𝑛] for
any 𝜆 ∈ ℂ∗. Two points of 𝔸𝑛+1ℂ which lie on the same line
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yield the same point of ℙ𝑛ℂ, so we view projective space as
the collection of lines in 𝔸𝑛+1ℂ passing through the origin.

Projective space is a 𝑘-variety since it is locally an affine
variety. Indeed, any point [𝑥0 ∶ ⋯ ∶ 𝑥𝑛] with 𝑥0 ≠ 0 is
equal to [1 ∶ 𝑋1 ∶ 𝑋2 ∶ ⋯ ∶ 𝑋𝑛], where 𝑋𝑖 =

𝑥𝑖
𝑥0

. The set of

points of this form defines a copy of 𝔸𝑛ℂ with coordinates
given by 𝑋1, … , 𝑋𝑛. Proceeding with 𝑥1 ≠ 0, 𝑥2 ≠ 0, etc., we
arrive at a union ℙ𝑛ℂ = 𝔸𝑛ℂ ∪⋯ ∪ 𝔸𝑛ℂ of 𝑛 + 1 copies of 𝔸𝑛ℂ
which cover ℙ𝑛ℂ. This description holds for any base field
𝑘, and this defines the (points of the) variety ℙ𝑛𝑘.

Projective space compactifies affine space. Indeed, in
the case of the projective line we can write ℙ1ℂ = {[𝑎 ∶ 1] ∣
𝑎 ∈ ℂ} ∪ {[1 ∶ 𝑏] ∣ 𝑏 ∈ ℂ} = 𝔸1ℂ ∪ 𝔸1ℂ. The first set in this
union is only missing the point [1 ∶ 0] ∈ ℙ1𝑘 since any
point of the form [1 ∶ 𝑏] with 𝑏 ≠ 0 can already be written
as [𝑎 ∶ 1], via [1 ∶ 𝑏] = [ 1

𝑏
1 ∶ 1

𝑏
𝑏] = [ 1

𝑏
∶ 1]. The projective

line is thus a union ℙ1ℂ = {[𝑎 ∶ 1] ∣ 𝑎 ∈ ℂ} ∪ {[1 ∶ 0]}. The
first subset is 𝔸1ℂ and the second is the “point at ∞.” The
real projective line ℙ1ℝ has points which are given by the
circle. The complex projective line is given by the Riemann
sphere (the one-point compactification of ℂ). The action
of the torus ℂ∗ on ℙ1ℂ is given by 𝜆 ⋅ [𝑥 ∶ 𝑦] = [𝜆𝑥 ∶ 𝑦],
extending the action of ℂ∗ on itself.

Example 3.4 (Products). Products of toric varieties are
toric varieties, stemming from the fact that products of tori
are tori. If 𝑋 and 𝑌 are toric varieties, then we have dense
inclusions (ℂ∗)𝑛 ⊆ 𝑋 and (ℂ∗)𝑚 ⊆ 𝑌 . Thus, we also have
a dense inclusion (ℂ∗)𝑛+𝑚 ≅ (ℂ∗)𝑛 × (ℂ∗)𝑚 ⊆ 𝑋 × 𝑌 . One
checks that the induced action extends the group multipli-
cation of (ℂ∗)𝑛+𝑚. In particular, the variety ℙ1ℂ × ℙ1ℂ is a
toric variety. See also Figure 2, as well as Examples 4.7 and
4.9.

3.1. Extracting combinatorial data. The amazing fact
about toric varieties is that their geometry can be en-
coded combinatorially via fans, i.e., collections of cones
in affine/Euclidean space. This comes from considering
their characters and cocharacters, which are simply algebraic
group morphisms (see Definition 2.7) to and from the
one-dimensional torus 𝔾𝑚,ℂ = ℂ∗.

Definition 3.5. Let 𝐺 be an algebraic group. A character
of 𝐺 is an algebraic group morphism 𝜒 ∶ 𝐺 → ℂ∗. We let
𝐺 = Hom(𝐺,ℂ∗) denote the set of all characters of 𝐺. A
cocharacter (sometimes called a one-parameter subgroup) of
𝐺 is an algebraic group morphism 𝜆 ∶ ℂ∗ → 𝐺. We let
Λ(𝐺) = Hom(ℂ∗, 𝐺) denote the collection of all cocharac-
ters of 𝐺.

Proposition 3.6. Let 𝑇 = (ℂ∗)𝑛 be a torus

1. For each 𝑚 = (𝑚1, … ,𝑚𝑛) ∈ ℤ𝑛, we have a char-
acter 𝜒𝑚 ∶ (ℂ∗)𝑛 → ℂ∗ defined by 𝜒𝑚(𝑡1, … , 𝑡𝑛) =
𝑡𝑚1
1 ⋅ 𝑡𝑚2

2 ⋯𝑡𝑚𝑛𝑛 . All characters of 𝑇 are of the form 𝜒𝑚
for some 𝑚 ∈ ℤ𝑛, yielding a group isomorphism 𝑇 ≅ ℤ𝑛.

2. For each 𝑢 = (𝑏1, … , 𝑏𝑛) ∈ ℤ𝑛, we have a cocharacter
𝜆 ∶ ℂ∗ → (ℂ∗)𝑛 defined by 𝜆 (𝑡) = (𝑡𝑏1 , … , 𝑡𝑏𝑛). All
cocharacters of 𝑇 are of the form 𝜆 for some 𝑢 ∈ ℤ𝑛,
yielding a group isomorphism Λ(𝑇) ≅ ℤ𝑛.

Remark 3.7. Given a torus 𝑇 = (ℂ∗)𝑛, it is customary to use
𝑀 and 𝑁 to denote 𝑇 and Λ(𝑇), respectively. By the very
definition of these lattices, duality yields a pairing ⟨⋅, ⋅⟩ ∶
𝑀 × 𝑁 → ℤ. If compatible bases are chosen for both 𝑀
and 𝑁, this is just given by the dot product.

Remark 3.8. Characters 𝜒 ∶ 𝑇 → ℂ∗ define regular func-
tions on𝑇, and rational functions (regular functions defined
on open dense subsets) on any toric variety 𝑋 ⊇ 𝑇. Simi-
larly, cocharacters 𝜆 ∶ ℂ∗ → 𝑇 define curves in 𝑇 and any
toric𝑇-variety𝑋 . The geometry of𝑋 is thus easier to extract
from subsets of 𝑁 = Λ(𝑇), while the algebraic properties
of 𝑋 are more easily extracted from subsets of 𝑀 = 𝑇.

3.2. One-dimensional toric varieties (toric curves). Let
us exhibit the process for producing toric varieties from
subsets of 𝑁 = Λ(𝑇), beginning with the case of curves.
Our focus will be on smooth or nonsingular varieties. If 𝑇 =
ℂ∗ is the one-dimensional torus, then 𝑀 = 𝑇 ≅ ℤ and
𝑁 = Λ(𝑇) ≅ ℤ.
Step 1. Choose a cone in 𝑁ℝ ≔ 𝑁 ⊗ℤ ℝ ≅ ℝ.

Definition 3.9. Given an ℝ-vector space 𝑉 , a cone in 𝑉 is
is a subset of the form

𝜎 = {𝛼1𝑣1 +⋯+ 𝛼𝑠𝑣𝑠 ∣ 𝛼𝑖 ∈ ℝ≥0}.
We can view cones as “vector half-spaces.” For certain

technical reasons, we only consider those cones which are
strongly convex, rational, and polyhedral [Ful93, §1]. In di-
mension one, there are only three such cones 𝜎1, 𝜎0, and
𝜎−1 in𝑁ℝ = ℝ, given by the non-negative real numbers, {0},
and the non-positive real numbers, respectively. We view
these as those cones generated by 1, 0, and -1, respectively.
While other cones do exist (e.g., the cone generated by 2),
these do not yield smooth varieties.

𝜎1 𝜎0
𝜎−1

Step 2. Compute the dual cones in 𝑀ℝ = 𝑀 ⊗ℤ ℝ ≅ ℝ.

Definition 3.10. Given a cone 𝜎 ⊆ 𝑁ℝ, its dual cone is 𝜎∨ =
{𝑣 ∈ 𝑀ℝ ∣ ⟨𝑣, 𝑢⟩ ≥ 0 for all 𝑢 ∈ 𝜎}.

The dual cones of 𝜎1, 𝜎0 and 𝜎−1 are given below. We
view these cones as being generated by powers of 𝑥, ob-
tained by exponentiating the generators of 𝜎𝑖. That is, 𝜎∨1
is generated by 𝑥1 since 1 ∈ ℝ = 𝑀 ⊗ℝ generates 𝜎1. Sim-
ilarly, 𝜎∨0 = ⟨𝑥, 𝑥−1⟩ and 𝜎∨−1 = ⟨𝑥−1⟩.

𝜎∨1 𝜎∨0

𝜎∨−1

AUGUST 2022 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1119



Step 3. Having utilized the vector spaces 𝑁ℝ and 𝑀ℝ for
cone geometry, we nowproduce functions on our resulting
toric variety, i.e., elements of 𝑀. For each cone 𝜎 ⊆ 𝑁,
we can form the monoid 𝑆𝜍 = 𝜎∨ ∩ 𝑀 ⊆ 𝑀. In our one-
dimensional case, these are given by

𝑆𝜍1 ≔ {1, 𝑥, 𝑥2, … } ≅ ℕ,

𝑆𝜍0 = {… , 𝑥−2, 𝑥−1, 1, 𝑥, 𝑥2, … } ≅ ℤ,

𝑆𝜍−1 = {1, 𝑥−1, 𝑥−2, … } ≅ ℕ.

Step 4. The monoid algebra ℂ[𝑆𝜍𝑖 ] associated to 𝑆𝜍𝑖 gener-
alizes the common notion of the group algebra or group
ring. These algebras have basis given by the elements of
𝑆𝜍𝑖 , so that a general element of ℂ[𝑆𝜍𝑖 ] is given by a finite
sum ∑𝑎𝑔𝑔 with 𝑔 ∈ 𝑆𝜍𝑖 and 𝑎𝑔 ∈ ℂ. Addition is given
component-wise and multiplication is the usual convolu-
tion product. In our case

ℂ[𝑆𝜍1] = ℂ[ℕ] = ℂ[𝑥],

ℂ[𝑆𝜍0] = ℂ[ℤ] = ℂ[𝑥, 𝑥−1],

ℂ[𝑆𝜍−1] = ℂ[ℕ] = ℂ[𝑥−1].

Step 5. We determine generators and relations for our ℂ-
algebras which yield polynomial equations, and in turn
define affine varieties. We have

𝑉𝜍1 ≔ Specℂ[𝑆𝜍1] = Specℂ[𝑥] = 𝔸1ℂ,
𝑉𝜍0 ≔ Specℂ[𝑆𝜍0] = Specℂ[𝑥, 𝑥−1]

= Specℂ[𝑥, 𝑦]/(𝑥𝑦 − 1) = ℂ∗,
𝑉𝜍−1 ≔ Specℂ[𝑆𝜍−1] = Specℂ[𝑥−1] = 𝔸1ℂ.

Step 6. We build new toric varieties from these affine ones
by gluing. This is prescribed by the data of a collection of
cones and the way in which they fit together.

Definition 3.11. A fan Σ in𝑁ℝ is a collection of cones such
that

1. each face of a cone in Σ is also a cone in Σ
2. the intersection of two cones in Σ is a face of each.

In our case, we take Σ = {𝜎−1, 𝜎0, 𝜎1}, and we realize
𝜎0 as the intersection 𝜎1 ∩ 𝜎−1. The fan Σ defines a toric
variety 𝑋(Σ) which is built from the affine pieces 𝑉𝜍𝑖 and
the gluing data is encoded in the combinatorics of the fan
structure. This defines the variety ℙ1ℂ as the union of affine
spaces from Example 3.3:

𝑉𝜍−1 ⊇ 𝑉𝜍0 ⊆ 𝑉𝜍1
∥ ∥ ∥
𝔸1ℂ ⊇ ℂ∗ ⊆ 𝔸1ℂ

(A) The fan for 𝔸2ℂ is given by a
single cone, generated by (1, 0)
and (0, 1). These correspond to
the variables 𝑥 and 𝑦 in the
lattice 𝑀.

(B) The fan for ℙ2ℂ. Note that it
contains the cone for 𝔸2ℂ. In fact,
you can see the three copies of
𝔸2ℂ which give an affine cover
described in Example 3.3.

Figure 1.

3.3. Two-dimensional toric varieties (toric surfaces). In
dimension 2, our torus is 𝑇 = (ℂ∗)2, so that 𝑀 ≅ 𝑁 ≅ ℤ2.
Example 3.12 (Affine plane, Figure 1A). Consider the
cone 𝜎 in 𝑁ℝ ≅ ℝ2 given by the first quadrant, i.e., gen-
erated by (1, 0) and (0, 1). The dual cone 𝜎∨ is then given
by the first quadrant in𝑀ℝ ≅ ℝ2 since this is the collection
of vectors which have non-negative dot product with ele-
ments of 𝜎. Intersecting this cone with𝑀 gives the genera-
tors 𝑥, 𝑦, so that the associated affine toric variety is given
by 𝑉𝜍 = Specℂ[𝑥, 𝑦] = 𝔸2ℂ.
Example 3.13 (Projective plane, Figure 1B). The fan given
by three cones 𝜎1 = ⟨(1, 0), (0, 1)⟩, 𝜎2 = ⟨(0, 1), (−1, −1)⟩,
and 𝜎3 = ⟨(−1, −1), (1, 0)⟩, as shown in Figure 1B, defines
the variety ℙ2ℂ. Indeed, each cone gives a copy of 𝔸2ℂ, and
these are precisely the three affine patches described in Ex-
ample 3.3. These are glued to one another according to
the combinatorics of the cone intersections.

Example 3.14. Consider the fan generated by the four
cones depicted in Figure 2. This yields the variety ℙ1ℂ ×ℙ1ℂ,
which comes from the fact that products of fans corre-
spond to products of the associated toric varieties. That
is, given fans Σ, Δ ⊆ 𝑁ℝ, the fan Σ×Δ ∶= {𝜎×𝜏 ∣ 𝜎 ∈ Σ, 𝜏 ∈
Δ} ⊆ 𝑁×𝑁 defines the toric variety 𝑋(Σ×Δ) = 𝑋(Σ)×𝑋(Δ).
Sinceℙ1ℂ has an associated fan consisting of two cones (the
positive and negative real lines) given in Step 6 above, the
description of the fan of ℙ1ℂ × ℙ1ℂ follows.

Figure 2. The fan for ℙ1ℂ × ℙ1ℂ consists of 4 cones,
corresponding to the product of the fans which define ℙ1ℂ as
described in Example 3.14.
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Example 3.15 (Blowups, Figures 3A and 3B). Recall that
the blowup Bl𝟎(𝔸2ℂ) of 𝔸2ℂ at the origin is a subvariety of
𝔸2ℂ × ℙ1ℂ given by the equation 𝑥𝑤1 = 𝑦𝑤0, where (𝑥, 𝑦)
are coordinates on 𝔸2ℂ and [𝑤0 ∶ 𝑤1] are coordinates on
ℙ1ℂ. Covering this variety by its affine pieces {𝑤0 ≠ 0} =
𝔸2ℂ × 𝔸1ℂ ≅ 𝔸3ℂ and {𝑤1 ≠ 0} ≅ 𝔸3ℂ, our defining equation
becomes 𝑦 = 𝑥𝑤1

𝑤0
and 𝑥 = 𝑦𝑤0

𝑤1
on these respective sets.

We can thus generate our corresponding ℂ-algebras by 𝑥
and

𝑤1
𝑤0

= 𝑥−1𝑦 on the first affine subset (since their prod-

uct determines 𝑦) and by 𝑦 and
𝑤0
𝑤1

= 𝑥𝑦−1 on the second

(since their product determines 𝑥).
Consider the fan given in Figure 3A. A simple system

of equations gives a description of the corresponding dual
cones as ⟨𝑥, 𝑥−1𝑦⟩ and ⟨𝑦, 𝑥𝑦−1⟩, which are precisely the
same generators that arise in the blowup construction! We
see from this example that blowups can be described by
subdivision of a cone.

The del Pezzo surface of degree 6 over ℂ is the blowup of
ℙ2ℂ at three non-colinear points. As such, we can recover
its fan by staring with the fan of ℙ2ℂ (see Figure 1B), and di-
viding each of its three cones. This results in the fan given
in Figure 3B.

(A) The fan for the blowup of 𝔸2ℂ
at the origin. The blowup
construction has the effect of
subdividing cones.

(B) The fan for the del Pezzo
surface of degree 6, which is the
blowup of ℙ2ℂ at 3 non-colinear
points. This fan is obtained from
the fan of ℙ2ℂ by subdividing
each of its three cones.

Figure 3.

4. Arithmetic Toric Varieties
The advantage of working with toric varieties over ℂ is the
combinatorially encoded geometry, which allows one to
effectively compute various algebro-geometric invariants
using the data of fans. On the other hand, these varieties
are geometrically and arithmetically simple since they are
rational varieties andℂ is algebraically closed. We treat the
appropriately analogous class of varieties over 𝑘 ⊆ ℂ. The
computationally effective understanding of the geometry
of complex toric varieties allows one to corner arithmetic
aspects of this new class of varieties defined over arbitrary
fields. We revisit Example 2.11 to motivate a more general
notion of “torus.”

Example 4.1 (Non-isomorphic tori of equal dimension).
The real one-dimensional torus ℝ∗ = {𝑢𝑣 = 1} and the
circle group 𝑆1 = {𝑥2 + 𝑦2 − 1 = 0} are non-isomorphic
ℝ-varieties but become isomorphic after extending scalars

to ℂ. The isomorphism ℂ∗ ∼−→ 𝑆1ℂ is given by 𝑢 ↦ 𝑥 + 𝑖𝑦
and 𝑣 ↦ 𝑥 − 𝑖𝑦.

This example encourages us to enlarge our definition
of “algebraic tori” to include those varieties which become
isomorphic to (ℂ∗)𝑛 after base extension, i.e., twisted forms
of the algebraic tori (ℂ∗)𝑛 = 𝔾𝑛

𝑚,ℂ.

Definition 4.2 (Arithmetic toric variety). A 𝑘-torus (also
called a 𝔾𝑛

𝑚,𝑘-torsor) is a group variety 𝑇 such that 𝑇ℂ ≅
(ℂ∗)𝑛 = 𝔾𝑛

𝑚,ℂ. If 𝑇 is a 𝑘-torus such that 𝑇 ≅ (𝑘∗)𝑛, then
we call 𝑇 a split torus. An arithmetic toric variety is a variety
with a faithful action of a torus 𝑇 with dense open orbit.
Given an arithmetic toric variety 𝑋 with torus 𝑇, we say 𝑋
is split if 𝑇 is a split torus.

Remark 4.3. Example 4.1 shows that both ℝ∗ and 𝑆1 are
ℝ-tori, where the former is a split torus.

As in the case of toric varieties over ℂ, arithmetic toric
varieties should be viewed as (partial) compactifications
of algebraic tori (in this more general sense). The study
of arithmetic toric varieties is relatively new, having been
taken up over the past few decades. They were first used
as tools to study general tori via their compactifications
[Kun82, Kun87, Vos98]. A systematic classification and
analysis via Galois cohomology was only treated within
the last decade or two [Dun16, ELFST14]. The 𝐾-theory
of tori and arithmetic toric varieties was also studied in
[MP97], and the analysis therein was thematically aligned
with the theory of non-commutative motives.

Example 4.4 (Split toric varieties). Over any field 𝑘, the
split tori 𝔾𝑛

𝑚,𝑘 = (𝑘∗)𝑛 provide a geometrically rich class of
tori. The analysis of (𝑘∗)𝑛-toric varieties via the associated
combinatorial data of fans and cones is nearly identical
to the complex case. One example of this phenomenon
arises via the analysis of the divisor class group and Picard
group. If𝑋 is a split toric variety with torus 𝑇 = 𝔾𝑛

𝑚,𝑘, there
are canonical isomorphisms Cl(𝑋) ≅ Cl(𝑋ℂ) and Pic(𝑋) ≅
Pic(𝑋ℂ) [Dun16, §4].

Example 4.5 (Real projective space). The variety ℙ1ℝ ad-
mits the structure of an arithmetic toric variety for two
non-isomorphic tori, ℝ∗ and 𝑆1. Viewed as an ℝ∗-toric
variety, ℙ1ℝ is a split arithmetic toric variety. When we ex-
tend scalars to ℂ, both tori become isomorphic to ℂ∗, and
(ℙ1ℝ)ℂ ≅ ℙ1ℂ.
Example 4.6 (Pointless real conic). The variety 𝑋 = {𝑥2 +
𝑦2 + 𝑧2 = 0} is an arithmetic toric variety with torus
𝑆1 = {𝑥2+𝑦2 = 1}, where the 𝑆1-action is given by rotation
matrices. Note that the pointless conic of Example 2.4 is
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an affine open subset in 𝑋 . The variety 𝑋 is not a toric va-
riety for the split torus ℝ∗. Again, the torus 𝑆1 is a twisted
form of ℂ∗, and 𝑋ℂ ≅ ℙ1ℂ. This gives our first example of a
(truly) non-split arithmetic toric variety. That is, no choice
of torus gives 𝑋 the structure of a split toric variety.

The above example arises naturally in the study of cen-
tral simple algebras. Indeed, the variety 𝑋 given above is
the Severi-Brauer variety SB(ℍ) = {𝑥2 + 𝑦2 + 𝑧2 = 0} asso-
ciated to Hamilton’s quaternion ℝ-algebra ℍ. This is the
four-dimensional ℝ-algebra given by

ℍ = ⟨1, 𝑖, 𝑗, 𝑘 ∣ 𝑖2 = 𝑗2 = −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘⟩.
In fact, to any quaternion 𝑘-algebra (𝑎, 𝑏)𝑘 ≔ ⟨1, 𝑖, 𝑗, 𝑘 ∣
𝑖2 = 𝑎, 𝑗2 = 𝑏, 𝑖𝑗 = −𝑗𝑖 = 𝑘⟩ we have the associated conic
𝐶(𝑎, 𝑏) = {𝑎𝑥2 + 𝑏𝑦2 = 𝑧2}, which is a one-dimensional
𝑘-subvariety of ℙ2𝑘 and a twisted form of ℙ1ℝ [GS06]. Note
that ℍ = (−1,−1)ℝ and 𝑀2(ℝ) = (1, 1)ℝ.

The associated conic is a special case of the general con-
struction of the Severi-Brauer variety associated to a central
simple algebra 𝐴, encountered in Example 2.16 via Galois
cohomology. Such varieties are all examples of arithmetic
toric varieties, although one needs to additionally specify
a torus to completely determine their toric structure (just
as in the case of ℙ1ℝ).
Example 4.7 (Weil restriction). Given a ℂ-variety 𝑋 , we
may view it as an ℝ-variety of twice the dimension by
rewriting the defining equations of𝑋 using anℝ-basis ofℂ.
This process restricts our field of scalars to a subfield, and
is called the Weil restriction of scalars [Vos98, §3.12]. For in-
stance, taking {1, 𝑖} as an ℝ-basis of ℂ, where 𝑖 = √−1, any
function 𝑓 ∈ ℂ[𝑧] can be written in terms of the variables
𝑥1, 𝑥2 given by 𝑧 = 𝑥1+𝑥2𝑖, and thusmay be viewed as an el-
ement of ℝ[𝑥1, 𝑥2]. We use the notation 𝖱ℂ/ℝ(𝑋) to denote
the Weil restriction. Since the 0-polynomial in ℂ[𝑧] (the
defining equation of 𝔸1ℂ) corresponds to the 0-polynomial
in ℝ[𝑥1, 𝑥2] in this basis, we have 𝖱ℂ/ℝ(𝔸1ℂ) = 𝔸2ℝ.

The Weil restriction is best described using points. If 𝑋
is a ℂ-variety and 𝑘 ⊆ ℂ, then the 𝑘-variety 𝖱ℂ/𝑘(𝑋) has
𝑘-points given by

𝖱ℂ/𝑘(𝑋)(𝑘) = 𝑋(𝑘 ⊗𝑘 ℂ) = 𝑋(ℂ),
i.e., the ℂ-points of 𝑋 . Each ℂ-point must be specified
using a 𝑘-basis of ℂ, so that 𝑋(ℂ) has dimension [ℂ ∶
𝑘]⋅dimℂ(𝑋(ℂ)) as a 𝑘-variety. This is consistent with our ex-
ample of the Weil restriction of the affine line above. More
generally, we have 𝖱ℂ/𝑘(𝔸𝑛ℂ) = 𝔸𝑛[ℂ∶𝑘]ℝ .

Weil restrictions of tori are tori. For instance, 𝖱ℂ/ℝ(𝔾𝑚,ℂ)
has ℝ-points given by 𝖱ℂ/ℝ(𝔾𝑚,ℂ)(ℝ) = 𝔾𝑚,ℂ(ℝ ⊗ℝ ℂ) =
ℂ∗. Since [ℂ ∶ ℝ] = 2, we have ℂ = ℝ2 as sets, and taking
units gives ℂ∗ = (ℝ∗)2. Extending scalars to ℂ, we obtain
(ℂ∗)2, and thus 𝖱ℂ/ℝ(𝔾𝑚,ℂ) is a twisted form of 𝔾2

𝑚,ℂ =
(ℂ∗)2. Similarly, one can show that 𝖱ℂ/ℝ(ℙ1ℂ) is a twisted
form of ℙ1 × ℙ1.

This gives us many new examples of arithmetic toric va-
rieties. The varieties 𝖱ℂ/ℝ(𝔸𝑛ℂ) and 𝖱ℂ/ℝ(ℙ𝑛ℂ) are arithmetic
toric varieties with torus 𝑇 = 𝖱ℂ/ℝ(𝔾𝑛

𝑚,ℂ). More generally,
if 𝑋 is a complex toric variety with torus 𝑇, then 𝖱ℂ/𝑘(𝑋) is
an arithmetic toric variety with torus 𝖱ℂ/𝑘(𝑇).
Example 4.8 (Norm tori, [Vos98, p. 53]). A related con-
struction is given by the norm-one torus. For 𝑘 ⊆ ℂ a Ga-
lois extension, the Weil restriction 𝖱ℂ/𝑘(𝔾𝑚,ℂ) has 𝑘-points
given by 𝔾𝑚,ℂ(𝑘 ⊗ ℂ) = 𝔾𝑚,ℂ(ℂ) = ℂ∗. There is a natural
map 𝑁 ∶ ℂ∗ → 𝑘∗ given by the field norm

𝑧 ↦ ∏
𝜍∈Gal(ℂ/𝑘)

𝜎(𝑧).

This induces an algebraic group morphism 𝖱ℂ/𝑘(𝔾𝑚,ℂ) →
𝔾𝑚,𝑘. Its kernel is denoted 𝖱(1)ℂ/𝑘(𝔾𝑚,ℂ), called the norm-
one torus.

The circle group 𝑆1 arises as such a torus. If we apply
the above construction in the case 𝑘 = ℝ, real points of
𝖱ℂ/ℝ(ℂ∗) areℂ∗, and the field normℂ∗ → ℝ∗ is given by the
product of a non-zero complex number and its conjugate
𝑧 ↦ 𝑧 ̄𝑧 = |𝑧|2. This induces a group variety morphism
𝖱ℂ/ℝ(𝔾𝑚,ℂ) → 𝔾𝑚,ℝ. Thus 𝖱(1)ℂ/ℝ(ℂ∗) consists of all those
complex numbers of modulus 1. This yields the unit circle
𝑆1.
Example 4.9 (Products [Dun16, Ex. 5.8 and 6.9]). Just
as in the split case (Example 3.4), products of arithmetic
toric varieties are arithmetic toric varieties. This stems from
the fact that products of twisted forms of tori are twisted
forms of tori. We have already encountered one example
of a twisted form ofℙ1ℂ×ℙ1ℂ with its standard torus (ℂ∗)2 in
Example 4.7, given by 𝖱ℂ/ℝ(ℙ1ℂ)with torus 𝖱ℂ/ℝ(𝔾𝑚,ℂ). Let
us dive further into this analysis for examples of products.

Of course, we have the split example ℙ1ℝ×ℙ1ℝ with torus
(ℝ∗)2. We can use this same variety together with the non-
split tori 𝑆1 ×ℝ∗ and 𝑆1 ×𝑆1. Let 𝑋 = {𝑥2 +𝑦2 +𝑧2 = 0} be
the (projectivized) pointless conic encountered in Exam-
ple 4.6. Then we have the arithmetic toric variety 𝑋 × ℙ1ℝ
with torus 𝑆1 × ℝ∗ or 𝑆1 × 𝑆1. We can also replace both
factors of ℙ1ℝ, to obtain 𝑋 ×𝑋 with torus 𝑆1×𝑆1. This gives
all possible twisted forms of ℙ1ℂ × ℙ1ℂ.
Example 4.10 (See [Dun16, ELFST14]). Arithmetic toric
varieties are twisted forms of split toric varieties, so they
may be described via Galois cohomology, as in Theo-
rem 2.15 and Example 2.16. If 𝑋 is an arithmetic toric
variety over 𝑘 and 𝑇 is the split torus of the split toric va-
riety 𝑋ℂ, the Galois group Gal(ℂ/𝑘) acts on 𝑋ℂ, so its el-
ements can be viewed as automorphisms of 𝑋ℂ. Since a
toric variety is completely determined by its associated fan
Σ ⊆ 𝑁ℝ = Λ(𝑇)ℝ, these automorphisms of 𝑋ℂ determine
automorphisms of Σ. This gives Aut(Σ) the structure of a
Gal(ℂ/𝑘)-group, and the particular form 𝑋 can be associ-
ated to a cocycle 𝛽 ∈ 𝐻1(𝑘,Aut(Σ)). This still leaves the

1122 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 7



choice of torus for the arithmetic toric variety structure on
𝑋 , which is determined by a cocycle 𝛼 ∈ 𝐻1(𝑘, 𝛽𝑇), where
𝛽𝑇 denotes the twisted form of 𝑇 corresponding to the co-
cycle 𝛽. In general, any twisted form of 𝑋 corresponds to
a cocycle 𝛾 ∈ 𝐻1(𝑘, 𝑇 ⋊ Aut(Σ)).

The above cohomological description shows that the
study of arithmetic toric 𝑘-varieties may be reduced to un-
derstanding split toric varieties 𝑋ℂ together with the action
of the Galois group Gal(ℂ/𝑘) on the fan associated to 𝑋ℂ.
In many cases, the automorphism group of the fan is easy
to identify. For instance, the automorphism group of the
fan of ℙ2ℂ (Figure 1B) is 𝑆3 given by permuting each of the
three (maximal) cones. The automorphism group of the
fan associated to ℙ1ℂ × ℙ1ℂ (Figure 2) is 𝐷4, the dihedral
group of order 8. And the automorphism group of the fan
associated to 𝖽𝖯𝟨 (Figure 3B) is 𝐷6, the dihedral group of
order 12.

5. A.T.V.’s Are What Derive Us
Arithmetic toric varieties provide a wonderful class of ob-
jects on which to test the capabilities of certain invari-
ants to reflect arithmetic and geometric data. One inter-
esting invariant is given by the coherent derived category
𝖣𝖻(𝑋) = 𝖣𝖻(𝖼𝗈𝗁(𝑋)), a triangulated category which probes
the geometry of a variety through sheaves ofmodules. This
should be viewed as a globalization of the study of rings
via their modules. An affine variety 𝑋 may be recovered
from its defining ideal 𝐈(𝑋) or associated coordinate ring
𝑅 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐈(𝑋) (Defn. 2.1). In this case, 𝖣𝖻(𝑋)
has objects given by chain complexes of finitely-generated
𝑅-modules, where two complexes are identified if they
are quasi-isomorphic, i.e., if their associated homology
groups are isomorphic in all degrees. For a general vari-
ety, one considers the category of coherent 𝒪𝑋 -modules.

As an invariant, the derived category sits between alge-
bra and topology. Viewing the derived category as an alge-
braic invariant, our interest lies in its decompositions into
indecomposable pieces in the vein of vector spaces, mod-
ules, and representations. On the other hand, this category
is non-abelian, and its triangulated structure allows one
to use more topological approaches in the study of these
decompositions. One such decomposition is given by an
exceptional collection.

Definition 5.1. Let 𝑋 be a 𝑘-variety and 𝐷 a division
𝑘-algebra. An object 𝐸 ∈ 𝖣𝖻(𝑋) is 𝐷-exceptional if
(1) End(𝐸) = 𝐷, concentrated in degree 0, and (2)
Hom(𝐸, 𝐸[𝑛]) = 0 if 𝑛 ≠ 0 (here 𝐸[𝑛] denotes the shift
of the complex 𝐸 by 𝑛). An exceptional object is étale if
𝐷 is a field extension of 𝑘. A totally ordered set {𝐸1, … , 𝐸𝑛}
of exceptional objects in 𝖣𝖻(𝑋) is an exceptional collection
if Hom(𝐸𝑗 , 𝐸𝑖[𝑛]) = 0 for all 𝑛 whenever 𝑗 > 𝑖. It is full if

the only triangulated subcategory of 𝖣𝖻(𝑋)which contains
every 𝐸𝑖 is all of 𝖣𝖻(𝑋).

Remark 5.2. Throughout the literature, the term “excep-
tional” often means “𝑘-exceptional,” as we have defined
above. Thismore restrictive definition is appropriate in the
case where 𝑘 is algebraically closed. The definition given
here is a strict generalization. If 𝑘 is algebraically closed,
these definitions coincide since there are no non-trivial di-
vision algebras over such fields.

From the algebraic perspective, such a collection
is analogous to decomposing a vector space via an
(semi-)orthonormal basis. Indeed, the objects 𝐸𝑖 should
be viewed as basis elements of 𝖣𝖻(𝑋), which are semi-
orthonormal relative to the (categorified) bilinear form
Hom(−,−). From the topological viewpoint, such a col-
lection provides a decomposition of the derived category
into a collection of subcategories with maps in only one
direction. One may view such maps as the instructions for
gluing these subcategories together, analogous to a simpli-
cial/cell complex.

The use of derived categories to study questions of ratio-
nality in the arithmetic setting was motivated by the suc-
cess in the geometric case for rationality of three- and four-
dimensional varieties. The use of 𝖣𝖻(𝑋) in determining
whether a variety admits rational points was motivated by
a question ofH. Esnault. This was answered in the negative
in [AAFH19]. Related work was carried out in [AKW17],
showing that twisted forms cannot always be disinguished
by the derived category, even in nice situations in low di-
mension. Examples in both cases were non-toric. Thus, it
turns out the derived category is generally not an appropri-
ate invariant to determine if a collection of polynomials
has a common solution, although there is evidence that
higher-categorical invariants might do the trick.

To better understand the derived category of an arith-
metic toric variety, we would like to leverage the com-
binatorial tools available over ℂ. The following theo-
rem shows that the Galois-theoretic philosophy described
above holds for the derived category. Indeed, the existence
of an exceptional collection on a 𝑘-variety 𝑋 is guaranteed
by the existence of an exceptional collection on 𝑋ℂ where
the Galois group action permutes the elements of the ex-
ceptional collection (stable).

Theorem 5.3 (Descent for exceptional
collections, [BDM19, Thm. 1.3]). Let 𝑘 ⊆ ℂ be a Galois
extension and let 𝑋 be a smooth projective 𝑘-variety. Then 𝑋
admits a (full, strong) exceptional collection if and only if 𝑋ℂ
admits a Gal(ℂ/𝑘)-stable (full, strong) exceptional collection.

Recently, arithmetic toric varieties have been success-
fully used to determine the limitations of the derived cat-
egory in the arithmetic setting in regards to questions
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of rationality. In particular, while the existence of a 𝑘-
exceptional collection is sufficient to determine that an
arithmetic toric variety is rational, the existence of a gen-
eral exceptional collection is not sufficient to determine
whether a variety is even retract rational, a much weaker
property.

Theorem 5.4 ([BDLM, Thm. 1 and 2]). (1) Let 𝑋 be a
smooth projective arithmetic toric variety over a field 𝑘 with
𝑋(𝑘) ≠ 0. If 𝖣𝖻(𝑋) admits a full 𝑘-exceptional collection, then
𝑋 is 𝑘-rational. (2) There exists a smooth threefold 𝑋 defined
over ℚ which admits a full étale exceptional collection but is not
𝑘-rational.

With this success story in hand, it is our hope that other
invariants may be investigated using the class of arithmetic
toric varieties. Indeed, such varieties are so well-suited to
act as a proving ground for analyzing geometric invariants
and their ability to faithfully reflect arithmetic informa-
tion.
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𝐾-stability: The Recent
Interaction Between
Algebraic Geometry
and Complex Geometry

Chenyang Xu
Solution spaces of polynomial equations in ℂ𝑛 or its nat-
ural compactification ℂℙ𝑛 form the basic objects to study
in algebraic geometry. Because such a space, called an al-
gebraic variety, has an underlying topology inherited from
the Euclidean topology of the complex spaces, it can also
be studied through complex differential geometry. The in-
terplay between these two kinds of geometries has been in-
vestigated by some of the greatest minds in mathematical
history, started from Abel, Jacobi, Riemann, Weierstrass,
Enriques, Lefschetz, Hodge, Weil, Chern, Kodaira, to more
recently Serre, Mumford, Griffiths, Siu, Deligne, Yau, Mori,
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Kollár, Donaldson, Demailly, Tian, Voisin etc, and it leads
to monumental progress in mathematics.

In this article, we want to convince the reader as with
previous landmark theorems, in the last decade, there is
another major step forward along this direction. The re-
search originates from the searching of Einstein metrics on
a manifold, with a root from physics. This topic has pre-
vailed in geometry for more than a century, and on a com-
plex variety, one should consider Kähler metrics. The most
challenging case is when the variety has a positive Chern
class, called a Fano variety. The research results in purely
algebro-geometric theorems such as the construction of
moduli spaces parametrizing Fano varieties, which is far
beyond the original scope of the field. In fact, an aston-
ishingly huge amount of mathematical topics, including
geometric analysis, metric geometry, pluripotential theory,
geometric invariant theory, non-archimedean geometry,
higher dimensional geometry etc., are linked together by
one theme.
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The central notion is called K-stability. The term was
coined by Tian, following Mabuchi’s definition of K-
energy, where “K” stands for the first letter of the Ger-
man word “Kanonisch.” It has been known for decades
that the solution of the Kähler-Einstein Problem has strik-
ing consequences in algebraic geometry, as exhibited fa-
mously in Yau’s work. The relation between the existence
of canonical metrics on algebraic objects and its stability
from the Geometric Invariant Theory has also been inten-
sively investigated. In the more recent episode, to under-
stand the Kähler-Einstein Problem of Fano varieties, one
crucial shift in viewpoint is the realization that one has
to go beyond the Geometric Invariant Theory and invoke
the tools provided by the Minimal Model Program. This
bridges two previously well-studied areas. Discovering it
not only sheds new light on longstanding central ques-
tions and eventually leads to their complete solutions, but
also points toward unseen research directions.

In this article, we will discuss some of the main ideas in-
volved in 𝐾-stability theory stemmed from different parts
of mathematics, with a focus on the recently founded alge-
braic part of the story.
Canonical metrics and stability. A smooth complex va-
riety 𝑋 admits a class of metrics which are called Kähler.
More precisely, for any Riemannian metric 𝑔, there is an as-
sociated 2-form 𝜔(𝑋, 𝑌) = 𝑔(𝐽𝑋, 𝑌)where 𝐽 is the complex
structure on the tangent bundle 𝑇𝑋 . The Kähler condition
is equivalent to saying that 𝜔 is a closed 2-form. While a
given Kähler metric 𝜔 is analytic, its class [𝜔] ∈ 𝐻2(𝑋, ℝ)
is a topological invariant. For a Kähler form 𝜔, one can at-
tach the Ricci form Ric(𝜔). It is also a closed two form and
a remarkable fact is that its class [Ric(𝜔)] is the first Chern
class 𝑐1(𝑋).

Around the 50s, two fundamental questions became
central in complex geometry. The first one is called the
Calabi Conjecture, which claims

Given a compact Kähler manifold (𝑋, 𝜔) together with a 2-
form 𝑅 representing 𝑐1(𝑋), one can always find a Kähler form
�̃� such that [𝜔] = [�̃�] and Ric(�̃�) = 𝑅.

This conjecture was proved in Yau’s famous work in the
late 70s. The second question, called the Kähler-Einstein
Problem, first asked by Kähler in the 30s and later advertised
by Calabi, considers whether there exists a Kähler metric
satisfying the Einstein equation. This requires the exis-
tence of a Kähler formwhose class is proportional to 𝑐1(𝑋),
and that the Kähler-Einstein Problem is equivalent, to ask
whether the equation 𝑐1(𝑋) = 𝜆⋅[𝜔] (𝜆 = −1, 0 or +1) can
be lifted to the level of form, i.e.,

Does there always exist a Kähler form 𝜔KE on 𝑋, such that
Ric(𝜔KE) = 𝜆 ⋅ 𝜔KE?

A solution 𝜔KE yields a Kähler-Einstein metric.

When dimℂ 𝑋 = 1, the Kähler-Einsten metric
is given by the Poincaré Uniformization Theo-
rem.

One immediately sees that when 𝜆 = 0, 𝑋 always has a
Kähler-Einstein metric by the solution of the Calabi Con-
jecture, since one can choose the form representing 𝑐1(𝑋)
to be 0. It was also proved, by Aubin and Yau indepen-
dently, when 𝜆 = −1, 𝑋 admits a Kähler-Einstein metric.
These results have tremendous influence on people’s un-
derstanding of algebraic varieties with 𝑐1(𝑋) being zero or
negative.

When 𝜆 = 1, 𝑋 is called Fano (named after Italian math-
ematician Fano). In this case, the Kähler-Einstein Prob-
lem becomes more subtle as there is no definitive answer.
The first obstruction was found in the late 50s, when Mat-
sushima showed that a Fano manifold 𝑋 has a Kähler-
Einstein metric would require Aut(𝑋) to be reductive. This
can be applied to, e.g., the blow up 𝑋 of a point on ℂℙ2
to conclude it does not admit a Kähler-Einstein metric. In
the early 80s, Futaki found a deeper obstruction which is
the vanishing of Fut(𝑣) for any vector field 𝑣 on 𝑋 . Here
Fut(𝑣) is a numerical invariant that we will discuss more
later.

In the late 80s, Tian proved that for a compact complex
Fano surface𝑋 ,Aut(𝑋) being reductive is the necessary and
sufficient condition for admitting a Kähler-Einstein metric.
However, the proof was a case-by-case study and there was
no reason to believe this would be the general situation.

In fact, Yau had a profound speculation that for a Fano
manifold 𝑋 , having a Kähler-Einstein metric should be
equivalent to deeper algebraic properties of 𝑋 , namely cer-
tain kind of stability. There are two reasons to make the
speculation. Firstly, based on the solution of the Calabi
Conjecture, it was believed that a variant of 𝐶0-estimate
would be the key analytic input, but such an estimate
should be governed by algebraic data. Secondly, prior to
the Kähler-Einstein Problem, this philosophy of canoni-
cal metric/stability correspondence had already appeared
in a different setting: by the work of Donaldson and
Uhlenbeck-Yau, a vector bundle on a compact Kähler man-
ifold admits a Hermitian-Einstein metric if and only if it is
slope polystable, which is now called the Hitchin-Kobayashi
Correspondence. Here the Hermitian-Einstein on a vector
bundle has a similar nature to the Kähler-Einstein met-
ric. However, the non-linear feature of varieties makes the
Kähler-Einstein Problem manifestly harder, and to deal
with the difficulty, there is a major shift of viewpoint in
regard to how to understand the stability condition in al-
gebraic geometry.

In the late 90s, Tian [Tia97] proposed the precise state-
ment and defined the notion of K-stability: For a given
Fano manifold 𝑋 , Tian considers ℂ∗-equivariant families
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𝒳 → ℂ, such that the fiber 𝒳𝑡 ≅ 𝑋 for any 𝑡 ≠ 0, and the
special fiber 𝑋0 is mildly singular (we will discuss this tech-
nical assumption later), so that one can define the (gen-
eralized) Futaki invariant Fut(𝒳) ≔ Fut(𝑋0, 𝑣) where 𝑣 is
the vector field on 𝑋0 induced by the ℂ∗-action. Then
Tian showed that 𝑋 admits a Kähler-Einstein metric im-
plies Fut(𝒳) ≥ 0 for all 𝒳 and the equality holds only
when𝒳 ≅ 𝑋 ×ℂ. This latter condition posted on 𝑋 , which
is of a global nature, is called K-polystablity.

Later Donaldson [Don02] considered a similar setting
of ℂ∗-equivariant degenerations but for all polarized pro-
jective varieties (𝑋, 𝐿)with no assumptions on the degener-
ation, and defined the Futaki invariant algebraically. Under
this setting, one can extend the study to the existence of a
constant scalar curvature metric, but we will only focus on
Fano varieties in this article.

One major step forward in the field is that the converse
direction of Tian’s theorem is also true.

Theorem (Yau-Tian-Donaldson Conjecture). Let 𝑋 be a
Fano variety, then 𝑋 admits a Kähler-Einstein metric if and
only if 𝑋 is K-polystable.

The Yau-Tian-Donaldson Conjecture was first proved
for smooth Fano manifolds by Chen-Donaldson-Sun
[CDS15] and Tian [Tia15], following the strategy called the
Cheeger-Colding-Tian theory in Riemannian geometry.

Later based on many earlier works of understanding
the geometry of the space of Kähler metrics, notably
by Mabuchi, Tian, Donaldson, Chen, Eyssidieux, Guedj,
Zeriahi, Berndtsson, Darvas, and many others, Berman-
Boucksom-Jonsson [BBJ21] proceeded along a completely
different route, namely the variational approach, which fo-
cuses on (the completion of) the space of Kähler metrics.
The argument was extended by Li-Tian-Wang and later to
all singular cases by Li [Li22]. It relies on far less differen-
tial geometry input than the Cheeger-Colding-Tian theory.
However, on the algebraic side it has to assume a stronger
condition called uniform K-stability.

Therefore, it remains to verify the subtle equivalence be-
tween uniform 𝐾-stability and 𝐾-stability, which is an al-
gebraic question. Built on the powerful machinery devel-
oped in the Minimal Model Program, the equivalence is
eventually established by Liu-Xu-Zhuang [LXZ21], as part
of the project to construct the moduli space of Fano va-
rieties. (The easier direction that the existence of Kähler-
Einsteinmetric implies K-polystability was achieved earlier
in [Ber16].) In the rest of this article, we will survey these
ideas, with a focus on the algebraic theory.

For now let us explain why this kind of condition is
called stability. The term “stability” used in algebraic ge-
ometry is often related to the construction of moduli
spaces. While the connection between 𝐾-stability and
moduli space is a profound topic that we will extensively

discuss later, we first compare it with a more classical no-
tion in the moduli theory, which is the geometric invariant
theory (GIT) stability.

As far as we know, the notion of stability in algebraic
geometry first implicitly appeared in Hilbert’s work on in-
variant theory, and later was explicitly coined by Mumford
in the geometric invariant theory, which considers the set-
ting of a reductive group 𝐺 acting on a projective variety
𝑀. To form the quotient space, which is the ‘moduli space’
parametrizing orbits, one has to throw away some unstable
points on 𝑀. To make the setting pragmatical, one often
also considers a very ample line bundle 𝐿 over𝑀 such that
the action on𝐺 can be lifted to 𝐿 as linear maps 𝐿𝑥 → 𝐿𝑔(𝑥)
for any 𝑥. Then the Hilbert-Mumford criterion says that to
check whether 𝑥 ∈ 𝑀 is stable, one only needs to consider
for any one parameter subgroup ℂ∗ ⊂ 𝐺, the sign of the
weight of theℂ∗-action on 𝐿|𝑥0 ≅ ℂwhere 𝑥0 ≔ lim𝑡→0 𝑡⋅𝑥.

Now let 𝑋 be a Fano variety, and [𝑋] the correspond-
ing point in the Hilbert scheme 𝑀, under an embedding
𝑋 → ℙ𝑁 induced by | − 𝑟𝐾𝑋 | for some 𝑟. Let ℂ∗ be any
subgroup of PGLℂ(𝑁 + 1). The closure ℂ∗ ⋅ [𝑋] yields a
morphism ℂ → 𝑀, and the pull-back of the universal fam-
ily induces a ℂ∗-equivariant family (𝒳,ℒ) over ℂ. This is
precisely the notion of a test configuration (with index 𝑟).
Then the Futaki invariant for a test configuration 𝒳 can be
considered as the weight of a ℂ∗-action on the restriction
of a line bundle, namely the CM line bundle, over the point
[𝑋0] where [𝑋0] ≔ lim𝑡→0 𝑡 ⋅ [𝑋]. There is a deeper reason
to adopt the GIT stability into the consideration, proposed
by Donaldson, following the famous work of Atiyah-Bott.
We first recall Kempf-Ness’s interpretation of stability: let
𝐺 be the complexification of a compact group 𝐾, and as-
sume a projective manifold (𝑀, 𝐿) admits a 𝐺-action with
a 𝐾-invariant norm ‖ ⋅ ‖ on 𝐿. Define the function

𝑓∶ 𝐺/𝐾 → ℝ, 𝑥 → log ‖𝑔 ⋅ ̂𝑥‖,

where ̂𝑥 is a non-zero lift of 𝑥. This function is convex
along any geodesicℂ∗ → 𝐺/𝐾, therefore 𝑓 has a minimum
on 𝐺/𝐾 if and only if the limit lim𝑡→∞ 𝑓′(𝑒𝑖𝑡𝜉 ⋅ 𝑥) at infinity
is positive for any 𝜉 ∈ Lie(𝐾). The latter is precisely the
weight of the ℂ∗-action on 𝐿|𝑥0 , so combining with the
Hilbert-Mumford criterion, we know

𝑥 is stable if and only if 𝑓 has a minimum.

In the Kähler-Einstein Problem, one can view the space
ℋ of Kähler metrics with the same class as an infinite
dimensional analogue of symmetric spaces, and the exis-
tence of the Kähler-Einsteinmetric is equivalent to the exis-
tence of a minimum for certain geometric functional, e.g.,
the Mabuchi functional, on ℋ. For a test configuration
(𝒳,ℒ), the pullbacks 𝜔𝑡 of the (normalized) Fubini-Study
metric along 𝑋𝑡 ⊆ ℙ𝑁 gives a ray in ℋ. The derivative
of the Mabuchi functional on 𝜔𝑡 at infinity is the Futaki
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invariant. This clear analogy makes the comparison of
Kähler-Einstein Problem with the finite dimensional GIT
fruitful.

However, there are two fundamental differences be-
tween the 𝐾-stability and the standard GIT: since we con-
sider all 𝒳, a priori we need to take into account all suffi-
ciently large 𝑟; moreover, the CM line bundle is not ample.
Therefore, the usual geometric invariant theory fails to ap-
ply here. With the benefit of hindsight, it is the more in-
trinsicMinimalModel Program theorywhich remedies the
study of𝐾-stability as an algebro-geometric subject and en-
ables people to go beyond the GIT.
Fano varieties. As one of the three building blocks of an
arbitrary variety, the class of Fano varieties has been the
central subject in higher dimensional geometry for more
than a century. The only Fano manifold in dimension
one is ℂℙ1. In dimension two, it is a classical result that
there are 10 families of them, namely blowing up 𝑚 gen-
eral points on ℂℙ2 for 0 ≤ 𝑚 ≤ 8 and ℂℙ1 × ℂℙ1. For
dimension three, in the 80s Iskovskikh and Mori-Mukai
classified that there are 105 smooth families. Fano mani-
folds often have rich geometry, as they could have many
interesting birational models. However, this also makes
the study of them intricate. Moreover, from the view of
Minimal Model Program, one needs to also consider Fano
varieties with mild singularities. In particular, these sin-
gular Fano varieties naturally appear as degenerations of
Fano manifolds.

Example. To see a basic example, we look at the family
given by the equation

(𝑡𝑥𝑑0 +
𝑛
∑
𝑖=1

𝑥𝑑𝑖 = 0) ⊂ ℂℙ𝑛 × ℂ (2 ≤ 𝑑 < 𝑛). (1)

If 𝑡 ≠ 0, we get a Fano manifold 𝑋𝑡 isomorphic to the Fano
Fermat hypersurface ∑𝑛

𝑖=0 𝑥𝑑𝑖 = 0; and if 𝑡 = 0, the Fano
variety 𝑋0 is a cone over a Fano hypersurface of one dimen-
sional lower, with a singularity at (1, 0, … , 0). Therefore,
this family of Fano varieties is trivial over ℂ∗, but the alge-
braic structure changes over 𝑡 = 0. We note that as a com-
parison, this phenomenon can not occur when 𝑐1(𝑋) ≤ 0.
Moreover, let 𝑓∶ 𝑌 → 𝑋0 be the blow up at (1, … , 0). The
exceptional divisor is 𝐸, and a simple calculation yields

𝑓∗(𝜔𝑋0)((𝑛 − 𝑑 − 1)𝐸) = 𝜔𝑌 .
Definition. Let 𝐸 be a divisor over 𝑋 , i.e., 𝐸 is a divisor on
a normal birational model 𝜇∶ 𝑌 → 𝑋 . We define the log
discrepancy along 𝐸 to be

𝐴𝑋(𝐸) = (the coefficient of 𝐾𝑌/𝑋 along 𝐸) + 1.
We say 𝑋 has Kawamata log terminal (klt) singularities if

𝐴𝑋(𝐸) > 0 for any divisor 𝐸 over 𝑋 . It is known it suffices
to check 𝐴𝑋(𝐸) > 0 for divisors 𝐸 appearing on a fixed log
resolution.

In particular, 𝑋0 in (1) is a klt Fano variety.
Admittedly, it is not easy to see at the first glance why

klt singularities are important. Nevertheless, built on four
decades’ experience accumulated by people working in
the Minimal Model Program theory, it becomes clear that,
from various viewpoints in higher dimensional geometry,
klt varieties form the right class of singular varieties to be
studied.

For instance, one non-trivial property, established in
[LX14], is that klt Fano varieties are closed under degen-
eration: Let 𝑋∘ → Δ∘ be a family of klt Fano varieties over
a punctured disc Δ∘ = Δ ⧵ {0}, then after a possible base
change of Δ∘, we can fill in the limit with a klt Fano vari-
ety.
New ideas from algebraic geometry. The exploration of
the connection between 𝐾-stability and the MMP was ini-
tiated in the work in Odaka [Oda13] and Li-Xu [LX14]
around the early 2010s. After a small gap of a few years,
it started to blossom around 2015. The meeting of these
two subjects brings up many new insights to both sides.
Onemain advantage is that this algebraicmethod provides
a stronger tool to treat Fano varieties with singularities,
which are currently beyond the reach of the original metric
geometry approach.

There are five fundamental new ideas coming out to ad-
vance the study of 𝐾-stability via higher dimensional ge-
ometry. These new ideas are related to each other. Nev-
ertheless, they are somewhat different. In my later discus-
sions, I will elaborate three of them:

1. Various equivalent characterizations of 𝐾-stability.
2. The uniqueness of K-polystable degeneration.
3. The higher rank finite generation.

I will only briefly mention the last two:

4. The connection of the 𝐾-stability of fibers and the pos-
itivity of the CM line bundle on the base, via Harder-
Narashimhan filtration.

5. The local 𝐾-stability theory via the normalized vol-
ume function.

Valuative criterion of 𝐾-stability. One fundamental de-
velopment of the algebraic theory of 𝐾-stability, underly-
ing the further progress in various directions, is the equiv-
alent description of the notions of 𝐾-stability, using valua-
tions over the function field 𝐾(𝑋).

Let 𝑋 be a Fano variety with klt singularities, a prime
divisor 𝐸 yields a valuation ord𝐸 given by the vanishing
multiplicity along 𝐸 for any meromorphic function, i.e.,
for any meromorphic function 𝑓,

ord𝐸(𝑓) ≔ mult𝐸(div(𝑓)).

Definition. Let 𝐸 be a prime divisor over 𝑋 , i.e., 𝐸 is
a prime divisor on a normal birational model 𝜇∶ 𝑌 →
𝑋 . Let dim𝐻0(−𝑚𝐾𝑋) = 𝑁𝑚, we can choose a basis
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{𝑠1, … , 𝑠𝑁𝑚 } compatible with the filtration on 𝐻0(−𝑚𝐾𝑋)
induced by ord𝐸 , i.e., for any 𝜆, the subspace

ℱ𝜆
𝐸𝐻0(−𝑚𝐾𝑋)

= {𝑠 ∈ 𝐻0(−𝑚𝐾𝑋) | ord𝐸(𝑠) ≥ 𝜆 } (2)

is generated by 𝑠𝑖 of {𝑠1, … , 𝑠𝑁𝑚 } with 𝑠𝑖 ∈ ℱ𝜆
𝐸𝐻0(−𝑚𝐾𝑋).

We define

𝑆𝑚(𝐸) ≔ lim
𝑚→∞

1
𝑚𝑁𝑚

𝑁𝑚

∑
𝑖=1

ord𝐸(𝑠𝑖),

and the expected vanishing order

𝑆𝑋(𝐸) =
1

(−𝐾𝑋)𝑛
∫

∞

0
vol(𝜇∗(−𝐾𝑋) − 𝑡𝐸)𝑑𝑡.

Then 𝑆𝑋(𝐸) = lim𝑚→∞ 𝑆𝑚(𝐸). We also denote the stability
threshold by

𝛿(𝑋) = inf
𝐸
𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

,

where 𝐸 runs through over all prime divisors over 𝑋 .

Theorem (Valuative criterion). We have the following equiv-
alent characterization of notions in 𝐾-stability.

1. 𝑋 is K-semistable if and only if 𝛿(𝑋) ≥ 1;
2. 𝑋 is uniformly K-stable if and only if 𝛿(𝑋) > 1; and
3. 𝑋 is K-stable if and only if 𝐴𝑋(𝐸) > 𝑆𝑋(𝐸) for any 𝐸.

The Statement 1 is proved by Fujita [Fuj19] and Li
[Li17], which we will explain below. A similar argument is
used to prove Statement 2 in [Fuj19], as well as Statement
3 in [Fuj19,Li17] with a technical assumption, which was
later removed by Blum-Xu [BX19].

Before explaining the ideas of proving the valuative cri-
terion, to exemplify its strength, we first give an applica-
tion to the Bishop-Gromov type Comparison Theorem for
Kähler manifolds.

Example (Fujita). Let𝑋 be an 𝑛-dimensional K-semistable
Fano variety, e.g., 𝑋 admits a Kähler-Einstein metric. Then
(−𝐾𝑋)𝑛 ≤ (𝑛 + 1)𝑛.

This can be seen in the following way. Let 𝜇∶ 𝑌 → 𝑋 be
the blow up of a smooth point 𝑥 ∈ 𝑋 with the exceptional
divisor 𝐸. Then

𝐻0(𝜇∗(−𝑚𝐾𝑋) − 𝑡𝑚𝐸) = 𝐻0(𝒪𝑋 ⊗𝔪⌈𝑡𝑚⌉
𝑥 ),

which implies that

vol(−𝜇∗𝐾𝑋 − 𝑡𝐸) ≥ (−𝐾𝑋)𝑛 − 𝑡𝑛.
The valuative criterion implies that

𝑛(−𝐾𝑋)𝑛 ≥ ∫
((−𝐾𝑋)𝑛)

1
𝑛

0
((−𝐾𝑋)𝑛 − 𝑡𝑛)d𝑡.

Therefore, (−𝐾𝑋)𝑛 ≤ (𝑛 + 1)𝑛.

What is striking about the valuative criterion is that
𝐾-stability notions are checked by looking at valuations
which are apparently different from test configurations as
in the original definition. A connection is observed by
Boucksom-Hisamoto-Jonsson: for any irreducible compo-
nent 𝐹 of the special fiber 𝑋0 of a test configuration 𝒳,
since 𝒳 is birational to 𝑋 × 𝔸1𝑡 , 𝐾(𝒳) ≅ 𝐾(𝑋)(𝑡), the re-
striction of ord𝐹 on the subfield 𝐾(𝑋) ⊆ 𝐾(𝒳) is of the
form 𝑎 ⋅ ord𝐸 for some divisor 𝐸 over 𝑋 , as long as 𝐹 is not
from 𝑋 × {0}.

A deeper result, proved in [LX14], says that started
with any test configuration (𝒳,ℒ) we can use the Minimal
Model Program techniques to run a process to obtain a
new normal test configuration𝒴 such that−𝐾𝒴 is relatively
ample and the central fiber 𝑋0 is also a klt Fano variety.
These test configurations are called special. Moreover, up

to a base change ℂ 𝑧𝑑−−→ ℂ,

Fut(𝒳,ℒ) ≥ Fut(𝒴, −𝐾𝒴) ≔ Fut(𝒴).

As a consequence, verifying 𝐾-stability on all test config-
urations as in Donaldson’s definition, is equivalent to re-
stricting over special test configurations. This subclass is
smaller than the one allowed in Tian’s definition, there-
fore, for Fano varieties, Donaldson’s definition is indeed
equivalent to Tian’s.

Given a non-trivial special test configuration 𝒳, let 𝑎 ⋅
ord𝐸 be the valuation on 𝐾(𝑋) induced by the unique com-
ponent 𝑋0 as above. One can calculate

Fut(𝒳) = 𝑎(𝐴𝑋(𝐸) − 𝑆𝑋(𝐸)),

and we immediately conclude that if 𝛿(𝑋) ≥ 1, then 𝑋 is
K-semistable.

There are two different approaches to prove the con-
verse direction. The first one was given in [Fuj19,Li17]. It
needs the notion of Ding stability, which is algebraically
defined by Berman [Ber16], by looking at the sign of the
Ding invariant Ding(𝒳,ℒ) for all test configurations (𝒳,ℒ).
Berman-Boucksom-Jonsson [BBJ21] and Fujita [Fuj19] ob-
served that the Minimal Model Program process in [LX14]
also can be used to show testing Ding stability notions on
general test configurations and special test configurations
are equivalent. As a consequence, one immediately sees
that 𝐾-stability notions are equivalent to the correspond-
ing Ding-stability ones, as Futaki invariants are identical
to Ding invariants on special test configurations.

Then Fujita makes the key observation that the defi-
nition of Ding invariant can be extended from test con-
figurations to any linearly bounded (decreasing) multi-
plicative filtration ℱ• ≔ (ℱ𝑡𝑅)𝑡∈ℝ on the anti-canonical
ring 𝑅 = ⨁𝑚𝐻0(−𝑚𝐾𝑋), and Ding semistability implies
Ding(ℱ•) ≥ 0 for any such filtration ℱ•. For a divisor 𝐸
over 𝑋 , one can define the filtration ℱ•

𝐸 by (2). Moreover,
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we have

𝐴𝑋(𝐸) − 𝑆𝑋(𝐸) ≥ Ding(ℱ•
𝐸).

Therefore, K-semistability, which is equivalent to Ding
semistability, implies that 𝛿(𝑋) ≥ 1.
Complements and log canonical places. The second ap-
proach reinterprets special test configurations using val-
uations with a concrete geometric description, following
[BLX19]. For this we need to first introduce the concept of
complements defined by Shokurov.

Definition. For a Fano variety 𝑋 , a ℚ-divisor 𝐷 is an 𝑁-
complement, if 𝐷 = 1

𝑁
Γ for some divisor Γ ∈ | − 𝑁𝐾𝑋 |

and (𝑋, 𝐷) is log canonical.
We say 𝐷 is a ℚ-complement, if it is an 𝑁-complement

for some 𝑁.

At first sight it is merely a technical concept. However,
the following deep result, conjectured by Shokurov and
proved by Birkar, sheds light on Fano varieties: there exists
a uniform 𝑁 which only depends on dim(𝑋), such that 𝑋
always has an 𝑁-complement. This is surprising since 𝑛-
dimensional Fano varieties are unbounded.

Below, we will explain how complements play an im-
portant role in the study of 𝐾-stability, through the con-
struction of the basis type divisor. For a sufficiently divisible
𝑚, we say 𝐷 is a 𝑚-basis type divisor if

𝐷 = 1
𝑚 ⋅ 𝑁𝑚

(div(𝑠1) +⋯+ div(𝑠𝑁𝑚)),

where 𝑁𝑚 = dim𝐻0(𝑋, −𝑚𝐾𝑋) and {𝑠1, … , 𝑠𝑁𝑚 } forms a
basis of 𝐻0(𝑋, −𝑚𝐾𝑋). This concept was introduced by
Fujita-Odaka, and they considered

𝛿𝑚(𝑋) = inf
𝐷
lct(𝑋, 𝐷) = inf

𝐷
inf
𝐸

𝐴𝑋(𝐸)
ord𝐸(𝐷)

where 𝐷 runs through over all𝑚-basis type divisors, and 𝐸
runs through over all prime divisors over 𝑋 . Together with
Jonsson-Blum’s work, they show

lim
𝑚→∞

𝛿𝑚(𝑋) = 𝛿(𝑋). (3)

We note that this gives us a way to verify 𝐾-stability for
explicit Fano varieties, by estimating 𝛿𝑚(𝑋).

For a Fano variety 𝑋 and a ℚ-complement 𝐷, we say
a prime divisor 𝐸 over 𝑋 is a log canonical place of 𝐷 if
𝐴𝑋(𝐷) = ord𝐸(𝐷). Then using (3), one can show that

if 𝛿(𝑋) ≤ 1, 𝛿(𝑋) = inf
𝐸
𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

,

where 𝐸 runs through over all log canonical places of a ℚ-
complement.

An observation made in [BLX19] is that any divisor
𝐸 arises from a special test configuration only if it is a
log canonical place of a ℚ-complement. In particular, if

𝛿(𝑋) < 1, then there exists a special test configuration 𝒳
with

Fut(𝒳) = 𝐴𝑋(𝐸) − 𝑆𝑋(𝐸) < 0,
i.e., 𝑋 is K-unstable. Additionally, by using the minimum
norm function ‖𝒳‖m introduced by Dervan, a more pre-
cise relation can be given when 𝛿(𝑋) ≤ 1:

𝛿(𝑋) ≔ inf
𝐸
𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

= 1 + inf
𝒳
Fut(𝒳)
‖𝒳‖m

. (4)

Then [BLX19] applied Birkar’s theorem on the exis-
tence of bounded complements to investigate log canon-
ical places of ℚ-complements, and proved that there exists
a uniform 𝑁, which only depends on dim(𝑋), such that if
𝐸 is a log canonical place of ℚ-complement, it is indeed
a log canonical place of an 𝑁-complement 𝐷. As all 𝑁-
complements form a bounded family, their log canonical
places are toroidal divisors over a bounded family of log
resolutions. Both𝐴𝑋(𝐸) and 𝑆𝑋(𝐸) are deformation invari-

ant, so we can assume 𝛿(𝑋) = lim𝐸𝑖
𝐴𝑋(𝐸𝑖)
𝑆𝑋(𝐸𝑖)

for a sequence

of lc places 𝐸𝑖 of 𝑁-complements, which is toroidal over
the same log resolution. Thus after a rescaling of ord𝐸𝑖
and passing to a subsequence, there exists a limiting quasi-

monomial valuation 𝑣 and it satisfies that 𝛿(𝑋) = 𝐴𝑋(𝑣)
𝑆𝑋(𝑣)

.

(There are straightforward generalization of various defi-
nitions and invariants from divisors to quasi-monomial
valuations 𝑣 over 𝑋 .)
Higher rank finite generation. In the above discussion,
the valuation 𝑣 has its toroidal coordinates the limit of the
ones of a rescaling of ord𝐸𝑖 . In particular, it could be ℚ-
linearly independent. In other words, 𝑣 could be a quasi-
monomial valuation of higher rational rank. For any valu-
ation 𝑣, its values on 𝑅 = ⨁𝑚𝐻0(−𝑚𝐾𝑋) form a monoid
Φ contained in ℝ≥0. For any 𝜆 ∈ Φ, we define 𝐼𝜆 ⊆ 𝑅 to
be the ideal consisting of sections 𝑠 ∈ 𝑅 with 𝑣(𝑠) ≥ 𝜆; and
𝐼>𝜆 ⊆ 𝑅 to be the ideal of sections 𝑠 with 𝑣(𝑠) > 𝜆. Then
the associated graded ring of 𝑅 with respect to 𝑣 is

gr𝑣(𝑅) ≔⨁
𝜆∈Φ

𝐼≥𝜆/𝐼>𝜆.

To further advance the theory, we need another major
recipe which is the following finite generation theorem,
proved by Liu-Xu-Zhuang [LXZ21].

Theorem (Higher rank finite generation). Let 𝑋 be a Fano
variety with 𝛿(𝑋) ≤ 1. Let 𝑣 be the quasi-monomial valua-

tion constructed above satisfying that 𝛿(𝑋) = 𝐴𝑋(𝑣)
𝑆𝑋(𝑣)

. Then the

associated graded ring gr𝑣(𝑅) is finitely generated.

In the above theorem, if 𝑣 arises from a divisor, the finite
generation easily follows from the work of Birkar-Cascini-
Hacon-McKernan [BCHM10], as 𝑣 is a log canonical place
of aℚ-complement. However, it does not always hold that
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gr𝑣(𝑅) is finitely generated if a higher rational rank valua-
tion 𝑣 is merely assumed to be a log canonical place of aℚ-
complement. Therefore, finer properties have to been ex-
tracted from the quasi-monomial valuation 𝑣 computing
𝛿(𝑋), and the proof needs various new recipes, especially
deep results on the boundedness of Fano varieties.
Revisit stability. As we already emphasized, roughly
speaking, stability can be thought of as a condition to
pick out the optimal degeneration for a family. As seen in
Kempf-Ness’s classical theorem, the theory often can be
extended to associating every unstable object an “optimal
destabilization.” An example is to degenerate an unstable
sheaf to the direct summand of the graded sheaves of its
Harder-Narasimhan filtration. The notion is coined into
the term Θ-stratification by Halpern-Leistner.

Our finite generation theorem yields such a theory for
𝐾-stability. In fact, one can show from it that there exists
a divisorial valuation 𝑎 ⋅ ord𝐸 sufficiently close to 𝑣, with

𝛿(𝑋) = 𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

and 𝐸 induces a special test configuration.

As a consequence, we have

Theorem (Optimal Destabilization Theorem). Let 𝑋 be a
Fano variety with 𝛿(𝑋) ≤ 1. Then there exists a divisor 𝐸 which

induces a special test configuration and satisfies 𝛿(𝑋) = 𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

.

In particular, if 𝑋 is K-stable then it is uniformly K-stable.
In particular, 𝑋 is K-stable if and only if 𝛿(𝑋) > 1.
The “optimal” in our theorem is with respect to the

minimum norm as (4) shows. Székelyhidi explored the
optimal degeneration with respect to 𝐿2-norm for toric va-
rieties. Nevertheless, for a general Fano variety, the min-
imum norm fits better into our machinery. To help the
reader to understand the features of different approaches,
we would like to give a panoramic comparison in each ap-
proach of how the stability is applied to the degeneration
process.

Philosophically speaking, a key point to study-
ing 𝐾-stability is understanding how to get the
limit of a sequence of Fano varieties 𝑋𝑡 with ex-
tra conditions, or similarly a sequence of test
configurations of a fixed Fano variety, which
approximates the infimum of the normalized
Futaki invariants.

In the Cheeger-Colding-Tian theory, one starts with a
Fano manifold 𝑋 without a Kähler-Einstein metric, and
it suffices to construct a test configuration destabilizing
𝑋 . Donaldson introduced the idea of using an auxiliary
boundary divisor and conic metrics along it. More pre-
cisely, fix any smooth divisor Γ ∈ | −𝑚𝐾𝑋 |, one can find a
sequence 𝛽𝑖 ∈ (0, 1

𝑚
) with 𝛽 = lim𝑖 𝛽𝑖 such that (𝑋, 𝛽𝑖 ⋅ Γ)

admits a conical Kähler-Einstein metric 𝜔𝑖, but (𝑋, 𝛽 ⋅
Γ) does not. After passing through a subsequence, the

Gromov-Hausdorff limit 𝑋∞ of the conical Kähler-Einstein
Fano manifolds (𝑋, 𝜔𝑖) exists as a metric space. Then it
took a large endeavor to show that 𝑋∞ is indeed the under-
lying space of the Chow limit when one uses an orthonor-
mal basis (with respect to 𝜔𝑖) of |−𝑁𝐾𝑋 | (for some𝑁 ≫ 0)
to embed 𝑋 into a projective space. Moreover if we take Γ∞
to be the Chow limit of Γ, then (𝑋∞, 𝛽 ⋅ Γ∞) has a conical
Kähler-Einstein metric. Then we obtain a test configura-
tion degenerating 𝑋 to 𝑋∞ with a negative Futaki invari-
ant, which implies 𝑋 is K-unstable. However, for now this
kind of analytic argument is restricted to the case when 𝑋
is smooth.

The variational approach focuses on the space of
smooth Kähler metrics and its various completions. The
existence of a Kähler-Einstein metric is equivalent to the
Mabuchi (or Ding) functional having a critical point. Fol-
lowing the infinite dimensional GIT picture, one should
concentrate on the functional along geodesic rays by the
analogue of the Hilbert-Mumford criterion in this setting.
For simplicity, here we restrict ourselves to the case that
the automorphism group is finite. It is shown that the
existence of a critical point of the Ding functional fol-
lows from the coercivity, which means for any geodesic
𝑈 ∶ ℝ → ℰ1 in the space of Kähler metrics ℰ1 with fi-
nite energy plurisubharmonic (psh) potentials, the Ding
functional 𝐃 grows at least linearly. After establishing
the convexity of 𝐃 along the geodesic ray, it is sufficient
to understand the growth

1
𝑡
𝐃(𝑈𝑡) when 𝑡 → ∞, where a

translation dictionary between the archimedean and non-
archimedean setting is established. We note that the space
of non-archimedean metrics contains all test configura-
tions, so we have a chance to connect the algebraic con-
dition of 𝐾-stability and the analytic condition of the exis-
tence of Kähler-Einstein metrics.

The positivity of Ding invariants on non-archimedean
metrics (with finite energy) implies coercivity, as when 𝑡 →
∞,

lim
𝑡→∞

𝐃(𝑈𝑡)
𝑡 ≥ Ding(𝜙) > 0

for a non-archimedean metric 𝜙 attached to the geodesic
ray 𝑈. Moreover, while 𝜙 might not come from a test
configuration, it can be approximated by a sequence of
non-archimedean metrics 𝜙𝑖 coming from test configura-
tions (constructed by Demailly’s regularization) such that
the Ding invariants satisfy lim𝑖→∞Ding(𝜙𝑖) ≤ Ding(𝜙).
However, to have positivity of the limiting Ding invariant
Ding(𝜙), positivity of Ding(𝜙𝑖) is not enough, but we have
to assume uniform Ding stability.

As we mentioned before, uniform 𝐾-stability is known
to be the same as uniform Ding stability. It remains to
show the equivalence between 𝐾-stability and uniform
𝐾-stability, which is addressed by the Optimal Destabi-
lization Theorem, obtained with deep results from the
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Minimal Model Program. In other words, the algebro-
geometric approach provides the necessary compactness
result.

In the work of stability, this kind of study on the limit
of a family of Fano varieties is clearly related to moduli
spaces. In fact, the progress of our understanding on the
fundamental concepts of 𝐾-stability intertwines with the
construction of moduli spaces of 𝐾-polystable Fano vari-
eties. We will continue to discuss the latter topic.
Moduli of Fano varieties. It is one of the most fundamen-
tal questions in algebraic geometry to construct moduli
spaces of varieties. For instance, for 𝑔 ≥ 2 the moduli
spaceℳ𝑔 of curves and its compactificationℳ𝑔 are among
the most studied objects in algebraic geometry. Built
on the machinery of the Minimal Model Program and
progress on understanding the moduli problem of higher
dimensional varieties, KSB (Kollár-Shephard-Barron) sta-
bility gives a satisfying theory to generalize the construc-
tion of ℳ𝑔 to higher dimensions. In particular, an appro-
priate definition of families of arbitrary dimensional vari-
eties (or even log pairs) was given by Kollár. As the output,
we get a projective scheme which parametrizes KSB stable
varieties 𝑋 , whose canonical class 𝐾𝑋 is ample.

The opposite case when −𝐾𝑋 is ample had been mys-
terious for a long time. It is trivial when dim(𝑋) = 1 as
𝑋 = ℂℙ1. However, in higher dimensions, it is much trick-
ier. As (1) shows, an isotrivial family 𝑋𝑡 could jump to 𝑋0
with a different complex structure, which does not occur
for a KSB stable family. So it has been well understood
for a long time that the Minimal Model Program itself is
unlikely to be sufficient to provide a satisfactory moduli
theory for Fano varieties. However, in the example (1),
the central fiber is 𝐾-unstable, so there is a chance that if
we restrict ourselves to Fano varieties with 𝐾-stability as-
sumptions, this pathology does not occur.

Various results from the analytic side, especially “the
partial 𝐶0-estimate” in the works of Tian and Donaldson-
Sun, suggest that the condition on the existence of Kähler-
Einstein metrics could sort out a class of Fano varieties
to be parametrized by well-behaved moduli spaces. As 𝐾-
stability is the corresponding algebraic condition, it is nat-
ural to hope that it yields a robust moduli theory. Specula-
tion is also inspired by the successful role that the Hitchin-
Kobayashi correspondence plays in the study of compact
moduli spaces parametrizing them. However, for fami-
lies of K-stable Fano varieties it was far from clear how
to use the definition of 𝐾-stability itself to actually estab-
lish the list of properties needed to construct the moduli
space. This could be the reason that such a topic did not at-
tract people’s attention in the decade right after the inven-
tions of the notion. Li-Xu [LX14] studied families of Fano
varieties from the perspective of 𝐾-stability and provided
a hint that K-stability may lead to an algebraic moduli

theory. Nevertheless, only until people have obtained
enough fundamental knowledge on 𝐾-stability, e.g., the
valuative criterion, we could start to get definitive results.

The main theorem is the following.

Theorem (K-moduli). Fix a positive integer 𝑛, and a rational
number 𝑉 . Then

1. There exists an Artin stack 𝔛kss𝑛,𝑉 of finite type, which
parametrizes families of 𝑛-dimensional K-semistable Fano
varieties 𝑋 → 𝑇, with (−𝐾𝑋𝑡)𝑛 = 𝑉 for any 𝑡 ∈ 𝑇.

2. The stack 𝔛kss𝑛,𝑉 admits a proper good moduli space 𝔛kss𝑛,𝑉 →
𝑋kps
𝑛,𝑉 , whose points correspond to K-polystable Fano vari-

eties. Moreover, the CM line bundle ΛCM is ample on
𝑋kps
𝑛,𝑉 .

The proof of the above theorem is a combination of
many people’s contributions. We will explain below the
content of the K-moduli Theorem, and sketch the circle of
ideas involved in the proof.

Example. Consider cubic hypersurfaces

𝑋 ⊂ ℙ𝑛+1 (𝑛 ≥ 2). (5)

It is not hard to verify 𝐾-stability for some special cubic
hypersurface, e.g., the Fermat 𝑋 = (𝑥30+⋯+𝑥3𝑛+1) = 0. As
we will see this implies that there is a Zariski open locus
of the parametrizing space, such that any corresponding
cubic hypersurface is K-semistable.

It is shown by Odaka-Spotti-Sun for 𝑛 = 2, Liu-Xu for
𝑛 = 3, and Liu for 𝑛 = 4, that in these cases, the GIT stabil-
ity of cubic hypersurfaces is exactly the same as 𝐾-stability.
In other words, the K-moduli is given by the GIT moduli
space.

𝐾-moduli stack. By definition, the K-moduli stack 𝔛kss𝑛,𝑉
admits a universal family 𝔘kss

𝑛,𝑉 → 𝔛kss𝑛,𝑉 , such that for
any scheme 𝑇, all pull-back families under morphisms
in Hom(𝑇, 𝔛kss𝑛,𝑉 ) precisely correspond to all isomorphic
classes of families of 𝑛-dimensional K-semistable Fano va-
rieties with volume 𝑉 over 𝑇.

To prove the first part of the K-moduli theorem, we first
need to show the boundedness which says that there exists
a uniform 𝑀 = 𝑀(𝑛, 𝑉) such that for any 𝑛-dimensional
K-semistable Fano variety, −𝑀𝐾𝑋 is very ample, i.e., the
linear system | − 𝑀𝐾𝑋 | induces an embedding of 𝑋 into a
same projective space ℂℙ𝑁 . This was first proved by Jiang,
who reduced the question to Birkar’s proof of the Borisov-
Alexeev-Borisov Conjecture.

We consider (𝑋, 𝑓) for 𝑋 with an embedding 𝑓∶ 𝑋 →
ℙ𝑁 as above. These pairs are parametrized by a locus 𝑍
of the Hilbert scheme Hilb(ℙ𝑁). It suffices to prove 𝑍 is
locally closed in Hilb(ℙ𝑁), since

𝔛kss𝑛,𝑉 = [𝑍/PGLℂ(𝑁 + 1)], (6)
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as two embeddings of 𝑋 differ by an element in PGLℂ(𝑁 +
1).

The locus in Hilb(ℙ𝑁) parametrizing Fano subvarieties
of ℙ𝑁 is locally closed, so it remains to prove for a family
of Fano varieties 𝑋 → 𝑇, the locus 𝑈 ⊆ 𝑇 parametrizing K-
semistable fibers is open. One way to get this is using the
fact that the function 𝑡 → min{𝛿(𝑋𝑡), 1} is constructible and
lower semi-continuous. This was first proved in [BLX19]
for 𝛿(𝑋 ̄𝑡) instead of 𝛿(𝑋𝑡), where ̄𝑡 is the geometric point
given by 𝑡. Then Zhuang verified 𝛿(𝑋 ̄𝑡) = 𝛿(𝑋𝑡).
𝐾-moduli space. From the above discussion, we see that
for any fixed positive number 𝛿0 ∈ (0, 1], we still get an
Artin stack of finite type if we replace the K-semistability
condition for 𝔛kss𝑛,𝑉 by 𝛿(𝑋𝑡) ≥ 𝛿0. However, a much more
delicate property which distinguishes 𝔛kss𝑛,𝑉 is that it admits
a space which parameterizes points up to orbit closure
equivalence, i.e., the 𝑆-equivalence after Seshadri, called
the good moduli space.

One difficulty in constructing moduli space of Fano va-
rieties is the fact that a Fano variety 𝑋 may have a posi-
tive dimensional automorphism group Aut(𝑋). This con-
trasts to the case of the KSB stability, where the moduli
is a separated Deligne-Mumford stack for which one can
apply Keel-Mori’s theorem to conclude the existence of a
coarse moduli space. When a stack has points with posi-
tive dimensional stabilizer groups, it usually does not ad-
mit any coarse moduli space. Nevertheless, a replacement
construction initiated by Alper, called the good moduli space,
provides a good framework to treat this more complicated
case, at least in characteristic 0.

Definition. Let 𝔛 be a stack. We say 𝑋 is a good moduli
space of 𝔛, if the quasi-compact morphism 𝜙∶ 𝔛 → 𝑋 sat-
isfies

1. The push-forward functor 𝜙∗ is exact on quasi-
coherent sheaves;

2. There is an isomorphism 𝒪𝑋 → 𝜙∗(𝒪𝔛).

Example. Let ℂ∗ act on ℂ by 𝑡 ⋅ 𝑥 → 𝑡𝑥, then the stack
[ℂ/ℂ∗] admits a good moduli space, which is a point.

However, if we replace ℂ by ℂℙ1, with the action 𝑡 ⋅
[𝑥0, 𝑥1] → [𝑥0, 𝑡𝑥1], then the stack [ℂℙ1/ℂ∗] has no good
moduli space.

The definition of good moduli space is simple, how-
ever it has strong implications. For a quotient stack [𝑍/𝐺]
if it admits a good moduli space, it implies that for any
𝑧 ∈ 𝑍, the closure 𝐺 ⋅ 𝑧 ⊂ 𝑍 has a unique minimal orbit
𝐺 ⋅ 𝑧∗. Moreover, the stabilizer of 𝑧∗ is reductive. For 𝔛kss𝑛,𝑉
(see (6)), this means that for any K-semistable Fano vari-
ety 𝑋 , there is a unique K-polystable Fano variety 𝑌 which
is 𝑆-equivalent to 𝑋 , and Aut(𝑌) is reductive. The latter
was Matsushima’s theorem when 𝑌 is a smooth Kähler-
Einstein Fano manifold.

A prototype example of good moduli space is given by
𝔛 = [Spec(𝐴)/𝐺] where 𝐺 is a reductive group acting on
an affine variety Spec(𝐴) (over characteristic 0), where the
good moduli space is 𝑋 = Spec(𝐴𝐺). More generally, for
a polarized projective variety (𝑌, 𝐿) with a reductive group
action, then one can take 𝔛 = [𝑌 ss/𝐺] where 𝑌 ss is the
GIT semistable locus and the good moduli space of 𝔛 is
the GIT quotient 𝑋 = 𝑌/𝑠𝑠𝑙𝑎𝑠ℎ𝐺. Nevertheless, there is
no known way to interpret the K-moduli problem as a GIT
problem, so we have to rely on a more general abstract
method. Fortunately, a valuative criterion of the existence
of good moduli space, which is a version of Keel-Mori’s
theorem for Artin stacks, is established in [AHLH18]. Ap-
plying their work, built on earlier analysis in [LWX21] and
[BX19], the existence of the good moduli space and its sep-
aratedness are proved in [ABHLX20].

While the existence of the good moduli space 𝑋kps
𝑛,𝑉

should justify that 𝐾-stability gives the right notion of
moduli theory of Fano varieties, arguably themost remark-
able property of 𝑋kps

𝑛,𝑉 is its properness.

Let 𝑋∘ → Δ∘ be a family of K-semistable Fano
varieties over a punctured curve, then after a
base change of Δ∘, there exists a unique K-
polystable Fano filling.

For a family whose general fibers are smooth with
Kähler-Einstein metrics, the existence of the limit is given
as the deepest consequence from the Cheeger-Colding-
Tian theory. For the general case, the compactness result
essentially relies on the Optimal Destabilization Theorem.

Another fundamental property of 𝑋kps
𝑛,𝑉 is its projectiv-

ity, i.e., 𝑋kps
𝑛,𝑉 is a subscheme of ℙ𝑁 for some 𝑁. The CM

line bundle ΛCM, defined in various works with growing
generality and eventually by Paul-Tian in its current form,
gives a candidate of an ample bundle, because over the lo-
cus parametrizing smooth Kähler-Einstein Fanomanifolds
the positivity of ΛCM can be seen analytically via a metric
on ΛCM, whose curvature form is the Weil-Petersson met-
ric. However, as usual there is essential difficulty to extend
the analytic argument to the locus parametrizing singular
Fano varieties. Later [CP21] initiated an algebraic way to
attack the positive problem, and their method was com-
pleted by [XZ20].
Explicit 𝐾-stable Fano varieties. With the vast progress
on 𝐾-stability theory, it is natural to study explicit exam-
ples.

The valuative criterion provides a way to verify 𝐾-
stability of a Fano variety 𝑋 by estimating 𝛿(𝑋). Using
𝛿(𝑋) = lim𝑚 𝛿𝑚(𝑋), Abban-Zhuang invent an approach
of applying inversion of adjunction to reduce the estimate
of the log canonical thresholds 𝛿𝑚(𝑋) to low dimensional
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varieties. As a result, they prove any degree 𝑑 smooth hy-
persurface 𝑋 in ℙ𝑛+1 is K-stable if 𝑛 + 2 − 𝑛1/3 ≤ 𝑑 ≤ 𝑛+ 1.

Following Tian’s work in dimension 2 which completes
the Kähler-Einstein Problem for smooth Fano surfaces,
in a recent joint work of Araujo-Castravet-Cheltsov-Fujita-
Kaloghiros-Martinez-Garcia-Shramov-Suss-Viswanathan,
they go through the list of 105 families in Iskovskikh-Mori-
Mukai classification of smooth Fano threefolds, and de-
termine in each family whether a general member is K-
(semi,poly)stable. The arguments involve many different
techniques.

K-moduli spaces provides many explicit examples of
moduli spaces. Mabuchi-Mukai and Spotti-Odaka-Sun
gave explicit descriptions of the K-moduli spaces which
compactify the moduli spaces parametrizing smooth K-
stable Fano surfaces. In higher dimensions, there is only
a small number of cases for which we have a complete ex-
plicit description of the K-moduli space. We have seen in
(5) for cubic hypersurfaces of dimension at most 4, the K-
moduli spaces are identical to the GIT moduli spaces. The
same statement is expected to hold for cubic hypersurfaces
in any dimension. However, for hypersurfaces of a degree
larger than 3, the K-moduli usually is not the same as the
GIT moduli. While we expect all smooth Fano hypersur-
faces are K-(poly)stable, there is not even a conjectural pic-
ture on what should appear as their limits.

It is also interesting to consider the case of log pairs,
for which all the previous main theorems still hold. A
research project, led by Ascher-DeVleming-Liu, studies
moduli spaces whose general members parametrize K-
semistable log Fano pairs (𝑋, 𝑡𝐷) for a Fano variety 𝑋 ,
𝐷 ∈ | − 𝑟𝐾𝑋 | and a constant 0 ≤ 𝑡 < 1

𝑟
. When one varies 𝑡,

the K-moduli spaces are connected by wall-crossings. This
framework is applied to (𝑋, 𝐷) = (ℙ3,quartic K3). The
𝐾-stability moduli theory provides interpolating moduli
spaces between the Satake compactification of the moduli
of quartic K3 surfaces which corresponds to 𝑡 → 1 and the
GIT moduli space which corresponds to 𝑡 → 0. As a con-
sequence, they confirm a conjecture of Laza-O’Grady, who
study these moduli spaces from a different perspective.
Analogous problems. Given the fundamental impor-
tance of Kähler-Einstein metrics, it is probably not surpris-
ing that people try to develop similar studies in other geo-
metric settings. Many parts of our discussion above can be
extended accordingly.

For any Fano variety 𝑋 , we know it does not necessarily
have a Kähler-Einstein metric. As a replacement, people
study whether it admits a more general kind of canonical
metrics, namely Kähler-Ricci soliton. Combining the works
of Han-Li and Blum-Liu-Xu-Zhuang, any klt Fano variety
𝑋 is known to admit a unique two-step degeneration pro-
cess to a Kähler-Ricci soliton. More precisely, 𝑋 first de-
generates to (𝑋0, 𝜉0) where 𝜉0 is a vector field on 𝑋0, such

that (𝑋0, 𝜉0) is K-semistable (in the sense of a Fano vari-
ety with a vector field). Moreover, (𝑋0, 𝜉0) has a unique
K-polystable degeneration (𝑌, 𝜉𝑌 ), which admits a Kähler-
Ricci soliton metric. When 𝑋 is smooth, this degeneration
of 𝑋 to 𝑌 is also given by the Gromov-Hausdoff limit of
the Kähler-Ricci flow, upon the Hamilton-Tian Conjecture
solved by Tian-Zhang in dimension three, Chen-Wang and
Bamler in a general dimension.

One can also consider the local setting. There has been
a well-studied local analogue of Kähler geometry, namely
the Sasaki geometry, which corresponds to the link of a cone
singularity. The corresponding Yau-Tian-Donaldson Con-
jecture, which claims the existence of a Sasaki-Einstein met-
ric on a Fano cone singularity (𝑥 ∈ 𝑋, 𝜉) is equivalent to
the K-polystability of (𝑥 ∈ 𝑋, 𝜉), was proved by Collins-
Székelyhidi when the singularity is isolated, and by Li and
Huang in the general case.

A more challenging local question is to consider an ar-
bitrary klt singularity 𝑥 ∈ 𝑋 . As the combination of a num-
ber of conjectural statements, made by Li and Li-Xu, the
Stable Degeneration Conjecture predicts that any klt singular-
ity 𝑥 ∈ 𝑋 has a degeneration to a K-semistable Fano cone
singularity (𝑥0 ∈ 𝑋0, 𝜉) and such a degeneration comes
from the unique (up to rescaling) minimizer of the nor-
malized volume function. We recall that the normalized
function v̂ol, invented by Li, is defined on the space of val-
uations Val𝑋,𝑥 which consists of all valuations on 𝐾(𝑋)
centered on 𝑥. There are many works, by Blum, Li, Liu,
Xu, and Zhuang, which solved various parts of the Stable
Degeneration Conjecture. As of the writing of this article,
there is only one part remaining open. That is the claim
that any minimizing valuation 𝑣 of v̂ol, which is shown
by Xu to be quasi-monomial, has a finitely generated asso-
ciated graded ring. In other words, as the writing of this
article, the local higher rank finite generation is still un-
known!
What’s next? I wish by now, with the complete solution
of the Yau-Tian-Donaldson Conjecture for all Fano vari-
eties, as well as the construction of the K-moduli spaces
and many other results, it becomes clear that the interac-
tion between the Kähler-Einstein Problem and the Mini-
mal Model Program provides an exceptionally beautiful
example to mathematician’s dream of viewing mathemat-
ics as one unified discipline.

As an important chapter is about to be closed, there
are good reasons to be optimistic about the future of the
field. Many exciting directions remain unexplored. For
instance, we lack a good understanding of the algebraic
properties of polarized manifolds with a constant scalar
curvature metric, whereas in differential geometry many
deep results have been obtained for it as a natural exten-
sion of the Kähler-Einstein Problem. It is also tempting to
find out whether the new 𝐾-stability perspective of higher
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dimensional geometry can shed light on the longstanding
questions in the Minimal Model Program, e.g., termina-
tion of flips and the Abundance Conjecture. Nevertheless,
as always, only time can tell how far the interaction will
take us.
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Foliations on
Complex Manifolds

Carolina Araujo and João Paulo Figueredo
In these notes we survey some aspects of the theory of
holomorphic foliations on complex manifolds. The ori-
gins of the theory go back to works of Darboux, Poincaré
and Painlevé, where it was developed to study solutions of
ordinary differential equations on ℂ2. We briefly discuss
some of the early works on this theory, mostly concerned
with the local behavior of the leaves near the singularities.
We then move the focus from local to global properties.
Birational geometry has had a great influence on the de-
velopment of a global theory of holomorphic foliations.
After reviewing the Enriques-Kodaira classification of pro-
jective surfaces and explaining the general philosophy of
the Mininal Model Program, we explore some of their re-
cent counterparts for foliations.
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Foliations
A foliation ℱ of dimension 𝑟 on a differentiable manifold
𝑀𝑛 is a decomposition of 𝑀 into a disjoint union of im-
mersed submanifolds of dimension 𝑟, called leaves, which
pile up locally like fibers of a submersion. Formally, ℱ is
defined by an atlas {𝜑𝑖 ∶ 𝑈 𝑖 → 𝑀}, with 𝑈 𝑖 ⊂ ℝ𝑟 × ℝ𝑛−𝑟,
and differentiable transition functions of the form

𝜑𝑖𝑗(𝑥, 𝑦) = (𝑓(𝑥, 𝑦), 𝑔(𝑦)), (𝑥, 𝑦) ∈ ℝ𝑟 × ℝ𝑛−𝑟.
The leaves of ℱ are locally given by the fibers of the projec-
tion 𝑈 𝑖 → ℝ𝑛−𝑟. If the transition functions are 𝐶∞, we say
thatℱ is a 𝐶∞ foliation. The integer 𝑛−𝑟 is called the codi-
mension of the foliation ℱ. In the literature, the integer 𝑟
is also referred to as the rank of the foliation.

Despite their simple local description, the existence of
a foliation on a compact manifold 𝑀 is subject to global
topological constraints, and carries relevant information
about the geometry of 𝑀. For instance, consider the 2-
dimensional sphere 𝑆2. If there were a foliation ℱ of
dimension one on 𝑆2, then one could cook up a non-
vanishing smooth vector field everywhere tangent to ℱ,
contradicting the Poincaré-Hopf theorem. On the other
hand, when 𝑀 = ℝ2/ℤ2 is a 2-dimensional torus, one can
construct plenty of foliations of dimension one on𝑀. For
any choice of angle 𝜃, the foliation by lines on ℝ2 having
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slope equal to 𝜃 induces a foliation ℱ𝜃 of dimension one
on the quotient ℝ2/ℤ2. If 𝜃 is rational, then the leaves of
ℱ𝜃 are homeomorphic to 𝑆1. If 𝜃 is irrational, then the
leaves are homeomorphic to ℝ, and dense in 𝑀 by a theo-
rem of Kronecker.

Figure 1. Foliation on the torus.

More generally, we have the following result by
Thurston characterizing which closed manifolds admit a
𝐶∞ foliation of codimension one in terms of the topolog-
ical Euler characteristic.

Theorem 1 ([Thu76]). Let 𝑀 be a closed connected smooth
manifold. Then𝑀 admits a 𝐶∞ foliation of codimension one if
and only if 𝜒(𝑀) = 0.

When 𝑋 is a complex manifold, it is natural to consider
holomorphic foliations on 𝑋 . These are defined by atlases
{𝜑𝑖 ∶ 𝑈 𝑖 → 𝑋}, with 𝑈 𝑖 ⊂ ℂ𝑟 × ℂ𝑛−𝑟, and biholomorphic
transition functions of the form

𝜑𝑖𝑗(𝑥, 𝑦) = (𝑓(𝑥, 𝑦), 𝑔(𝑦)), (𝑥, 𝑦) ∈ ℂ𝑟 × ℂ𝑛−𝑟.
The integer 𝑛 is the complex dimension of 𝑋 , 𝑟 is the di-
mension of the holomorphic foliation, and 𝑛 − 𝑟 its codi-
mension. The geometric theory of holomorphic foliations
was first introduced to better understand solutions of com-
plex ordinary differential equations on the plane ℂ2. In
this context, it is natural to allow for singularities. Given a
meromorphic function 𝐹 on ℂ2, consider the ODE

𝑑𝑦
𝑑𝑥 = 𝐹(𝑥, 𝑦). (1)

By the theorem of existence and uniqueness of so-
lutions of ordinary differential equations, the solutions
of (1) induce a holomorphic foliation of dimension 1 on
the complement of a closed subset of ℂ2. Indeed, if 𝐹(𝑥, 𝑦)
is holomorphic at a point (𝑥0, 𝑦0) ∈ ℂ2, then the ODE (1)
admits a unique holomorphic solution 𝑦 = 𝑦(𝑥) satisfying
𝑦(𝑥0) = 𝑦0.

More generally, a singular holomorphic foliation ℱ of
dimension 𝑟 on a complex manifold 𝑋 is an equivalence
class of holomorphic foliations of dimension 𝑟 defined on
the complement of a proper closed subset of codimension
at least 2 in 𝑋 . There is a minimal closed subset Sing(ℱ)
such that ℱ can be extended to a holomorphic foliation

of dimension 𝑟 on 𝑋 ⧵ Sing(ℱ). This closed set is called
the singular locus ofℱ. Outside of Sing(ℱ), the vectors that
are tangent to the leaves of ℱ form a sub-vector bundle of
rank 𝑟 of the tangent bundle 𝑇𝑋 , which can be extended
on the whole 𝑋 to a coherent subsheaf 𝑇ℱ of 𝑇𝑋 , called
the tangent sheaf of ℱ. The subsheaf 𝑇ℱ is closed under
the Lie bracket: if 𝑣 and 𝑤 are two local vector fields on
𝑋 ⧵ Sing(ℱ) everywhere tangent to the leaves of ℱ, then
their Lie bracket [𝑣, 𝑤] is also everywhere tangent to the
leaves of ℱ. Conversely, we have the following classical
theorem:

Theorem 2 (Frobenius). There is a one to one correspondence
between singular holomorphic foliation on 𝑋 and saturated co-
herent subsheaves of the tangent bundle 𝑇𝑋 that are closed under
the Lie bracket.

Much of the early work on singular holomorphic foli-
ations focused on the behavior of the leaves near the sin-
gular locus. Let ℱ be a singular holomorphic foliation on
ℂ2 with an isolated singularity at the origin, defined by a
holomorphic vector field

𝑣 = 𝑝(𝑥, 𝑦) 𝜕𝜕𝑥 + 𝑞(𝑥, 𝑦) 𝜕𝜕𝑦 ,

where 𝑝 and 𝑞 are holomorphic functions. Denote by
𝑝1(𝑥, 𝑦) = 𝑎𝑥+𝑏𝑦 and 𝑞1(𝑥, 𝑦) = 𝑐𝑥+𝑑𝑦 the linear parts of
𝑝 and 𝑞, respectively, and suppose that they are not both
identically zero. Under some genericity assumptions, the
local behavior of the leaves near the origin is controlled by
the eigenvalues of the nonzero matrix

𝐴 = (𝑎 𝑏
𝑐 𝑑) .

Denote by 𝜆1 and 𝜆2 the two eigenvalues of 𝐴, with
𝜆2 ≠ 0, and suppose that 𝜆1/𝜆2 is not real, or it is a pos-
itive real number that is not an integer nor the inverse of
an integer. A fundamental theorem of Poincaré states that
𝑣 is linearizable. This means that locally around the singu-
larity, after a suitable analytic change of coordinates, the
vector field 𝑣 can be written in the form

𝑣 = 𝜆1𝑧
𝜕
𝜕𝑧 + 𝜆2𝑤

𝜕
𝜕𝑤 , (2)

where 𝑧 and𝑤 are the new coordinates. The vector field (2)
can be easily integrated. On a punctured neighborhood of
the origin, the leaves of the foliation are parametrised by

𝛾(𝑡) = (𝑐1𝑒𝜆1𝑡, 𝑐2𝑒𝜆2𝑡), 𝑡 ∈ ℂ.
The ones given by the equations 𝑧 = 0 and 𝑤 = 0 accumu-
late in the origin.

If 𝜆1/𝜆2 is a positive integer 𝑛 or the inverse of a positive
integer 1/𝑛, then Dulac proved that, in suitable analytic
coordinates 𝑧 and 𝑤, the vector field 𝑣 can be written in
the form

𝑣 = 𝑧 𝜕𝜕𝑧 + (𝑛𝑤 + 𝜇𝑧𝑛) 𝜕𝜕𝑤 ,
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Figure 2. Singularity of a foliation on the plane.

where 𝜇 ∈ ℂ. Again we see that there are leaves of the
foliation on a punctured neighborhood of the origin that
accumulate in (0, 0). More generally, let 𝑝 ∈ 𝑆 be an iso-
lated singularity for a foliationℱ of dimension 1 on a non-
singular complex surface 𝑆. A separatrix is a complex curve
𝐶 ⊂ 𝑆 through 𝑝 such that 𝐶 ⧵ {𝑝} is a leaf of ℱ on a punc-
tured neighborhood of 𝑝 in 𝑆. By a theorem of Camacho
and Sad [CS82], a separatrix always exists for foliations on
surfaces.

In general, we say that a vector field 𝑣 is in normal form

if 𝑣 = 𝑣𝑠 + 𝑣𝑛, where 𝑣𝑠 = 𝜆1𝑧
𝜕
𝜕𝑧

+ 𝜆2𝑤
𝜕
𝜕𝑤

is a semi-
simple vector field, 𝑣𝑛 is a nilpotent vector field (i.e., the
matrix associated to the linear part of 𝑣𝑛 is nilpotent), and
[𝑣𝑠, 𝑣𝑛] = 0. We say that 𝑣 is analytically normalizable if
there is an analytic change of coordinates putting it in nor-
mal form. So we have seen that if 𝜆1/𝜆2 ∉ ℝ−, then 𝑣
is analytically normalizable. There exist examples of vec-
tor fields which are not analytically normalizable, such as

𝑣 = (𝑧+𝑤) 𝜕
𝜕𝑧
+𝑤2 𝜕

𝜕𝑤
. In this case, after the formal change

of coordinates

(𝑍, 𝑤) = (𝑧 + ∑
𝑛≥1

(𝑛 − 1)! 𝑤𝑛, 𝑤),

𝑣 becomes 𝑍 𝜕
𝜕𝑍

+ 𝑤2 𝜕
𝜕𝑤

, which is in normal form. How-
ever, this formal change of coordinates is not holomor-
phic, since∑𝑛≥1(𝑛−1)! 𝑤𝑛 diverges. Questions about ana-
lytic linearization and normalization of local vector fields
on the plane were very much studied in the twentieth cen-
tury (see for instance [Mar81]).

Global Aspects
Now we move the focus from local to global properties of
foliations. One example of a global invariant of a codi-
mension one foliation ℱ on ℂℙ𝑛 is its degree. It is defined
as the number of tangencies of a generic line in ℂℙ𝑛 with
ℱ. Codimension one foliations on ℂℙ𝑛 of small degree
were classified by Jouanolou in [Jou79]. In order to ex-
plain this classification, it is convenient to describe folia-
tions using differential forms. The tangent sheaf of a codi-
mension one (singular) foliation ℱ on ℂℙ𝑛 can be given

by a polynomial one-form

Ω =
𝑛
∑
𝑖=0

𝑃𝑖(𝑥0, … , 𝑥𝑛)𝑑𝑥𝑖, (3)

where the 𝑃𝑖’s are homogeneous polynomials of the same
degree without common factors. This polynomial form
is uniquely determined up to scalar, and the 𝑃𝑖’s satisfy
∑𝑛

𝑖=0 𝑥𝑖𝑃𝑖(𝑥0, … , 𝑥𝑛) = 0. In the language of differen-
tial forms, the Frobenius’ integrability condition translates
into the condition

Ω ∧ 𝑑Ω = 0. (4)

If ℱ has degree 𝑑, then the homogeneous polynomials 𝑃𝑖
in (3) have degree 𝑑 + 1. Using this description, it is not
difficult to deduce that any codimension one foliation ℱ
on ℂℙ𝑛 of degree 𝑑 = 0 is induced by a linear projection
ℂℙ𝑛 99K ℂℙ1. We say that ℱ is induced by a pencil of hy-
perplanes containing a fixed linear subspaceℂℙ𝑛−2, which
is the singular locus of ℱ. In particular, the leaves of ℱ are
algebraic submanifolds of ℂℙ𝑛.

Figure 3. Foliation of degree 0 on ℂℙ3.

In general, the following result characterizes foliations
with infinitely many algebraic leaves. It is often referred to
as the Darboux-Jouanolou integrability theorem.

Theorem 3 ([Jou79, Théorème 3.3]). Let ℱ be a codimen-
sion one foliation on ℂℙ𝑛 with infinitely many algebraic leaves.
Then ℱ has a first integral, i.e., it is induced by a rational map
𝑓∶ ℂℙ𝑛 99K ℂ. In particular, all the leaves of ℱ are algebraic.

The set Fol(𝑑, 𝑛) of codimension one foliations of de-
gree 𝑑 on ℂℙ𝑛 has a natural structure of a quasi-projective
variety. When 𝑛 = 2, the Frobenius’ integrability condi-
tion (4) is automatic, and thus Fol(𝑑, 2) is an open sub-
set of the projective space of polynomial one-forms as in
(3), where the 𝑃𝑖’s are homogeneous polynomials of de-
gree 𝑑 + 1 without common factors. When 𝑑 = 0, we
have seen above that Fol(0, 𝑛) can be identified with the
Grassmannian parametrizing codimension 2 linear sub-
spaces of ℂℙ𝑛. Jouanolou also classified the next case,
𝑑 = 1. When 𝑛 ≥ 3, he showed that Fol(1, 𝑛) has two
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irreducible components. One of these irreducible com-
ponents corresponds to foliations given by homogeneous
one-forms that depend only on three variables, after suit-
able projective change of coordinates. Geometrically, they
are pullbacks under linear projections of foliations onℂℙ2
induced by global vector fields. The other irreducible com-
ponent of Fol(1, 𝑛) corresponds to foliations having a first
integral of the form

𝑓 = ℓ2
𝑞 ∶ ℂℙ𝑛 99K ℂ,

where ℓ is a linear form and 𝑞 is a quadratic form. Geo-
metrically, they are induced by pencils of quadric hyper-
surfaces containing a double hyperplane. Later in [CN96],
Cerveau and Lins Neto showed that Fol(2, 𝑛) has six irre-
ducible components when 𝑛 ≥ 3, and described each of
them. More recently, Da Costa, Lizarbe, and Pereira stud-
ied the case 𝑑 = 3, 𝑛 ≥ 3 in [dCLP21]. They classify the 18
irreducible components of Fol(3, 𝑛) whose general mem-
ber does not have a first integral. They also show that there
are at least 6 components whose generalmember has a first
integral.

Another global invariant of a foliation is the algebraic
dimension, or algebraic rank. The algebraic dimension 𝑟𝑎(ℱ)
of a foliation ℱ on a complex projective manifold 𝑋 is the
maximumdimension of an algebraic subvariety 𝑍 through
a general point of 𝑋 that is tangent to ℱ. By this we mean
that for every point 𝑧 ∈ 𝑍 ⧵ Sing(ℱ), we have 𝑇𝑧𝑍 ⊂ 𝑇𝑧ℱ.
A foliation is said to be purely transcendental if its algebraic
dimension is 0. It is said to be algebraically integrable if its
algebraic dimension equals the dimension.

From the classification of codimension one foliations
on ℂℙ𝑛 of small degree, we observe a lower bound for the
algebraic dimension in terms of the degree. Indeed, let ℱ
be a codimension one foliation on ℂℙ𝑛 of degree 𝑑. If
𝑑 = 0, then ℱ is algebraically integrable. If 𝑑 = 1, then
𝑟𝑎(ℱ) ≥ 𝑛 − 2, and this bound is attained when ℱ is the
pullback under a linear projection of a purely transcenden-
tal foliation on ℂℙ2 induced by a global vector field. In
general, we have that

𝑟𝑎(ℱ) ≥ 𝑛 − 1 − 𝑑.

This is a special case of Theorem 4, which gives a lower
bound for the algebraic dimension of foliations in a
more general context. Notice that the algebraic dimen-
sion makes sense for foliations on any complex manifold,
while the notion of degree is particular to ℂℙ𝑛 or other va-
rieties covered by lines. As we shall see, the degree can be
read off from a more general object that can be attached to
any foliation, its canonical class. This notion has its origin
in connection with birational geometry.

Birational Geometry
A central theme in algebraic geometry is the classification
of complex projective varieties up to birational equiva-
lence. Two projective varieties are said to be birationally
equivalent if they have isomorphic dense open subsets. Ex-
amples of birational invariants of projective manifolds are
the genus and irregularity. Given a complex projective man-
ifold 𝑋 , we consider the tangent bundle 𝑇𝑋 of 𝑋 , and its
dual vector bundle Ω1

𝑋 = 𝑇∨𝑋 . Let 𝜔𝑋 = det(Ω1
𝑋) denote

the canonical bundle of 𝑋 . It is the line bundle on 𝑋 whose
sections are the top holomorphic differential forms on 𝑋 .
The genus 𝑝𝑔(𝑋) of 𝑋 is the dimension of the space of holo-
morphic global sections of the canonical bundle 𝜔𝑋 :

𝑝𝑔(𝑋) ≔ dimΓ(𝑋, 𝜔𝑋).

The irregularity 𝑞(𝑋) of 𝑋 is the dimension of the space of
holomorphic global sections of the cotangent bundle:

𝑞(𝑋) ≔ dimΓ(𝑋,Ω1
𝑋).

Moreover, some special arithmetical properties of alge-
braic varieties turn out to be invariant under birational
equivalence, making this notion fundamental also in con-
nection with number theory and arithmetic geometry.

The Minimal Model Program (MMP for short) is an al-
gorithmic surgery process designed to transform a given
projective variety 𝑋 into a simplest representative 𝑋 ′ in its
birational equivalence class. In this way, if one is inter-
ested in understanding a birational property of 𝑋 , one can
investigate it in the simpler model 𝑋 ′.

We start by reviewing the classical MMP for surfaces. It
was established by the Italian school of algebraic geome-
try by the beginning of the 20th century, and reviewed in
modern language in the 1960’s, most notably by Kodaira,
Zariski and Shafarevich. Given a smooth projective surface
𝑆, the blowup of a point 𝑃 ∈ 𝑆 is a morphism 𝜋 ∶ ̃𝑆 → 𝑆
from a smooth projective surface ̃𝑆 that replaces the point
𝑃 ∈ 𝑆 with the exceptional curve 𝐶 = 𝜋−1(𝑃) ≅ ℂℙ1, and re-
stricts to an isomorphism between ̃𝑆⧵𝐶 and 𝑆⧵{𝑃}. Viewed
as an element of H2( ̃𝑆, ℤ), the exceptional curve 𝐶 has
self-intersection 𝐶2 = −1. Conversely, Castelnuovo’s con-
tractibility theorem asserts that any curve 𝐶 on a smooth
surface 𝑆 such that 𝐶 ≅ ℂℙ1 and 𝐶2 = −1 is the excep-
tional curve of a blowup. Such a curve is called a (−1)-curve.
It turns out that any smooth projective surface can be ob-
tained from a distinguished representative of its birational
equivalence class by a sequence of blowups. Such distin-
guished representatives are characterized by the property
that they do not contain any (−1)-curve, and are classically
called minimal surfaces. Figure 4 summarizes the classical
MMP for surfaces. The MMP terminates after a finite num-
ber of steps because the second Betti number 𝑏2(𝑆) drops
by one every time we blow down a (−1)-curve.
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𝑆 smooth
projective surface

Does 𝑆 contain
a (−1)-curve?

Yes No

Stop!
𝑆 is a minimal

surface

Pick a (−1)-curve
𝐶 ⊂ 𝑆

Apply Castelnuovo’s
contractibility theorem
to blow-down 𝐶 ⊂ 𝑆

𝜋∶ 𝑆 → 𝑆′

Replace 𝑆 with 𝑆′

Figure 4. The classical MMP for surfaces.

In order to generalize this to higher dimensions, the
question

“Does 𝑆 contain a (−1)-curve?” (5)

must be rephrased in a way that it makes sense in any di-
mension. This is done with the aid of the canonical class.

Definition 1. Let 𝑋 be a complex projective manifold 𝑋 .
The canonical class 𝐾𝑋 of 𝑋 is the first Chern class of the
canonical line bundle of 𝑋 :

𝐾𝑋 ≔ 𝑐1(𝜔𝑋) ∈ H2(𝑋, ℤ).
For any compact complex curve 𝐶 ⊂ 𝑋 , the intersection

number −𝐾𝑋 ⋅ 𝐶 measures the Ricci curvature of 𝑋 along
𝐶. Usually, the sign of −𝐾𝑋 ⋅𝐶 varies with the curve 𝐶 ⊂ 𝑋 .
Varieties whose canonical class has a definite sign are very
special, and play a distinguished role in algebraic geometry.
Particularly important are Fano varieties. A Fano variety is a
projective variety 𝑋 with −𝐾𝑋 > 0 (i.e., −𝐾𝑋 is ample).

Let 𝑋 be a complex projective manifold. In order to
generalize to higher dimensions the classical MMP for sur-
faces, question (5) is replaced with

“Is the canonical class 𝐾𝑋 nef?”

We say that 𝐾𝑋 is nef if 𝐾𝑋 ⋅ 𝐶 ≥ 0 for every curve 𝐶 ⊂ 𝑋 .
The goal of the MMP is to produce a finite sequence of
elementary birational maps

𝑋 = 𝑋0 99K 𝑋1 99K 𝑋2 99K ⋯ 99K 𝑋𝑛 = 𝑋 ′,

ending with a variety𝑋 ′ in the same birational equivalence
class of 𝑋 , and satisfying exactly one of the following two
conditions.

1. 𝐾𝑋′ is nef. Such a variety 𝑋 ′ is called a minimal model.
2. There is a morphism 𝑓 ∶ 𝑋 ′ → 𝑌 onto a lower dimen-

sional variety whose fibers are Fano varieties. Such a
morphism 𝑓 ∶ 𝑋 ′ → 𝑌 is called a Mori fiber space.

The MMP involves making some choices, and the out-
come is not unique in general. However, whether the
MMP for 𝑋 ends with a minimal model or a Mori fiber
space depends only on the birational equivalence class of
𝑋 . Next we introduce a fundamental birational invariant
for projective manifolds, the Kodaira dimension, defined in
terms of the rate of growth of holomorphic sections of the
line bundle 𝜔⊗𝑚𝑋 as 𝑚 increases.

Definition 2. Let ℒ be a line bundle on a complex pro-
jective manifold 𝑋 . The Iitaka dimension 𝜅(ℒ) of ℒ is de-
fined as follows. Consider the semigroup ℕ(ℒ) of non-
negative integers 𝑚 for which ℒ⊗𝑚 admits nonzero holo-
morphic sections. If ℕ(ℒ) = {0}, then we set 𝜅(ℒ) = −∞.
If ℕ(ℒ) ≠ {0}, then there is an integer 𝜅 such that, for
𝑚 ∈ ℕ(ℒ) sufficiently large,

𝑐1 ⋅ 𝑚𝜅 ≤ dimΓ(𝑋,ℒ⊗𝑚) ≤ 𝑐2 ⋅ 𝑚𝜅,
for suitable positive constants 𝑐1 and 𝑐2. We set 𝜅(ℒ) = 𝜅.

The Kodaira dimension of 𝑋 is

𝜅(𝑋) ≔ 𝜅(𝜔𝑋) ∈ {−∞, 0, … , dim(𝑋)}.
It is a birational invariant for complex projective mani-
folds.

For surfaces, the elementary birational maps in the
MMP are blowups of points. Surfaces that are birational
to products ℂℙ1 × 𝐶 are called ruled surfaces, and are char-
acterized by the condition that 𝜅(𝑆) = −∞. Surfaces
with non-negative Kodaira dimension have a unique min-
imal model in their birational class. They can be divided
into the following classes. This is known as the Enriques-
Kodaira classification.

• 𝜅(𝑆) = 0. There are 4 classes.
∘ Enriques’ surfaces: 𝑝𝑔(𝑆) = 𝑞(𝑆) = 0.
∘ Bielliptic surfaces: 𝑝𝑔(𝑆) = 0, 𝑞(𝑆) = 1.
∘ K3 surfaces: 𝑝𝑔(𝑆) = 1, 𝑞(𝑆) = 0.
∘ Abelian surfaces: 𝑝𝑔(𝑆) = 1, 𝑞(𝑆) = 2.

• 𝜅(𝑆) = 1. These surfaces are not ruled, and admit
a fibration 𝑓 ∶ 𝑆 → 𝐵 onto a smooth curve whose
generic fiber is an elliptic curve.

• 𝜅(𝑆) = 2. Most surfaces lie in this class. These are
called surfaces of general type.

In higher dimensions, there are two types of elementary
birational maps in the MMP, called divisorial contractions
and flips. Divisorial contractions can be viewed as gener-
alizations of the blowup of a point on a surface. Flips are
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birational maps 𝑋 99K 𝑋 ′ that restrict to isomorphisms
between the complements of small subsets of 𝑋 and 𝑋 ′,
i.e., subsets of codimension ≥ 2. They have no parallel in
surface theory. Another source of complication in higher
dimensions is that the birational models 𝑋𝑖’s may not be
smooth, although they only have very mild singularities,
called terminal singularities. In dimension three, the MMP
was completed in [Mor88]. In higher dimensions a ma-
jor breakthrough was achieved in [BCHM10], where it was
proved that the flip surgery can always be performed. The
major open problem in general is to show that there is
no infinite sequence of flips. However, [BCHM10] estab-
lishes a weaker version of termination of flips, which al-
lows them to prove the MMP in the following cases:

1. 𝜅(𝑋) = dim(𝑋), in which case the MMP ends with a
minimal model; and

2. 𝑋 is uniruled (i.e., 𝑋 is covered by rational curves), in
which case the MMP ends with a Mori fiber space.

The abundance conjecture predicts that 𝑋 is uniruled if and
only if 𝜅(𝑋) = −∞. What is currently known is that the
condition that 𝑋 is uniruled is equivalent to the condi-
tion that 𝐾𝑋 is not pseudo-effective, i.e., 𝐾𝑋 is not a limit
of classes of effective divisors (with rational coefficients).
We refer to [KM98] for an introduction to the MMP.

Canonical Class of Foliations
Similarly, there are relevant properties of holomorphic fo-
liations ℱ that depend only on the birational equivalence
class of ℱ. The algebraic rank is an example of birational
invariant for foliations. In recent years, techniques from
birational geometry and the MMP have been successfully
applied to the study of global properties of holomorphic
foliations. This led, for instance, to a birational classifi-
cation of codimension one foliations on surfaces similar
to the Enriques-Kodaira classification, which we review be-
low.

Starting with the tangent sheaf 𝑇ℱ of a foliation ℱ
on a complex projective manifold 𝑋 , we can define its
canonical class 𝐾ℱ ∈ H2(𝑋, ℤ) and Kodaira dimension
𝜅(ℱ) ∈ {−∞, 0, … , dim(𝑋)}. This is analogous to the def-
inition of the canonical class and Kodaira dimension of 𝑋
starting with 𝑇𝑋 . The Kodaira dimension of codimension
one foliations on projective surfaces was first considered
in [Men00]. Under restrictions on the singularities of ℱ,
the Kodaira dimension 𝜅(ℱ) is a birational invariant for
foliations.

Motivated by the special role of Fano varieties in bira-
tional geometry, we introduce the following class of folia-
tions.

Definition 3. A foliation ℱ on a complex projective man-
ifold is called a Fano foliation if −𝐾ℱ > 0 (i.e., −𝐾ℱ is am-
ple).

Example 1. Recall that H2(ℂℙ𝑛, ℤ) ≅ ℤ, where we choose
the positive generator to be the cohomology class of a
hyperplane section. Under this identification, 𝐾ℂℙ𝑛 =
−(𝑛 + 1) ∈ ℤ. Let ℱ be a codimension one foliation
of degree 𝑑 on ℂℙ𝑛. An easy computation shows that
𝐾ℱ = 𝑑 − 𝑛 + 1 ∈ ℤ. In particular, Fano foliations on
ℂℙ𝑛 are those with small degree, 𝑑 < 𝑛 − 1.

In a series of papers started in [AD13], the first named
author and S. Druel have developed the theory of Fano fo-
liations. They showed that the positivity of −𝐾ℱ has an
effect on the algebraicity of the leaves of ℱ. In order to
measure the positivity of −𝐾ℱ , define the index 𝜄(ℱ) of a
Fano foliationℱ on a complex projectivemanifold 𝑋 to be
the largest integer dividing −𝐾ℱ in 𝐻2(𝑋, ℤ). This is analo-
gous to the index 𝜄(𝑋) of a Fanomanifold 𝑋 . The following
result is a lower bound for the algebraic dimension 𝑟𝑎(ℱ)
of Fano foliations in terms of the index, and a classification
of the cases when this bound is attained.

Theorem 4 ([AD19, Corollary 1.6.]). Let ℱ be a Fano foli-
ation of index 𝜄(ℱ) on a complex projective manifold 𝑋. Then
𝑟𝑎(ℱ) ≥ 𝜄(ℱ), and equality holds if and only if 𝑋 ≅ ℂℙ𝑛 and
ℱ is the pullback under a linear projection of a purely transcen-
dental foliation on ℂℙ𝑛−𝑟𝑎(ℱ) with zero canonical class.

Fano manifolds with large index have been classified.
By a theorem of Kobayachi and Ochiai, the index 𝜄(𝑋) of a
Fanomanifold 𝑋 satisfies 𝜄(𝑋) ≤ dim(𝑋)+1, equality holds
if and only if 𝑋 is a projective space, and 𝜄(𝑋) = dim(𝑋) if
and only if 𝑋 is a quadric hypersurface. Fano manifolds
with 𝜄(𝑋) = dim(𝑋) − 1 are called del Pezzo manifolds, and
were classified by Fujita. Those with 𝜄(𝑋) = dim(𝑋)−2were
later classified byMukai. We refer to [AC13] for a survey on
the classification of Fano manifolds with large index, with
many references. As a corollary of Theorem 4 above, we
have a version of the Kobayachi-Ochiai’s theorem for foli-
ations: the index 𝜄(ℱ) of a Fano foliation ℱ is bounded by
the dimension, 𝜄(ℱ) ≤ 𝑟. Moreover, equality holds if and
only if 𝑋 ≅ ℂℙ𝑛 and ℱ is induced by a linear projection
𝜑 ∶ ℂℙ𝑛 99K ℂℙ𝑛−𝑟. This means that, away from the cen-
ter of the projection, where 𝜑 is not defined, the leaves of
ℱ are the fibers of 𝜑. These foliations are precisely the ones
of degree 0. The next cases have also been investigated. In
analogywith the theory of Fanomanifolds, Fano foliations
ℱ with index 𝜄(ℱ) = 𝑟−1 are called del Pezzo foliations. Un-
der restrictions on the singularities, there is a classification
of del Pezzo foliations of rank 𝑟 ≥ 3, parallel to Fujita’s
classification of del Pezzo manifolds. We refer to [Fig22]
for an account on the classification of del Pezzo foliations.

The birational classification of codimension one foli-
ations on surfaces can be summarized as follows (see
[Bru15] and [McQ08]). First of all, by a theorem of Sei-
denberg [Sei68], after a sequence of blowups, it is always
possible to reduce the singularities of a foliation ℱ on a
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surface. A point 𝑝 ∈ Sing(ℱ) is a reduced singularity if,
locally around 𝑝, ℱ is given by a vector field whose lin-
ear part has eigenvalues 𝜆1 and 𝜆2, with 𝜆2 ≠ 0, and
𝜆1/𝜆2 ∉ ℚ+. This condition implies that there are only
finitely many separatices through 𝑝. For foliations with re-
duced singularities, the Kodaira dimension 𝜅(ℱ) is a bira-
tional invariant. We have the following birational classifi-
cation of foliations with reduced singularities and Kodaira
dimension 𝜅(ℱ) < 2.

• 𝜅(ℱ) = 1. Then ℱ is birational to one of the fol-
lowing.

∘ Riccati foliation: there is a rational fibration
𝑆 → 𝐶 with general fiber everywhere trans-
verse to ℱ.

∘ Turbulent foliation: there is an elliptic fibra-
tion 𝑆 → 𝐶 with general fiber everywhere
transverse to ℱ.

∘ Foliations induced by non-isotrivial elliptic
fibrations.

∘ Foliations induced by isotrivial fibrations of
genus ≥ 2.

• 𝜅(ℱ) = 0. After a ramified covering, ℱ is bira-
tional to a foliation induced by a global holomor-
phic vector field with isolated zeroes.

• 𝜅(ℱ) = −∞. Either ℱ is birational to a foliation
on a ruled surface induced by a fibration by ratio-
nal curves, or to a Hilbert modular foliation.

A Hilbert modular surface 𝑆 is the minimal desingular-
ization of the Baily-Borel compactification of the quotient
of ℍ2 = ℍ × ℍ by an irreducible lattice in PSL(2, ℝ)2. The
two projections ℍ2 → ℍ induce two foliations on 𝑆 with
dense leaves, called Hilbert modular foliations. Hilbert mod-
ular foliations provide examples of a completely new be-
havior which is not seen in classical geometry. Namely, its
canonical class 𝐾ℱ is pseudo-effective, while 𝜅(ℱ) = −∞.
On the other hand, it is a remarkable theorem due to
Miyaoka that foliations with non-pseudo-effective canoni-
cal class are uniruled (i.e., their leaves are covered by ratio-
nal curves).

Much progress has been made toward the birational
classification of foliations on higher dimensional varieties.
Reduction theorems for foliations on threefolds have been
established by Cano in codimension one, and by McQuil-
lan and Panazzolo in dimension one. Building on works
of McQuillan, versions of the MMP for foliations on three-
folds were recently established by Cascini and Spicer. We
refer to [CS21] for details and references about the MMP
for codimension one foliations, and [CS20] for foliations
of dimension one on threefolds.

Regular Foliations
We end these notes by discussing the classification prob-
lem for regular foliations on complex projective manifolds.

These are holomorphic foliations ℱ with Sing(ℱ) = ∅. In
view of Theorem1, it is natural to ask for a characterization
of projective manifolds that admit regular foliations. For
surfaces, the first result in this direction is the following
classification of regular foliations on minimal ruled sur-
faces by Gomez-Mont.

Theorem 5 ([GM89]). Let 𝜋∶ 𝑆 → 𝐶 be a ℂℙ1-fibration,
with 𝑔(𝐶) ≠ 1, and let ℱ be a regular foliation of rank 1 on 𝑆.
Then

• either ℱ is induced by the fibration 𝜋 ∶ 𝑆 → 𝐶; or
• ℱ is transverse to the fibration 𝜋 ∶ 𝑆 → 𝐶, and con-

structed by suspension of a representation 𝜌∶ 𝜋1(𝐶) →
PSL(2, ℂ).

Brunella extended this result, and completely classified
regular foliations on complex projective surfaces 𝑆with Ko-
daira dimension 𝜅(𝑆) < 2. It is still not known whether
there exist purely transcendental regular foliations on sur-
faces of general type. The following is a corollary of this
classification.

Corollary 1. Letℱ be a regular foliation of rank 1 on a smooth
projective rational surface 𝑆. Then ℱ is induced by a ℂℙ1-
fibration 𝑆 → ℂℙ1.

In higher dimensions, there is no classification of reg-
ular foliations. However, Touzet has conjectured the fol-
lowing generalization of Corollary 1 (see [Dru17, Conjec-
ture 1.2]). From the point of view of birational geometry,
a natural higher dimensional analog of the class of ratio-
nal surfaces is that of rationally connected varieties. A com-
plex projective manifold 𝑋 is rationally connected if any two
points of 𝑋 can be connected by a rational curve. We refer
to [Kol01] for an introductory discussion on this topic.

Conjecture 1 (Touzet). Let ℱ be a regular foliation on a ra-
tionally connected projective manifold 𝑋. Then ℱ is induced by
a fibration 𝑋 → 𝑌 .

The class of rationally connected varieties includes that
of Fanomanifolds, for which the conjecture was verified in
[Dru17]. While Touzet’s conjecture is open already in di-
mension 3, for a regular codimension one foliation ℱ on
a projective threefold 𝑋 , the MMP can be used to greatly
reduce the problem. After a sequence of smooth blow-
downs centered at smooth curves,

𝑋 → 𝑋1 → 𝑋2 →⋯→ 𝑋𝑛,

one reaches a smooth threefold 𝑋𝑛, together with a regular
codimension one foliation ℱ𝑛 on 𝑋𝑛, such that either 𝐾ℱ𝑛
is nef, or 𝑋𝑛 → 𝑌𝑛 is a Mori fiber space with fibers tangent
to ℱ𝑛. In the latter case, the second named author showed
in [Fig21] that ℱ𝑛 is induced by a fibration by rational sur-
faces, and hence so is ℱ. This proves Touzet’s conjecture
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for codimension one foliations on threefolds in some spe-
cial cases, and reduces the problem to understanding reg-
ular foliations with nef canonical class.
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Conway’s Mathematics
After Conway

Alex Ryba with papers contributed by Philip Ehrlich,
Richard Kenyon, Jeffrey Lagarias, James Propp,

and Louis H. Kauffman
Mathematicians always queued to hear John Conway
speak and delved into his writing. They expected to be en-
tertained by beautiful mathematics and believed that they
would emerge with valuable enlightenment. John wel-
comed this attention and considered it his duty to make
his mathematics elegant. What really made his mathemat-
ics valuable was his wealth of insight. Wherever heworked,
he opened up avenues for us to follow.

John challenged and inspired us in many different ways.
His Game of Life has been investigated by thousands,
while his river method provides a novel approach to the
classical subject of quadratic forms. His orbifold notation
was devised in collaboration with Bill Thurston. It gives
a new way to describe symmetry patterns like those in
the opening images above. The images are taken from
the beautiful book, The Symmetries of Things, coauthored
by John, Heidi Burgiel, and Chaim Goodman-Strauss.
Group theorists, like me, are drawn to his paper “Mon-
strous Moonshine,” written with his friend Simon Nor-
ton. John and Simon filled the paper with what were out-
landish examples and provocative conjectures about the
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Monster group. Mathematicians immediately realized that
the group was much more than a sporadic curiosity, as yet
unconstructed. Richard Borcherds created his new theory
of Vertex Algebras to prove the conjectures in John’s pa-
per. McKay and Sebbar aptly call Moonshine “21st century
mathematics in the 20th century” [15]. John’s influence
can be seen across so many areas of mathematics that a
complete account would fill many volumes, which would
continue to expand forever. The three papers that follow
present very different parts of mathematics where modern
approaches are built on foundations laid by John.

The theory of surreal numbers was invented by John in
the early 1970s. He expected this to become his most in-
fluential creation andwas convinced that the theory would
continue to evolve long into the future. Philip Ehrlich ex-
plains how this theory has progressed in the half century
since its introduction.

John’s algebraic approach to certain tiling problems is
explained by Richard Kenyon, Jeffrey Lagarias, and James
Propp. These tiling problems are mathematical questions.
However, they used to be viewed as recreational because
each required its own special trick. John’s novel and very
general approach showed that the problems belong to the
field of Combinatorial Group Theory. John’s vision across
the whole breadth of mathematics allowed him to make
many similar unexpected connections between fields.
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Knot theory was John’s first research interest in math-
ematics. He was still in high school when he started to
develop his Skein Theory. Louis Kauffman explains that
the monumental 1983 paper of Vaughan Jones showed
that the Jones polynomial satisfies a Conway type skein
relation. A number of mathematicians were inspired to
extend the Conway skein ideas to produce the Homflypt
and Kauffman polynomials. This led directly to explosive
progress in modern Knot Theory.

John saw himself as a link in a chain that stretched back
through the mathematicians who created the fields where
he worked and played. He particularly admired Georg
Cantor, whose ordinals were uppermost in his mind when
he worked on the surreal numbers. John, in turn, laid out
new areas for others to cultivate after him. His legacy will
be owned and continued by themathematicians for whom
he sowed so many seeds.

The Surreal Numbers
and Their Aftermath

Philip Ehrlich
In 1970, as an outgrowth of his work on combinato-
rial games, J. H. Conway introduced a real-closed field,
dubbed 𝐍𝐨, containing the reals and the ordinals, the
arithmetic of the latter being the natural sums and prod-
ucts due to Hessenberg and Hausdorff rather than the
usual non-commutative, non-associative sums and prod-
ucts of Cantor. Being a real-closed field containing the re-
als and the ordinals, 𝐍𝐨 also contains a great many less
familiar numbers including −𝜔, 𝜔/2, 1/𝜔, √𝜔 and 𝜔 − 𝜋
to name only a few, where 𝜔 is the least infinite ordi-
nal. Indeed, as Conway aptly quips, this particular real-
closed field is so remarkably inclusive that it may be said
to contain “All Numbers Great and Small” ([5, p. 3]). In
this regard, 𝐍𝐨 bears much the same relation to ordered
fields that the ordered field ℝ of real numbers bears to
Archimedean ordered fields. Following D. E. Knuth, the
members of 𝐍𝐨 have come to be called surreal numbers.

While each surreal is an ordinary set, 𝐍𝐨 is not.
To address this, Conway formalizes his theory in NBG
(Von Neumann-Bernays-Gödel set theory). Unlike standard
Zermelo-Fraenkel set theory (ZF), whose sole entities are sets,
NBG contains classes that are sets, as well as classes such
as 𝐍𝐨 and the class 𝐎𝐧 of ordinals that are larger than any
set, called proper classes.

Philip Ehrlich is a professor emeritus of philosophy at the Ohio University. His
email address is ehrlich@ohio.edu.

Against this set-theoretic backdrop, the relation be-
tween the inclusiveness of ℝ and 𝐍𝐨may be made precise
by the following result collectively due to Conway [5, pp.
42-43] and Ehrlich [7]: whereas ℝ is (up to isomorphism) the
unique universally embedding Archimedean ordered field,𝐍𝐨 is
(up to isomorphism) the unique universally embedding ordered
field, where an ordered field (Archimedean ordered field)𝐴
is said to be universally embedding if for each ordered sub-
field (Archimedean ordered subfield) 𝐵 of 𝐴, whose uni-
verse is a set, and every ordered field (Archimedean or-
dered field) 𝐵′ extending 𝐵, there is an embedding 𝑓 ∶
𝐵′ → 𝐴 that is the identity on 𝐵. Thus, starting with a
categorical characterization of the inclusiveness of ℝ that
makes use of the Archimedean axiom, one obtains a cate-
gorical characterization of the inclusiveness of 𝐍𝐨 by sim-
ply deleting the Archimedean condition. On the basis of
this observation, that Conway initially thought “too good
to be true,” Ehrlich (e.g., [7,9]) has suggested that whereas
ℝ should merely be regarded as the arithmetic continuum
(modulo the Archimedean axiom), 𝐍𝐨 may be regarded
as the absolute arithmetic continuum (modulo NBG).

Like the ordered set of reals, the ordered class of surreals
may be constructed in a variety of ways (e.g., [2, 5, 9, 11]).
In Conway’s construction, which generalizes aspects of
Dedekind’s cut construction ofℝ and von Neumann’s con-
struction of 𝐎𝐧, the members of 𝐍𝐨 (or, more property
speaking, their vast array of equivalent representations) are ex-
tracted from an antecedently, inductively defined partially
ordered class of games vis-à-vis the following inductive def-
inition.

𝐂𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐒𝐮𝐫𝐫𝐞𝐚𝐥𝐍𝐮𝐦𝐛𝐞𝐫𝐬
If 𝐿 and 𝑅 are two sets of surreal numbers such that no

member of 𝐿 is greater than or equal to any member of 𝑅,
then there is a surreal number {𝐿|𝑅}. All surreal numbers
are constructed in this way.

In accordance with his convention for games, which
likewise are equivalence classes of representatives of the
form {𝐿|𝑅}, Conway denotes each surreal 𝑥 = {𝐿|𝑅} by
‘𝑥 = {𝑥𝐿|𝑥𝑅}’ where the 𝑥𝐿’s and 𝑥𝑅 ’s—the left and right
options of 𝑥—are understood to range over the members of
𝐿 and the members of 𝑅, respectively. Using this conven-
tion, Conway’s construction of the surreal numbers, which
is carried out in stages (called “days”) indexed over the or-
dinals, can be informally described as follows.

On the 0th day, beginning with the empty set ∅ (of sur-
real numbers), Conway constructs the surreal number

0 = {|};
and on the 1st day, the surreal numbers

−1 = {|0} 1 = {0|};
and then on the 2nd day, the surreal numbers

−2 = {|0, 1} − 1/2 = {−1|0} 1/2 = {0|1} 2 = {0, 1|},

1146 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 7



Figure 1. Some of the earliest created surreals.

and so on, each newly created surreal filling a cut in the
ordered set of previously constructed surreal numbers. As
is evident from the above, unlike Dedekind’s cuts, the left
and right sides of Conway’s cuts may be empty. In fact,
those surreal numbers having no right options, beginning
with 0, 1, and 2, turn out to be 𝐍𝐨’s ordinals and those
having no left options, beginning with 0, −1 and −2, are
the additive inverses of the ordinals, a surreal number and
its additive inverse always being created on the same day.
The surreal numbers other than the integers that emerge
on finite days are the remainder of 𝐍𝐨’s dyadic rationals
and those emerging on the 𝜔th day are the non-dyadic
real numbers as well as a host of other numbers includ-
ing −𝜔 = {|..., −𝑛, ..., −1, 0}, 𝜔 = {0, 1, ..., 𝑛, ...|}, −1/𝜔 =
{−1,−1/2, ... − 1/2𝑛, ...|0} and 1/𝜔 = {0|..., 1/2𝑛, ..., 1/2, 1}, to
name a few. For a slightly broader glimpse of some of the
earliest created surreal numbers, see Figure 1, which is es-
sentially taken from [5].

As the above description of Conway’s construction sug-
gests, the system of surreal numbers has a rich algebraico-
tree-theoretic structure that emerges from combining Con-
way’s field operations with 𝐍𝐨’s structure as a tree. It is
the marriage of these two components, which we now con-
sider in turn, from which the appellations for surreal num-
bers as well as a host of other distinctive features of 𝐍𝐨
accrue.

Using the familiar definitions of = and < in terms of
the partial ordering ≥ that is anteriorly defined on games,
Conway shows that𝐍𝐨 is an ordered field when+,−, and ⋅
are defined by the following inductive stipulations, where
𝑥𝐿, 𝑦𝐿, 𝑥𝑅, and 𝑦𝑅 are understood to range over the left and
right options of 𝑥 and 𝑦.
Definition of 𝑥 + 𝑦.

𝑥 + 𝑦 = {𝑥𝐿 + 𝑦, 𝑥 + 𝑦𝐿|𝑥𝑅 + 𝑦, 𝑥 + 𝑦𝑅} .

Definition of −𝑥.

−𝑥 = {−𝑥𝑅| − 𝑥𝐿} .

Definition of 𝑥𝑦.

𝑥𝑦 = {𝑥𝐿𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿𝑦𝐿, 𝑥𝑅𝑦 + 𝑥𝑦𝑅 − 𝑥𝑅𝑦𝑅|
𝑥𝐿𝑦 + 𝑥𝑦𝑅 − 𝑥𝐿𝑦𝑅, 𝑥𝑅𝑦 + 𝑥𝑦𝐿 − 𝑥𝑅𝑦𝐿}.

Conway shows that for each surreal 𝑥 = {𝐿|𝑅}, 𝑥 is the
earliest created surreal number lying between the members
of 𝐿 and themembers of 𝑅, i.e., 𝑥 is the earliest constructed
𝑧 ∈ 𝐍𝐨 such that 𝐿 < {𝑧} < 𝑅. Appealing to this result a
significant portion of the theoretical underpinnings of the
above definitions of + and ⋅may be brought to the fore by
the following variations on observations due to Conway.
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Since 𝑥 = {𝑥𝐿|𝑥𝑅} and 𝑦 = {𝑦𝐿|𝑦𝑅}, it follows that for all
𝑥𝐿, 𝑥𝑅, 𝑦𝐿 and 𝑦𝑅:

(∗) 𝑥𝐿 < 𝑥 < 𝑥𝑅 and 𝑦𝐿 < 𝑦 < 𝑦𝑅.

Accordingly, for 𝐍𝐨 to be an ordered additive group, it
must be the case that

(∗∗) 𝑥𝐿 + 𝑦, 𝑥 + 𝑦𝐿 < 𝑥 + 𝑦 < 𝑥𝑅 + 𝑦, 𝑥 + 𝑦𝑅,

for all 𝑥𝐿, 𝑥𝑅, 𝑦𝐿, and 𝑦𝑅. Therefore, since 𝑥+𝑦must lie be-
tween the two sets of inductively defined members of 𝐍𝐨
specified in (∗∗) if𝐍𝐨 is to be an ordered group, the above
definition of 𝑥+𝑦 deems 𝑥+𝑦 to be the earliest created sur-
real number consistent with that intended outcome. Sim-
ilarly, for 𝐍𝐨 to be an ordered field, it follows from (∗)
that each of the differences 𝑥 − 𝑥𝐿, 𝑥𝑅 − 𝑥, 𝑦 − 𝑦𝐿, 𝑦𝑅 − 𝑦
must be positive and, hence, likewise each of the products
(𝑥 − 𝑥𝐿) (𝑦 − 𝑦𝐿), (𝑥𝑅 − 𝑥) (𝑦𝑅 − 𝑦), (𝑥 − 𝑥𝐿) (𝑦𝑅 − 𝑦) and
(𝑥𝑅 − 𝑥) (𝑦 − 𝑦𝐿). And so by applying the routine algebra
of ordered fields to each of these products one obtains for
all 𝑥𝐿, 𝑥𝑅, 𝑦𝐿 and 𝑦𝑅:

(∗ ∗ ∗) 𝑥𝐿𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿𝑦𝐿, 𝑥𝑅𝑦 + 𝑥𝑦𝑅 − 𝑥𝑅𝑦𝑅 <
𝑥𝑦 < 𝑥𝐿𝑦 + 𝑥𝑦𝑅 − 𝑥𝐿𝑦𝑅, 𝑥𝑅𝑦 + 𝑥𝑦𝐿 − 𝑥𝑅𝑦𝐿.

Consequently, since 𝑥𝑦must lie between the sets of induc-
tively defined members of𝐍𝐨 specified in (∗∗∗) if𝐍𝐨 is to
be an ordered field, the above definition of 𝑥𝑦 requires 𝑥𝑦
to be the earliest constructed surreal compatible with that
desired end.

While the above observations reveal the incisive nature
of Conway’s cryptic-seeming inductive definitions, there
is no a priori reason to believe that these definitions, how-
ever cleverly motivated, would lead to the existence of an
ordered field, let alone one having the rich structure of𝐍𝐨.
That they do is one of Conway’s most remarkable surreal
discoveries.

As we mentioned above, in addition to its inclusive
structure as an ordered field, 𝐍𝐨 has a rich tree-theoretic
structure, a tree being a partially ordered class (𝐴, <𝐴) such
that for each 𝑥 ∈ 𝐴 the class {𝑦 ∈ 𝐴 ∶ 𝑦 <𝐴 𝑥} of prede-
cessors of 𝑥 is a well-ordered set. This simplicity hierarchi-
cal (or 𝑠-hierarchical) structure, as it is sometimes called, is
introduced by Conway by associating each surreal with a
unique sequence of +’s and −’s indexed over an ordinal,
called it’s sign-expansion, but can be introduced more con-
cisely as follows using the canonical representation of sur-
real numbers employed in Conway’s treatment.

Each surreal 𝑥 has a unique representation {𝐿𝑥|𝑅𝑥},
where (𝐿𝑥, 𝑅𝑥) is a pair of (possibly empty) collectively
exhaustive subsets of the set of all surreal numbers con-
structed at earlier stages of the construction. Using this
representation, the surreal number tree (𝐍𝐨, <𝑠) is obtained
by stipulating that for all 𝑥, 𝑦 ∈ 𝐍𝐨, 𝑥 <𝑠 𝑦 (read “𝑥 is

simpler than 𝑦) if and only if 𝐿𝑥 < {𝑦} < 𝑅𝑥 and 𝑥 ≠ 𝑦.1
(𝐍𝐨, <𝑠) is in fact a full binary tree, that is, every member
of 𝐍𝐨 has two immediate successors and every chain in
(𝐍𝐨, <𝑠) of limit length (including the empty chain) has a
unique immediate successor. In particular, for each surreal
number 𝑥, {𝐿𝑥| {𝑥} ∪ 𝑅𝑥} and {𝐿𝑥 ∪ {𝑥} |𝑅𝑥} are the immedi-
ate successors of 𝑥, and if (𝑥𝛼)𝛼<𝛽 is a chain in (𝐍𝐨, <𝑠)
indexed over a limit ordinal 𝛽, then {⋃𝛼<𝛽 𝐿𝑥𝛼 |⋃𝛼<𝛽 𝑅𝑥𝛼 }
is the immediate successor of the chain, {∅|∅} being the im-
mediate successor of the empty chain.

As we alluded to above, among the striking 𝑠-
hierarchical features of𝐍𝐨 is that every surreal number can
be assigned a canonical “proper name” that is a reflection
of its characteristic 𝑠-hierarchical properties. These Conway
names, or normal forms as Conway calls them, are expressed
as formal sums of the form

∑
𝛼<𝛽

𝑟𝛼𝜔𝑦𝛼 ,

where 𝛽 is an ordinal, (𝑦𝛼)𝛼<𝛽 is a strictly decreasing se-
quence of surreals, and (𝑟𝛼)𝛼<𝛽 is a sequence of nonzero
real numbers. Every such formal sum is in fact the Con-
way name of a surreal number, the Conway name of an
ordinal being just its Cantor normal form.

In light of the above, we see that Figure 1 in fact of-
fers a glimpse of the some of the earliest created mem-
bers of (𝐍𝐨, <𝑠) expressed in terms of their Conway names,
where, for example, 𝜔 is the least infinite ordinal as well
as the simplest positive infinite number, −𝜔 is the additive
inverse of 𝜔 as well as the simplest negative infinite num-
ber and 1/𝜔 is the multiplicative inverse of 𝜔 as well as
the simplest positive infinitesimal number. It is worth noting,
that being a real-closed field, the Conway names for 𝐍𝐨’s
real algebraic numbers are determined solely by 𝐍𝐨’s alge-
braic structure, whereas the Conway names for the remain-
ing surreals are fixed by algebraico-tree-theoretic consider-
ations (e.g., [8, pp. 1244–1248]).

Conway observed that when the surreals are expressed
in terms of their normal forms, 𝐍𝐨 assumes the structure

1As we mentioned above, Conway shows that each surreal number {𝐿|𝑅} is the
earliest created surreal number lying between its left and right options, the lat-
ter being a special case of his result for games, where, however, one cannot in
general say “a game lies between its left and right options.” In [5, p. 23], Con-
way dubs the earliest created such game (surreal number), the simplest such
game (surreal number), naturally suggesting that for surreal numbers, as for
games, “𝑥 is simpler than 𝑦” should be interpreted as 𝑥 is constructed prior to
𝑦. In 1985 Conway agreed with the author that the simpler than relation for
the surreals should be defined in terms of the predecessor relation in the tree
rather than in terms of the created earlier than relation. This understanding
was brought to the fore in [8] and has since emerged as the dominant interpre-
tation of the simpler than relation in research on surreal numbers. Whereas a
surreal number {𝐿|𝑅} continues to be both the simplest and the earliest created
surreal number lying between its left and right options, the meaning of “simpler
than” has changed. For example, whereas 1/2 is created earlier than 𝜔, 1/2 is
not simpler than 𝜔 in the tree-theoretic sense (see Figure 1).
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of an ordered field of generalized formal power series with
sums and products defined like polynomials and order de-
fined lexicographically. In addition to making the surreals
more tractable from an algebraic point of view, this per-
mitted Conway to apply to 𝐍𝐨 insights about such struc-
tures that accrue from the classical works of Hans Hahn
(1907) and B. H. Neumann (1949) on the number sys-
tems and generalizations thereof that emerged from non-
Archimedean geometry, and thereby relate the surreals to
one of the roots of non-Archimedean mathematics.

Making use of Conway names, Conway also character-
ized the notion of integer appropriate to 𝐍𝐨. The discrete
ring Oz of omnific integers, which extends On, consists of
the surreal numbers whose Conway names have nonnega-
tive exponents and integer coefficients when the exponent
is 0. Every surreal number is distant at most 1 from some
omnific integer, and 𝐍𝐨 is Oz’s field of fractions.

Another striking s-hierarchical feature of 𝐍𝐨 is that,
much as the surreal numbers emerge from the empty set
of surreal numbers by means of a transfinite induction
that generates the entire spectrum of “numbers great and
small,” the inductive process of defining 𝐍𝐨’s arithmetic
in turn generates the entire spectrum of ordered fields
(ordered abelian groups) in such a way that an isomor-
phic copy of every such system either emerges as an initial
substructure of 𝐍𝐨 — a substructure 𝐴 in which the tree-
theoretic predecessors in𝐴 of each of its elements coincide
with its predecessors in𝐍𝐨— or is contained in a theoreti-
cally distinguished instance of such a system that does. In
particular, as Ehrlich [8] showed, every real-closed ordered
field (divisible ordered abelian group) is isomorphic to an ini-
tial subfield (subgroup) of 𝐍𝐨.

Since every real-closed field is isomorphic to an initial
subfield of 𝐍𝐨, the underlying ordered field of every hyper-
real number system — the nonstandand models of analysis
employed in Robinsonian or nonstandard analysis — is iso-
morphic to an initial subfield of𝐍𝐨. In fact, as Ehrlich [9]
observed,𝐍𝐨 is isomorphic to the underlying ordered field
of the richest hyperreal number system in NBG. On the
other hand,“𝐍𝐨 is really irrelevant to nonstandard analy-
sis,” as Conway [5, p. 44] noted; and, vice versa. After all,
whereas the transfer property of hyperreal number systems,
a property not possessed by 𝐍𝐨, is central to the develop-
ment of nonstandard analysis, the s-hierarchical structure
of 𝐍𝐨, which is absent from hyperreal number systems, is
central to the theory of surreal numbers. Of course, this
does not preclude that down the line there might be cross-
fertilization between the two theories.

However, while surrealists have thus far shown little in-
terest in applying surreal numbers to nonstandard analy-
sis or in providing an infinitesimalist approach to classi-
cal analysis based on surreal numbers more generally, a
number of surrealists beginningwithNorton, Kruskal, and

Conway have fostered the idea of extending analysis to the
entire surreal domain.

Building on work of B. H. Neumann, Conway observed
that there is a notion of convergence in 𝐍𝐨 for power se-
ries of infinitesimal surreals that can be expressed using
Conway names, and that the various analytic functions
could be defined on bounded portions of 𝐍𝐨 using such
power series whenever they converge in the appropriate
sense. On the other hand, Conway originally expressed
doubt that “reasonable” global definitions of exponentia-
tion, logarithm, sine, and cosine could be defined on 𝐍𝐨
[5, First Edition, p. 43]. Through the collective efforts of
Kruskal, Norton, Gonshor, van den Dries, Ehrlich, and
Kaplan, however, this doubt has been put to rest. Van
den Dries and Ehrlich (2001) showed that 𝐍𝐨 together
with the Kruskal-Gonshor exponential function exp de-
fined thereon [11] has the same elementary properties of
the ordered field of real numbers with real exponentia-
tion, and Ehrlich and Kaplan [10] have further shown that
𝐍𝐨 has canonical sine and cosine functions which in turn
lead to a canonical exponential function on 𝐍𝐨’s surcom-
plex counterpart 𝐍𝐨[𝑖] that extends exp.

Additional rudiments of analysis on the surreals have
also been developed by Alling, Fornasiero, Rubinstein-
Salzedo and Swaminathan, and Costin, Ehrlich and Fried-
man. Costin and Ehrlich, in particular, have developed
a theory of integration (and differentiation) that extends
the range of analysis from the reals to the surreals for a
large subclass of resurgent functions that arise in applied
analysis. The resurgent functions, which generalize the
analytic functions, were introduced by Écalle in the early
1980s in connection with work related to Hilbert’s 16th
problem. Unlike nonstandard analysis, which provides an
infinitesimalist approach to integration on the extended
reals (ℝ ∪ {±∞}), surreal integration deals with integrals
whose bounds and values need not be extended reals at
all. For example, in the surreal theory (setting 𝑒𝑥 = exp 𝑥)
we have

∫
𝜔

0
𝑒𝑥𝑑𝑥 = 𝑒𝜔 − 1 = 𝜔𝜔 − 1.

This work makes contributions towards realizing some of
the analytic goals expressed by Kruskal andNorton in their
unsuccessful early attempts to establish a theory of surreal
integration as described by Conway in the Epilogue of [5,
Second Edition].

Elements of asymptotic differential algebra — the sub-
ject that aims at understanding the asymptotics of solu-
tions to differential equations from an algebraic point of
view — have also been developed for the surreals. An or-
dered differential field is an ordered field 𝐾 together with
a derivation on 𝐾, i.e., a map 𝜕 ∶ 𝐾 → 𝐾 such that
𝜕(𝑎 + 𝑏) = 𝜕(𝑎) + 𝜕(𝑏) and 𝜕(𝑎𝑏) = 𝜕(𝑎)𝑏 + 𝑎𝜕(𝑏) for all
𝑎, 𝑏 ∈ 𝐾. Berarducci and Mantova (2018) constructed a
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derivation 𝜕𝐵𝑀 on𝐍𝐨which has proven to have a number
of desirable features, including (𝐍𝐨, 𝜕𝐵𝑀) being universal
with respect to a broad class of distinguished ordered dif-
ferential fields. In their ICM talk [3], Aschenbrenner, van
den Dries, and van der Hoeven outline the program they
(along with Berarducci, Mantova, Bagayoko, and Kaplan)
are engaged in for developing an ambitious theory of as-
ymptotic differential algebra for all of𝐍𝐨, though one that
would require a derivation on 𝐍𝐨 having compositional
properties not enjoyed by 𝜕𝐵𝑀 . Such a program, if success-
ful, would provide the most dramatic advance towards in-
terpreting growth rates as numbers since the pioneering
work of Paul du Bois-Reymond, G. H. Hardy, and Felix
Hausdorff on “orders of infinity” in the decades bracket-
ing the turn of the 20th century.

Work on the rates of growth of real functions, non-
Archimedean geometry and Cantor’s theory of the infi-
nite are the primary sources of late nineteenth- and early
twentieth-century non-Archimedean number systems. As
the above remarks suggest, with his creation of the sur-
real numbers, Conway constructed a remarkable and pro-
foundly original canonical framework for unifying not
only these number systems but the reals and the under-
lying ordered fields of the hyperreal number systems to
boot. With this, Conway joined the likes of Cantor,
Dedekind, Hahn, and Robinson as one the foremost cre-
ators of systems of numbers great and small the world has
ever known.

Conway’s Tiling Groups

Richard Kenyon, Jeffrey Lagarias,
and James Propp
John Conway was fascinated by tilings of the plane, from
periodic tilings (the Conway criterion, orbifold notation
for wallpaper groups) to aperiodic tilings (Penrose tilings,
pinwheel tilings). Some of this work was described by
Doris Schattschneider in her article “John Conway, Tilings,
and Me” in the Summer 2021 special issue of the Intel-
ligencer devoted to Conway’s legacy. Less well-known is
John’s work on applying combinatorial group theory, a fa-
vorite tool of his, to the study of tiling problems in finite
subregions of the plane. Conway and Lagarias’ 1990 ar-
ticle “Tiling with Polyominoes and Combinatorial Group

Richard Kenyon is Erastus L. DeForest Professor of Mathematics at Yale Univer-
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Theory” [6] opened a new door to the study of such prob-
lems. Thurston’s 1990 article “Conway’s tiling groups”
added a geometric viewpoint on such invariants, introduc-
ing height functions, which we define below.

A polyomino is a connected union of a finite set of
squares in an infinite square grid. We say that a collec-
tion of simply-connected polyominoes 𝑇1, … , 𝑇𝑟 (called
prototiles) tiles a region 𝑅 if we can write 𝑅 as a union
of polyominoes with disjoint interiors, each of which is
a translate of one of the 𝑇𝑖. Recreational mathematics
abounds in problems of the form “Do these prototiles tile
this region?”; the classic problem of the genre is the Muti-
lated Checkerboard Problem, in which the prototiles are a
1-by-2 and a 2-by-1 rectangle (called dominos) and the
region to be tiled is an 8-by-8 square from which two
opposite 1-by-1 corner squares have been removed. The
classic solution comes from a coloring argument, exploit-
ing an alternating black-white coloring of the board: each
domino covers one white square and one black square,
but the mutilated checkerboard has unequal numbers of
black and white squares, so no tiling exists. This argu-
ment was presented in Solomon Golomb’s 1954 paper
“Checker boards and polyominoes” which introduced the
term “polyomino.”

A more complicated problem of this kind, due to de
Bruijn, calls for tiling a 6-by-6 square (or more generally
a (4𝑚 + 2)-by-(4𝑛 + 2) rectangle) with 1-by-4 and 4-by-1
prototiles; as in the case of the mutilated checkerboard, a
naive area argument fails to solve the problem but a more
sophisticated coloring argument (which the reader is in-
vited to find) shows that no tiling exists.

Prior to 1990, the main ways to prove that a given tiling
problem was unsolvable were to give a coloring argument,
to conduct brute force examination of all possibilities, or
to employ ad hoc methods that varied from problem to
problem. The hope that a general method for solving
such problems could be found was dashed by the work of
Robert Berger, who in his 1966 article “The undecidability
of the domino problem” showed that infinite tileability
problems could be undecidable. For finite tilings, Leonid
Levin showed in the 1973 paper “Universal search prob-
lems” that the class of finite tileability problems is NP-
complete. Conway and Lagarias presented a new frame-
work for tackling tiling problems that, while necessarily
subject to the limitations imposed by these hardness re-
sults, went beyond what coloring arguments could do.

The basic idea, due to Conway, is to interpret paths in
the square grid starting from the origin as elements of the
free group 𝐹2 on two generators 𝐴,𝑈, where 𝐴 (“across”)
represents a step to the right, 𝐴−1 a step left, 𝑈 (“up”) a
step up, and 𝑈−1 a step down (backtracks naturally cancel
under this correspondence). The free group product cor-
responds to concatenation of paths, translating one path
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to the end of the other. For simply-connected regions 𝑅,
the counterclockwise boundary 𝜕𝑅 of 𝑅 is described by a
word 𝑤 in 𝐹2, unambiguous up to a choice of base point
for the loop (or, equivalently, unique up to conjugation).
Likewise, the boundary of each prototile 𝑇𝑖 corresponds to
a word 𝑢𝑖. The main insight is that if a simply-connected
𝑅 can be tiled by simply-connected prototiles 𝑇𝑖, then the
word 𝑤 can be expressed as a product of conjugates of the
words 𝑢𝑖; in other words, if 𝑅 can be tiled, then 𝑤 is triv-
ial in the quotient group 𝐺 = 𝐹2/𝑁, where 𝑁 is the normal
subgroup of 𝐹2 generated by conjugates of the tiles. Follow-
ing Thurston we call 𝐺 the Conway tiling group associated
to the given prototile set, and the associated necessary con-
dition (“boundary criterion”) for 𝑅 to have a tiling is that
the boundary word 𝑤 for 𝜕𝑅 belong to 𝑁.

A simple example (see Figure 2) illustrates the boundary
criterion.

Figure 2. Composing boundary words, with conjugation.

Take 𝑅 to be the 2-by-2 square [0, 2]×[0, 2], tiled by two
2-by-1 rectangles. We find that

𝑤 = 𝐴2𝑈2𝐴−2𝑈−2 = (𝐴2𝑈𝐴−2𝑈−1) 𝑈(𝐴2𝑈𝐴−2𝑈−1)𝑈−1

where the right side is the product of the boundary-words
of the two constituent 2-by-1 rectangles, in which the sec-
ond is conjugated by 𝑈.

It is not immediately clear that this algebraic criterion
on tilings will be useful, since theword problem for groups
is undecidable in general; however, there are many groups
of geometric origin for which there are fast algorithms for
decidability. The paper of Conway and Lagarias applied
the group-theoretic condition to a tiling problem in the
hexagonal lattice. Define a 𝑇𝑛-triangle as a polygon in a
honeycomb grid composed of 𝑛 rows of hexagons inwhich
the 𝑖th row contains 𝑖 hexagons (1 ≤ 𝑖 ≤ 𝑛); for instance,
Figure 3 shows 𝑇𝑛 for the case 𝑛 = 9.

The problem is to determine for which values of 𝑛 the
𝑇𝑛-triangle can be tiled by copies of the 𝑇2-triangle and the
inverted 𝑇2-triangle (as illustrated in Figure 3). The paper
recast this as a problem in the square grid and then, us-
ing various algebraic and geometric arguments (including
an invocation of the concept of winding number) showed

Figure 3. The 𝑇9-triangle tiled by copies of the 𝑇2-triangle and
the inverted 𝑇2-triangle.

that the values of 𝑛 for which a tiling exists are the positive
integers congruent to 0, 2, 9, or 11 (mod 12).

The paper also showed that no possible coloring argument
can prove this congruence criterion. Coloring arguments that
prove the nonexistence of a solution to a tiling problem
will also prove nonexistence of a solution to the associated
“signed tiling” problem. But the signed version of the trian-
gle tiling problem has a different answer: it can be solved
whenever 𝑛 is congruent to 0 or 2 (mod 3).

The paper more generally described a connection be-
tween the coloring approach to tiling problems and the
boundary invariants approach, observing that coloring ar-
guments are covertly group-theoretic. They can be phrased
in terms of quotient groups of the commutator subgroup
𝐶 = [𝐹2, 𝐹2]. The group 𝐶 contains 𝑁 as a normal sub-
group, and 𝐶/𝑁 is analogous to a homotopy group. The
abelianization of 𝐶/𝑁 is then analogous to a homology
group, and coloring invariants are homology invariants.

Thurston’s article “Conway’s tiling groups” [17] takes
a more geometric viewpoint, introducing the idea of as-
sociating to each tiling of 𝑅 a function from the set of
lattice-points inside 𝑅 that lie on the boundaries of tiles
to the Conway tiling group. In the case where the Con-
way tiling group is an extension of ℤ2 by ℤ (as holds for
domino tilings) these functions are called height functions.
Thurston uses height functions to obtain a necessary and
sufficient condition for a (simply-connected) region 𝑅 in
the square lattice to have a domino tiling. The notion of
height functions played a crucial role in the study of ran-
dom tilings that exploded in the 1990s. The third author
reported on these developments in the Conway memorial
issue of the Mathematical Intelligencer (Summer 2021).
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Skein Theory and More

Louis H. Kauffman
Here we discuss two key contributions of John Conway to
knot theory: rational tangles for knots and links, and skein
theory for knots and links. Conway’s Tangle Theorem as-
sociates a tangle to each rational number; two of these will
have the same topological type if and only if the rational
numbers are equal. The knots we obtain by closing these
tangles have the same topological type if the continued
fraction expansions of the two rational numbers differ by
a reversal of order.

In Figure 4, we illustrate some of the features of the the-
ory of tangles. You will see tangles 𝑇 and 𝑆, one labeled
with the continued fraction [2, 3, 4] = 2 + 1/(3 + 1/4) =
2+4/13 = 30/13 and the other labeled with the continued
fraction [4, 3, 2] = 4 + 1/(3 + 1/2) = 4 + 2/7 = 30/7. It
turns out by Conway’s Tangle Theorem [4] that these frac-
tions classify the topological type of the tangles. For tangle-
type we keep the ends fixed and let the tangles move about.
Thus these two tangles are not topologically equivalent.
But, as the figure shows, they are related. They both close
to the same rational knot, labeled 𝑁(𝑇) = 𝑁(𝑆) in the fig-
ure. Now notice that both of these fractions have the same
numerator (30) and as for the denominators, we have that
7 × 13 = 91, a number that leaves a remainder of 1 on divi-
sion by 30. These are not accidents. If [𝑎1, 𝑎2,⋯ , 𝑎𝑛] is the
continued fraction for the tangle 𝑇 and [𝑎𝑛, 𝑎𝑛−1,⋯ , 𝑎1]
(obtained by reversing the order of the terms) is the con-
tinued fraction for the tangle 𝑆, then both 𝑇 and 𝑆 close to
form the same rational knot or link.

There is a beautiful way to classify rational knots (clo-
sures of rational tangles) from their continued fractions.
We can take the symbol (4, 3, 2), up to such reversal, as
an indicator of the rational knot in the figure. (There is
a futher technicality to the classification. See [14].) In this
way Conway developed a simple notation to indicate ratio-
nal knots and then used it along with insertion in certain
graphs to make a very efficient notation for knots that lets
us indicate thousands of knots in the knot tables with great
elegance.

Here is a quick introduction to the skein theory of John
Conway [4]. In Figure 5, I indicate one knot or link di-
agram 𝐾+ and another diagram 𝐾−, where it is under-
stood that these two diagrams differ only by the switch
that is illustrated for a single crossing. The same figure in-
dicates another diagram 𝐾0 where the crossing has been
replaced by two parallel arcs. This is called a smoothing of

Louis H. Kauffman is a professor of mathematics emeritus at the University of
Illinois at Chicago. His email address is loukau@gmail.com.

 T = [2] + 1/( [3] + 1/[4] ) S = [4] + 1/( [3] + 1/[2] )

N(T) = N(S)

~

Figure 4. Continued Fractions and Rational Knots.

the crossing. The three diagrams 𝐾+, 𝐾−, 𝐾0 taken together
are called a skein triple and here is the key relationship for
the Alexander-Conway Polynomial ∇𝐾(𝑧) that is assigned to
any oriented link diagram:

∇𝐾+ − ∇𝐾− = 𝑧∇𝐾0 .

Along with this skein relation, one has that

∇𝑂 = 1

where 𝑂 denotes an unknotted circle. If 𝐾 and 𝐾′ are topo-
logically equivalent knots or links, then

∇𝐾 = ∇𝐾′ .

This is the complete set of rules for finding the invariant
∇𝐾(𝑧) for any oriented link 𝐾.

In Figure 6, we illustrate the simplest consequence of
these axioms. The basic skein triple consists of 𝑈, 𝑈′, 𝑉 ,
where 𝑈 and 𝑈′ are unknots and 𝑉 is a pair of unlinked
circles. Each of 𝑈 and 𝑈′ evaluates to 1 and so their differ-
ence is 0. Thus we conclude that 𝑧∇𝑉 = 0 and so ∇𝑉 = 0.
In this way, an unlink 𝑉 (of any number of components
greater than 1) can be seen to receive the value 0 for its
Alexander-Conway polynomial ∇𝑉 (𝑧).

In Figure 7, we indicate this situation. There𝑇 is a trefoil
knot diagram and 𝑈 is the result of switching one crossing
in the diagram 𝑇. We can let 𝐾+ = 𝑇, 𝐾− = 𝑈 and 𝐾0 = 𝐿,
the link of two components illustrated in the top line of
the figure. Thus we have

∇𝑇 − ∇𝑈 = 𝑧∇𝐿

and

∇𝐿 − ∇𝑉 = 𝑧∇𝑊 .

K+ K_ K0
Figure 5. A SkeinTriple - three diagrams differing at one local
site.
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Figure 6. SkeinTriple for the UnLink.
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L V W

Figure 7. Trefoil Skein.

But we have that𝑈 is unknotted and 𝑉 is unlinked, and
𝑊 is unknotted. Furthermore we have checked that an un-
link receives a zero polynomial. Thus we calculate that

∇𝑇 − 1 = 𝑧∇𝐿

and

∇𝐿 = 𝑧,
and so

∇𝑇 = 1 + 𝑧2.
Any knot or link diagram can be unknotted and un-

linked by switching some of its crossings, just as we have
done for the trefoil knot 𝑇 and the Hopf link 𝐿. As a re-
sult, the Conway skein relation can be used to calculate the
Alexander-Conway polynomial ∇𝐾(𝑧) for any knot or link
𝐾. The remarkable fact is that, while there can be many dif-
ferent intermediate choices in this calculation, the answer
is always unique and is a topological invariant of the link
𝐾.

One of the consequences of tangle theory and skein
theory is that Conway was able to calculate invariants of
knots and links very quickly. In Figure 8 we illustrate the
well-known “Conway Knot” 𝐶𝐾. This is an eleven crossing
diagram of a non-trivial knot that has Alexander-Conway
polynomial equal to 1. It is a smallest knot with this prop-
erty. Is this knot the boundary of a disk embedded in four
dimensional space? One says that a knot with this four di-
mensional property is slice. It was an open problem since

Figure 8. The Conway Knot of Alexander-Conway polynomial
one.

Conway’s work circa 1970 to determine whether the Con-
way knot is slice. This problem was recently resolved by
Lisa Picarillo [16] in a stunning application of new invari-
ants whose origins can be traced toConway’s original work.
The knot is not slice.

Conway had a much more general notion of skein the-
ory than the consequence of the one basic skein relation
that we have quoted above. In this generalization, a knot
or link 𝐾 is placed in a “skein room” {𝐾} that represents its
embedding in three dimensional space. Non-associative
operations ⊕,⊖ between skein rooms are defined so that

{𝐾+} = {𝐾−} ⊕ {𝐾0}
and

{𝐾−} = {𝐾+} ⊖ {𝐾0}.
Within a given room {𝐾}, the knot or link𝐾 diagram can be
deformed by ambient isotopy. When we examine a skein
triple we take three representatives 𝐾+, 𝐾−, 𝐾0 one from
each of the rooms so that the representatives are exactly
the same except in the places where they are switched or
smoothed. We say that the {𝐾+} room is skein equivalent to
the concatenation {𝐾−}⊕{𝐾0}. In this way, one can produce
a skein decompositon of a knot or link. Refer to Figure 7 to
see that we have

{𝑇} = {𝑈} ⊕ {𝐿},
{𝐿} = {𝑉} ⊕ {𝑊},

so that

{𝑇} = {𝑈} ⊕ ({𝑉} ⊕ {𝑊}).
This final skein decomposition of 𝑇 expresses the trefoil
knot in the skein as a composition of two unknots and an
unlink. Every knot has such skein decomposition into un-
knots and unlinks. The non-associativity of the skein op-
erations is crucial. Two knots or links are said to be skein
equivalent if they have identical decompositions into un-
knots and unlinks. It is an open problem to this day to un-
derstand fully the skein equivalence classes of knots and
links. In defining the skein, Conway opened a new area of
topology.
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In the context of the skein theory, the Alexander-
Conway polynomial becomes a particular way to write
down invariants of the skein so that

∇(𝐴 ⊕ 𝐵) = ∇(𝐴) + 𝑧∇(𝐵)

and

∇(𝐴 ⊖ 𝐵) = ∇(𝐴) − 𝑧∇(𝐵).
What was not obvious in the 1970s was the fact that
there were other linear skein invariants than the Alexander-
Conway polynomial and its multi-variable relatives. The
most striking such invariant came in the wake of the Jones
polynomial and is often called the Homflypt polynomial
after its authors (in independent groups) Hoste, Ocneanu,
Millett, Freyd, Lickorish, Yetter, Przytycki and Trawczk.
The linear relation for Homflypt is

𝑎𝑃𝐾+ − 𝑎−1𝑃𝐾− = 𝑧𝑃𝐾0 ,

associating a Laurent polynomial 𝑃𝐾(𝑎, 𝑧) to an oriented
knot or link 𝐾 so that 𝑃𝐾(𝑎, 𝑧) is an invariant of the topo-
logical type of the knot. The Jones polynomial is a special
case of the Homflypt polynomial. A key property of the
Homflypt polynomial and the Jones polynomial is their
ability to distinguishmany knots from their mirror images.
The background mathematical contexts that support these
new skein polynomials involvemany aspects ofmathemat-
ical physics, Lie algebras and Hopf algebras. They are the
background to more recent developments in Vassiliev in-
variants and link homology.

Certain aspects of skein theory came to light in relation
to my own work. One was a model for the Alexander-
Conway polynomial that used the work of Seifert from the
1930s [13]. Another is a state summation model for the
Alexander-Conway Polynomial that is related to the origi-
nal paper of J. W. Alexander [1, 12]. The state summation
model is related to a state summation model (the Kauff-
man bracket state sum [13]) that I later discovered for the
Jones polynomial. This state summation has a particularly
simple form and a related unoriented skein expansion in
the pattern shown below. The bracket can be seen as a
special case of the so-called Kauffman two-variable poly-
nomial denoted 𝐿𝐾(𝑎, 𝑧) with skein relation

𝐿 + 𝐿 = 𝑧(𝐿 + 𝐿 )

and

𝐿 = 𝑎𝐿 ,

𝐿 = 𝑎−1𝐿 .

The bracket polynomial [13] model for the Jones poly-
nomial can be described by an unoriented skein expansion

of crossings into 𝐴-smoothings and 𝐵-smoothings

on a link diagram 𝐷 via:

⟨ ⟩ = 𝐴⟨ ⟩ + 𝐴−1⟨ ⟩ (1)

with

⟨𝐷○⟩ = (−𝐴2 − 𝐴−2)⟨𝐷⟩ (2)

⟨ ⟩ = (−𝐴3)⟨ ⟩ (3)

⟨ ⟩ = (−𝐴−3)⟨ ⟩. (4)

In the sense of the Conway Skein Theory we have an
unoriented skein with basic equation

{ } = { } ⊕ { }.

Byworking with the equation at each crossing of a diagram
for the knot, we obtain an unoriented skein decomposi-
tionwhere it is nowunderstood that the operation⊕ is nei-
ther commutative nor associative. Then the bracket poly-
nomial becomes an evaluation on this unoriented skein
satisfying the equation

⟨{𝑋} ⊕ {𝑌}⟩ = 𝐴⟨{𝑋}⟩ + 𝐴−1⟨{𝑌}⟩.

Just as in the case of the oriented skein, this unoriented
skein holds untapped mysteries that are slowly being re-
vealed. It is a conjecture that the bracket polynomial de-
tects the unknot, but it has been proved that the general-
ization of the bracket to a homology theory by Mikhail
Khovanov does detect the unknot by work of Kronheimer
and Mrowka. What else lies hidden in the oriented and
the unoriented skeins for knots and links?

In Figure 9, we give a hint about the Khovanov homol-
ogy. In that figure we illustrate all the states for the bracket
state summation. This can also be construed as the full
skein decomposition for the trefoil knot. Each diagram
contributes a term to the bracket polynomial and the sum
of these terms is the bracket polynomial. Khovanov ex-
amines this diagram of states and sees that it is a category.
The objects of the category are the states themselves. The
generating morphisms of the category are the arrows in
the figure. Each arrow connects two states that differ by
a smoothing at exactly one site, with the arrow going from
the state with fewer B-smoothings to the state with one
more B-smoothing. Khovanov defines his homology the-
ory for knots by taking an appropriate homology theory
for this category. Here we contact the roots of algebraic
topology where the nerve of a category yields a simplicial
structure and an appropriate functor from the category to
a category of modules will send up rich possibilities of ho-
mological algebra. None of this would have come to pass
if Conway had not found the skein.
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Figure 9. Bracket states and Khovanov Category - A category
made from the states.
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de Matemática [Mathematical Notes], 117. MR886475

[3] Matthias Aschenbrenner, Lou van denDries, and Joris van
der Hoeven, On numbers, germs, and transseries, Proceed-
ings of the International Congress of Mathematicians—
Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci.
Publ., Hackensack, NJ, 2018, pp. 1–23. MR3966754

[4] J. H. Conway, An enumeration of knots and links, and some
of their algebraic properties, Computational Problems in Ab-
stract Algebra (Proc. Conf., Oxford, 1967), Pergamon, Ox-
ford, 1970, pp. 329–358. MR0258014

[5] J. H. Conway, On numbers and games, London Mathemat-
ical Society Monographs, no. 6, Academic Press, London–
New York, 1976; 2nd edition, A K Peters, Ltd., Natick, MA,
2001.

[6] J. H. Conway and J. C. Lagarias, Tiling with polyomi-
noes and combinatorial group theory, J. Combin. Theory
Ser. A 53 (1990), no. 2, 183–208, DOI 10.1016/0097-
3165(90)90057-4. MR1041445

[7] Philip Ehrlich, Universally extending arithmetic continua,
Le labyrinthe du continu (Cerisy-la-Salle, 1990), Springer,
Paris, 1992, pp. 168–177. MR1413526

[8] Philip Ehrlich, Number systems with simplicity hierar-
chies: a generalization of Conway’s theory of surreal num-
bers, J. Symbolic Logic 66 (2001), no. 3, 1231–1258, DOI
10.2307/2695104. MR1856739

[9] Philip Ehrlich, The absolute arithmetic continuum and the
unification of all numbers great and small, Bull. Symbolic
Logic 18 (2012), no. 1, 1–45. MR2798267

[10] Philip Ehrlich and Elliot Kaplan, Surreal ordered exponen-
tial fields, J. Symb. Log. 86 (2021), no. 3, 1066–1115, DOI
10.1017/jsl.2021.59. MR4347569

[11] Harry Gonshor, An introduction to the theory of surreal
numbers, London Mathematical Society Lecture Note Se-
ries, vol. 110, Cambridge University Press, Cambridge,
1986, DOI 10.1017/CBO9780511629143. MR872856

[12] Louis H. Kauffman, Formal knot theory, Mathematical
Notes, vol. 30, Princeton University Press, Princeton, NJ,
1983. MR712133

[13] Louis H. Kauffman, New invariants in the theory of knots,
Amer. Math. Monthly 95 (1988), no. 3, 195–242, DOI
10.2307/2323625. MR935433

[14] L. H. Kauffman and S. Lambropoulou, From tangle frac-
tions to DNA, in “Topology in Molecular Biology,” Proceed-
ings of the International Workshop and Seminar on Topol-
ogy in Condensed Matter Physics, Dresden, 16–23 June
2002, edited by M. Monastyrsky, pp. 69–108.

[15] John McKay and Abdellah Sebbar, Replicable functions:
an introduction, Frontiers in number theory, physics, and
geometry. II, Springer, Berlin, 2007, pp. 373–386, DOI
10.1007/978-3-540-30308-4_10. MR2290767

[16] Lisa Piccirillo, The Conway knot is not slice, Ann. of
Math. (2) 191 (2020), no. 2, 581–591, DOI 10.4007/an-
nals.2020.191.2.5. MR4076631

[17] William P. Thurston, Conway’s tiling groups, Amer.
Math. Monthly 97 (1990), no. 8, 757–773, DOI
10.2307/2324578. MR1072815

Credits

Opening image is courtesy of CRC Press/Taylor & Francis
Group.

Figure 1 is courtesy of Philip Ehrlich.
Figures 2 and 3 are courtesy of Richard Kenyon, Jeffrey La-

garias, and James Propp.
Figures 4–9 are courtesy of Louis H. Kauffman.

AUGUST 2022 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1155

http://www.ams.org/mathscinet-getitem?mr=1501429
http://www.ams.org/mathscinet-getitem?mr=886475
http://www.ams.org/mathscinet-getitem?mr=3966754
http://www.ams.org/mathscinet-getitem?mr=0258014
http://www.ams.org/mathscinet-getitem?mr=1041445
http://www.ams.org/mathscinet-getitem?mr=1072815
http://www.ams.org/mathscinet-getitem?mr=4076631
http://www.ams.org/mathscinet-getitem?mr=2290767
http://www.ams.org/mathscinet-getitem?mr=935433
http://www.ams.org/mathscinet-getitem?mr=712133
http://www.ams.org/mathscinet-getitem?mr=872856
http://www.ams.org/mathscinet-getitem?mr=4347569
http://www.ams.org/mathscinet-getitem?mr=2798267
http://www.ams.org/mathscinet-getitem?mr=1856739
http://www.ams.org/mathscinet-getitem?mr=1413526
http://dx.doi.org/10.2307/1989123
http://dx.doi.org/10.1016/0097-3165(90)90057-4
http://dx.doi.org/10.1016/0097-3165(90)90057-4
http://dx.doi.org/10.2307/2324578
http://dx.doi.org/10.1007/978-3-540-30308-4_10
http://dx.doi.org/10.2307/2323625
http://dx.doi.org/10.1017/CBO9780511629143
http://dx.doi.org/10.1017/jsl.2021.59
http://dx.doi.org/10.2307/2695104
http://dx.doi.org/10.4007/annals.2020.191.2.5
http://dx.doi.org/10.4007/annals.2020.191.2.5


Submission deadlines and eligibility info at:

www.ams.org/undergrad-tg

AMS Undergraduate Student

If you are presenting in the

• Pi Mu Epsilon Undergraduate Poster Session

• AMS-SIAM Special Sessions on Research
in Mathematics by Undergraduates and
Students in Post-Baccalaureate Programs

• Other Special or Contributed Sessions
at JMM

Apply for partial travel and lodging support
to attend the Joint Mathematics Meetings and

• learn new mathematics

• network with other students and
mathematics professionals

• fi nd out about job opportunities

• consider your next steps at the
Grad School Fair

Ph
ot

os
 c

ou
rte

sy
 o

f K
at

e 
Aw

tre
y,

 A
tla

nt
a 

Co
nv

en
tio

n 
Ph

ot
og

ra
ph

y

Now providing support for undergraduate student
travel to the January Joint Mathematics Meetings



EARLY CAREER

August 2022  Notices of the AmericAN mAthemAticAl society   1157

GR
AD

UATE STUDENTS

POST DOCS

NEW
 FACULTY

G
O

V
ERNM

ENT LABORATORIES

INDUSTRY

M
EN

TO
RS

-

The articles this month were curated by Early Career Intern Katie Storey with assistance from Angela Gibney, the editor 
of the section. Next month’s theme will be Latinx History Month. To read all of the articles that have appeared, visit 
the AMS Notices Early Career Collection at https://bit.ly/3aiZYBd. Articles organized by topic are available at 
https://www.angelagibney.org/the-ec-by-topic.

More on 
Applying for 
Positions in 
Academia

Online and In-Person 
Interviewing for 
Tenure-Track Positions

Maria-Veronica Ciocanel  
and John T. Nardini

Showcasing the best version of yourself can be challenging 
during either in-person or virtual interviews! After a long 
process of writing job materials and sending them out 
to institutions, you may find yourself being invited for a 
screening or final-round interview for your dream position. 
First of all, congratulations! Your excitement may be short-
lived, however, as you grow anxious about how to put your 
best foot forward and show the search committee and/or 
department that you are their ideal candidate. Interviews 
have traditionally been held in person, but virtual inter-
views have increased in popularity over the past few years 
(and are likely to continue being used in the future). In 
the following, we offer insights from our experiences with 
both types of interviews in recent years.

What In-Person Interviews and Virtual 
Interviews Have in Common
Try to get a schedule in advance
Try to get a schedule in advance It may seem obvious that 
having the interview schedule ahead of your visit would be 
helpful in preparing for meetings with individual faculty 
and campus leaders. However, your host and the search 
committee often have to juggle many time constraints and 
have to send reminders to encourage faculty to sign up for 
meeting with you. To avoid receiving your schedule the day 
you board your flight or when your first virtual meeting is 
about to start (this does happen!), we recommend asking 
for drafts of your schedule document every few days before 
your interview. You may even ask your host if they could 
share a Google document of the visit schedule, with updates 
in real time.

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

Maria-Veronica Ciocanel is an assistant professor of mathematics and biol-
ogy at Duke University. Her email address is ciocanel@math.duke.edu.

John T. Nardini is an assistant professor of mathematics at The College of 
New Jersey. His email address is nardinij@tcnj.edu.

DOI: https://dx.doi.org/10.1090/noti2516
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A master list of questions and talking points
In preparing for the meetings you will have during your 
interview, we found it very useful to create a master list 
of questions that we might be asked, talking points to 
emphasize about ourselves, as well as questions that we 
ourselves would like to ask. This allowed us to customize 
our preparation for the program we were visiting by simply 
updating this document for other potential interviews. One 
approach is to organize your questions and talking points 
into sections: those about research or teaching, questions 
for faculty, for the chair, for the dean, or for students. An-
other approach is to organize your preparation by meeting 
if you know your schedule in advance: you can list out 
the relevant questions and talking points for each of your 
meetings. This was often a lifesaver when we needed a quick 
reminder of what it was important for us to learn while 
meeting with various people during the visit.
Ask for meetings with students and external faculty
Throughout your visit, you will likely meet with faculty in 
research areas related to yours, but also with junior and 
senior faculty in other fields. Take advantage of these meet-
ings to both let faculty know what sets your scholarship 
and interests apart, but also to understand the ongoing 
research and teaching activities in the department, and to 
learn more about the geographical area you may be mov-
ing to. Before coming to campus, you can also ask to meet 
with specific faculty members who may otherwise not be 
on your schedule. For instance, you can ask to meet with 
faculty who started an impactful outreach program or DEI 
initiative in the department or in the community, or to meet 
with faculty in other departments, who could be potential 
collaborators. Your search committee will try to add these 
additional meetings to your schedule, if time permits.

If meetings with students are not already included in 
the schedule, we highly recommend requesting such a 
meeting, with either undergraduate or graduate students, or 
even with student members of a professional organization 
chapter that you would want to be involved with (such as 
AWM). Chatting with students can give you a useful per-
spective on their experience in the department. Don’t expect 
discussions with students to be easy! We have found it 
inspiring to have conversations with students who wanted 
to see how aspiring new faculty intend to make meaningful 
contributions in their department.
Your scholarly talk
When receiving an invitation for an interview, it is im-
portant to pay careful attention to and to clarify what is 
expected of you. If giving a colloquium-style research talk, 
make sure you know what the expected time length is, and 
how much time to reserve for questions. Depending on the 
department and institution you are interviewing at, it may 
also be helpful to understand the background of the audi-
ence that is likely to attend your talk. In some cases, you 
may be asked to give an undergraduate-accessible research 
talk, or to give a teaching demonstration during a class in 

the department you are visiting. For some interdisciplinary 
programs or positions (such as mathematical or quanti-
tative biology), you may be asked to give a chalk talk on 
your future research ideas in front of the search committee. 
Clarifying the details of these talks early on will help you 
best prepare for them.

One approach that we have found especially helpful is 
holding mock interview talks ahead of the actual interview. 
You could hold these with fellow students, postdocs, or 
faculty mentors in your current department. This will give 
you a chance to practice in a supportive environment, with 
a community that will give you valuable feedback or ask 
you questions that will mimic those that you will be asked 
in the actual interview. You may also find it advantageous 
to invite faculty that you know well from institutions that 
are similar to where you are interviewing, as they can give 
insight into how to align your material with what the in-
stitution values most.

Online Interviews
Virtual interviews (held over Zoom, Microsoft Teams, 
Webex, among others) are now often used for interviews for 
Postdoc and Visiting Assistant Professor positions. For ten-
ure-track positions, search committees typically use virtual 
interviews to narrow their applicant pool down from 20–40 
selected applications to their final 3–4 final candidates that 
will be invited for the final round interviews. In response 
to the Covid-19 pandemic, many final round interviews 
have been conducted virtually, including John’s! Virtual 
Interviews present many challenges: technical difficulties 
are likely, your interviewers’ background settings may be 
distracting, and conversations are hard to initiate. Fortu-
nately, there are skills and habits you can start developing 
now to set yourself up for success on the virtual job market.

Practice speaking virtually
The best preparation for virtual interviews is to practice 
professional speaking in an online manner as much as pos-
sible. This may include giving talks at virtual conferences 
or joining an online group.

To get some practice, I (John) joined a local Toastmasters 
group nine months before interview season. Toastmasters 
is an international nonprofit educational organization 
that empowers its members by helping them develop 
public speaking and leadership skills. My Toastmasters 
group met weekly over Zoom; each week, its members can 
practice speaking by giving a prepared speech, hosting the 
meeting, responding to interview-type questions, or eval-
uating another speaker’s presentation. I initially struggled 
performing each role online, but I gradually became more 
comfortable with each additional experience. By the time I 
began interviews for tenure-track positions, I was confident 
speaking online: in the face of technical difficulties, I asked 
my interviewers to repeat themselves; I laughed with inter-
viewers when their pets jumped on screen; and I learned 
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about my interviewers between meetings by initiating small 
talk about their hobbies and non-math interests.
Making a good virtual impression
It is important to be mindful about your appearance and 
sound during virtual interviews because your interviewers 
will form their first impression of you during your first two 
minutes on screen. Before an interview, you may want to 
ensure your room lighting and camera angle show a clear 
picture of yourself. Some strategies to consider include:

 • Light should ideally evenly hit your face from a 
lamp, window, or lighting kit located behind your 
camera. Your face may be hard to see if your light 
source is coming from behind or above you.

 • Eyeglasses can reflect your computer screen and 
block your eyes, which prevents your interviewers 
from making virtual eye contact with you. If you 
need glasses to see, you may want to angle your 
camera before the interview to avoid this.

 • Look at your camera (and NOT at the screen) to 
maintain virtual eye contact. Place your camera 
level with or slightly above your eyes to provide 
the best angle of your face.

 • A clean and warm background can help your 
personality shine through. We find that including 
things that matter to you, such as pictures of family 
or a favorite cartoon, can help your personality 
shine through.

Have a virtual conversation
Virtual interviews can feel one-sided and distant, but it is 
important to remember that they are actually a conversa-
tion! Some small changes on your end can turn a tough 
interview into a pleasant conversation.

 • When speaking to a screen full of faces, it may be 
tempting to make statements like “I really admire 
how Dr. X has led program Y in the department, 
and I hope I can contribute,” even if Dr. X is on 
the call. You might worry that addressing Dr. X 
directly will come off as too aggressive or intrusive; 
in reality, this statement distances you from the 
hiring committee. In a more successful interview, 
you can instead say “Dr. X, I really admire how you 
have led program Y in the department, and I hope 
I can contribute.” As opposed to the first statement, 
this second statement turns the interview into a 
conversation.

 • Virtual conversations often lose steam when one 
or two speakers dominate the airwaves; a good 
conversationalist will keep everyone involved. If 
you find an interviewer is not engaged during an 
online interview, we find that you can pull them 
back in with simple statements of the form “Dr. 
Z, I’m really curious to hear your thoughts on this 
topic.” This should be done in moderation, how-
ever, in case Dr. Z is multi-tasking or preoccupied.

Incorporating these small changes into your virtual 
interviewing repertoire will allow you to comfortably con-
verse with potential colleagues and can transform a day of 
hectic interviewing into a fun day of chatting about math, 
teaching, research, and scholarship. We recommend trying 
some of these changes during your next Zoom meeting!

Interviewing in Person
In-person interviews for academic jobs can feel extremely 
overwhelming. Most of them involve visiting the campus 
and department for 1–2 days, which includes giving one 
(or more) talks, meeting with many faculty members, the 
department chair, and (usually) a dean. Devoting ample 
time for preparation before you start your travels, such as 
creating a master list of questions or scheduling a mock 
in-person interview with your community (as mentioned 
above), can significantly reduce the stress associated with 
the interview. Certainly, the advantage is that you will get
to potentially tour the campus, visit the department and 
see potential offices, as well as have meals with faculty and 
students. All of these experiences can paint a good picture 
of what your life in the department and at that institution 
may look like.
Being comfortable is key
The visit itself can feel like a marathon, both on an intel-
lectual as well as a physical level. You will be moving a lot 
and having productive conversations with various people 
throughout most of your 1–2 interview days. It is therefore 
important to ask for short breaks between meetings as 
well as for some time before your talk(s) to collect your 
thoughts.

Since you are visiting in person, you will likely spend 
more time thinking about what you will wear in this pro-
fessional interview setting. Regardless of the exact choice, 
we found that it was important to wear comfortable clothes 
and shoes, since the interview days involve plenty of walk-
ing. There are often no breaks between campus and dinner 
meetings, so be prepared to wear your outfit for the whole 
day. One of us can also attest that keeping some bandaids 
handy saved her from an uncomfortable situation during 
her interview!
Express an interest in the location
Some institutions may include a tour of neighborhoods or 
even a meeting with a realtor, all of which can give you an 
idea about places to live in the area. Even if your schedule 
does not include it, you could ask to see particular neigh-
borhoods or visit a famous site at that location. This is not 
only a means for you to explore your potential new home, 
but also a way to show your particular interest in a position. 
While interviewing, it is challenging to keep in mind that 
programs and institutions worry that their short-list candi-
dates may not actually come even if offered the position. 
Showing a genuine interest in exploring the location of an 
institution gives you one way to fight this worry.
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The in-person scholarly talk
The in-person research or teaching talk may feel like the 
most stressful aspect of the academic job interview. Perhaps 
we can suggest a different and useful perspective on this, 
that one of us learned from a mentor. The hour during 
which you are giving your talk is actually the time when 
you are most in control. During that time, you are guid-
ing others along your mathematical journey and through 
research results and scholarship that you are an expert in. 
Therefore, it is a time to enjoy and to show your enthusiasm 
for your work.

Finally, we must acknowledge that everything we suggest 
above takes a long time to prepare for. In our experience, it 
is very reasonable to expect that your research productivity 
will stagnate, as you make time to practice and research 
your potential future department. It is very useful to frame 
this work as making an investment in your professional 
development and network, which will pay off in the long 
run. In addition, we have found that having to present 
our research to mathematicians and students outside of 
our research areas during interviews and job talks really 
forced us to think about how to broadly present our work. 
Being ready to present your research in an accessible way 
and networking with colleagues at different institutions 
are skills that you will benefit from throughout the rest of 
your career.

Credits
Photo of Maria-Veronica Ciocanel is by Laurie DeWitt, Pure 

Light Images.
Photo of John T. Nardini is courtesy of John T. Nardini.

Preparing for a  
Tenure-Track Job at an 
Urban Public College

Heidi Goodson and Diana Hubbard

There are many types of institutions that you may be con-
sidering when preparing for the academic job market. In 
this article, we aim to provide some insight into applying 
for a tenure-track position at an urban public college. Ad-
ditionally, we hope to highlight some aspects of working 
at this type of college that may be different from other 
institutions in order to help you decide if this is the right 
type of academic environment for you.

We are both assistant professors at Brooklyn College, 
one of the four-year colleges in the City University of New 
York (CUNY) system. Brooklyn College has approximately 
16,000 undergraduates and 2,500 graduate students, but 
despite this, in the mathematics department our classes are 
all relatively small. Like many other urban public colleges, 
our students primarily live off-campus. We mostly teach 
undergraduates, but we also support MA programs in edu-
cation. Additionally, we are affiliated with the PhD-granting 
Graduate Center at CUNY, and we have the opportunity to 
work with graduate students. For us, Brooklyn College is 
the best of two academic worlds: we get both a liberal arts 
college experience on our campus and an R1 research com-
munity through our affiliation with the Graduate Center.

In many ways Brooklyn College is unique, but we will 
feature some aspects of working here that are generalizable 
to other urban public colleges. While we discuss some other 
ways that you can make your application stand out at a 
school like ours, your primary focus during graduate school 
and your postdoc should be on your research program and 
your teaching and these will be the most important things 
to highlight in your application materials.

Supporting the Needs of the Student Body
When applying to a job at any school, you will want to 
show that you have thought about how to teach, mentor, 
and support students. But different student bodies have 
different needs, and your application should reflect this. At 
Brooklyn College, for example, many of our students come 
from backgrounds that are underrepresented in higher 
education: many students are not native English speakers, 
come from low-income households, are first-generation 
college students, or are adult learners. Many commute to 

Maria-Veronica 
Ciocanel

John T. Nardini
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campus, and juggle additional responsibilities like full- or 
part-time jobs, or family and caregiving responsibilities. 
Our students are wonderful to work with; in fact, they 
are one of the best parts of our jobs. The diversity of their 
life experiences enrich the classroom, and they are bright, 
ambitious, and hard-working people. Many of our students 
are brilliant and would fit right in at any elite, expensive 
private institution. But often, they need instructors who un-
derstand and appreciate their life circumstances in order to 
provide appropriate support and mentoring. Demonstrat-
ing that you understand this can go a long way in showing 
that you’re a good fit as an instructor at a public university.

Supporting these students can include using pedagog-
ical techniques that foster a sense of community in the 
classroom, developing courses that teach marketable skills 
such as coding alongside mathematics, choosing low-cost 
course materials, and searching out and directing students 
to research or other opportunities that will suit their needs. 
It is important to use teaching and mentoring strategies 
that engage students who have a wide variation in their 
mathematical preparation. You will want to demonstrate 
that you have thought about your future students’ strengths 
and needs in your teaching statement, diversity statement, 
and cover letter. But what to write? If such an opportunity 
arises, having meaningful experience teaching or mentor-
ing students from communities that have been historically 
underrepresented and marginalized in higher education 
will help your application and will give you concrete, 
substantive ideas of what to say. However, if these sorts of 
experiences are not available to you, you can still engage 
thoughtfully with issues relating to diversity and equity in 
your mathematical life and in your application. There are 
a lot of great resources out there that can help you put in 
the work to learn and reflect on ways to support a diverse 
student body (see, for example, [GH3]).

Gaining some experience outside of academia is also 
a valuable way to support your future students and will 
help your application stand out. At Brooklyn College (and 
at most colleges), most students do not plan to pursue 
graduate work in mathematics. Experience outside of the 
standard academic track can be a real asset to your future 
department since you’ll be better able to talk to students 
about jobs in the “real world.” Departments are looking to 
hire faculty with broad experiences who can help mentor 
students or create connections between mathematics and 
other programs. These experiences include working at a 
non-academic job or doing an internship, completing 
actuarial exams, or participating in coding bootcamps and 
competitions. We recommend highlighting these experi-
ences in your application materials.

Describing and Maintaining an Independent 
Research Program
At any institution, the search committee will include 
faculty members who are not in your area of research. At 

a school like ours it may be the case that no one in the 
department is an expert in your field, and you’ll want to 
approach your research statement and job talk with this in 
mind. In your research statement, make it clear how your 
research fits into the overarching goals of your field, what 
your contributions are, and that you have ideas for what to 
work on next. It will be good to have a mixture of specific 
projects with clear outcomes and more general work that 
pushes the direction of the field. Additionally, your job talk 
is a chance to demonstrate that you can enthusiastically 
explain something difficult to a broad audience, which 
will give the committee a glimpse of what you will be like 
as an instructor.

You’ll want to be able to demonstrate that you are a part 
of a larger research community so that the search commit-
tee will feel confident that you will be able to maintain your 
research program while on the tenure track. Between the 
two of us, before arriving at Brooklyn College, we had pub-
lished research articles with collaborators and presented 
our work in a variety of venues. We co-organized seminars 
and special sessions at conferences, and mentored under-
graduates on research projects. How can you gain these 
experiences as a graduate student or postdoc? The most 
important thing to do is to talk to people at and outside 
of your institution. Ask people in your field what opportu-
nities are coming up that you should be aware of, and also 
check the websites of math institutes such as ICERM, MSRI, 
and PCMI regularly. Go to seminars, lunches, conferences, 
workshops, and summer schools, and make an effort to 
meet new people while you are there. Some conferences 
and workshops have opportunities for junior mathemati-
cians to apply to speak or present a poster and many have 
funding that you can apply for.

An important part of an independent research program 
is applying for and being awarded grants. Grants support 
your research by funding your travel to conferences or to 
work with collaborators; helping you buy a computer, 
tablet, or other equipment; and allowing you to invite 
collaborators and seminar speakers to your campus. Some 
grants can be used to fund a course release, which would 
allow you to spend more focused time on your research. 
Large grants, like those awarded by the NSF, are great, but 
smaller grants also provide evidence that you are pursuing 
and successfully obtaining funding for your research. Small 
grants may be funded by external agencies and organiza-
tions, such as the AMS, the Simons Foundation, the AWM, 
and the AAUW. There may also be internal grants available 
at your current institution.

Writing a grant proposal can be challenging! Recent is-
sues of the Notices have included articles with great advice 
on how to approach this type of writing (see, for example, 
[GH2, GH4]). We also recommend seeking advice from 
mentors and peers on this process.
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Being Flexible and Wearing Many Hats
In our department there are a large number of part-time 
adjunct lecturers supporting our ability to offer the courses 
that our students need. Because of this, our full-time faculty 
members take on many additional roles to keep things run-
ning smoothly and to make improvements to better serve 
our students and community. Some of this work looks like 
what you may traditionally think of as “service,” but not 
all. For example, a wide variety of courses have to be taught 
(within and outside of faculty members’ areas of expertise), 
new courses must be developed to meet student demand, 
decisions need to be made about the curriculum, students 
must be selected for awards, departmental events need 
to be organized, the website must be kept up to date, job 
openings must be filled, and so on and so forth. Outside 
the department other work needs to be done as well, for 
instance in college-wide committees or in the faculty union 
if the institution has one.

It is important to protect research time, but it is also 
important to be willing to be flexible, wear several dif-
ferent hats, and contribute to the common effort of the 
department. We have found that much of this work is 
enjoyable and interesting: it can be a way to pursue intel-
lectual interests outside of your research, collaborate with 
colleagues on a shared project, and contribute positively 
to the departmental atmosphere.

It will benefit your application if you can demonstrate 
that you would be willing and able to contribute to the de-
partment and the college in these various ways. Of course, 
as a grad student or postdoc, your primary focus should be 
on developing your research and teaching. However, you 
may want to take on some small, manageable responsibil-
ities that show your ability to contribute to the commu-
nity when the opportunity arises. For example, you could 
co-organize departmental activities such as colloquia and 
graduate student seminars, coordinate TAs and common 
final exam grading, or advise undergraduate students in a 
mathematical modeling competition. You can also seek 
opportunities outside of your department by, for example, 
serving as a judge at undergraduate research poster sessions 
or on panels for prospective graduate students.

Some Final Thoughts
We were both on the job market before the COVID-19 
pandemic, and our experiences involved a lot of in-person 
opportunities and networking. We understand that the 
pandemic has made seeking out these sorts of opportuni-
ties much more challenging. We recommend reading other 
articles in addition to ours to get tips on how to navigate 
the job market in a more virtual world (see, for example, 
[GH1]).

Good luck in your job search!
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This Is What Success 
Feels Like: What I Learned 
from Applying for the 
NSF Postdoc Twice

Kim Klinger-Logan

Early one morning in January 2020 I was lying in bed trying 
to summon the will to exit my warm sheets and go down-
stairs. I usually check my email and the news to muster 
the energy to handle the chaos that results from juggling 
two dogs, a 9 month old, and oatmeal. There it was. The 
email. The NSF. But I had to be misreading something. 
“Congratulations” … since when do they congratulate you 
for applying … ? in January … ? I needed a rational, fully 
conscious and caffeinated person to read these words. I 
leapt from bed, calling my partner’s name, and as I was 
rushing down to the stairs, my foot slipped out from under 
me and I slid down the entire flight. My partner was sure 
that I was holding the baby and it took a good 10 minutes 
before he could comprehend that nothing was wrong and 
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we were just in some alternate universe where a new mom 
can also be an NSF Postdoctoral Fellow.

One year before, in January 2019, I was welcoming 
undergraduates to the beginning of a workshop that I had 
helped found and organize aimed at recruiting women and 
minority math majors. I was 6 months pregnant and there 
were no stairs to slide down in excitement. Instead, I was 
crying on the floor of the women’s restroom of the math 
department after finding out that I did not get the NSF 
Mathematical Sciences Postdoctoral Research Fellowship 
(MSPRF) and, in fact, would probably not get any job as 
my husband was about to accept a job at a remote school 
in Kansas and I had no other offers. That day I wondered 
how I was supposed to show these young people that they 
could become mathematicians when I could not even tell 
myself that I was a successful mathematician.

When I think about the contrast between these two 
days, I am reminded of what of my advisor Paul Garrett 
used to tell me, “This is what success feels like.” He never 
said this in regards to the “Congratulations” email you get 
while lying in bed. He was always talking about the other 
email. Success is trying and not quite succeeding but maybe 
learning something in between. So here is what I learned 
in 2019, and what I did differently a year later.

What is the NSF MSPRF and Why Should  
You Apply?
The NSF MSPRF is a postdoctoral fellowship taken at your 
research sponsor’s institution for 2 years with no teaching 
or for 3 years, teaching one course per semester for the last 
two years (with part of your salary paid by the sponsoring 
department). Compared to many US postdocs the salary 
is a bit higher and the award has significantly more travel 
funding and less teaching.

There are many reasons why you should apply to the 
NSF MSPRF. First, there are 30–33 fellowships given each 
year and so it is seen as fairly prestigious. While you may 
personally not care about prestige, it will likely have a 
positive impact on your career.

Given how competitive it is you may wonder if applying 
is just not worth the effort. However, the effort is in fact 
what makes it worth it. Drafting the 5-page Project Descrip-
tion will force you to begin considering the direction of 
your research post-PhD. This document is less about what 
you have done and more about what you will do next. 
Writing the proposal will help you plan where you want 
your research to go and how you want to define it. It will 
likely form the basis of the research statement you write as 
a component of your job applications.

Finally, it is likely you will need to apply for grants as 
part of your job later on. Many NSF grant applications 
have similar evaluative criteria (which I will mention in 
more detail later on). While the requirements for other 
applications may not be exactly the same, framing a good 
proposal is a learned skill. Even if the projects you propose 

do not get funded and never come to fruition, you will get 
valuable practice at grant writing in a relatively low-risk yet 
high-reward setting.

The Application
If your first application is submitted while you are a gradu-
ate student you can apply at least one more time. It is also 
not rare to be awarded the fellowship on your second try.

Before I dive in, I should outline the main components 
to this NSF application (Note that these may change so 
please check the requirements each year.):
(a) Project Description—This is the meat of your applica-

tion. It is to be a maximum of 5 pages (not including 
the references). The key emphasis should be on the 
“Intellectual Merit” and the “Broader Impacts” of your 
proposal which I will describe below.

(b) Project Summary—This is a one page summary of 
what is in (a). It has three main sections: “Proposal 
Summary,” “Intellectual Merit,” and “Broader Impacts.”

(c) Biographical Sketch—This is essentially a CV in a very 
specific format.

(d) Letter of Sponsor Support—Unlike many other NSF 
grants, you will choose a “sponsoring scientist” to 
serve as your mentor who is required to write a letter 
that you submit with your application. This is not a 
letter of recommendation but should address how the 
sponsor plans to support you and your research during 
your fellowship.

(e) Letters of Recommendation—It is always good if you 
can have at least one of these coming from outside 
your home institution (though this is certainly not 
necessary).

(f) There is also a separate list of references and data 
management plan—these are not time consuming to 
complete but it is good to be aware of.

Your proposal needs to address two main criteria. These 
are the only dimensions on which it will be judged. The 
NSF describes these two components as follows and states 
that there are no weights assigned to the review criteria [K4].

Intellectual Merit: The Intellectual Merit criterion “en-
compasses the potential of the project to advance knowl-
edge” [K3].

Broader Impacts: The Broader Impacts criterion encom-
passes the potential to “benefit society and contribute to the 
achievement of specific, decided societal outcomes” [K3].

Many people have written about what qualifies as 
Broader Impacts. Peter March’s letter on Broader Impacts 
Review Criterion highlights some Broader Impacts often 
seen in successful proposals [K3]. There can be a fine line 
between a Broader Impact and “doing one’s job” and I 
encourage you to see Max Lieblich’s Notices article “What 
is Broader Impact?” [K2]. While this is aimed at faculty, he 
draws some helpful distinctions about what are and are 
not Broader Impacts.
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variety of other research that I found interesting. While very 
busy, he was a person I found that I could work with and 
would have time and energy to devote to writing a good 
letter of support.

You want to choose a sponsor who you can talk to and 
will have time to work with you, but it is also helpful to 
have someone who is whose work is known in your field. 
It should be clear that your sponsor is capable of at least 
discussing your project with you. I was told early on that it is 
good to have your sponsor’s work align well with yours and 
most of the projects I have seen funded support this theory. 
You may want your sponsor to be someone you or your 
advisor has published with, or perhaps your project cites 
your potential sponsor’s work. When you write up your 
proposal, call attention to the relationship between your 
sponsor’s work and the work you are proposing, and make 
the case that your sponsor will be equipped to support you.

When I asked my sponsor if he would serve in this role, 
I had never met him before and had no reason to believe 
he knew who I was. I did not have my full proposal written 
but I did give him a rough idea of what I was planning 
on working on and sent him my CV and other relevant 
information. I sent him a draft of my proposal not long 
after he agreed to be my sponsor and he did provide me 
with some helpful thoughts on the proposal but the work 
I proposed was my own.
3. I read other people’s applications.
If you do not personally know anyone who has received 
this award, talk to your advisor and/or Director of Graduate 
Studies to see if any recent alumni have received it. You also 
likely have a faculty member or postdoc in your department 
who at least applied for this fellowship. (In fact, I wish I 
would have read more “unsuccessful” applications as well.) 
You can even view all of the previously funded projects and 
their PI’s on the NSF’s website; however, it is best if you have 
a personal connection with someone before asking to view 
their materials. Remember, these are someone’s research 
ideas so sharing materials requires an element of trust. That 
said, many people are happy to send portions of their own 
materials if you ask nicely. For instance, a person that I had 
only spoken to once or twice at conferences generously 
shared her materials with me. However, do not share any 
of these materials with anyone else unless you were given 
explicit permission to do so.

While I did read a few accepted applications on my first 
round, I wish I had examined the proposals more critically 
and at varying points of my writing process. In particular, I 
should have revisited the applications I had access to after 
I thought my draft was “done.” It is good to take a break 
from writing for a few weeks (if possible) to think about 
how your application will be perceived in a pile with the 
other applications you have—after all, that’s essentially 
where it will be when it’s reviewed. It is more likely you 
will be able to do this if you start early.

When reading your materials, the reviewers are asked to 
evaluate them with respect to the 5 Merit Review Criteria 
(which can be found in full detail in [K1]). They address 
the potential of your proposal to advance knowledge and 
benefit society, the originality of your ideas, and the like-
lihood of you successfully completing what you propose.

What I Did the First Time Around
In this section I discuss the things I was glad I did the first 
time that I applied for the NSF MSPRF.
1. I started early.
The application is due the third Wednesday in October 
and I began writing my Project Description in early June. 
This is not strictly necessary; however, drafting and editing 
a good statement takes much longer than you likely think 
it is going to.

I recommend getting as many people to read your mate-
rials as possible. If you start this process early enough, you 
will have time to implement the suggestions of one person 
before sending it on to the next. The first people I had look 
at my application were other graduate students in my co-
hort. We made a schedule and rotated reviewing each oth-
er’s proposals each week of the summer and most of the fall 
semester. It went something like “Week 1: draft NSF Project 
Description, Week 2: edit NSF Project Description, Week 
3: draft NSF Project Summary, … ” Having each document 
planned out with ambitious deadlines that someone else 
was holding me accountable for was immensely helpful.

If you are the only one in your cohort who is planning to 
apply to the NSF Postdoc, you can still do a version of this 
with friends at other institutions. Alternatively, you might 
set parallel schedules with friends who have other goals, 
e.g., who are applying for other jobs or other fellowships. 
No matter how disciplined you are, having an account-
ability buddy and external support is priceless. However, 
this tip is just meant to be helpful, and it is certainly not 
necessary to have peers to review your application or work 
on theirs with you. You should apply regardless of what 
your cohort is doing.

Once you have a draft of your materials, send them to 
your advisor and/or project sponsor. Ask around and find 
out if you know anyone who has been on an NSF review 
panel. I did not do this in my first round but I did on the 
second time around and I believe it made the difference be-
tween me not getting the award and me getting the award. 
This person may have a good eye for details that you should 
tweak in order to appeal to a panel.
2. I chose a sponsor whose work relates closely to the 
project I was proposing.
I was fortunate enough to have a clear idea of who I wanted 
my sponsor to be early on and asked him to be my sponsor 
during the summer before I first applied. My dissertation 
was a direct response to an area that he helped develop so 
it was natural that I would work with him. My sponsor was 
also an excellent and well-regarded mathematician with a 
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It’s likely that (provided you have any proposals to 
read) the ones you have will be outside your area. In ret-
rospect, I wish I had asked myself questions like: How did 
they format their document? How much time is spent on 
background material? How many projects and conjectures 
are proposed? How much of an outline are they providing 
for how they plan to attack each project? How does the 
proposal denote proposed versus completed work? What 
is the intellectual merit? How is project sponsor discussed?

Pay special attention to the verbiage used in successful 
applications and think about how your proposal will 
compare to the others if they were in the same group. For 
instance, characterizing your future work as “extending” 
or “generalizing” other work (whether yours or someone 
else’s) without support or explicit details can make it seem 
like you really don’t have anything novel to contribute.
4. I engaged in Broader Impacts.
Intuitively one ought to propose things you will do while 
you are on the fellowship that will have Broader Impacts. 
However, since you will likely be pursuing your fellowship 
at an institution you’ve never been to before, it is tough to 
say anything meaningful about either (a) what's possible 
in this new environment or (b) what impact such things 
might have.

However, like most things, the best indication of future 
success is past success. In graduate school, I was fortunate to 
be given support from my advisor and graduate program to 
develop programming to create community among gradu-
ate and undergraduate students with the goal of broadening 
participation for women and minorities. Getting involved 
in these projects early helped give me a clear perspective 
on what I enjoyed and what I saw my contributions to be. 
As a graduate student there are often lots of ways for you to 
get involved in whatever you are passionate about—AMS, 
AWM, and SIAM Student Chapters; REUs; Directed Read-
ing Programs; Math Circles, Camps, and Festivals; adjunct 
teaching; etc.

This work should not distract you from your research, 
but it is important to be honest with yourself on both sides. 
Ask yourself: Are you doing so much that you do not have 
time or energy for research? If so, find a way to prioritize 
your research—that is the thing that will allow you to stick 
around to continue to make Broader Impacts. However, 
the tougher question may be: Are you really working on 
research and being productive with all of the time you do 
have? Contributing to your community will be part of your 
future job if you choose to stay in academia. First, service 
is a required and important component of many tenure 
application materials. Second, Broader Impacts are an im-
portant component of all NSF grant applications, and in 
many departments, you will be expected to apply for these 
grants regularly whether you want to or not. You might 
as well find out what you enjoy now while the stakes are 
relatively low. There is a “sweet spot” I try to achieve. If I 
do not have enough to do I get a bit directionless. On the 

other hand, if I say “yes” to every act of service asked of me 
I can run myself ragged and have no energy for research.

My Broader Impacts did not change significantly be-
tween my first application and my second. However, I did 
pare them down. In concrete terms, the Broader Impacts 
section in my first application occupied about half a page; 
and, in the second, it occupied a small paragraph that was 
closer to a quarter of a page. I included fewer items which 
were in my more distant past. This was tough, but to be 
honest, I did not engage in these activities for the NSF.

Women and minorities in general are asked to do far 
more service than others and they are often penalized for 
working on these projects rather than on research. We all 
have 5 pages for our Project Description and the more you 
say about your Broader Impacts the less you are saying 
about the Intellectual Merit. While program guidelines state 
that neither of these aspects is of greater weight, they are, 
in practice, not evaluated by similar standards of rigor. As 
I later became aware, while it is important that you have 
Broader Impacts, there is less of a hierarchical ranking 
about which are better or how many you need or what 
amount of time they should occupy. I am not providing a 
normative statement here but only a descriptive one.

What I Learned the Second Time Around
My sponsoring scientist and institution did not change 
between the first and second round and my relationship 
with my potential sponsor did not change much in the year 
between my first and second application.

In the year between my applications I had time to think 
about what I had proposed from a more detached perspec-
tive. As I mentioned previously, being able to come back 
to your application after taking time off is truly beneficial. 
What you saw a year ago as “as good as you could possibly 
do” is now kind of crappy. This is a measure of growth. 
The year between my applications was a year spent devel-
oping my ideas more deeply and adding new ideas to my 
application.

The major difference between my first and second ap-
plication was the number of projects that I proposed. In 
the first round, I really only proposed one project. It had 
many steps and potential publications along the way but 
most of them were not very explicit. In my second round, 
I basically added a whole other aspect of my proposal 
that likely could have been its own application. Instead 
of having only one explicit conjecture, this proposal had 
five. In the second proposal the sectioning made very clear 
that there could be seven different publications from the 
proposal. While it is good to have some unifying theme or 
picture, the entire proposal does not have to work toward 
answering one question.

Between my two applications, I also sat down with some-
one who had served on NSF panels before. This person gave 
me details about the review process which helped me fine 
tune aspects of my application.
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Pathways to a 
Career Outside of 
the Academic Silo

Elizabeth Munch

Whether we want to believe it or not, the world is changing. 
In particular with the rise of data science and high perfor-
mance computing, there is no longer1 a single career path 
to be followed by a person with a Mathematics PhD.

I earned my PhD from a traditional math department 
in a traditional university. I held a tenure-track position 
in a traditional math department, and still have a 30% 
appointment in one. I was expected to do only traditional 
math research. It was quickly made clear to me in my first 
years of a tenure-track job that I would need to conform 
to the template of what those institutions thought of as a 
“real mathematician,” or I would fail. For me, satisfaction 
in my career came after my move to a new, interdisciplinary 
department, with all its freedoms and challenges. For some 
of you, the tenure-track position in a math department is 
your personal definition of success. I truly believe there is 
much good work to be done from that vantage point, and 
I wish you the best of luck. However, this advice is not for 
you. I’m writing to offer advice to those looking to make 
their mark outside of any single academic silo by looking 
for a career path in an interdisciplinary department, pro-
gram, or institute.

No advice is unbiased. My advice comes, admittedly, 
with a heavy dose of survivor bias. Additionally, my axes of 
privilege, including being white, cis-gender, heterosexual, 
and having a big-name university attached to my PhD, have 
yielded a great deal of something-that-looks-like-luck over 
the course of my career. Finally, I only have experience in 
the American academic system; what I say may be wildly 
incorrect outside of the United States. Given these limita-
tions, I invite you to sit with my advice, and if it doesn’t fit 
for you, I encourage you to simply dismiss it.

Perhaps you are nearing the end of your PhD program 
in a math department and are working to envision where 
you can see yourself and your career in the next five years. 
Perhaps you are excited about the possibility of research 
in an interdisciplinary setting, but are trying to figure out 
how to get there or what that would look like. This advice 
is for you.

Elizabeth Munch is an assistant professor in the Department of Computa-
tional Mathematics, Science, and Engineering (CMSE) and the Depart-
ment of Mathematics at Michigan State University. Her email address is 
muncheli@msu.edu.
1Nor was there ever.

DOI: https://dx.doi.org/10.1090/noti2519

While having time for my ideas to develop was invalu-
able, it would have been worthless without also having my 
“failed” application. I had already done all the leg work 
that causes so much unacknowledged anxiety: contacting 
my sponsor and letter writers, formatting my biographical 
sketch, and, especially, writing a first draft.

Receiving a rejection when you put so much time and 
effort into something is difficult. However, the effort is 
exactly what makes the process worth it. I did not see it 
at the time, but all the work I put into the proposal was 
me being a successful mathematician. Putting all of my 
best ideas out there, pushing myself to learn more, trying 
to find answers to the questions that drive my research, 
and communicating that vision to my peers—that is what 
success feels like.
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What Options are Available?
An interest in something-other-than-tenure-track-math 
does not necessitate leaving academia. There has been a 
steady rise in interdisciplinary departments and institutes 
inside of academic settings which are not “math depart-
ments” or even “applied math departments” per se, but in-
stead are created to foster interdisciplinary collaborations. 
These fall roughly into two categories. The first, like the 
Department of Computational Mathematics, Science, and 
Engineering (CMSE) where I am at Michigan State Univer-
sity, is just that: a department. We have our own faculty, our 
own undergraduate and graduate students, our own tenure 
committee, our own self-determination.

Some of our faculty have PhDs in Mathematics, but 
others have PhDs in Physics, Biology, Statistics, and many 
flavors of Engineering. For me, a primary appeal of being 
our own department is that tenure expectations are tied to 
measures not usually celebrated in your run-of-the-mill 
math department. The expectations in my interdisciplinary 
department naturally align with the goals I have for my 
own work. I am expected to form interdisciplinary collab-
orations and publish across boundaries. I am expected to 
create and share open source code that could make the work 
we do available to others. I am expected to teach less, but 
to also bring in more grant funding to support graduate 
students. I am expected to find ways to communicate math-
ematics to colleagues without a graduate-level mathematics 
background. In short, the tenure expectations reflect what 
I already wanted to do. We are by no means the only such 
department: other examples include the Halıcıoğlu Data 
Science Institute at UC San Diego and the Department of 
Scientific Computing at Florida State University.

A second category of collaborative, interdisciplinary 
academic settings is that of non-departmental level insti-
tutes. Some examples of this include MIDAS at University 
of Michigan, and the Oden Institute at the University of 
Texas. However, rather than having tenure-granting status, 
these institutes bring together interdisciplinary-minded 
faculty, who are still granted tenure within traditional 
departments where their primary appointments are. One 
advantage of this arrangement is that a faculty member 
can retain a more traditional job title while still accessing a 
setting that actively fosters interdisciplinary collaboration. 
One challenge of this arrangement derives from its spread 
across campus, both in terms of physical office space and 
in terms of expectations. Then again, now that we live in 
a Zoom-infested world, the geographic challenges are no-
where near as insurmountable as they may have been even 
a few years ago. However, issues that should be thought 
about in advance include regular offering of courses; which 
department these are associated with; and how students 
who are spread across many degree programs don't get to 
interact with each other as much.

Use any and all resources to see what options are 
available to someone with a math PhD. Make use of your 

university’s career office before you need it. They can help 
you build resumes and career documents long before you 
are setting them up in panic mode. The earlier in your PhD 
that you can get a sense of career options, the more time 
you have to seek out preparation and opportunities that 
will set you up for those positions. The first options that 
may come to mind for those trying to find alternatives to 
the usual career path are things like research positions in 
industry. Another exciting set of options are government 
research labs (e.g., Pacific Northwest or Sandia National 
Laboratories), which offer some potential for a middle 
ground between an industry and academic setting at the 
expense of limitations in terms of visa status.2 Having no 
experience in those settings myself, I can do little more than 
encourage you to reach out to people in jobs that look like 
what you want at those places to understand more of what 
those career options look like.

Preparation Before You Go on the Market
Be active about obtaining experience and skills that will 
enable you to compete for the kind of job you want. For 
jobs in interdisciplinary departments or institutes, no 
amount of coding experience is too much. I won’t wade 
into the which-language-is-better debate3 because once 
you learn one computer language and start wrapping your 
brain around basic algorithmic and data structure tools, 
transferring your skills to whatever language your future 
job demands will be fairly straightforward. Even for the 
die-hard pure mathematicians out there, the ability to 
code can open so many research doors, particularly for 
automated testing and development of conjectures. Basic 
programming should be a required skill for every mathe-
matician, but I digress. If possible, look into documentation 
that you have acquired these skills, such as online course 
certificates, that make a bigger impact on your CV than just 
saying you can, e.g., code.

The next thing to do is get out of the math building. Do 
you have a particular application area you are interested 
in? Start attending talks in that department. Maybe even 
try to attend an interdisciplinary conference. No, you likely 
won’t understand everything in the talks, but you can start 
to get a sense of what people in the field are interested in; 
the problems they focus on; the vocabulary they use to 
convey their meaning. I have found that interdisciplinary 
research is often a matter of learning something close to a 
new language in order to translate across fields. We math-
ematicians are trained to have a precision in our language 
based on definitions we all have agreed upon. But, this 
concept is just as true in other fields. My favorite issue on 
this front has been trying to discuss “homology” with biol-
ogists. Sure, you’re reading the Notices so if you know what 

2For US labs, and depending on the lab and project, there might be restric-
tions requiring US citizenship or permanent resident status.
3The answer is Python, don’t @ me.
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the talk is accessible to non-experts. That way, you have 
people engaged at the beginning so that they can see the 
big picture, as well as the long game in your conclusions.

Questions You Should Be Asking
So you’ve gotten the interview! Congratulations! The 
biggest thing to do now is make sure you ask A LOT of 
questions about expectations for the position. Once you 
leave the standard departmental structure, there are many 
potential surprises as the program might not be run the 
same way your PhD-granting department was run. I’ll 
speak to a few of the learning curves I experienced when 
transitioning from having a tenure-track job in a math 
department to my tenure-track job at CMSE.

The first major difference was graduate student training 
and recruitment. In mathematics, we generally accept a 
student to the department without an official advisor. We 
train them for two years or so by giving them a heavy course 
load to gain a broad mathematical foundation. Sometime 
in the second year, the student starts doing some reading 
with a potential advisor, and then assuming all parties 
agree, the official advisor relationship starts after that. In 
my department, however, students matriculate directly 
into an advisor’s group. The upside of this arrangement is 
that my graduate students can start with focused research 
and training from the beginning. The downside is that if a 
student comes into graduate school the way I did (that is, 
with a very different view of the kind of research I wanted 
to do4 than what I actually ended up doing), there is a bit 
more friction in terms of changing their direction. This is 
mitigated by having a collegial department where students 
switching among groups is viewed as a natural part of the 
graduate program rather than a failure on the part of the 
student or advisor.

To this end, the other major difference I found when 
moving to CMSE was a difference in how funding worked. 
Because mathematics departments often get a great deal of 
funding through service courses such as Calculus, student 
funding largely comes in the form of TAships. Because the 
funding is not tied directly to a funded grant, a student 
shows up in your office, and you start reading some things 
together that seem interesting and develop a research proj-
ect from that. On the other hand, at CMSE we have a more 
limited allotment of TAships for students (although this 
is changing with the rise of the very popular data science 
courses), so I am expected to bring in more grant money 
in order to ensure funding for my group. This also means 
that student projects are more tightly aligned with the 
proposals that have been funded. I by no means view this 
as a bad thing, since it has enabled me to develop a clearer 
view of the big picture. Because I have the grant as a tem-
plate, I can hand a new student a decently detailed research  

4I didn’t even know that my research field existed until several years into 
grad school.

“homology” means, you have a very specific definition in 
your head. But if I stand up and use the word in front of a 
bio conference, they think that I’m discussing the idea that 
bat wings and human arms are inherited from a common 
ancestor. To this end also, if you can find a grad student 
colleague in your applied field of interest, take them out 
for coffee. See if you can explain your research in a way that 
they can understand. See if they can explain theirs to you 
while you try to understand the big picture. In the future, 
developing collaborations might be tied to being able to 
have discussions like this with people who don’t all start 
with the same vocabulary list and/or definition, so practice! 
If you can manage it, having a project (even a small one) 
across disciplinary boundaries can go a long way towards 
showing your potential for working with people in these 
sorts of fields and will definitely strengthen your CV. But, 
even if these discussions lead you to a place where you can 
give a sense to someone outside of the math department 
what it is you study and how it might be utilized, it will 
be time well spent.

Preparing Documents and Interviews 
Again, due to my experience within the US academic sys-
tem, I will focus on advice for the documents and interview 
experience for a non-traditional academic job. The docu-
ments required for many of these jobs will be the same as 
for a standard math department job: research, teaching, 
and DEI statements. The biggest unwritten difference comes 
in the research statement, where you need to ensure that 
you are writing for the correct audience. For instance, in 
my department, the faculty have PhDs in many different 
fields, so explaining the mathematical advancements I have 
made, and especially placing them in a context that they 
can understand, often requires a change in vocabulary and a 
view towards big picture explanations. I want to emphasize 
that this is possible without a loss of rigor, and practicing 
this skill has made my research stronger by giving me a 
broader perspective of where I want to go. As a bonus, in-
terdisciplinary or not, you will surely use these skills on any 
grant application you submit. For the teaching statement, 
you should be sure to do some homework to get a sense 
for what classes are taught in the department to which you 
are applying, especially for these new programs that are 
coming into their adolescence with the development of 
new interdisciplinary courses and majors.

My advice when it comes to the interview is similarly 
related to communication. You will be talking to people 
with very different backgrounds. In advance of your inter-
view, make sure you have prepared a few versions of your 
research “elevator pitch”: a version for experts, a version for 
non-expert mathematicians, and a version for non-mathe-
maticians. Having a solid place to start in these discussions 
can lead to very productive conversations. My advice for 
your job talk is similar, where I recommend giving your 
talk in a way that all but (at most) the middle third of 
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project outline with key references and goals already in 
place, allowing them to get off the ground much faster.

Finally, a critical issue to explore in an interview is 
tenure expectations. In my experience, when working in 
an interdisciplinary space, unwritten rules and implicit 
assumptions about what it means to be a “successful” fac-
ulty member vary wildly across disciplines. To any extent 
possible, your goal should be to have a written under-
standing of expectations, particularly with respect to joint 
appointments, course load, funding, publication rate, and 
graduate students. This can be incredibly helpful towards 
guiding your focus over the tenure-track period, and ensure 
no one ends up surprised or angry at the end.

A Conclusion and a Call for Change
Moving to a non-traditional position was absolutely the 
best decision for my career. These sorts of positions are not 
for everyone, but building something new while pushing 
out the boundaries of what academia can be has been an 
incredibly gratifying experience. We need more mathe-
maticians working across disciplines to bring the joy of 
mathematics and the training in logical thinking outside of 
the math department to ensure better numerical literacy, to 
create more informed citizens, and catalyze new knowledge 

in science. I know standing at the precipice of your PhD 
is a scary place to be when it’s not clear where this path 
will take you next. Whether you end up inside or outside 
of academia (with a particular emphasis on the fact that 
taking jobs outside of academia is no less of a success than 
taking an academic job), know that your training gives you 
the potential to do great things! I wish you the best of luck 
on your exciting journey!

Credits
Photo of Elizabeth Munch is courtesy of Harley J. Seeley/

MSU College of Natural Science.

Elizabeth Munch

Graduate Student Members: Is this 
your big year? If you are gradu-
ating this year, take advantage of 
your discounted AMS Introductory 
Membership rate next year! Watch 
for your upcoming member ship 
renewal coming this August and 
receive 25 AMS “points” when you 
renew as an Introductory Member.*

*Apply points toward the purchase of AMS products, 
including books, or even as a partial payment toward your 
next membership dues.

Graduate Student Members: Is this 

Graduation: an intersection of

who you are and who you will become

The AMS will continue to 
support you on your journey!
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John Horton Conway
(1937–2020)

Alex Ryba with contributions by R. T. Curtis,
Richard Borcherds, Manjul Bhargava,

Dierk Schleicher, Jane Gilman, Aaron Siegel,
and Louis H. Kauffman

Figure 1. John Horton Conway in August 2012 lecturing on
FRACTRAN at Jacobs University Bremen.

John Horton Conway (1937–2020) was one of the great
mathematicians of the past half century. John was a trail-
blazer with a sixth sense for the rich lodes where newmath-
ematics hid, and when he intuited a prospect he worked
very hard to reach the truth. The paths that he alone dis-
cerned and opened are now followed as the natural and
simple approaches to wide expanses of mathematics. John

Alex Ryba is a professor of computer science at Queens College, CUNY. His
email address is Alexander.Ryba@qc.cuny.edu.
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was a daring mathematician, who tackled problems that
others avoided. He was a generous mathematician, who
was not satisfied until others saw what he saw in mathe-
matics.

John was a trailblazer among mathematicians. John’smath-
ematical legacy is so extensive that it is difficult for any
individual to explain it fully. It is as if each of us has
at some time stood with John on the peak of some high
mountain, yet all the other heights which John scaled re-
main blurred by distance. Wikipedia states correctly that
John was “active in” the theory of finite groups, knot the-
ory, number theory, combinatorial game theory and cod-
ing theory, that he “made contributions” to recreational
mathematics, and that his “major areas of research” also
included geometry, geometric topology, algebra, analy-
sis, algorithmics, and theoretical physics. (The Wikipedia
author should have included logic, but however far the
list extended, something would undoubtedly have been
missed.)

John always reached the heights and changed the land-
scape, however broad the extent of his work in mathe-
matics. His influence has been momentous and lasting.
Aviezri Fraenkel concluded his review of Winning Ways
with a prediction that has certainly proved true over more
than thirty five years since it was written. He wrote “It
is likely to remain an eminent leader in this field for
many years to come.” Don Knuth commented “Although
John was a pure mathematician he covered so many
bases that I’ve cited him more than 25 times for different
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contributions to The Art of Computer Programming. I ex-
pect the citations to continue long after his death, as hap-
pened to Elvis.” John opened new paths where many of us
have followed andworked. His vision was unexpected and
unusual, and mathematicians responded to it with a reso-
nance of attention, feeling, and imagination of their own.
After his proof of Morley’s theorem prompted a spate of
competing proofs, John explained to me that he “liked to
jump into an area and create enough of a splash to attract
other mathematicians” and he “would then leave the wa-
ter.”

My own history with John Conway began in Cambridge
in the early 1980s. At that time John had been in Cam-
bridge for about a quarter of a century. He had come there
at the age of eighteen, after being born and raised in Liv-
erpool, having excelled in all subjects at the Holt High
School, and having already started to investigate mathe-
matical questions that went far beyond normal school-
work. In Cambridge, he became a graduate student of
Harold Davenport, and then a faculty member. He left
Cambridge in 1986, accepting the John von Neumann
Chair of Mathematics at Princeton University. John retired
fromhis position at Princeton in 2013, but he never retired
as a mathematician.

I was drawn towards John Conway and his ATLAS
project, which was coming to its conclusion just as I
was studying group theory as a graduate student of John
Thompson. The ATLAS is a tabulation of facts about the fi-
nite simple groups. John explained that each sporadic sim-
ple group could only exist because ofmyriad unlikely num-
ber theoretic, combinatorial, and geometric coincidences.
Any question of existence of a sporadic could be all too
easily killed by the tiniest of oversights in the classification,
which had been finished just recently. John held out hope
that such oversights had been committed and that addi-
tional wonderful sporadics might have been missed. I re-
call sitting with John one night and running computer ex-
periments to investigate a new group suggested by Richard
Parker. John always liked to use calculation to hone his in-
sight into problems. That night, he sat behind me watch-
ing the machine’s answers. As dawn broke, we realized
that the group was a large orthogonal group rather than a
new sporadic—the hunt was in vain.

John stalked the Monster group, but always from a dis-
tance. As he explained his latest ideas about hyperbolic
reflections or Lorentzian lattices, distant glimpses of the
Monster would appear. In the summer of 1983, John
seized on a loop double cover of the Golay code, built
by Richard Parker. John saw that the loop offered a way
around the sign problems that dogged Bob Griess’s con-
struction of the Monster. Within two weeks, John had

a much simplified construction, albeit one that followed
close to Bob’s original path.

John liked to say that he had written eleven books, one
of which had been translated into eleven languages. Three
of his most important books were finished in the short
period between 1982 and 1988. The very different sub-
jects of these books demonstrate John’s range as a mathe-
matician and also show off different aspects of his person-
ality. Winning Ways, published with Elwyn Berlekamp
and Richard Guy in 1982, was a lighthearted humorous
treatise on mathematical games and combinatorial game
theory. Three years later, the ATLAS of Finite Groups ap-
peared (coauthored by Rob Curtis, SimonNorton, Richard
Parker, and Rob Wilson). Every mathematician whose
work touches finite simple groups keeps a copy of John’s
ATLAS on their desk. After another three years, in 1988,
John and Neil Sloane published Sphere Packings, Lattices
and Groups. A review by Gian-Carlo Rota stated: “This is
the best survey of the best work in the best fields of com-
binatorics written by the best people. It will make the best
reading by the best students interested in the best math-
ematics that is now going on.” John liked to quote this
as the “best” review. However, even the best review under-
states the book’s impact: it was not just a survey but a book
filled with important and very clever original discoveries.

The Conway sporadic groups were received as a great re-
sult in 1968. John told me that after he found his groups,
he discussed them at length with John Thompson. As
Thompson applied a fairly straightforward representation
theoretic argument, he realized that John Conway was not
following. “You don’t know any of this,” said Thompson,
apparently shocked. Thompson, who was the world’s fore-
most group theorist, felt that it was worth giving John Con-
way a crash course in representation theory. John Conway
and John Thompson had very different group theoretic in-
terests, but each had tremendous respect for the other. Yet,
John Conway had been very much a courageous outsider
to group theory when he constructed his famous groups.

John was a daring mathematician. John was brave in
that he tackled questions from which other mathemati-
cians would shy away. He constructed his sporadic groups
by finding the automorphism group of the Leech lattice, a
problem that others avoided because there were no stan-
dard tools to apply. John also took on other types of or-
phan problems, including problems that held the threat
of undecidability, problems where a solution seemed un-
likely, and problems that had previously been solved.
None of this mattered to John—if the problem attracted
him he attacked it. He turned undecidable problems into
new models of universal computation, created new tech-
niques where methods had not existed, and obtained new
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insights into how some of the subtle theorems of mathe-
matics work.

John liked packing and tiling questions, which are im-
posing because they are so far out of the scope of standard
machinery. For instance, John and Sal Torquato discov-
ered the best known packing of regular tetrahedra—the
least spherical and trickiest to pack of the platonic solids.
Before John’s work, the impression was that anyone look-
ing at these questions would be on their own and would
have to live off their wits, competing on equal terms with
Gauss and Euler and other great mathematicians of his-
tory. Particular instances of problems that are mathemat-
ical but outside the scope of mathematical techniques of-
ten become recreational puzzles. John relished this sort of
challenge and approached these problems as a mathemati-
cian, always alert to general ideas and techniques.

The divide between recreational and research mathe-
matics came up in connection with John more often than
with most mathematicians. The difference between the
two is something a mathematician knows when they see it,
and many mathematicians are attracted to both. Yet, most
mathematicians cannot bring the two together. John him-
self was an impartial judge of the many sides of his work.
In his heart there was no difference between recreational
and serious, professional mathematics—all that mattered
to him was an interesting question to be explored. How-
ever, he was well aware that tomuch of the world there was
a difference. He often said how grateful he was to be paid
for what he would have otherwise done for free (mathe-
matics). He wondered whether he looked like someone
who was earning his pay since he was so obviously enjoy-
ing himself (rather than “working.”) This apprehension
ended with the fame from the “great” discovery of the Con-
way groups in 1968. Still, later, John was relieved to hear
Frank Adams, upon whom John looked as an intimidat-
ingly perfect model of a serious research mathematician,
praise him as a mathematician with “fire in the belly.”
When John moved to Princeton, he was put at ease by
the friendship of Bill Thurston. Their casual discussions
quickly turned into orbifold notation, a piece of beautiful
and very serious professional mathematics. Joe Kohn, a
former department chairman at Princeton, remarked that
John’s playful approach revived a long-lost atmosphere in
their common room.

Having attained “security” with the discovery of the
Conway groups, John went back to studying partisan
games and structures that could exhibit universal compu-
tation. He rapidly produced the Game of Life, his the-
ory of combinatorial games, and within it the Surreal
Numbers. John’s play often led to discoveries that be-
came important as new research areas, and John never
stopped playing. Even at the time of ATLAS writing, he

temporarily dropped all interest in the sporadic groups
when the Look and Say sequence reached him. While it
was only a “guess the next term” puzzle for other mathe-
maticians in Cambridge and around the world, John no-
ticed unexpected structure in the terms of the sequence.
This appears in John’s paper “Audioactive Decay,” a paper
that is considered recreational but it is full of imaginative
mathematics.

John was always attracted by patterns and structures
and would investigate these whatever their importance or
origin. He could uncover mathematical structure even
where such structure had no right to exist, as in his sim-
ple Doomsday Algorithm to determine the day of the week
for any date in history. A much more important example,
Monstrous Moonshine, was discovered with his ATLAS
co-author Simon Norton. Their Moonshine conjectures
gave structure to surprising numerological connections be-
tween the character theory of the Monster group and the
theory ofmodular functions. Moonshine has heavily influ-
enced research in both fields (including the Fields Medal-
winning work of Richard Borcherds). Today, these conjec-
tures play an important role in physics, inspiring a con-
tinuing wave of discoveries of truly surprising connections
between group theory and analysis.

The Game of Life was John’s most famous recreational
discovery. Now it is fifty years old and continues to
fascinate mathematicians and non-mathematicians, while
beautiful patterns that come out of the game have moved
it to an art form enjoyed by thousands. Life added an im-
portant impetus to the theory of cellular automata—it met
John’s goal of making a simple cellular automaton that
could perform universal computation.

The Collatz conjecture (the 3𝑁 +1 problem) must have
been known to John when he was young. He would have
wondered about a proof of the conjecture, but he also
weighed up the idea that there is no proof. He considered
more general problems of the same nature, and created
his Fractran game, which he showed does encode univer-
sal computation.

The sequence of Subprime Fibs was one of John’s more
recent inventions—the name dates it to the 2008 financial
crisis. He started with a pair of terms, traditionally 1 and
1, and constructed further terms by adding their two pre-
decessors and dividing by the smallest prime factor of the
sum, whenever it is not a prime itself. Whereas the normal
Fibonacci numbers grow in an obvious way, a Subprime
Fib might be larger than, smaller than, or in between its
predecessors. John did many calculations, and asked me
to run computer experiments with the sequence. I plucked
up the courage to ask him why he was so interested in
something that was so clearly stupid (but rather addictive).
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John answered right away. He explained that almost all
mathematical questions cannot have mathematical solu-
tions (they are unprovable) but the miracle is that mathe-
maticians recognize the ones with solutions and work on
them. Hewas captivated by phenomena like the Subprime
Fibs that might lie on either side of the borderline. He
explained his lifelong search for simple structures that ex-
hibit universal computation. The Game of Life had been
a fruit of this search. In John’s opinion, a sequence would
either have a mathematical explanation or could encode
universal computation. The Subprime Fibs, for which it
is so hard to understand even the most basic questions
like whether they are bounded, ought to provide a model
of the latter. Other mathematicians avoid things like the
Subprime Fibs, precisely because they are looking for solu-
tions. John’s lifelong courage to face problems rather than
collect solutions led him to many inventions.

More recently, over the last dozen years, I spent about
a day of every week in Princeton with John. Mathemati-
cal problems would emerge whenever he came across an
unusual pattern, structure, or idea. The utility or impor-
tance of a problem did not ever concern him; he expected
to find interesting mathematics wherever he found inter-
esting structures. As John grew older, his greatest disap-
pointment was that he had not found a way to calculate
with the Monster. He was certain that the ability to calcu-
late in the Monster would be the first step towards really
understanding it. In their tributes, Rob Curtis and Richard
Borcherds discuss two big breakthroughs with the Conway
group: Rob explains John’s pleasure when they discovered
a good way to calculate with it. That advance allowed John
to grasp the group, eventually leading to the simple defi-
nition praised by Richard. John wanted to achieve some-
thing similar for the Monster. He said that the method
described in his paper with Arvan Pritchard needed just
one lustral idea to fit the bill. Unfortunately, more than
thirty years passed without that idea.

I always found it strange that John viewed the Surreal
Numbers as his most important discovery. The theory
arose from John’s more general theory of partisan games—
John noticed that certain games have numerical values and
turned this around to view all numbers as games. The re-
sult was a starkly beautiful definition, whose origin as a
recreational topic was invisible in the final theory. The
Surreals are among the least Conway-like of his discoveries
(in my opinion). It is great mathematics, clearly done by a
great mathematician, but it has none of the startling com-
binatorics that drives so many of John’s other inventions.
I believe that John rated the theory highly in deference
to the mainstream valuation, taking the side of serious re-
search mathematics (but perhaps also secretly happy that
it had come out of a completely recreational investigation).

John liked to explain that he was two handshakes away
from one of his heroes, Georg Cantor. (Both had met Ce-
cilia Tanner, the daughter of William and Grace Chisolm
Young.) John would add that if only the distance had been
one handshake, he would have told Cantor about the Sur-
real Numbers, and perhaps he might have overcome Can-
tor’s rejection of theories of infinitesimals.

I think of the groupoid 𝑀13 as an invention that John
did not need to sign—it could not have come from any-
one else. It is a piece of serious mathematics (although,
by John standards, not especially important mathematics)
that becomes interesting and memorable because of its
link to a recreational puzzle. John was intrigued by over-
lapping subgroups in the sporadic group 𝑀12 and the lin-
ear group 𝐿3(3). These had been noted by others and it was
well known that a larger group would not explain them.
However, John was persistent, he was not one to let a trail
of evidence go cold. Eventually, he realized that he could
form a groupoid (a structure in which some pairs of ele-
ments do not have a product) that exhibited 𝑀12 as a sub-
group and 𝐿3(3) as automorphisms. As he experimented
with the groupoid, he made a fantastic observation—its el-
ements can be viewed as the positions of a version of Sam
Loyd’s 15-puzzle, played on the projective plane of order
3. In John’s puzzle, counters occupy 12 of the 13 points of
this plane. A legal move takes place on any of the 4 lines
through the unoccupied point. It moves one of the coun-
ters on the line into the hole and switches the other pair
of counters on the line. This wonderful and simple puzzle
encodes all of the complexity of the sporadic group 𝑀12.

John’s inventions often had the simplicity that comes
from insight into essence. All mathematicians search for
this simplicity, but it can only be unlocked by the right key
ideas. John was someone who would discover these ideas.
John pursued and prized subtle results and—although he
was well aware of standard proofs—he would deliberately
consider unconventional approaches. He was very pleased
with his proof of quadratic reciprocity—an argument that
did not refer to either squares or primes! Although John’s
successes depended on his great imagination, they also
required determination and effort. When I worked with
John, I came to see that he was not satisfied when a prob-
lem was solved. He insisted on looking further to get a bet-
ter feeling for the entire situation. In particular, whenever
we had a choice of two successful options, he would pause
to see if either had any advantage. Surprisingly, often one
would prove to be a little better. Once, as he pushed an
argument in a completely unexpected direction, I asked
“Where did that come from?” He replied quoting Glen-
dower: “I can call spirits from the vasty deep.” He was
disappointed when I did not respond at once: “Why, so
can I, or so can any man. But will they come when you
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do call for them?” He explained that Hotspur’s reply well
summarized his feelings (and Shakespeare’s too). He con-
veniently dodged the question of how he had just sum-
moned a spirit.

John’s mathematical thought was a force, and he
wielded it with composure. Physical circumstances
around him were only constraints. On a February day in
2016, he left Princeton to give a colloquium talk. At that
time he was already in his late seventies and moved only
with difficulty after a series of strokes some years earlier.
The colloquium talk went well, but because the weather
was deteriorating he was dropped off at the airport imme-
diately afterwards. However, as snow fell heavily, his flight
was repeatedly delayed until eventually the flight was can-
celed as the airport closed for the night. John carried no
real money, had no credit card and could not book a ho-
tel room. Instead, he took a free shuttle to the station
downtown, where he planned to stay for the night. Un-
fortunately, at some point, the police cleared the station
and John found himself outside in a heavy snowstorm.
A passerby suggested that he could spend the night at a
restaurant for the price of a coffee. The next morning,
John returned to the airport and flew back to Newark. It
was only then, when help was no longer needed, that he
called me and other friends to tell the tale. The tale had
become a solved puzzle that he wanted to explain. His
own hunger, cold, fatigue, and danger never registered as
important, and were not told. The force of John’s thought
made things happen John’s way, and took us with him.

John was a generous mathematician. Generosity was not
his virtue but his business. In fact, John’s business was
mathematics, and he did it not only by discovering results,
but by making us do his mathematics. John’s generos-
ity was in his making it his business to make us do his
mathematics. He drove other people, feeding them ideas,
prompting them to think, pushing them in useful direc-
tions. John knew no higher priority than to attend to any-
one who wanted to learn mathematics. He would design a
route through his ideas and guide his companion, to bring
them to his own point of view. John lived to do mathe-
matics, and his mathematics was done not when it looked
good on paper or in his own mind, but when it found its
proper place in the minds of others. He held himself to
this obligation to all of his audiences: doctoral students
and professional mathematicians, readers, conference au-
diences, classes, summer camps, or breakfast time com-
panions at Small World Coffee in Princeton. Jane Gilman
recalls the electricity of co-teaching a course on Geome-
try and the Imagination with John, Bill Thurston, and Peter
Doyle. Louis Kauffman recounts how a simple conversa-
tion with John changed his outlook on knot theory, and
Aaron Siegel explains that John reshaped the perspective of

the coauthors of Winning Ways. Time spent doing mathe-
matics with John felt as if it was spent doing mathematics
as John.

Articles in this tribute remember John as a friend. John’s
graduate students, whether his own (like Rob Curtis and
Richard Borcherds) or adopted (like Manjul Bhargava and
Dierk Schleicher) are well aware of the significance of
John’s presence in their lives. These eminent mathemati-
cians, who have a measure of John’s greatness as mathe-
matician, have emphasized not the mathematics that John
made but John’s influence that helpedmake them asmath-
ematicians. John’s generosity eclipsed his greatness.

John’s friend and (adopted) student Simon Norton
(1952–2019) had extraordinary mathematical ability, but
needed John’s guidance to flourish. Together they pro-
duced exceptional work, which required their combined
talents. This included the Moonshine conjectures and
other fundamental results about the Monster. However,
when Simon remained on his own after John left Cam-
bridge, he seemed to lose his momentum. Simon retained
his astounding brilliance to the end of his days, yet his
work never approached its former significance, once he
lost John’s immediate counsel. While John let his choice
of problems be driven by the thrill of exploring interesting
structures, he had an eye so good that his chosen problems
did lead to beautiful and important solutions. Everything
that John chose to look at turned into something interest-
ing. Without John’s unfailing sense before him, Simon
was like a blind giant whose strength was sadly undirected.

Another unusual Cambridge mathematician who pros-
pered under John’s guidance is Richard Parker. Almost ev-
ery day Richard would appear with a new “loony” idea,
and John would listen with half an ear. On rare occa-
sions John heard something interesting and those ideas
turned into important mathematics. For instance, Richard
proposed that the 23 Niemeier lattices must correspond
to the deep holes in the Leech lattice (of which only a
few were conjectured at the time). This led to their im-
portant classification of deep holes and calculation of the
covering radius of the Leech lattice. Later, Richard’s pro-
posal for a double cover of the Golay code turned in John’s
hands into a simple construction of the Monster group.
Richard’s imagination was overwhelming—John’s imagi-
nation stood firm in judgment to regulate Richard’s.

John’s books and papers uncovered many different sub-
jects and were written in different styles with different in-
tended audiences. John was always a meticulously consci-
entious author. He wrote with a feeling of responsibility,
almost affectionate concern, for all of his (unknown) read-
ers. He liked to say that “any extra time spent writing is
justified if it can save any time at all for the potentially infi-
nite number of future readers.” He insisted on developing
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notation to encapsulate rules, and to push others to work
in a particular way. Of course, such notation empowers
its users and feels obvious once it exists, but its creation
is a task that requires John’s sort of rare touch. John was
also famous for the names he introduced for mathemati-
cal objects and concepts. He called this his “colorful word
trick.” It was one of the ways that he made certain that his
audience noticed essential ideas. We could hardly imag-
ine the Free Will Theorem under any other name, yet at
the time when John named it, even his coauthor Simon
Kochen needed some time to get used to it.

John’s lectures were deliberately unrehearsed and ap-
peared improvised. Nevertheless, John explained that they
rested on years of contemplation. While audiences were
always happy, John could be his own sternest critic. He
opened a Moonshine meeting in Edinburgh in 2004 with
a lecture on his simple construction of the Monster. I left
the talk pleased to have followed the ideas of one of the
most complex constructions in group theory. I believe
that others in the audience felt the same way. However,
John was unhappy. He had wanted not only to impart
the idea but to carry his listeners through the intricacies
of the construction. He insisted that the organizers sched-
ule a repeat. Between the talks he was closeted with eager
interested participants, testing different explanations. Ev-
eryone attended his second talk. I left it with the feeling
that I had seen the Monster through John’s eyes.

I well remember my return from that Edinburgh con-
ference, when I happened to be on the London train with
John. He explained his ideas for a new approach to the
Monster, and then introduced me to the Pascal Mysticum
(about which we wrote later), and he told me about his
knot polynomial. When John left the train at Peterbor-
ough, the journey was almost complete—the remaining
part was only about 45 minutes. Yet, the last, relatively
short part felt so much longer, even though I kept busy
writing notes about what John had told me. Of the first
part, which went by in a flash, I remember the mathemat-
ics and nothing else. After so many years, I recall exactly
what was done and in which order. We must have been in
the restaurant car because all the work was done on nap-
kins, but I have no recollection of anything or anybody
around us, nor of the passing of time. John could do that
to us—take over our minds and hold them, moving us to
a different state, somewhat like his own. We could readily
believe that we had done ourselves what John let us see.

John held audiences in his lectures in a similar way. In
a report about the Zurich ICM of 1994, Vladimir Arnold
wrote a long summary of John’s invited address and con-
cluded: “Eccentric as it was, Conway’s was one of the most
understandable talks in the Congress.”

John always thought about mathematics, but he often
said that he wanted to know everything. He was partial
to astronomy and etymology. John was always alert to
puzzles and solutions, and kept finding them in everyday
things. I remember pushing him in a wheelchair, some-
thing that he only allowed in absolute emergencies, to
make certain that he reached a guest lecture in New York
on time. As we crossed the lines between paving stones,
he instructed me to push at an angle so that the front
wheels passed the slight barrier at different times, minimiz-
ing the jolt. He then proposed a new design of wheelchair
wheels, which would accomplish the same goal automat-
ically. This design was never implemented. After his
last major stroke, in November 2017, John never left the
wheelchair and never returned home. He died on April 11,
2020, in New Jersey.

Hemade somuch difference to somany people, to each
in their own way but always somehow grounded in math-
ematics. Now that he has left us, we will each lose some
link we had to mathematics that we took from him.

R. T. Curtis
In 1964, Conway became a Junior Fellow at Sidney Sus-
sex College, having recently been appointed to a Univer-
sity Lectureship, the same year that I started there as an
undergraduate. The courtyard lawns were strictly out of
bounds to us mere students, but fellows had the right to
use them and I have a vivid memory of John striding pur-
posefully across Chapel Court in the snow his long hair
and gown flowing out behind him, followed by his wife
and a retinue of little girls. He was already at that time a
colourful character. He became my tutor, and I and Mor-
wen Thistlethwaite, now an established knot-theorist, had
weekly supervisions with him. These were never dull. On
one occasion, struggling to cope with a rickety table, he in-
sisted on proving to us that, so long as the four feet were on
a plane and the surface of the floor was differentiable, one
could always find a stable position. More easily proved
theoretically than empirically! On another occasion our
worksheet contained a misprint and question number 22
was missing; we spent more time discussing what a suit-
able answer to this question should be than we spent on
either 21 or 23. At that time, he and his family lived in a
College flat in Sussex Street, across the road from the main
College; he would have been delighted to find that there
is now a Bridge of Sighs-type structure connecting his old
home to the main complex.

R. T. Curtis was formerly a professor of combinatorial algebra and head of the
school of mathematics at the University of Birmingham, United Kingdom. His
email address is robcurtis.mog@gmail.com.
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As an undergraduate at Gonville and Caius College,
where he matriculated in 1956, he had already been en-
gaged in mathematical research, albeit of a somewhat ex-
tracurricular nature. This was often carried out with his
friend Mike Guy. For instance, together they had worked
out all possible solutions to Piet Hein’s 3x3x3 SOMA cube;
they drew a graph whose 240 vertices were the solutions,
joined by an edge if you could move from one to the other
by withdrawing, twisting, and reinserting two pieces of the
puzzle. Naturally enough, they christened this graph the
SOMAP; it had a connected region of 239 vertices and an
isolated point. He and Guy later enumerated all 64 convex
uniform 4-polytopes in their 1965 paper, see [1]. He was
also devising methods for classifying knots with up to 10
crossings at this stage; it is a delight to me that Thistleth-
waite has carried on this tradition. As always with Con-
way’s work, notation is paramount: it should convey all
the information required of it and no more, and he would
hone it over several iterations until he was satisfied that he
had the best possible version.

Having completed his first degree, in 1959 Conway em-
barked on a PhD under the supervision of the eminent
number theorist Harold Davenport. His dissertation was
to be on Waring’s problem for fifth powers, that is to say
proving that every integer can be expressed as the sum of
37 fifth powers. He proved the theorem, which involved
a combination of powerful analytic techniques for large
numbers combined with ad hoc methods for the smaller
integers, but his interest had by this timemoved on to logic
and in particular transfinite numbers and the work of Can-
tor. His final PhD thesis, entitled “Homogeneous Ordered
Sets,” was completed in 1964, shortly before he took up
his Fellowship at Sidney. Indeed his first few PhD students
worked in the broad area of logic and set theory. His first
student was Adrian Mathias, whom he supervised jointly
with Ronald Jensen, and who himself went on to become
a Lecturer in Logic at Cambridge for five years, before em-
barking on a fascinating academic career in the South Seas.
His second studentwasDonPillingwhohad come toCam-
bridge on a US Navy scholarship. Don’s notes of a lecture
course that Conway gave on regular algebras became the
core of Conway’s book Regular Algebra and Finite Machines
(1971). Don returned to the States after completing his
PhD and progressed in the Navy to become a four-star Ad-
miral; he sadly died in 2008.

At the same time that Conway was entering his Fel-
lowship at Sidney Sussex College, mathematical develop-
ments were taking place elsewhere which would affect his
whole career. John Leech had taken a degree in Mathe-
matics in 1950 while he was a student at Kings College,
Cambridge, but he had moved into computing, which was
at that time in its infancy. He worked for some years in

the Maths Lab, which later came to house the massive Ti-
tan computer, but in 1968 he became Head of Computer
Science at the newly established University of Sterling in
Scotland. A few years earlier in 1965, he had published
a paper in which he described a new 24-dimensional lat-
tice, based on the Mathieu group M24 and the binary Go-
lay code, which afforded a remarkably dense packing of
spheres, now known to be optimal. John McKay, who had
obtained his degree in Mathematics from Manchester and
was a research student at Edinburgh University in 1968,
was aware of this discovery and it occurred to him that the
new Leech lattice might have an interesting group of sym-
metries. He attempted to interest a number of mathemati-
cians, both in Oxford and in Cambridge, before lighting
on Conway who grabbed it with both hands. In a beau-
tifully elegant piece of work he produced a new element
which demonstrated that the lattice had far more symme-
tries than those built into it by its construction, and he
obtained the order of the new group. Conway’s old friend
Mike Guy, who was by this time working in the Maths Lab
himself, helpedwith computing, but the final construction
is all done by hand. Further investigation showed that not
only were many of the recently discovered new finite sim-
ple groups involved in this large Conway group, which he
called ⋅O or “dotto,” but the subgroups fixing vectors of
the two shortest types, those of type 2 and type 3, were
also new simple groups.

It was at precisely this point, in 1968, that Conway took
me on as his research student and inevitably guided me in
the direction of simple groups. At that time, people felt
that there must be a large number of sporadic finite sim-
ple groups waiting to be discovered and I remember sit-
ting with Conway and John Thompson when they were
discussing whether there were an infinite number of spo-
radic finite simple groups or just a very large finite number.
The truth is nobody knew. Of course the fact that so many
of the other new groups occurred in the Conway groupwas
evidence that there may not be that many more, but that
was certainly not a clinching argument. Indeed, the first
project Conway gave me was to classify the finite subloops
of the Cayley algebra, nowadays known as the octonions,
in the hope that I would find an erstwhile unknown finite
loop whose multiplication group was a new finite simple
group. Sadly, I was able to prove that there was no such
new loop!

But Conwaywas not only thinking about groups. In fact
the year 1968–69, which he later referred to as his annus
mirabilis, was the most mathematically productive period
of his career. Playing around with counters on a Go board
he had come up with rules governing when cells would die
through isolation or through overcrowding, or a new cell
would be born, which led to the Game of Life. In the early
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days, all investigations were carried out by hand on a Go
board, but once the process had been set up on a computer
things really took off. Mike Guy’s father Richard, who had
himself been a student at Caius College but who had emi-
grated to Canada some years before andworked in the Uni-
versity of Calgary, was a regular visitor to the department.
He worked with Conway on the theory of mathematical
games and, together with Elwyn Berlekamp they later pro-
duced the wonderful Winning Ways for your mathematical
plays. Richard was involved in the early experiments with
Life and it was he who noticed a small configuration which
regained its original shape after four generations, having
moved diagonally across the board. This became the fa-
mous “glider.” Conway had already contributed on several
occasions to Martin Gardner’s celebrated column on recre-
ational mathematics in the Scientific American, and now
he sent across the rules of Life and issued a challenge: he
would give $50 to anyone who produced a configuration
which could be shown to increase in population size indef-
initely. A cult was formed and it is estimated that millions
of hours of computer time around the world were spent
running Life programs. Eventually Bill Gosper of MIT pro-
duced a configuration which sat there shimmering away
and shot out a glider every 23 generations. Gosper won
the bet and happily for Conway Scientific American paid
the debt, as $50 was a substantial sum of money in those
days. More importantly these discoveries gave Life scien-
tific respectability as it could now be shown that it could
simulate a Turing machine, and itself be used to perform
calculations. Nowadays it is celebrated as an early example
of a cellular automaton.

Conway, though, had very mixed feelings about the
Game of Life as he feared that that would be themain thing
he would be remembered for. Amazingly, in the very same
year that he had found his groups and created Life he also
produced the mathematical construction which he would
most like to be his legacy: the surreal numbers. The name
was in fact coined by Donald Knuth who used it as the
title of a novel; Conway simply referred to them as num-
bers, as opposed to games, in his 1976 book On Numbers
and Games. In effect, he combines the methods of Can-
tor to define the ordinal numbers, and Dedekind cuts to
produce the reals, to create a rich system containing finite,
infinite, and infinitesimal numbers with remarkable prop-
erties. Conway himself believed that these surreal num-
bers would acquire great significance in the years to come
and I for one hope that he was right.

Meanwhile I myself was working on the Leech lattice
and the Conway group, and I realised that to understand
these objects properly I needed to be very familiar with the
Mathieu group M24 and, in particular, the Steiner system
S(5,8,24). Conway knew that I was playing with patterns

on graph paper which would enable me immediately to
recognise when a set of 8 points of the 24 was an octad of
the system. One night in a pub called the Cricketers’ Arms,
whilst having a beer with a bemused non-mathematical
friend and playing around with these patterns, I realised
how to do it. The next morning, I went into the depart-
ment and announced to Conway that these 35 patterns tell
the whole story. He was thrilled to bits and immediately
took over. We decided to draw the patterns neatly by hand
and get them printed off on cards. We would use graph
paper but didn’t want the lines to show up, so we needed
a glass-topped table with a light underneath and the graph
paper turned upside down. Well, we didn’t have such a ta-
ble in the department but the librarian’s office had a slid-
ing glass window which suited our purposes. We removed
the window and placed it between two chairs with an an-
glepoise lamp in a litter bin underneath it. We worked
in this way until late into the evening when Richard Guy
came by and suggested we pick up some wine and finish
the job off in the Guest Room at Caius College where he
and his wife Louise were staying. We were there till the
early hours of the morning and a hilarious time was had
by one and all. In themorning, I cycled around to a printer
andwhen he had shrunk it down to a quarter of its original
size all the imperfections due to our shaky hands and gen-
eral inebriation miraculously disappeared. The resulting
Miracle Octad Generator or MOG, see [2], gave Conway
and me great pleasure as we competed with one another
to complete a given five numbers, called out by a neutral
umpire, to an octad. It was also immensely useful formore
serious work!

The origins of the Leech lattice led to Conway’s great
interest in and contribution to linear codes and sphere-
packing in 𝑛-dimensions. He worked on these areas over
many years with Neil Sloane, who regularly visited Cam-
bridge, and their fruitful collaboration resulted in themon-
umental Sphere-packing, Lattices and Groups.

By this time Conway had acquired international fame.
He had resigned from Sidney in 1970 when he felt that
the appointment of a new Master had been conducted im-
properly; he moved back to Caius which after all had been
his undergraduate college. Marshall Hall Jr, who was also
a regular visitor to the department, invited him to spend
a sabbatical at Caltech, and he was allowed to bring me
as a GRA. I recall a hellish journey which took some 30
hours and entailed a stopover of 6 hours in an unfurnished
room at Philadelphia airport; but Conway, his wife Eileen,
his four daughters Suzie, Rosie, Ellie and Ann-Louise, and
I eventually arrived at Los Angeles airport blinking in the
bright sunlight. It was early morning on the 3rd of January
1972 and the hills behind LA were so crisp and clear that
they appeared to be just streets away.
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I lived with the Conway family during our time in Cali-
fornia in a house in Pasadena which they had rented from
a history professor. Each morning John and I would walk
down to Caltech and regularly be attacked by a fiercely ter-
ritorial mocking bird which would fly right into us. Dur-
ing that time, I wrote up my thesis and he worked with
David Wales on constructing the Rudvalis group. Arunas
Rudvalis had predicted the existence of this group; he knew
its order, its class list and character table, but a group is not
known to exist until it has been constructed. A number of
people were attempting to build it, but Conway, who was
nothing if not competitive, was determined to be first. Ac-
cordingly, when they had succeeded in building the group,
John and David announced the precise hour of the day on
which the construction was shown to work.

Conway gave many lectures around the States at that
time, mainly on the groups and the Leech lattice, but I re-
member accompanying him to UCLA when he gave a very
well-received talk on Life. One of these trips was to Baton
Rouge and the night before, back at home, he said to me
“Why do you think it’s called Baton Rouge?” I replied that
I supposed that when the early French settlers arrived they
found an Indian village with a large red pole at its centre.
He said, “Oh, you think so!” took down the encyclopedia
and read “When the early French settlers arrived. . . .” That
was a distinct success!

When it came time to leave, Caltech made Conway a
very generous offer of a permanent position with a salary
many times his income in Cambridge. However, John was
determined to return to his familiar stomping ground and
back he went.

During his investigations of the Conway groups, John
had become acutely aware that there was no common
source where one could look up a particular group and
discover its main properties. This led him to the concept
of an Atlas of Finite Groups, the idea being that the fam-
ilies of simple groups would be the continents of a geo-
graphical atlas, and you would hone in on the individual
groups which corresponded to particular countries. I was
awarded a Science Research Council research fellowship
and we set to work energetically on this daunting project.
It was apparent that character tables would be at the heart
of the operation and it is fair to say that most of the ta-
bles we inherited from other sources contained errors. The
fact that we included power maps and Frobenius-Schur in-
dicators often showed us that something was wrong and
helped us put it right. We worked in my office, which nat-
urally enough became known as Atlantis, and after a few
months we were joined by an uninvited guest in the form
of Simon Norton. At first John was very unhappy about
this intrusion and said to me “If that man keeps coming
into our room, I’m going to give up the whole project.”

But within a few weeks we had come to recognise the huge
contribution Simon was making and we invited him to be-
come a co-author. We would at times approach Mike Guy
when we wanted a specific computing job done, usually
at 3 o’clock in the morning when he could be relied on
to be in the Maths Lab, but the project desperately needed
a permanent computer-savvy input. This was supplied by
Richard Parker who joined the project after I left; now or-
thogonality relations and much more could be checked ef-
ficiently and the output became remarkably accurate. The
last author to join the project was Robert Wilson, who
made an immense contribution in working out the classes
ofmaximal subgroups formany of the Atlas groups, and in
pulling the whole thing together for publication. Further
computing support was supplied by John Thackray. The
ATLAS was finally published in 1985 and is much used by
all those whose work involves symmetries of finite config-
urations, not least by its five authors.

Richard Borcherds
Like many people, I first heard of John Conway through
Martin Gardner’s “mathematical games” column in Scien-
tific American. Here are some of the stories I remember or
was told about John Conway. Some of them may be true.

John was a student of Harold Davenport at about the
same time as Alan Baker. Harold’s wife Anne told me that
what would typically happen is that eachweekHaroldDav-
enport would discuss some hard problem with them. A
week later Alan Baker would come back with a solution to
the problem, while John Conway would come with a solu-
tion to a totally unrelated problem. John Conway said that
when he solved one of the problems that Davenport had
suggested (something related to Waring’s problem), Dav-
enport said to him something like “Well Mr Conway, what
we have here is good enough for a poor PhD thesis. Now
go and do something better.”

John Conway would sometimes give evening lectures to
some of the undergraduate mathematical societies. One
that I remember was on sporadic simple groups. (As it
often was with Conway, this was not the official title: he
held a poll at the start of the lecture on what the topic
should be, and groups won.) He mentioned the Monster
group with its 196,883 dimensional representation, and
JohnMcKay’s strange observation that the elliptic modular
function 𝑞−1 +744+ 196884𝑞+… had a similar coefficient.
I remember being completely flabbergasted by this; it was
the first time I had heard of “Monstrous Moonshine,”
the name coined by Conway for these strange relations

Richard Borcherds is a professor of mathematics at UC Berkeley. His email
address is borcherds@berkeley.edu.
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between finite groups and modular functions. Soon after,
he and Simon Norton ran a seminar on Robert Griess’s
recent formidable construction of the Monster, which I at-
tended but was rather lost in. A few years later John Con-
way managed to simplify Griess’s construction (more than
100 pages of hard computations) down to the point where
it would fit into two pages (admittedly very large ATLAS
pages).

I took a graduate course on group theory with him, cov-
ering Mathieu groups and the simple groups he had dis-
covered. He told us the story of how he found this group.
John Leech had been going around trying to interest peo-
ple in calculating the automorphism group of the lattice
he had recently discovered. John Conway was at a bit of
a loose end at the time and thought he might as well try,
expecting to spend a year or so on the project. Instead it
took him only a few hours to find the order. He rang up
John Thompson to tell him the result of his calculation,
and John Thompson called himback a fewminutes later to
tell him it was a double cover of a new simple group. (The
standing joke at the time was that a good way to search for
new sporadic groups was to ring up John Thompson, give
him a random number as a group order, and see what he
would say.) By probing further John Conway found a cou-
ple more groups, and also showed that most of the known
sporadic groups could be found inside his largest simple
group. He called his groups .1, .2, and .3, and explained to
us that whenever you discover something you should give
it a really bad name, so that people would have to choose a
different name and with luck would name it after you. The
othermemorable event in his lectures was the time he tried
to make a random decision by tossing a coin, which rolled
around until it stopped by a wall, ending up on its edge (a
possibility sometimes overlooked in probability courses).

I ended up working with John Conway almost by acci-
dent. After graduating, I should have found a PhD advisor
but had not had much luck and was drifting. John Con-
way walked up to me in the library one day and asked me
if I wanted to work with him. (I think he had heard that I
was in trouble; he had a habit of helping graduate students
in difficulties, and there were at least two other people at
that time who worked with Conway after not getting very
far with a different supervisor.)

The common room at the Cambridge math department
was a large room surrounded by offices, three of which
were occupied by John Conway. Officially he only had
one office and the others were things like an office for his
ATLAS project. In practice what happened was that when-
ever his office got too full of piles of old papers to use
he would move on to an empty one. He came close to
taking over the common room as well: it contained the
original Atlas of Finite Groups (a huge scrapbook bought by

Conway), and when Conway’s coworkers were not arguing
over some esoteric group extension in it they could be of-
ten found nearby playing one of the many games Conway
had invented.

John Conway invented several rather esoteric comput-
ers. His ones based on fractions (FRACTAN) and his Game
of Life are fairly well known, but his computer inspired by
toilets seems to have received less attention. Conway ob-
served that the flushing mechanism of toilets is a sort of
logical gate that gives no output until it gets a fixed num-
ber of inputs, at which point it gives an output and resets.
He claimed that he once built a primitive computer using
this principle, which was not very successful as it had an
unfortunate habit of having rather too literal overflow er-
rors whenever it was exhibited.

His style of mathematics was very computational: if he
wanted to understand something, whether it was knots,
representations of 𝐸8, or quadratic forms, he would start
by calculating explicitly a large number of examples. The
first research problem he suggested to me was a similar
problem about enumerating certain configurations in the
Leech lattice, which at first sight seemed to me to be rather
pointless, but as Conway doubtless knew, doing this calcu-
lation gave much better insight into the Leech lattice than
reading any number of abstract theorems about it. This
calculation gave me the idea of forming a Kac-Moody alge-
bra out of the vectors of the Leech lattice. When I excitedly
told this to Conway he politely explained that had already
written a paper about it. I found out later that he quietly
added my name as a coauthor, so my first published paper
was one that I contributed nothing to and had not even
seen.

Unfortunately he had some minor strokes a few years
ago. He explained that having a stroke had one unex-
pected benefit: he was now ambidextrous, having been
forced to learn to use his left hand when his right hand
was temporarily unusable.

The result of Conway’s I will discuss in detail is his calcu-
lation of the automorphism group of the 26-dimensional
Lorentzian lattice 𝐼𝐼1,25. It is related to, but not nearly as
well known as his earlier sensational discovery of the Con-
way groups that “explained” most of the sporadic groups
known at the time. At first glance it seems to be a rather
obscure and unimportant topic, but I consider it to be one
of his deepest and most fundamental results: it underlies
several areas such asMonstrousMoonshine and infinite di-
mensional generalized Kac-Moody algebras. Most of my
published papers depend in some way on this result of
Conway’s and could not have been written without it. It
even turns up in algebraic geometry: several authors have
used Conway’s result to calculate or study the automor-
phism groups of K3 surfaces.
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Conway’s result states that the automorphism group of
𝐼𝐼1,25 is the product of −1 and an extension 𝑅.Λ.𝐴𝑢𝑡(Λ),
where 𝑅 is the reflection subgroup, Λ is the Leech lattice
(the unique even unimodular lattice in 24 dimensions
with no roots), and𝐴𝑢𝑡(Λ) is the double cover of Conway’s
largest sporadic simple group 𝐶𝑜1. This is already a rather
astonishing result: a sporadic simple group has seemingly
appeared out of nowhere. In fact this is the only example
I know of where a sporadic simple group appears in the
automorphism group of something (𝐼𝐼1,25) that is “trivial”
to construct. In the course of his proof, Conway showed
that the Leech lattice appears as the Dynkin diagram of the
reflection group of 𝐼𝐼1,25. This statement sounds like non-
sense: a Dynkin diagram is a graph, so claiming that it is
a lattice in Euclidean space seems to make no sense. What
this means is that the Dynkin diagram is essentially the
set of simple roots of the reflection group, and the set of
simple roots is isometric to the Leech lattice.

Conway’s proof of his result is long and difficult. It
depends on Conway’s discovery (with Parker and Sloane)
that the Leech lattice has covering radius √2, which in
turn depends on the rather bizarre fact that there are ex-
actly 23 orbits of “deep holes” of radius √2, which corre-
spond to the 23 Niemeier lattices in the sense that the ver-
tices of the deep holes form the affine Dynkin diagrams
of the Niemeier lattices. This calculation is hard and takes
about 50–100 pages even with many routine details miss-
ing. (Somewhat shorter proofs have since been found, but
they are all difficult and roundabout.)

Conway’s result implies a sort of phase change in the be-
haviour of lattices at 26 dimensions. Roughly speaking, be-
low this dimension lattices behave in a controlled way and
can be classified without too much trouble, while beyond
this dimension lattices go “wild.” The 26-dimensional
case is a sort of borderline case. For example, the numbers
of even positive definite unimodular lattices in dimension
at most 24 are 1 in dimension 8, 2 in dimension 16, 24 in
dimension 24, but more than a billion in the next dimen-
sion 32. This can be explained by Conway’s result: roughly
speaking, the good behavior of its automorphism group
can be used to control the lattices in dimension at most 24.
(The analogous cases 𝐴𝑢𝑡(𝐼𝐼1,9) and 𝐴𝑢𝑡(𝐼𝐼1,17) are much
easier as shown earlier by Vinberg: the reflection group
has index 2 or 4 in the full automorphism group, while
the next group 𝐴𝑢𝑡(𝐼𝐼1,33) is ridiculously complicated.)

Before Conway’s result there seems to have been no hint
that the behavior of lattices or quadratic forms changes dra-
matically at 26 dimensions. For example, O’Meara’s stan-
dard book on quadratic forms has no mention of this. In
string theory it had been observed shortly before that 26
is a critical dimension of Lorentzian space-time. This is

closely related to Conway’s result that 26 is a sort of criti-
cal dimension for Lorentzian lattices (and in fact Conway’s
result has occasionally been used in string theory).

Manjul Bhargava
Professor John Conway was truly one of the giants of
mathematics. I feel honored and privileged that John was
my first-year advisor in graduate school—I worked (and
played) a great deal with him duringmy first year at Prince-
ton.

I learned very quickly (not that I hadn’t expected it—
his reputation preceded him!) that it was futile to try
and make an appointment with him. He did not make
appointments—and when he did, he did not remember or
show up for them. However, he was nevertheless very easy
to find—not in his two big offices, whichwere both too full
of beautiful and colorful mathematical toys to have any
actual space for meetings—but in the mathematics depart-
ment common room area, where he would spend morn-
ing till evening playing games like Go, Backgammon, and
other rather more offbeat games that he devised. I also
learned very quickly that playing games and working on
mathematics were closely intertwined activities for him, if
not actually the same activity. His attitude resonated with
and affirmedmy own thoughts aboutmath as play, though
he took this attitude far beyond what I ever expected from
a Princeton math professor, and I loved it.

I thus spent hours in the common room watching him
and joining him playing games. He would occasionally
break into mathematics conversation in the midst of these
games, and these moments were gems not to be missed.

That year, through such moments, I learned about his
playful way of looking at knot theory, group theory, sur-
real numbers, and number theory, which certainly influ-
enced my own thinking in the future. I also had my very
first collaboration with him in the common room while
we were all looking at seqfan, a mailing list for number
theorists and indeed all fans of and contributors to the
Online Encyclopedia of Integer Sequences. On this mail-
ing list, David Wilson had asked the question of whether
twin peaks exist, i.e., two distinct whole numbers that have
the same least prime factor, but where every number in
between has a strictly smaller least prime factor. While
I do not remember who first brought up this question
in the common room, it became a widespread topic of
discussion all afternoon. Computationally, several stu-
dents checked in the computer room next door that there
were no twin peaks into the billions and beyond. As a
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consequence, while playing games, John, Derek Smith,
and I were discussing various arguments to try and show
that twin peaks did not exist. But none of those arguments
were working, and no one else in the common room had
succeeded either in proving the nonexistence of twin peaks.
It dawned on us by evening that maybe what we were try-
ing to show was not true, and that our argument could
perhaps be turned on its head to show that twin peaks do
exist!

That’s when the real work started. Since that was the
usual time when John and most professors would go
home, we assumed that we would continue working the
next day. Instead, John moved us to the blackboard in
the hallway to try and construct a twin peak. His enthu-
siasm also attracted Johan de Jong, a brilliant new exu-
berant young professor who had joined the department
recently and who was wondering what all the fuss was
about. He quickly and excitedly caught up and joined us in
this adventure. Through dinnertime and until night, with-
out even thinking of food or the late time, the four of us
worked at the blackboard in what was a relatively brief but
very intense and productive collaboration. By night, led by
John’s vision and enthusiasm, we had produced the first
known twin peak. The numbers in the twin peak were so
large—having 45 digits each!—that it was understandable
why no one had yet found such beasts simply by perform-
ing a computer search. This pleasant experience of my very
first collaboration with John is still firmly in my memory,
and it further affirmed to me the joy and playfulness of
mathematics; it was a major source of encouragement to
me to continue on the journey of mathematical research.

The day after that experience, John came to me in the
common room and said, ”I can tell from our work yester-
day that you are a very clever guy.” I told him that was a
huge compliment given who it was coming from—I’m not
sure I’ve ever met someone cleverer than John!

From then on, I talked math with him regularly. He
told me about a theorem that he had proved with William
Schneeberger, called the “15-Theorem,” which states that
an integer-matrix positive-definite quadratic form repre-
sents all positive integers if and only if it represents the
positive integers up to 15. He also toldme about his much
harder 290-Conjecture, which states that if 15 is replaced
by 290, then the statement would apply to any integer-
coefficient quadratic form. I was so intrigued with that the-
orem and the associated conjecture that I stopped study-
ing for general exams and started thinking about that and
why it was true. I learned about the arithmetic of quadratic
forms from his beautiful book The Sensual Quadratic Form,
and the approach of his book is still how I think about
quadratic forms; e.g., while most mathematicians think in
terms of the traditional “Hilbert Symbol” (a certain 𝑝-adic

invariant of the quadratic form), I still think in terms of
the elegant “Conway Symbol” as introduced by John in his
book and used in our discussions. My first-year work on
the 15-Theorem was very influential in my life. In partic-
ular, it inspired work and a long-time collaboration with
my good friend and fellow graduate student at the time,
Jonathan (Jon) Hanke, who was working under the advi-
sorship of Shimura. This collaboration eventually led to a
proof of Conway’s 290-Conjecture, one of Jon andmy very
proudest achievements. Years later, Jon and I presented
the theorem to John, wrapped in a bow, and John said it
was the best present he ever received as he did not think it
could ever be proved in his lifetime.

Other than mathematics, I learned a great deal from
John about mathematical outreach and mathematical
games. His public lectures, so clear and accessible, were
inspiring—something that I myself would aspire to in the
future. I also learned a number of tricks that he would per-
form on little kids—as well as full grown adults—to com-
municate mathematical principles.

We also discussed the history ofmath, especially theDis-
quisitiones Arithmeticae of Gauss and other famous mathe-
matical works written in Latin. I told him how impressed
I was at his knowledge of the history of math—but that I
felt it was somewhat Eurocentric. I told him about some
of the early works of India that I was familiar with due to
my family background. He was very intrigued, particularly
by Brahmagupta’s Brahmasphutasiddhanta and the notions
of composition that were already in there more than 1000
years before Gauss. He said it was too late for him to learn
Sanskrit, but that he hoped I would bring these works into
the mainstream in the future for a more complete view of
the history of math. I still think of his sincere request and
hope to follow up one day.

For my PhD thesis, under the advisorship of Andrew
Wiles, I worked on the theme of composition in the style
of Brahmagupta and Gauss as best I could, and its modern
connections with algebraic number theory. John came to
my Ph.D. defense on “Higher composition laws” quite ex-
citedly, saying he was looking forward to hearing about
it. I began the defense by making a claim, without proof,
that the discriminants of three quadratic forms that I had
constructed from a 2 x 2 x 2 matrix of numbers were the
same. Next thing I knew, John had stopped paying atten-
tion, and instead was frantically scribbling something on a
piece of paper for the next half hour. I was saddened at the
thought that I had bored him. But afterwards he told me
that he was sorry but he simply had to check that remark-
able assertion I had made at the beginning of the defense
(which he had actually verified by hand was true during
the defense), and so he was unable to listen to most of the
rest of the defense. I filled him in later on what he missed
as best I could.
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A couple of years later, when I joined the faculty at
Princeton as his colleague, I would regularly teach general-
audience courses on mathematics and mathematics out-
reach. The first year I taught it with one of my best
friends from college, Lenny Ng, who also happened to be
at Princeton that year. Any time I taught a course like that, I
always arranged to have guest speakers, and of course John
was at the top of any such list. John was always the fa-
vorite guest visitor among the students, and always sprung
some surprise or other that would shock the audience. The
first time I taught such a course, it had about 100 students.
John performed a trick where he has four students tangle
two ropes together, however they like, within certain pa-
rameters, and for however long they like—with the tangle
itself tied up by a large plastic bag so that we cannot see
the actual tangle. After watching the complex tangling pro-
cess, John would then ask the four students to perform cer-
tainmoves, and proclaim that he has untangled the tangle!
As the grand shocking reveal, he would ravenously shred
the large plastic bag with his teeth!! The audience gasped.
When the shredding was complete, the tangle was indeed
seen to be untangled.

Other tricks he did for his classes involved: being able
to say immediately the day of the week of any date in his-
tory (and then would teach his famous Doomsday algo-
rithm); rotate a hanger quickly around his index finger
with a penny balanced delicately in its inside edge; con-
tort his tongue into various shapes; and more. He taught
the notion of noncommutativity by taking off his shoes
and socks in front of the whole class; then on one foot he
would put on his sock and then his shoe, and on the other
he would put on his shoe and then his sock—and then
he’d proclaim “You see, the outcomes are different!”

I used to visit USA/Canada Mathcamps sometimes to
speak to students. Once I visited with John, which was
super-fun; we attended each other’s lectures and played
games together with the attendees. I remember, sometime
during his talk there, he said to the students: “Let me be
modest. I know more than 100 times as much math as
any of you.” One of the students said: “That’s modest??!!”
Conway said, “Yes, that’s being very modest! If I was be-
ing accurate and notmodest, I would have said that I know
more than 1000 times as much math as any of you!”

The only difficulty and tension that I had with him over
the years is that he didn’t take good care of himself. That
was tough on me. He wouldn’t eat well, he wouldn’t ex-
ercise. He wouldn’t go to therapy after his stroke; he gave
excuses about not having enough money (we’d all offered
to pay for it), that he forgot (we said we’ll put a reminder
on his phone, which he refused), or that he just didn’t feel
like it. That was tough to deal with for the people who
loved and cared about him during his last several years,

especially during this recovery period when taking care of
himself was of the utmost importance. Richard Guy, an-
other very close friend and collaborator of John—but 20
years older than him—used to say worryingly that, with
the way John ignored his health, he was afraid that John
would pass away sooner than him despite being 20 years
younger. In the end, Richard’s fear did not come to be,
though only by a margin of one month. Richard left us in
March 2020, reaching the age of 103; John left us about
one month later.

I have enjoyed every moment with John over the years.
He was an advisor, teacher, collaborator, colleague, inspi-
ration, and friend. I was not ready to let him go so soon
and so suddenly. There were still many games left to play.
I will miss him.

Dierk Schleicher
Oneof John’s unique characteristics was that for him, there
was little difference between research and play, or between
talking to senior colleagues and high school students, and
he enjoyed both. He actively participated in numerous
student camps, including the “Modern Mathematics” sum-
mer schools that I co-organized in Germany and France.
For six years from 2011 to 2017, he came to all of them
from the first day to the very last day, which was almost
two weeks. He mingled with the participants from break-
fast until late at night, if not early morning. He always
radiated his untiring spirit of lively interaction, always as-
sembling a happy crowd of followers.

On the first morning of our first camp, in 2011, after his
overnight travel, we knocked on his door to show him the
way to breakfast (at 2:00 AM Princeton time!). We worried
when he didn’t answer. It turned out he had gotten up
all by himself and had already found some kids to talk
to, untouched by any jet lag. When we went to bed after
midnight, he was still with other kids, sharing his stories
until the last listener went to bed. The kids might have
had a hard time getting up in the morning, while John was
sitting there already with his “morning shift” of kids.

He gave talks on some of his unique contributions to
math, of course without preparation (sometimes the stu-
dents could vote at the beginning of a session what he
should talk about), and he kept everyone’s attention for
every minute. His brilliant talks were legendary, from the
great show in the plenary talk at the ICM 1994 in Zurich
to ordinary undergraduate classes where he could get all
excited about having proved a truly phenomenal theorem,
that “1+1=2” (pointing out a fundamental step in building
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up arithmetic). At our schools, he was just as interested in
all the other talks, came to all of them, and usually asked
witty questions or suggested additions.

He had a unique talent for challenging students with
whatever problems he was thinking about. In several cases
this led to joint publications (such as the Mathematical
Intelligencer papers on the “Prague Clock problem” and
the “Immobilizer problem,” written with Bremen partici-
pants).

I came to realize much later that my very first encounter
with him was quite typical. I was a visiting student in
Princeton when he had just moved there from Cambridge.
He told me he was a bit uncertain as to whether he would
fit in with the department where everyone else was such
a serious mathematician. While holding court on one of
his legendary sofas, hementioned that he had come across
a problem that he had once solved but he was unable to
reconstruct. He offered me a modest award of $10 for a
proof. Of course I accepted the challenge and returned
a few days later with a detailed proof. He took my pa-
pers, tossed them almost immediately (keeping track of pa-
pers was not a concept for him), and handed me 5 dollars,
watching my reaction. What was I to say—me, the young
student in front of the legendary Conway? Of course he
was fully aware. After letting me struggle for a while he re-
solved things by saying that meanwhile he too had found
a solution, so we would share the prize. He then waved his
hands into the air, drawing intersecting triangles of double
summands, making the key idea obvious, ignoring the de-
tails. Others may have earned a greater bounty from him,
but I was so proud to have shared a prize with Conway!

I had the good fortune to be involved in some of his
late publications. He told me about a paper he was writ-
ing, in the spirit that “although we all know there are true
but unprovable results, we tend to think they must be ob-
scure and far away; however, in reality ’the beast is just
around the corner.’ ” He got worried when a reader of
an early version had commented “old Conway has finally
gone off his rocker.” I convinced him to publish “On un-
settleable arithmetical problems” (his “Amusical Permuta-
tions”) anyway. From the moment it was published, he
remained enormously grateful to me forever. This paper
was highly praised and eventually selected for the 2014 edi-
tion of “The Best Writing on Mathematics,” published by
Princeton University Press.

His last publication that appeared just before his death
was the “Moscow paper” that had been an unpublished
manuscript for decades. I received a copy when I visited
him in Princeton: he retrieved it from under the cushions
of a couch where he kept some of his important papers,
and I was allowed to make a copy—and much later edit it
so that it could be published. When it finally appeared, I

called him up in early April. He clearly enjoyed the news
very much that it was eventually published, and he told
me (once again) the story of how it came about. We then
discussed one more paper that he wanted to get published,
and he gave me clear instructions about details of how it
should be edited. This was a long and good-humored dis-
cussion. I was later told that this made me the last mathe-
matician to have spoken to him.

Both of these papers were related to the idea that “the
beast is just around the corner” in every area of mathe-
matics that he had touched upon throughout his life. In
Roberts’s biography, he calls this issue “his Jugendtraum.”
He invented the Game of Life because he felt that virtu-
ally every non-trivial cellular automaton must be Turing
universal and hence undecidable. He invented the “Frac-
tran” language because he felt that there must be very sim-
ple sequences that are undecidable; and “Amusical Per-
mutations” were an attempt to find even simpler such se-
quences (including the notorious Collatz problem). In
general, many simple (at least recursively defined) theo-
rems should be undecidable (and the proof of this claim
should be undecidable itself, and so on). Similarly, he told
me repeatedly that if a monkey had access to a large ware-
house with many logical gates of NOR type and started
connecting them at random, it would eventually build a
computer as powerful as any humans could build. While
it is a well known observation that a “random monkey”
working away on a typewriter would eventually reproduce
Shakespeare’s works, Conway’s monkey can actually be ex-
pected to succeed in very finite time (it might take very
much longer until a device comes about that we can un-
derstand and prove to be universal, while undecidability
or universality themselves might come verymuch faster). I
tried many times to encourage him to bring all these ideas
together into a coherent text, but even though he greatly
enjoyed these issues throughout his life, he refused to do
this and called this topic “my obsession.” Eventually, we
settled on “my obsession with his obsession” (for a topic
he had earlier called his Jugendtraum).

John was full of humor, often about himself. He liked
to say, “my only shortcoming is my modesty; if I weren’t
so modest I’d be perfect.”

Of course we all miss him sadly, as an ingenious math-
ematician, as a good-humored friend, (yes, he could be a
friend independently of being a mathematician), as an ex-
citing person to play with, as an inventor of sequences and
games, and somuchmore. Many times I felt the urge to ask
John about one of the many things he knew so well, or dis-
cuss an idea with him that I had. But I would rather close
with a witty remark I found on the internet: a remark that
alludes to his famous Game of Life and that keeps raising
my spirits: “if three of us stand next to each other around
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an empty square, will he come back to us?” I like the spirit,
and in a sense, this is very true: he will remain with us for
the rest of our lives, as a source of inspiration and surprise,
as a mathematician, and as a friend.

Jane Gilman
It is natural that the contributors to this memorial write
about what a great mathematician John Conway was. In
addition to being seemingly supremely confident, he was
also a sensitive human being who appreciated approval.

In 1991, I team taught an experimental mathemat-
ics course with him (along with Bill Thurston and Peter
Doyle) twice, one semester at Princeton and once during
the summer at the now defunct Geometry Center at the
University of Minnesota. The course was an experiment
in trying to engage students in mathematics by using un-
usual methods—chopping up vegetables to demonstrate
curvature and using a flashlight flat-end running over an
object with its light projecting on to the ceiling and walls
to demonstrate the Gauss map. In the summer course the
object was Conway’s robust stomach used as he lay flat out
on his back on a table. In later years he lost weight and was
no longer a good subject for such demonstrations.

I don’t know the extent to which the students in the
summer class consisting of graduate students, undergrad-
uates, post-docs, and high-school students found this ex-
hilarating, but the four instructors were very taken with
what we were doing and talked far into the night planning
the next day’s class and talking about mathematics.

John talked about his early years. He described his early
life in a small town as being pegged as an introverted math
nerd. He explained that when he left that small town for
Cambridge University, he decided he could present any
persona he chose, since nobody knew him. He chose to
be outgoing, even flamboyant and to be the center of atten-
tion from an admiring crowd that often surrounded him. I
remember seeing him in the midst of such a crowd during
the summer of 1969. That is, he became the charismatic
center of things. Those who met him later would think of
him as self-confident and assured.

When the four of us team-taught these classes, we of-
ten argued in our pre-class preparations and did not agree
on what we wanted to do or were going to do when we
all walked into class together. In such paniced times, John
could start off a class with a 5–10-minute lecture on some
topic that popped into his mind, not related to the pos-
sibilities we had all been discussing, and would entertain
the students and the three faculty members with engaging
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and beautiful talks on whatever. Perhaps these were pieces
of talks he had given before, but in any case, they were all
very fluid and focused on an idea that could be presented
quickly.

When I was at Princeton again in 2017, John talked
about Bill Thurston dying and about how those team-
teaching days were one of the happier times. He would
sit in a small cubby hole by a window on the third floor
of Fine Hall and collaborate by cell phone with mathe-
maticians. John followed my description of my current
research even when his vision was not so great for looking
on the small cubby hole whiteboard. He was also eager
to share his research. And, of course, typically Conway,
he shared the details of the bi-monthly injections given di-
rectly into his eyes to help maintain his vision.

When I was preparing to teach the Geometry and Imag-
ination course at Rutgers, I went to see him for a lesson on
how to make the five Platonic solids out of construction
paper and instead of instructing me, he made the mod-
els, which ever since have hung on the walls of my office
when not in classroom use. Last Spring the models began
to crumble and had to be taken down, perhaps an omen
of things to come.

Aaron Siegel
Conway’s career is marked again and again by astounding
leaps ofmathematical imagination that opened previously
hidden avenues of investigation. Perhaps nowhere was his
inventiveness on such playful and creative display as in the
study of combinatorial games. His interest in the subject
began through a fateful chance meeting: in 1960 Michael
Guy, whose father Richard was to become one of Con-
way’s most enduring collaborators, entered Cambridge as
an undergraduate. He and John soon became friends, and
Michael introduced Conway to some of his father’s work
on games.

At that time “combinatorial games” meant, with few
exceptions, impartial games such as Nim, in which both
players have exactly the same moves available at all times.
In the classical impartial theory, each component 𝐺 in
such a game is assigned a nim value 𝑚 ∈ ℕ; the cele-
brated Sprague–Grundy Theorem then reduces any impar-
tial game to Nim, played on the nim values of its compo-
nents. Richard Guy’s pioneering work demonstrated that
nim values, and hence winning strategies, for a wide class
of impartial games can be efficiently computed.

Conway was immediately intrigued by this fascinat-
ing intersection of games and mathematics, two of his
longstanding passions. Michael Guy soon introduced
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Conway to his father, and in 1969, at an Oxford number
theory conference, Richard in turn introduced him to El-
wyn Berlekamp, who had previously proposed to Richard
that they collaborate on a book on games. Elwyn and John
promptly skipped the conference for a day, retreated to
a local pub, and spent the next ten hours or so playing
games. It was clear that writing a book together was a good
idea.

Ever since Michael Guy first showed him the impartial
theory, Conway had wondered about a partizan analog.
Various authors had attempted to consider partizan games,
but typically by using numbers to quantify partizan game
values—necessarily yielding approximate, rather than ex-
act, solutions. If there were to be a complete partizan the-
ory, what then would take the place of nim values? It was
not until 1970, with work on Winning Ways already under
way, that Conway would formulate a satisfactory answer.
In his words:

We had the British Go champion [Jon Diamond]
in our math department at Cambridge, and I used
to watch him play games in the vain hope that
someday I would understand them. I never did.
But I did see that in the end, a Go game decom-
posed into a sum of little games, and I thought it
was a good idea to study this kind of sum.

So inspired, Conway in short order cracked the nut wide
open. Rather than seek to quantify partizan games nu-
merically, he introduced new algebraic values, obtained
by equating games that behave identically in sums, and
spun them into a novel axiomatic theory. The Simplest
Form Theorem, demonstrating that every (finite) partizan
game has a unique simplest form, made the new theory
rigid. The world it opened up was initially mysterious, and
Berlekamp, Conway, and Guy—assisted by a host of ex-
cellent graduate students—would spend the next ten years
piecing together the theory and its applications, giving rise
to an entirely new mathematical subject.

In hindsight, it is perhaps a happy accident that the clas-
sical impartial theory so neatly embeds in ℕ, and this ele-
gant coincidence may have been a distraction in the search
for a complete partizan theory: in the end, partizan values
are not numbers at all. But in a remarkable twist, Con-
way soon realized that the universe of partizan game values
contains within it a new type of number, an extraordinary
synthesis of Dedekind’s reals and Cantor’s ordinals. Later
dubbed surreal numbers byDonald Knuth, their discovery—
and the path that led to them—came as a big surprise to
Conway, and they would consume a great deal of his at-
tention in the early 1970s.

Conway pushed the boundaries of combinatorial game
theory in other directions as well. Impartial games in

misère play—where the last player to move loses, inverting
the usual convention—were long known to be substan-
tially more difficult than in normal play. Conway demon-
strated just how much more difficult, by showing that mis-
ère impartial games admit simplest forms, and that no
simplifications are possible beyond the most trivial. This
observation, if initially dispiriting, laid the foundation for
work in misère games that continues to this day.

His imagination was on display once again in the study
of loopy games, in which repetition is permitted (so that
their associated game graphs may contain cycles). To-
gether with his student Simon Norton (better known for
his work in group theory), Conway showed that much of
the partizan theory can be extended to a restricted (but
large) class of loopy games. Thus in the ten years between
1970 and 1980, three major classes of games—partizan,
misère, and loopy, all heretofore poorly understood—
were given a clear and firm foundation.

One can sense a common thread across all these dis-
coveries: Conway was never content to accept the confines
of an existing theoretical framework. Instead he asked
what would happen if the prevailing assumptions were dis-
carded, forged ahead to seek a new theory, and usually suc-
ceeded. Then, having done so, he sought to distill the new
theory to its essence, casting off distracting or unnecessary
formalisms. And ever-present in Conway’s work and writ-
ings is a characteristic wit, a sense that he had fun in the
process. He later reflected:

I used to feel guilty in Cambridge that I spent all
day playing games, while I was supposed to be do-
ing mathematics. Then, when I discovered surreal
numbers, I realized that playing games is mathe-
matics.

Conway’s work on games serves as a reminder that great
mathematics can rise from unexpected quarters, and it
stands as one of his most unique and fascinating achieve-
ments.

Louis H. Kauffman
John would sit you down and show you a magic trick and
then proceed to teach you how to do it (if you could follow
such things). John would sit you down and give you a
short lucid lecture on skein theory (as he did to many of
us in the 1970s) and you would think—this is clever. And
it changed your life.

That is, in short, my experience of John Conway.
I met him for the first time in the 1970s, when he was

visiting Vera Pless at the University of Illinois at Chicago

Louis H. Kauffman is a professor of mathematics emeritus at the University of
Illinois at Chicago. His email address is loukau@gmail.com.
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(where I taught since 1971 and amnow emeritus). He gave
a talk about the Alexander polynomial and how it could be
computed by ‘skein theory’—recursions involving only the
knot and link diagrams. No other machinery was needed.
The way topologists learned about the Alexander polyno-
mial involved structures like the Fox Free Differential Cal-
culus, homology groups, modules, the infinite cyclic cover-
ing space of the complement of the knot, the fundamental
group, group presentations, a special arsenal of algebraic
topology. This magician explained to us how to obtain
the Alexander polynomial from pure combinatorics that a
high school student could understand. (In fact, it was said
that he had discovered this when he was in high school.)
He further explained that he had told us this back in 1969,
but very few had listened. Somehow we began to listen
this time.

I met him again in Ann Arbor, Michigan, where I was
visiting, and he told us a little more about the skein.
I asked him questions that were very hard and looked
opaque to the skein approach and he would say “It is all in
the skein.” And I would believe him. Eventually, I found
a model for what he told us, using the work of Seifert
from the 1930s and then I found another model using
the work of Alexander from the 1920s. Alexander’s work
rearranged itself in my mind and became a special com-
binatorics that was also analogous to certain structures in
statistical physics (partition functions), and I wrote a book
about those newways to handle the Alexander polynomial
[3]. But I did not suspect the depths that were right there,
and neither did Conway. In 1983, Vaughan Jones (led for-
ward by ideas from von Neumann algebras and statistical
physics) discovered a new knot invariant that had a skein
identity that was a slight variation of Conway’s identity
for the Alexander polynomial. Conway could have discov-
ered it if he had asked what would happen if one changed
a coefficient or a sign in his formula for the Alexander
polynomial! At that point many people, including myself,
jumped upon this idea and a new era of knot theory began.
There was the insight into physics and the Conway insight
into diagrams and recursion. They have led us in a devil’s
dance for all the years since that time. The world changed.

John was a deep mathematician and a performing ma-
gician who wanted to involve you in being surprised by
his magic, and he wanted to involve you in the produc-
tion and design of that magic. He was an innovator and a
master teacher. He would work very hard to bring a bit of
mathematics to the point where it was highly non-trivial
and yet could be communicated in a few strokes to almost
anyone. This is how it is with the Game of Life, the skein
theory, the rope tricks, the audio-activity, the surreal num-
bers and games and many other things that he loved. This
labor of love, turning mathematics into creative magic was

the most characteristic aspect of John Horton Conway. It
will live forever in the hearts of everyone that he touched.

References
[1] J. H. Conway and M. J. T. Guy, Four-dimensional

Archimedean Polytopes, Proceedings of the Colloquium on
Convexity at Copenhagen (1965), 38–39.

[2] R. T. Curtis, A new combinatorial approach to 𝑀24, Math.
Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 25–42,DOI
10.1017/S0305004100052075. MR399247

[3] Louis H. Kauffman, Formal knot theory, Mathematical
Notes, vol. 30, Princeton University Press, Princeton, NJ,
1983. MR712133

Credits

Figure 1 is courtesy of Dierk Schleicher.

1

Be the fi rst to learn about:
• Publishing highlights
• New titles being released
• Monthly sales
• Special discounts on AMS publications

SIGN UP AT 
www.ams.org/bookstore-email-list. 

JOIN THE 

AMS 
BOOKSTORE

EMAIL LIST

AUGUST 2022 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1187

http://dx.doi.org/10.1017/S0305004100052075
http://www.ams.org/mathscinet-getitem?mr=399247
http://www.ams.org/mathscinet-getitem?mr=712133


THE AMS IS HIRING!
The AMS offers a wide range of opportunities to support the mathematical community from publishing to 
programs and much more! Explore our open positions and join the AMS today!

WHY WORK AT THE AMS
At the AMS we value excellence, inclusivity, and teamwork. We work at the forefront of advancing and con-
necting the diverse mathematical community worldwide, and we are seeking curious, innovative, collaborative 
individuals to join our team.

 • Hybrid work policy and excellent work-life balance
 • Generous benefit offerings including:

 ○ 9.5% contribution to employees’ 403b with minimum 2% employee contribution
 ○ $2,000-$4,000 contribution into employees’ personal HSA accounts to cover majority of plan 

deductible
 ○ 12 paid holidays 
 ○ Paid time off starting at 21 days/ year
 ○ 100% employer paid Life and AD&D and Long-Term Disability
 ○ $500 Computing benefit to be used for set up of home office 
 ○ Tuition Reimbursement

 • Commitment to equity, diversity, inclusion and a welcoming environment
 • Opportunities for professional and personal growth
 • Social activities to connect with your co-workers and give back to the community

Come be part of an extraordinary collection of talent who support the Society’s extensive activities. Apply today!

*Benefit rates subject to change based on yearly renewals and budget allocations.

The American Mathematical Society is committed to creating a diverse environment and is  
proud to be an equal opportunity employer. The AMS supports equality of opportunity and  
treatment for all individuals, regardless of sex, gender identity or expression, race, color,  
national or ethnic origin, religion or religious belief, age, marital status, sexual  
orientation, disability status, economic background, veteran or immigration status, 
or any other social or physical component of their identity.

LEARN MORE AT:  
WWW.AMS.ORG/AMS-JOBS



Remembering M. S.
Narasimhan (1932–2021)

Arnaud Beauville, Oscar Garcı́a-Prada,
Nigel Hitchin, Chandrashekhar Khare,

Shrawan Kumar (Editor), Herbert Lange,
Nitin Nitsure, M. S. Raghunathan, T. R. Ramadas,

and S. Ramanan

Narasimhanwas born on June 7, 1932 in Tandarai, a small
village in Tamil Nadu with hardly any infrastructure. After
his early education in a rural part of the country, he joined
Loyola College in Madras for his undergraduate education.
Narasimhan joined the Tata Institute of Fundamental Re-
search (TIFR), Bombay, for his graduate studies in 1953.
He obtained his PhD in 1960 (granted by Bombay Uni-
versity) under the supervision of K. Chandrasekharan (a
well-known number theorist).

His initial area of focus at TIFR was partial differen-
tial operators. During this time, he visited France un-
der the invitation of Laurent Schwartz and was exposed
to the works of other French mathematicians including
Jean-Pierre Serre, Claude Chevalley, Élie Cartan, and Jean
Leray. Following some fundamental works of D. Mum-
ford, he started to study the moduli of vector bundles on
curves (with Seshadri and later with G. Harder and S. Ra-
manan) where he made pioneering contributions. His
most important ground-breaking work jointly with C. S.
Seshadri is known as the Narasimhan-Seshadri theorem giv-
ing a topological characterization of stable vector bundles
on smooth projective curves, thus building a bridge be-
tween topology and algebraic geometry. With Harder, he
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introduced what is known as the Harder-Narasimhan filtra-
tion of vector bundles, which is of fundamental importance
in a variety of topics. Some of his later works are explained
in the following pages.

On the administrative side, he became the first chair
of the National Board for Higher Mathematics and intro-
duced many initiatives. In the early 1990s, after retiring
from TIFR, he decided to join the International Centre for
Theoretical Physics in Trieste and worked for over ten years
as the head of its mathematical division.

He was an inspiring advisor and guided a number
of graduate students including: K. Gowrisankaran, M. S.
Raghunathan, S. Ramanan, M. K. V. Murthy, V. K. Patodi,
G. A. Swarup, R. R. Simha, R. Parthasarathy, S. Kumaresan,
T. R. Ramadas, N. Nitsure, S. Subramanian, and F. Coiai;
many of whom went on to become outstanding mathe-
maticians in their own right.

He won several awards in India as well as internation-
ally. Among others, he was recipient of the Shanti Swarup
Bhatnagar Award (1975); Third World Academy of Sci-
ences Prize for Mathematics (1987); Srinivasa Ramanujan
Medal (1988); Chevalier de Ordre National du Mérite of
France (1989); and King Faisal International Prize for Sci-
ence (2006) (jointly with S. Donaldson). He was a Fel-
low of all three of the Indian Academies of Science. He
was elected Fellow of the Royal Society in 1989. He was
awarded Padma Bhushan in 1990 (India’s third highest
civilian honor).
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Figure 1. Family photo: with son Mohan, daughter Shobhana,
and wife Sakuntala, January 2020.

Apart from mathematics, he liked Modern Art (particu-
larly Impressionism), Carnatic music, and modern Tamil
literature.

He continued to be mathematically active till literally
the last day of his life. He wrote a paper with Gallego
and Garcı́a-Prada which appeared on the ArXiv on May 13,
2021. Battling with cancer, he passed away on May 15,
2021.

S. Ramanan
Recently M. S. Narasimhan, one of the finest mathemati-
cians in India, passed away. Coming on the heels of
the sad demise of another stalwart C. S. Seshadri, it has
been a big loss. I had the good fortune to have had
close friendship with both, academically as well as socially.
Narasimhan was my PhD advisor, colleague, and collabo-
rator for over three decades.

S. Ramanan is a retired professor of mathematics at the Tata Institute of Funda-
mental Research, Mumbai, and currently an adjunct professor at the Chennai
Mathematical Institute, Chennai. His email address is pudavai@gmail.com.

Narasimhan was born in a small village with hardly any
infrastructure. There was no high school there and not
even any bus service to the nearest town where he went
to study. Narasimhan often recalled how he had to travel
to school by bullock cart. Although his family was reason-
ably well to do, his father passed away early and they had
to manage with some difficulty.

His performance at the final examination at school was
excellent, and he got into Loyola College, one of the highly
rated colleges in Madras at the time. He was very happy
with the standard of teaching he received there. The head
of the mathematics department was a Jesuit, Father Racine.
Unlike most professors of those days, Fr. Racine was au
courant with contemporary mathematics. Although he
was not rated a great lecturer, he took keen interest in
students of high calibre and encouraged them to go into
research. There was another lecturer, Professor Krishna-
murthy who taught Real Analysis, and Narasimhan was
appreciative of his efforts to inculcate a deep interest in
the subject.

Fr. Racine was in touch with the development of the
incipient Tata Institute of Fundamental Research (TIFR) in
Bombay, and he recommended bright students to do their
research at the fledgling institution. Accordingly, some
students like Seshadri and Narasimhan, became graduate
students at TIFR. The school of mathematics there had
as its head, Professor K. Chandrasekharan (KC), who re-
alized the best way to introduce modern mathematics to
the Indian scene. KC invited top mathematicians from all
over the world, and asked each to give introductory lec-
tures on a current subject. One of the graduate students
was assigned the task of writing up the notes. The Fields
medalist Laurent Schwartz, known for his theory of dis-
tributions, was one of the invitees. The note taker of his
lectures was Narasimhan. This proved to be fortuitous,
for Schwartz was impressed with the keenness and ability
of Narasimhan, as well as a few other graduate students.
When Schwartz returned to France, he persuaded some of
his students, like Jacques Lions, Bernard Malgrange, etc.
to visit TIFR and give courses. On his visit, Lions posed a
question connected with the limits of partial differential
operators on manifolds, and Narasimhan solved the ques-
tion in the affirmative.

KC soon realized the high quality of the graduate stu-
dents and felt that there was no one to mentor them in In-
dia. Consequently, with the help of Schwartz, he delegated
Narasimhan, among a couple of others, to visit France for
a few years and work on such topics. In Paris, Narasimhan
came in contact with a Japanese graduate student, Keisuke
Kotake, and proved a nice result on elliptic operators, in
collaboration with him.
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Unfortunately, he contracted pleurisy while in Paris and
had to be hospitalized. He looked upon it not as a disaster,
but as an opportunity to be with “real Parisians.” He also
told me that his spoken French improved manyfold as a
consequence.

On his return to India, he obtained his doctorate and
soon was appointed Associate Professor. It is remarkable
that he could start advising students for their doctorate so
early in his career.

I was then a graduate student at TIFR and he warmed
up to me when he came to know that I was conversant
with the work of Kodaira and Spencer. I became his first
student and we soon wrote up a paper, “Universal Con-
nections,” where we proved that the classifying space for
principal bundles with compact structure group also had
a connectionwhichwas universal for bundles with connec-
tions. This was very well received, and later became useful
for many developments in differential geometry as well as
in theoretical physics.

Seshadri and he jointly wrote a few papers in which
the theory of vector bundles over a smooth projective al-
gebraic curve was the main thrust and soon it culminated
in what is now known as “the Narasimhan-Seshadri the-
orem.” This provided a deep understanding of the clas-
sification of vector bundles over curves and led to many
later developments. Narasimhan occupied himself with
the study of the moduli space so constructed, and it was
my good fortune to be able to work jointly with him in
this enterprise.

A distinguishing feature of Narasimhan’s research was
his ability to come to grips with questions, even in an area
inwhich he had no previous expertise, and bring new ideas
to the questions, and then solve them. He would fill in the
details later, often running a seminar on the topic. This ex-
plains the versatility of his research, and his propensity to
collaborate with different types of mathematicians, from
young graduate students to famous achievers. Thus, apart
from his work with Indian colleagues like Ramadas, Se-
shadri, Simha, and myself, he worked jointly with Kotake,
Harder, Beauville, Hirschowitz, Lange, Okamoto, and a
host of others. Much of this research spawned new di-
rections, which are still of value decades later. But even
more remarkable is the fact that these collaborations span
a wide range of fields including Number theory, Differ-
ential Equations, Differential Geometry, Lie groups, Alge-
braic Geometry, and even Theoretical Physics.

Mathematics was not his only interest. He liked Mod-
ern Art, particularly Impressionism, thanks to his French
connection. He was also fond of books. We used to fre-
quent the Strand Book Stall and buy books. He liked to
read contemporary Tamil books. Even after he retired and
settled in Bengaluru, he tried to time his visits to Chennai
in order to buy books at the Annual Tamil Book Fair.

On the administrative side, when I was the dean of
the school of mathematics at TIFR, there were efforts else-
where to institute a mathematical establishment along the
lines of the Council of Scientific and Industrial Research.
Since ‘Higher Mathematics’ came under the Department
of Atomic Energy, with the active help of the then Chair
of the Atomic Energy, the National Board for Mathemat-
ics (NBHM) was established. Narasimhan became the first
Chair of NBHM and it was my pleasure to be its first secre-
tary and collaborate with him in this endeavor as well. He
introduced many initiatives and NBHM has now become
the principal funding agency for mathematical research in
India. In the 90s, after decades of research and mentoring,
he decided to join the International Centre for Theoretical
Physics in Trieste and worked for over ten years as the head
of its mathematical division. There he mentored students
which, he mentioned to me, gave him great satisfaction as
he always wished to make some contribution to science in
the developing world.

He returned to India in the late 1990s. Although he
had retired, he was full of ideas pertaining tomoduli space
and its generalizations. Apart from mathematics, he was
interested in Carnatic (South Indian classical) music, as
well as modern Tamil literature. However, his deep in-
terest in mathematics never waned. A few months after
he contracted the cursed disease, he wrote to me that our
work had new ramifications and that they are now talking
about ‘Narasimhan-Ramanan branes’! Very close to his fi-
nal days, he even helped a student of our Spanish friend
Oscar Garcı́a-Prada with some ideas.

Fortunately, his stature did not go unrecognized, in In-
dia as well as internationally. He was awarded Padma Vib-
hushan, the Bhatnagar prize and was a Fellow of all three
Institutes of Science. He was elected Fellow of the Royal
Society, was honored with Chevalier d’Ordre du Merite of
France, the Abdul Kalam prize, and so on.

I am fortunate to have been his close friend till the very
end.

Nigel Hitchin
My first encounter with Narasimhan was at a conference
in July 1974 in Durham, England. The bus taking us on
an excursion had broken down outside a pub (not serving
beer because of restricted licensing hours in those days)
so we sat at tables outside. I had given a talk about van-
ishing theorems in differential geometry which are often
called Weitzenböck formulae and he asked me if I had
read Weitzenböck’s 1923 book Invariantentheorie. I had

Nigel Hitchin is an emeritus Savilian Professor of Geometry at the University
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skimmed through it in the library but he told me to look
at the Foreword and take the first letter from each sentence.
It spells

N-I-E-D-E-R-M-I-T-D-E-N-F-R-A-N-Z-O-S-E-N.

“Down with the French!” Not that he shared that
view (Weitzenböck was living in the French-occupied
Rhineland at the time) because he followed the comment
with interesting accounts of his experiences in the Paris of
Serre, Cartan, and Schwartz which was clearly a formative
experience for him. His talk at the symposium was about
moduli of vector bundles on curves. At that time I took
little notice, but somewhat later our interests converged
much more.

In the intervening years it wasmore a question of action
at a distance. When I got interested with Michael Atiyah
in Yang-Mills theory and instantons in the late 1970s, he
would send his younger collaborators to Oxford to find
out what was going on, and then I got to know his en-
tourage better. But it was the 1983 paper of Atiyah and
Bott [AB] and Simon Donaldson’s first paper [D] in the
same year which attracted my attention. It brought gauge
theory down from four to two dimensions and applied it
to the famous theorem of Narasimhan and Seshadri about
stable vector bundles on curves. Framed as it was in terms
of moment maps and symplectic geometry it led to my
investigation into what are now called Higgs bundles. I
sent Narasimhan a preprint of my paper [H] and I subse-
quently found that we shared a common view on what
were the interesting offshoots from this, though our moti-
vations might well have been different.

To put it in context, the 1965 theorem of Narasimhan
and Seshadri asserts that if a holomorphic bundle 𝐸 on a
compact Riemann surface 𝐶 is stable—an open condition
relating to its subbundles—then it admits a projectively
flat unitary connection. A Higgs bundle is an extension of
this idea, considering a pair of holomorphic objects (𝐸, Φ)
where Φ ∶ 𝐸 → 𝐸⊗𝐾 is holomorphic, 𝐾 being the canoni-
cal line bundle, and the stability condition must hold only
for Φ-invariant subbundles. In this case a theorem asserts
that there is a unitary connection 𝐴with curvature 𝐹𝐴 such
that 𝐹𝐴+[Φ,Φ∗] = 0. WhenΦ = 0 one recovers the original
theorem but for other choices one can prove, for example,
the uniformization theorem for Riemann surfaces, and
also describe flat non-unitary connections with this data.
My approach was differential-geometric but Narasimhan
sent his young colleague Nitin Nitsure to Oxford who
helped develop an algebro-geometric version, and the in-
teraction was most useful for us both.

One feature, which had little to do with the equations,
but arose naturally when I was writing the paper, was the
use of the spectral curve – the covering of 𝐶 defined by the

characteristic equation det(𝑥 − Φ) = 0. It provided a way
of constructing a Higgs bundle from a line bundle on the
spectral curve. My treatment in the paper was rather ad
hoc (though I had read about direct images as a student)
but, together with Beauville and Ramanan, Narasimhan
gave a much better account [BNR] which led to the con-
sideration of non-abelian theta functions through spec-
tral curves. Subsequent work in India especially, with
Narasimhan looking on, clarified many aspects of the the-
ory.

Over the past 30 years we saw each other on many occa-
sions. A memorable one was his joint 60th birthday con-
ference with Seshadri at the Tata Institute. But we met
in Trieste for committees, which often ended in mathe-
matical discussions in a restaurant overlooking the sea,
and also amongst the community of researchers into vec-
tor bundles on curves who held conferences around the
world. Many of these encounters were in Spain where
Oscar Garcı́a-Prada organized meetings to capitalize on
the expertise from the Indian school of algebraic geome-
try. The familiar dark-suited figure was always a welcome
sight, often accompanied by his long-time collaborator Ra-
manan. I valued both his knowledge about specific points
and his view of the changing trends in mathematics and
how one could react to them. His presence will be greatly
missed.

Chandrashekhar Khare
The Narasimhan-Seshadri theorem as inspiration. I met
Professor M. S. Narasimhan just a few times spread out
over a couple of decades. The last few times were in the city
of Bangalore where he then lived, at the prize ceremonies
of the Infosys Science Foundation, and also at a Common-
wealth Science Congress. He had a natural charisma, pres-
ence, intensity, an aura around him for me because of his
renown.

Much to my regret, I did not get to know him well, ei-
ther personally or mathematically. In this tribute to him, I
will focus on his role as an inspiring figure—because of the
importance of the work he had done, where he had done
it, and when he had done it—to a young person (like my-
self) trying to do research in pure mathematics in India in
the 1990s.

TIFR had established itself in the world of pure mathe-
matics through important theorems proved by mathemati-
cians working there, through the decades from the 1950s
onwards, and of these there was none more celebrated
than the Narasimhan-Seshadri theorem. It was in an area
of algebraic geometry and differential geometry that was
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Figure 2. Passport photo of
Narasimhan, around 1974.

far away from my area of
work which was in num-
ber theory.

I had come back to In-
dia immediately after my
thesis in 1995, and joined
TIFR as a Visiting Fellow
(the entry level postdoc-
toral position available to
someone after finishing
their PhD).

I did not know the
mathematical content of
the theorem. Many of
my senior colleagues at
TIFR worked in different
aspects of the mathemati-

cal specialty—vector bundles on curves—that had been de-
cisively impacted by the Narasimhan-Seshadri theorem. It
continued to be the focus of much of the research done at
TIFR decades after the theorem had been proven.

For me, the influence of the Narasimhan-Seshadri the-
orem was more indirect but still psychologically quite im-
portant. The discovery of such an influential theorem by
two young brilliant Indian mathematicians, in their early
thirties, working in Bombay at TIFR in the 1960s, led to
putting TIFR on the world map of mathematics. It also
made one feel that as someone working at the same Insti-
tute, one had to try and live up to the high repute of the
place, live up to that theorem in a way. Further it gave
a sense that it was possible to do first-class mathematics
working at a place somewhat distant from the traditional,
mainly Western, centers of mathematical research, espe-
cially as their work had been done in Bombay in times
when the world was far less connected than now.

I read later in an interview with Narasimhan that he felt
it could be advantageous to work somewhere at a distance
from the main mathematical centers, and follow the latest
developments from this distance. One could then work on
one’s own ideas, partly inspired by the work happening at
these centers, without being overwhelmed by the influence
of the leaders in the subject. Such direct influence, while it
could be greatly beneficial for some, might dissuade others
from trying out ideas that could seem unpromising to the
experts, but that one could not give up on internally.

Although I did not know Professor Narasimhan’s quote
at that time, I found for myself that this awareness from
a distance of important developments in one’s area, while
working independently on one’s own, worked quite well
for me in the roughly 10 years I spent working at TIFR.

After arriving in India in 1995, I worked on trying to
generalize the work I had done in my thesis, which used

ingredients that overlapped with the astonishing work of
Andrew Wiles on Fermat’s Last Theorem. I arrived in a
faltering way at a satisfactory generalization of my thesis
work over a period of a few years after I returned to India.
Temperamentally I am drawn to tilting at windmills, and
I started doing, more or less simultaneously, more open-
ended work inspired by Serre’s modularity conjecture. Par-
ticular cases of this conjecture had been used by Wiles in
his work on Fermat’s Last Theorem, but the general case of
the conjecture was wide open.

I kept musing about questions suggested by Serre’s con-
jecture, carrying them in my mind, experiencing mainly
frustration, but also small eureka moments, making small
observations that I wrote up as short papers. It was a little
like kicking the ball around on a field, with the goalposts
obscured by a thick fog. As there was no way of reasonably
aiming to kick at the goal which was smothered in the fog,
one just kicked the ball around and chased after it in bursts
of somewhat random, sporadic, but still intense, activity.

Later, I read another piece of Professor Narasimhan’s
advice to young people, which was to work “off the top”:
work on something without necessarily knowing precisely
all the background required, getting by on a sense of the
subject, impressionistic to begin with, which could be
deepened as one continued thinking (continually!) about
the subject. This way one would not get bogged down
and overwhelmed by the myriad technical details right at
the beginning, which could have a paralyzing effect on a
novice, and instead learn them as one needed to.

On reading Professor Narasimhan’s interview, I real-
ized that I had been unconsciously following his advice
of working “off the top” all along. In my work, I reached
my “natural boundary” (as defined by Eilenberg, and refer-
enced by Narasimhan in the interview) very quickly, and
could go past it only by obsessing about a piece of mathe-
matics and living with it in my mind.

The fact that the Narasimhan-Seshadri theorem had
been proven when India was still young as an indepen-
dent country (not yet twenty years old) was also fascinat-
ing. TIFR was founded by Homi Bhabha who had filled
it with paintings by contemporary Indian artists (through
the 1950s and 1960s), many of them working in Bom-
bay, not so far away from Navy Nagar where TIFR is lo-
cated. The works of the members of the Bombay Progres-
sive Artists’ Group were amply present on the walls of the
Institute. The modernity the paintings represented, made
in a newly independent country, which had its own an-
cient culture and tradition of art, architecture, music, and
dance, married these civilizational influences with what
was happening in the contemporary art world then. Many
of the artists whose paintings Bhabha collected (with dis-
cernment and a remarkable sense or intuition for what was
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vital in the art made in India then) had spent time in Paris
and returned to produce work which was influenced by
what they had absorbed in their time there. Narasimhan
and Seshadri also had been deputed to Paris, from 1957 to
1960 as I learnt from interviews of Professor Narasimhan,
absorbed new ideas and influences there, and after return-
ing to India proved their landmark theorem.

It was a different India that I lived in during my
years working at TIFR (post the economic liberalization of
1991), but the example of Professor Narasimhan, Profes-
sor Seshadri, and their colleagues, who hadworked at TIFR
and proved path breaking theorems decades earlier, lived
on as an inspiration, present in the air, setting a certain
tone, holding me and my colleagues accountable, pushing
us to try and live up to their formidable legacy.

Nitin Nitsure
I knew M. S. Narasimhan for nearly four decades, first as
my thesis advisor, and then as a friend. The first volume
of the collected papers of Narasimhan [N] begins with two
excellent review articles on his research corpus—an un-
signed article, and an article by C. S. Seshadri. I have ad-
dressed the story of the Narasimhan-Seshadri theorem in
my recent memorial article on Seshadri [Ni] where there
is also some material on Narasimhan. The videos of the
memorial meetings for Narasimhan in Mumbai and Ban-
galore [NMM] in June 2021 have a lot of interesting
material, including reminiscences by many mathemati-
cians from different parts of the world, together with a
rapid account of Narasimhan’s entire mathematical ca-
reer. But beyond his celebrated research contributions
and his substantial role in nurturing and running institu-
tions, Narasimhan had a deep impact on a large number of
younger people with whom he interacted, and I am going
to focus on the aspects of his persona and his behaviour
that helped bring this about.

When Narasimhan became my thesis advisor, he was
about twice my age, and was a distant and formidable fig-
ure. This was in early 1983, when I was a graduate stu-
dent in the School of Mathematics, Tata Institute of Fun-
damental Research (TIFR), Mumbai. The first problem he
gave me was to construct a relative Picard space in the
holomorphic category—a problem that had been posed
by Grothendieck—and then left me alone till I came back
with a solution two months later. Unfortunately, my effort
was wasted as it turned out that the result had already been
proven by Bingener. This was indeed a disappointment for
me, but it must have given Narasimhan some confidence
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in my ability. After that, our interactions became more fre-
quent, and he gave me another interesting problem. My
thesis was completed in 1986, but we continued to dis-
cussmathematics. Before I went to Oxford for a postdoc in
1987, he askedme to look at Hitchin’s latest papers. Some-
what later he said that I must study Grothendieck’s FGA.
These suggestions turned out to be very important for me.
The student-teacher relationship was central and lifelong
in the ancient Indian scholarly tradition (as in Indian mu-
sical, spiritual, or artisanal traditions), and traces of that
attitude have clearly endured. Over the decades as the ra-
tio between our ages improved, we became good friends,
which continued till the end.

In the 1980s, Narasimhan was much feared not just
by most students and postdocs, but also by some of the
younger faculty members. He did not mix easily with oth-
ers, and even a casual observer would have noticed his
unrelenting single-minded seriousness, and refusal to in-
dulge in any small talk. So it may appear surprising at
first sight that a continuous stream of talented students
did their PhD with Narasimhan, and became his lifelong
well-wishers and friends. I will say more about this later,
but let me note that for all his apparent lack of sociabil-
ity, he was perfectly well mannered when he actually en-
gaged with anybody, if the other party kept to the business
at hand. He was a patient listener who rarely interrupted
others, but allowed others to interrupt him quite easily,
which is certainly unusual among people of his eminence.
When I asked him about it many years later, he said that it
is because he already knows his own thoughts, but is curi-
ous to know what the other party thinks! I never saw him
either raise his voice or lose his composure in the nearly
four decades that I knew him. Once when a disgruntled
faculty member known for a bad temper raised his voice
while arguing with Narasimhan, who was then the Dean,
Narasimhan is known to have calmly said “You do not ap-
pear to be in the right frame of mind for a discussion now,
please come back later.” The other person left without fur-
ther argument.

The rapid emergence ofmodernmathematics in TIFR in
the 1950s owes a lot to the active support of French math-
ematicians such as Laurent Schwartz and like-minded col-
leagues. These were idealistic leftists, some of whom had
strong revolutionary beliefs as followers of Lenin and Trot-
sky. They believed not just in universal functorial prop-
erties within mathematics but in universal human values,
and took the trouble to spend months at a time visiting
India, which must surely have appeared as a backward,
poor, dirty, and inconvenient place to them, to help spread
modern mathematics. (Interestingly, the undergraduate
teacher who introduced Narasimhan and Seshadri tomod-
ern mathematics was a French Jesuit missionary called
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Father Racine, another practitioner of universal values.)
Narasimhan said that not just his mathematics, but his un-
derstanding of political matters, developed rapidly during
his three year postdoctoral visit to Paris during 1958–1961.
He became a lifelong leftist.

What practical shape did Narasimhan’s socialist ideol-
ogy take? This has a simple answer: hemade it his mission
to nurture mathematical excellence at the highest level in
all parts of humanity. He believed in the universality of
mathematical talent, and was certain that among the teem-
ing millions of the underprivileged all over the world, of
all races, nationalities, religions, and genders, there were
a huge number of potential top mathematicians, who
needed to be detected and educated. But he did not think
that a talented mathematician should, for example, go to a
slum to teach school dropouts, since that job can be done
as well by many others. What only a front line mathemati-
cian can do is to mentor talented young mathematicians
who have somehow survived and risen from backward
places or countries. They need help at the doctoral and
postdoctoral stage to get into the really interesting direc-
tions of research and make a lasting contribution to math-
ematics, otherwise their talent is in danger of being wasted.
Consistent with this, soon after his retirement from TIFR
in 1992 at the age of 60, Narasimhan took up the posi-
tion of the Head of Mathematics at the International Cen-
ter for Theoretical Physics (ICTP), Trieste, at the invitation
of its founder-director Abdus Salam. Numerous workshop
participants and postdoctoral visitors come to ICTP every
year from all over the developing world. Narasimhan en-
gaged with a large number of them, and he had the un-
canny ability to suggest interesting problems and direc-
tions which would suit their ability and inclination. With
age, his social style also changed—he became a relaxed, re-
assuring figure that the youngwould gather around (which
surprised some TIFR people who only knew his younger
avatar). Finding doable interesting problems for the young
from very diverse areas is not easy. Narasimhan made the
necessary effort to read current literature in different areas
and consulted experts. You will find many first-rate math-
ematicians from all over the world who say they owe him
a lot for giving them a research problem, a useful idea, or
simply a nudge in the right direction at a crucial stage in
their career.

When it came to institutions, Narasimhan was not a
revolutionary, but a true conservative. He always em-
phasized how difficult it is to build institutions and how
easy it is to destroy them. So even here, stability (or at
least semi-stability) was of paramount importance to him.
Narasimhan put up with the many imperfections that he
saw around him, and kept his focus on his chosenmission:
to do top-level mathematical research himself and to help

others do it. His integrity shone through all of his actions.
As one of the large number of young mathematicians that
he helped and influenced, I will say that he has earned our
undying admiration and gratitude.

M. S. Raghunathan
I saw Narasimhan for the first time some time in my first
year as a graduate student at TIFR in 1960–1961. He
was dressed formally in a suit, which to a student of my
background, suggested a stiff, unapproachable persona. I
was soon disabused of that perception, when one day he
stoppedme in the corridor to complimentme onmy proof
of a result that was making the rounds in the School of
Mathematics.

In my third year, I attended a seminar in Differential
Geometry run byNarasimhan and Ramanan (then a senior
student). Towards the end of the seminar Narasimhan, Ra-
manan, and I had frequent informal discussions. In these
interactions, many of them over coffee, I learnt a great
deal, and not just mathematics. My understanding of po-
litical and social issues came to acquire some sophistica-
tion. Narasimhan had an abiding interest in Tamil litera-
ture and I learnt many things about contemporary Tamil
writing from him. In the course of a few walks along the
seashore in TIFR, he explained to me the entire Kodaira
Spencer Deformation Theory of Complex Structures. He
was an outstanding teacher, excelling, especially in one-on-
one communication of mathematical ideas.

He suggested a problem (connected with the Kodaira
Spencer theory) for me to work on. When I eventually
solved it he told me that the work was adequate for a PhD
thesis and asked me to register for the degree with him as
the thesis advisor, which I did. He interceded with the Uni-
versity of Bombay to get the waiting time for the submis-
sion of the thesis reduced to two years from the manda-
tory three. He got me invited to speak at the prestigious
International Mathematical Colloquium (on Differential
Analysis) held in Bombay in January 1964, and made me
rehearse my talk with him. That resulted in a well-received
lecture, surprising colleagues, who knew of my poor track
record as a speaker.

Around this time I toyed with the idea of quitting
mathematics to join my father in the family business.
Narasimhan got wind of this and when he happened to
meet a friend ofmy family, told her thatmy quitting would
be a loss for mathematics. This reached my family soon,
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Figure 3. With M. S. Raghunathan in Bangalore, January 2019.

and they promptly put an end to my idea of changing my
vocation. Narasimhan’s role in my career thus went well
beyond that of a mentor in mathematics. And this would
also be true for many of his other students.

After I wrote my thesis, my mathematical interests
moved away from his and our mathematical interactions
were of a general nature and not intense. Nevertheless
each of us had a pretty good idea of what the other was
doing in mathematics. Narasimhan’s approach to mathe-
matics was very French, Bourbakian, in fact. Riemann and
Poincaré headed the pantheon of the greats whom he ad-
mired. Among his contemporaries Kodaira held pride of
place in his admiration and somewhat later Grothendieck
joined him, or maybe, even displaced him. He once told
me that the idea of the proof of the Narasimhan-Seshadri
theorem was inspired by Poincaré’s method of “balayage.”
He told me that Grothendieck was amazing, saying some-
thing to the effect that any time you come up with a prob-
lem in the subject, you find that Grothendieck has already
said something profound about it.

In 1966, I was inducted into the Mathematics Faculty of
the Tata Institute of Fundamental Research. From day one,
Narasimhan treated me as an equal, but it was necessarily
an asymmetric relationship; there was no way I could for-
get that Narasimhan was my teacher. Our views on most
issues were almost identical, but whenwe differed, I would
invariably defer to his views. Our mathematical interac-
tions continued, but were less frequent and less intense as
the focus of my mathematical interests had drifted away
from his.

Narasimhan took considerable interest in promoting
mathematics in the country at large. Already in the sixties
he served onmany committees of universities and other in-
stitutions of higher learning. He was of course one of the
principal architects of the rise of the School of Mathemat-
ics of TIFR from a minor player to international eminence
in mathematics. In the early seventies, Jawaharlal Nehru
University wanted to start a Department of Mathematics
with him as the Head. He was not averse to the idea, per-
haps because he wanted to build another centre rivaling
the TIFR school in the country. Fortunately for TIFR, the
project did not materialize and Narasimhan continued to
guide the School for another 20 years.

When in 1983, the DAE set up the National Board
of Higher Mathematics, an agency for the promotion of
mathematics, he was the natural choice to head it. Un-
der his leadership, the Board took many initiatives which
went a long way towards fulfilling its mandate. As a fellow
faculty member and a member of NBHM, I had the good
fortune of observing him at close quarters and I learnt a
great deal about science administration. He was a stick-
ler for dignified and correct conduct on all occasions; he
would visibly wince when someone failed on that front.
He planned and conductedmeetings meticulously. His de-
cisions were always taken after considerable thought. His
letters were written with great care; he not only wanted to
say the right things but wanted them said the right way.

During his ICTP days, my contacts with him were few
and far between. I paid a few short visits to ICTP at his
invitation and they were very enjoyable. After he retired
to Bangalore, the contacts, which were mostly on the tele-
phone, became more regular.

Narasimhan—unlike many men of comparable stature
—was accessible; and interactionwith him, whether profes-
sional or otherwise, was easy and pleasant; his style though
was not the deliberate informality of the corporate world.
He had wide interests, beyond mathematics, and had in-
teresting things to say on a variety of subjects. His sarto-
rial preferences were conservative: I have never seen him
in jeans and he was seen in a T-shirt only rarely. He was
not averse to dressing formally if the occasion demanded
it. But he was no conservative on social and political issues.
He was of a strongly leftist persuasion and was unequivo-
cal in his condemnation of the caste system and the Hindu
right.

In recent years he was much distressed at the decline,
in our country, of the values that he held dear; mathe-
matics, his magnificent obsession, kept him from sinking
into greater despondency. The manner in which he kept
up with recent developments in mathematics right till the
end, was truly amazing. He was of course a professional
mathematician, yet his excitement with mathematics was
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reminiscent of the little boy on the seashore in Newton’s
famous self-assessment.

His passing away is a great personal loss to me: he was
a close friend and mentor.

T. R. Ramadas
Narasimhan had an abiding curiosity about most aspects
of mathematics. He firmly believed that mathematics has
an internal dynamic, and that intelligent and insightful in-
terrogation yields the deepest insights of the subject. But
he was very open to insights that came from allied fields,
particularly Physics.

I joined TIFR in 1977 as a graduate student in theoreti-
cal physics, with a good training from the Indian Institute
of Technology, Kanpur. I knew of the work of Aharanov-
Bohm, Wu-Yang, and others on the geometric aspects of
gauge theories. The quantization of these theories involves
an integration over the space of “gauge potentials,” i.e.,
space of connections on a principal bundle on space-time.
This space is infinite-dimensional, and this leads to the
usual, and still largely unresolved, mathematical problems
of quantum field theory. In the case of gauge-theories,
there is an additional complication, due to the fact that
the integrand is invariant under the infinite-dimensional
group of gauge-transformations, i.e., automorphisms of
the principal bundle. This is dealt with by “gauge-fixing.”
The Russian physicist V. N. Gribov had pointed out that
there were ambiguities in this procedure, and speculated
on physical consequences of this.

Although Narasimhan is best known as an algebraic ge-
ometer, his early training was as a complex geometer and
analyst, and he had a deep knowledge of both the analyti-
cal and formal aspects of differential geometry, in particu-
lar the theory of connections on bundles. The theorem on
universal connections due to Narasimhan and S. Ramanan
is a fundamental insight. (The second of their joint papers
on the subject contains an elegant proof of the basic result
in Chern-Weil theory. This is now the standard proof, and
rarely credited to its discoverers.)

I explained to Narasimhan my rather naive understand-
ing of these matters. Narasimhan very quickly brought
all the geometry into focus. He insisted on the “correct”
analytical setting for infinite-dimensional geometry, and
our work contained the earliest construction of the space
of connections as an infinite-dimensional principal bun-
dle modeled on a suitable Sobolev space. “Gauge-fixing,”
taken literally, would mean choosing a section for this
bundle, and the point is that it is rarely trivial, except
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possibly in the case of connections on a principal bun-
dle with abelian structure group. This had been proved
independently and earlier by I. M. Singer, whose paper ap-
peared after we finished our manuscript.

In the early sixties, Narasimhan and Seshadri had made
the fundamental discovery that stable vector bundles (an
algebro-geometric notion introduced by D. Mumford) on
a compact Riemann surface correspond to irreducible uni-
tary representations of its fundamental group (possibly
with a “puncture,” depending on the degree of the bun-
dle). The study of these moduli spaces was a major pre-
occupation of Narasimhan in the next two decades. His
work with S. Ramanan and later with G. Harder provided
a template for much of the later work on moduli.

In the early eighties, Atiyah and Bott realized that the
TheoremofNarasimhan and Seshadri could be interpreted
as an infinite-dimensional version of Kempf-Ness theory,
with the curvature of a connection interpreted as the mo-
ment map. Their starting point was an investigation of a
toy version of gauge theory, with a Riemann surface replac-
ing space-time, and the norm (squared) of the moment
map playing the role of “action functional.”

All this was “classical mechanics.” In the late eighties
and nineties, physicists realized that certain quantum field
theories in two and three space-time dimensions had as
their quantum “state spaces,” spaces of (holomorphic) sec-
tions of line bundles on moduli spaces of vector bundles
on Riemann surfaces. It is fair to say that this revealed as-
pects of linear series on these spaces that were entirely new.
In analogy with the classical case of Jacobians, these are
called generalized theta functions.

Narasimhan was particularly intrigued by the beauti-
ful formulae derived by E. Verlinde for the dimensions of
these linear series on these moduli spaces. These matters
remained a major preoccupation from then on.

Narasimhan and J.-M. Drézet developed the basic the-
ory of the theta bundle on moduli spaces of vector bun-
dles of arbitrary rank and degree. Narasimhan and I then
worked out a proof of the Verlinde formula in purely
algebro-geometric terms. We had to give a careful construc-
tion of parabolic moduli spaces on singular curves, (which
we did à la Simpson), definition of theta bundle thereon, a
vanishing theorem (in a context where Kodaira vanishing
could not be immediately applied), and finally a geomet-
ric proof of “factorization.”

It is worth taking stock of what the physics ingredient
was in these matters. In general terms, the realization that
there was a rich structure to the theory of generalized theta
functions. Specifically, first the insight that degeneration
techniques and the incorporation of “parabolic structures”
made possible an inductive expression for the dimensions.
Second, Verlinde’s ingenious introduction of his algebra
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Figure 4. With wife Sakuntala and daughter Shobhana,
Bombay, 1964.

and its use in deriving an explicit formula. Third, the role
of Kac-Moody groups (clarified largely through the work
of Tsuchiya-Ueno-Yamada) in the context.

Narasimhan enlisted S. Kumar and A. Ramanathan in
the first of a series of works that carefully elucidated the
relationship between the definitions of conformal blocks
in algebra-geometric terms and in terms of loop groups.
These papers, technically difficult and carefully written, re-
main standard references.

In more recent times, Narasimhan remained engaged
in developments in moduli theory, and followed the work
on Bridgeland stability particularly closely. His last works
were devoted to derived categories of coherent sheaves on
his beloved moduli spaces, using the Hecke transform, a
pioneering tool invented with Ramanan decades earlier.

Arnaud Beauville
My interest in vector bundles on curves was triggered by
the work of Narasimhan and Ramanan. In the early 80s, I
was interested in the Schottky problem. Recall that one
associates to a curve 𝐶 of genus 𝑔 a complex torus 𝐽 of
dimension 𝑔, the Jacobian variety, which one can view as
parameterizing line bundles 𝐿 of degree 𝑔 − 1 on 𝐶 (by
choosing one of these as the origin). Then the locus Θ
of those line bundles which admit a nonzero section is a
hypersurface in 𝐽, the Theta divisor. The pair (𝐽, Θ) is what
we call a principally polarized abelian variety – p.p.a.v. for
short.

As soon as 𝑔 ≥ 4, the p.p.a.v.’s depend on more pa-
rameters than the Jacobians; the Schottky problem asks for
a characterization of Jacobians among all p.p.a.v.’s (𝐴,Θ).
There was a flurry of activity around this in the early 80s;
most approaches involve the linear system |2Θ| (that is, the
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projective space of divisors linearly equivalent to 2Θ). For
𝑎 ∈ 𝐴, the divisor 𝜅(𝑎) ∶= (Θ+𝑎)+(Θ−𝑎) belongs to this
linear system; the map 𝜅 ∶ 𝐴 → |2Θ| embeds the Kummer
variety Km(𝐴) ∶= 𝐴/𝑖 into |2Θ|, where 𝑖 is the involution
𝑎 ↦ −𝑎 of 𝐴. One of the approaches to the Schottky prob-
lem characterizes Jacobians by the existence of trisecants
to their Kummer variety in |2Θ|.

I was studying these questions when I discovered that
Narasimhan and Ramanan had found a remarkable con-
nection between |2Θ| and rank 2 vector bundles. Letℳ be
the moduli space of semi-stable, rank 2 vector bundles on
𝐶 with trivial determinant. Given 𝐸 ∈ ℳ, the locus of line
bundles 𝐿 ∈ 𝐽 such that 𝐸⊗𝐿 admits a nonzero section is
an element 𝜃(𝐸) of |2Θ|; we thus get a map 𝜃 ∶ ℳ → |2Θ|,
which maps the singular locus ofℳ exactly onto the Kum-
mer variety. In the beautiful paper [NR], Narasimhan and
Ramananwork out completely the genus 3 case: 𝜃 is an em-
bedding, and its image turns out to be the unique quartic
hypersurface in |2Θ| ≅ 𝐏7 singular along Km(𝐽). This hy-
persurface had been discovered by Coble long ago through
algebraic manipulations; its geometric interpretation via
vector bundles was entirely new.

This result inspired me to study the map 𝜃 ∶ ℳ → |2Θ|
in higher genus [B]. I noticed that there is a kind of du-
ality between 𝐽 and ℳ: given 𝐿 ∈ 𝐽, one defines a divi-
sor Θ𝐿 on ℳ as the locus of vector bundles 𝐸 such that
𝐸⊗𝐿 has a nonzero section; the line bundle ℒ = 𝒪ℳ(Θ𝐿)
does not depend on 𝐿, and there is a natural isomorphism
|ℒ|∗ ∼⟶ |2Θ| which identifies 𝜃 with the map 𝜑ℒ defined
by the global sections of ℒ.

For vector bundles of rank 𝑟 ≥ 3, the analogous state-
ments make sense (with a rational map ℳ - -→ |𝑟Θ|),
but the proof in rank 2 is not directly adaptable. After a
few months I found a way to do it. Shortly after I met
Narasimhan and Ramanan at the AMS Summer conference
on theta functions (in 1987), we realized we had had the
same ideas—using the Hitchin fibration and the notion of
very stable vector bundle introduced byDrinfeld. Sowe de-
cided to write the joint paper [BNR]. Narasimhan invited
me to the Tata Institute; I spent one month there in 1988.
By that time, we had essentially finished the paper, but I
had many lively discussions with Narasimhan, both math-
ematical and non-mathematical—he was a very cultured
man, with interesting points of view on a wide range of
subjects.

The key ingredient in [BNR] was the computation of
the dimension of the space of global sections Γ(ℒ)—often
called “generalized theta functions.” At about that time,
word spread among mathematicians that physicists had
a formula for the dimension of Γ(ℒ⊗𝑘) for all 𝑘, in a
much more general setting including for instance moduli
spaces of 𝐺-bundles for all semi-simple groups 𝐺. This
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Verlinde formula soon became a challenge for algebraic ge-
ometers, and half a dozen proofs appeared in the follow-
ing years, including one by Narasimhan with Kumar and
Ramanathan [KNR] and one by Laszlo and myself [BL].
Our (independent) proofs were actually quite close: both
papers used infinite-dimensional algebraic geometry, with
the language of infinite-dimensional manifolds in [KNR]
and of algebraic stacks in [BL].

I had no other opportunity to collaborate with
Narasimhan. We met briefly in a few conferences; on one
occasion he came to Nice, we had a nice lunch with a very
pleasant conversation. Narasimhan liked good food, art,
and music. He was a great mathematician and a colleague
of high human quality.

Shrawan Kumar
I am saddened by Professor Narasimhan’s passing away. It
is a personal loss to me and a great loss for the mathemat-
ical community and all associated with him. I hold him
in the utmost respect not only for all the beautiful mathe-
matics he created (of which I have learnt only a tiny bit),
but his integrity, administrative capability, and care for all
those associated with him.

On a personal note, I vividly remember that one day
while I was a graduate student, he called me to his office
and explained a problem to me. But more importantly, he
told me how to go about working on a problem. To this
day, I try to follow his advice when I think about a prob-
lem. He was the one who introduced me to the problems
surrounding the Verlinde formula, which became among
one of the important projects I pursued for a while (mostly
jointly with him and also some with A. Ramanathan and
A. Boysal) and recently I wrote a book on the subject. I
visited Professor Narasimhan at I.C.T.P. during 1994. He
was very warm and caring.

I had the privilege of writing two papers with Profes-
sor Narasimhan, which I briefly describe here. Let Σ be a
smooth projective irreducible 𝑠-pointed (𝑠 ≥ 1) curve of
any genus 𝑔 ≥ 0 with marked points ⃗𝑝 = (𝑝1, … , 𝑝𝑠) and
let 𝐺 be a simply connected simple algebraic group with
Lie algebra 𝔤. We fix a positive integer ℓ called the level and
let 𝑃ℓ be the set of dominant integral weights of 𝔤 of level at
most ℓ. We attach weights ⃗𝜆 = (𝜆1, … , 𝜆𝑠) (each 𝜆𝑖 ∈ 𝑃ℓ) to
the marked points ⃗𝑝 respectively. Associated to the triple
(Σ, ⃗𝑝, ⃗𝜆), there is the space 𝒱†

Σ ( ⃗𝑝, ⃗𝜆) of conformal blocks (also
called space of vacua), which is a certain finite dimensional
space of 𝔤 ⊗ ℂ[Σ ⧵ ⃗𝑝]-invariants of a tensor product of
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dress is shrawan@email.unc.edu.

𝑠-copies of integrable highest weight modules with highest
weights ⃗𝜆 and level ℓ of the affine Kac-Moody Lie algebra ̂𝔤
associated to 𝔤. This space is a basic object in Rational Con-
formal Field Theory arising from the Wess-Zumino-Witten
model associated to 𝐺. Now, E. Verlinde gave a remark-
able conjectural formula for the dimension of 𝒱†

Σ ( ⃗𝑝, ⃗𝜆) in
1988. This conjecture was “essentially” proved by a pio-
neering work of Tsuchiya-Ueno-Yamada [TUY], wherein
they proved the Factorization Theorem and the invariance of
dimension of the space of conformal blocks under defor-
mations of the curve Σ, which allow one to calculate the
dimension of the space of conformal blocks for a genus 𝑔
curve from that of a genus 𝑔 − 1 curve. Thus, the problem
gets reduced to a calculation on a genus 0 curve, i.e., on
Σ = ℙ1. The corresponding algebra for Σ = ℙ1 is encoded
in the fusion algebra associated to 𝔤 at level ℓ, which gives
rise to a proof of an explicit Verlinde dimension formula
for the space 𝒱†

Σ ( ⃗𝑝, ⃗𝜆).
Classical theta functions can be interpreted in geomet-

ric terms as global holomorphic sections of a certain de-
terminant line bundle on the moduli space Pic𝑔−1(Σ) of
line bundles of degree 𝑔 − 1 on Σ (a smooth curve of
genus 𝑔). This has a natural non-abelian generalization,
where one replaces the line bundles on Σ by principal
𝐺-bundles on Σ to obtain the parabolic moduli space
(or stack) Parbun𝐺(Σ) and certain determinant line bun-
dles over Parbun𝐺(Σ). Holomorphic sections of these
determinant line bundles over Parbun𝐺(Σ) are called
the generalized theta functions (generalizing the classi-
cal theta functions). The Verlinde dimension formula
attracted considerable further attention from mathemati-
cians and physicists when it was realized that the space
of conformal blocks admits an interpretation as the space
of generalized theta functions. This interpretation was
rigorously established in the “non-parabolic” case in my
joint work with Narasimhan-Ramanathan (for general 𝐺)
[KNR]. It was independently established around the same
time by Faltings (for general 𝐺) and Beauville-Laszlo (for
the special case 𝐺 = SL𝑛); and in the case of parabolic
space by Pauly (for the special case 𝐺 = SL𝑛) and for para-
bolic stacks by Laszlo-Sorger (for general 𝐺).

In a second joint paper with Professor Narasimhan,
we proved that the moduli space 𝑀𝐺(Σ) of semistable 𝐺-
bundles over a smooth irreducible projective curve Σ (of
any genus) is Gorenstein and has its Picard group isomor-
phic with the group of integers [KN], thus generalizing the
corresponding result for 𝐺 = SL𝑛 by Drezet-Narasimhan.
We also proved the vanishing of higher cohomology of
𝑀𝐺(Σ) with coefficients in positive line bundles.

It is simply amazing that inspite of all the pain and suf-
fering he was going through towards the end of his life,

AUGUST 2022 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1199



he wrote a paper with Gallego and Garcı́a-Prada which ap-
peared on the ArXiv on May 13, 2021, just a couple of days
before he passed away. It is a testimony to his utmost de-
votion to mathematics!

Oscar Garcı́a-Prada
As a graduate student in Oxford in the late 1980s, work-
ing under the supervision of Nigel Hitchin and Simon
Donaldson, I was very much influenced by the theorem
of Narasimhan and Seshadri, and the important general-
izations that were inspired by this theorem around that
time. Published in 1965, this theorem captures the inter-
connection between various branches of geometry, topol-
ogy, and theoretical physics, and was the basis for later fun-
damental works by numerous mathematicians, including
Atiyah, Bott, Donaldson, Uhlenbeck, Yau, Hitchin, Simp-
son, and many others. After briefly recalling the theo-
rem of Narasimhan and Seshadri, I will comment here on
some generalizations related to representations of the fun-
damental group of a compact Riemann surface, with par-
ticular reference to works that are close tomy own interests
and research.

Upon his return from Paris to the Tata Institute
for Fundamental Research (TIFR) in Bombay in 1960,
Narasimhan embarked on an intense collaboration with
Seshadri that resulted in their famous theorem. In-
spired by some remarks in the 1938 paper of A. Weil on
“Généralisation des fonctions abéliennes,” in 1961–1962,
Narasimhan and Seshadri started looking at unitary vec-
tor bundles. A unitary representation 𝜌 of dimension 𝑛 of
the fundamental group of a compact Riemann surface 𝑋
defines a holomorphic vector bundle 𝐸𝜌 of rank 𝑛 and de-
gree 0, which is referred to as a unitary vector bundle. This is
called an irreducible unitary vector bundle if 𝜌 is irreducible.
They showed that the infinitesimal deformations of a uni-
tary vector bundle 𝐸𝜌 as a holomorphic bundle can be
identified with the infinitesimal deformations of the repre-
sentation 𝜌. From this, they deduced that the set of equiva-
lence classes of unitary vector bundles had a natural struc-
ture of a complex manifold, and were able to compute the
expected dimension.

A breakthrough came with the work of Mumford on
Geometric Invariant Theory. In the 1962 International
Congress in Stockholm, he introduced the notion of sta-
bility of a vector bundle on a compact Riemann surface,
and proved that the set of equivalence classes of stable
bundles of fixed rank and degree has a natural structure

Oscar Garcı́a-Prada is professor of mathematics at the Instituto de Ciencias
Matemáticas, Madrid. His email address is oscar.garcia-prada@icmat
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Figure 5. Narasimhan with Oscar Garcı́a-Prada at ICMAT,
Madrid, 2017.

of a non-singular quasi-projective algebraic variety, projec-
tive if the rank and degree are coprime. After Narasimhan
and Seshadri became aware of Mumford’s work, the rela-
tion with unitary bundles was clear to them. They proved
that an irreducible unitary bundle is stable. For arbitrary
degree they showed that the stable vector bundles on 𝑋
are precisely the vector bundles on 𝑋 which arise from cer-
tain irreducible unitary representations of suitably defined
Fuchsian groups acting on the unit disc and having 𝑋 as
quotient.

The result that they proved in [NS] can be easily refor-
mulated as saying that a holomorphic vector bundle over
𝑋 is stable if and only if it arises from an irreducible pro-
jective unitary representation of the fundamental group of
𝑋 . From this, one deduces that a reducible projective uni-
tary representation of the fundamental group corresponds
to a direct sum of stable holomorphic vector bundles of
the same slope, where the slope of a vector bundle is the
quotient of its degree by its rank, (what is nowadays re-
ferred as a polystable vector bundle). One can observe that
the projective unitary representations lift to unitary repre-
sentations of a certain central extension of the fundamental
group of 𝑋 . The gauge-theoretic point of view of Atiyah
and Bott [AB], using the differential geometry of connec-
tions on holomorphic bundles, and the new proof of the
Narasimhan–Seshadri theorem given by Donaldson [D]
following this approach, brought new insight and new an-
alytic tools into the problem. In this approach, a projec-
tive unitary representation of the fundamental group is the
holonomy representation of a unitary projectively flat con-
nection.

A very natural question to ask is whether there is
a holomorphic interpretation of representations of the
fundamental group of 𝑋 in GL(𝑛, ℂ) that are not uni-
tary. The answer to this required the introduction of new
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holomorphic objects on the Riemann surface 𝑋 called
Higgs bundles. These objects, introduced by Hitchin in [H],
are pairs (𝐸, Φ) consisting of a holomorphic vector bundle
𝐸 over 𝑋 and a homomorphism Φ ∶ 𝐸 → 𝐸 ⊗ 𝐾, where
𝐾 is the canonical bundle of 𝑋 . There is a notion of sta-
bility similar to that of vector bundles, and corresponding
moduli spaces. The correspondence between stable Higgs
bundles and irreducible representations of the fundamen-
tal group of 𝑋 (or its universal central extension if the de-
gree is different from zero) in GL(𝑛, ℂ) was proved in the
above mentioned paper by Hitchin [H] for 𝑛 = 2 and by
Simpson (1988) for arbitrary 𝑛 (and in fact, for higher di-
mensional Kähler manifolds). The correspondence in the
case of GL(𝑛, ℂ) needed an extra ingredient—not present
in the compact case—having to do with the existence of
twisted harmonic maps from 𝑋 into the symmetric space
GL(𝑛, ℂ)/U(𝑛). This theorem was provided by Donaldson
(1987) for 𝑛 = 2 and by Corlette (1988) for arbitrary 𝑛
(who also proved it for higher dimensional compact Rie-
mannian manifolds).

It turns out that the theory of Higgs bundles is also
central in the study of representations of the fundamen-
tal group of 𝑋 in non-compact real forms 𝐺ℝ ⊂ GL(𝑛, ℂ).
Indeed, the case of the split real form 𝐺ℝ = GL(𝑛,ℝ)
(more precisely SL(𝑛, ℝ)) was studied by Hitchin (1992).
Using Morse-theoretic techniques he counted the num-
ber of connected components of the moduli space. He
also identified special components, now known as Hitchin
components, whose representations, as shown by Labourie
(2006) using concepts from dynamical systems, have sim-
ilar properties to those in the Teichmüller space of the sur-
face, regarded (Goldman, 1980) as a topological compo-
nent of the moduli space of representations in SL(2, ℝ).

The case of the pseudo-unitary groups 𝐺ℝ = U(𝑝, 𝑞)
with 𝑝 ≠ 0 ≠ 𝑞 and 𝑝 + 𝑞 = 𝑛 is in a sense closer to
the case of the unitary group U(𝑛) studied by Narasimhan
and Seshadri, since these real forms are inner equivalent
to U(𝑛). This situation was investigated by Bradlow and
Gothen in collaboration with the author [BGG]. Here, a
Higgs bundle (𝐸, Φ) corresponding to a representation in
U(𝑝, 𝑞) is of the form 𝐸 = 𝑉 ⊕ 𝑊 , where 𝑉 and 𝑊 are
holomorphic vector bundles of rank 𝑝 and 𝑞 respectively,
and Φ, in terms of this decomposition, has zeros in the di-
agonal. There is a topological invariant, called the Toledo

invariant, defined as 𝜏 = 2𝑎𝑞−𝑏𝑝
𝑝+𝑞

, where 𝑎 and 𝑏 are the

degrees of 𝑉 and 𝑊 respectively, for which the semista-
bility of (𝐸, Φ) implies the so-called Milnor–Wood inequal-
ity 0 ≤ |𝜏| ≤ 2min{𝑝, 𝑞}(𝑔 − 1). In [BGG] it is proved
that for any value of the degrees 𝑎 and 𝑏 so that 𝜏 satis-
fies the Milnor–Wood inequality the moduli space of sta-
ble U(𝑝, 𝑞)-Higgs bundles is non-empty and connected.

This is very much in contrast with the case of U(𝑛) and
GL(𝑛, ℂ), for which there are no constraints on the topo-
logical invariant, and for which for any value of the degree
there exists a non-empty connected component. More-
over, when 𝑛 is even and 𝑝 = 𝑞, the representations in
the component with maximal Toledo invariant have prop-
erties similar to those in the Hitchin component, as shown
by Burger–Iozzi–Labourie–Wienhard (2005). The study
of these components and the Hitchin components is part
of the content of the recent field of higher Teichmüller the-
ory.

To complete the list of real forms of GL(𝑛, ℂ), when 𝑛 is
even one can consider the group U∗(𝑛), the non-compact
dual of U(𝑛). This has been treated by Oliveira and the au-
thor (2011). In this case a Higgs bundle (𝐸, Φ) is such that
𝐸 is equipped with a holomorphic symplectic structure,
with respect to which Φ is symmetric. Using the Morse-
theoretic techniques introduced by Hitchin, the main re-
sult proved here is that the moduli space of U∗(𝑛)-Higgs
bundles is non-empty and connected.

I first met Narasimhan quite soon after having com-
pleted my doctoral thesis in 1991. From the very begin-
ning, he was very kind to me, and extremely generous in
the exchange of ideas. Our mathematical and personal
friendship grew over the years and we had the opportu-
nity to meet many times in Europe and India. He visited
our institute in Madrid on several memorable occasions,
including Nigel Hitchin’s 60th birthday conference and
S. Ramanan’s 70th birthday conference, as well as a con-
ference in his honor on the occasion of his 80th birthday.

In addition to discussing mathematics and Indo-
European collaboration schemes, Narasimhan and I very
much liked to enjoy a glass (or two!) of good red wine,
very often in company of our common friend and col-
laborator Ramanan, and other good friends. I last saw
Narasimhan in person in Bangalore in February 2020, dur-
ing a meeting at the International Centre for Theoretical
Sciences (ICTS). After the ICTSmeeting, I went for few days
to Chennai for a visit at the Chennai Mathematical Insti-
tute (CMI), where as a matter of fact I saw C. S. Seshadri
for the last time. During the last year of Narasimhan’s life
we were very actively in contact working on a joint project
with him and my student Guillermo Gallego on a general-
ization of the Hitchin system. A paper on this work [GGN]
saw the light just a few days before his passing.
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Figure 6. With wife Sakuntala and daughter Shobhana, 1969.

Herbert Lange
First of all I would like to say that it always was a great
pleasure to work with Narasimhan. We met many times,
at TIFR, in Chennai and Bangalore, at ICTP, in Erlangen,
and at many conferences. Whenever we met, of course
we mainly discussed Mathematics, but also other subjects,
even personal ones.

I got to know Narasimhan as a very generous person,
not only in mathematics. He was not just a colleague, but
also a friend. Although he certainly was the better math-
ematician, he never let me feel it. Apart from publishing
two papers together, the main results of which I will de-
scribe below, he also had an influence on some ofmy other
papers. Moreover, some of the results of our discussions
we did not publish.

First we met in Nice, where I spent some months and
he a whole year and where we shared an office. Soon we
found a problem, on vector bundles on curves, which led

Herbert Lange is a professor of mathematics at Universität Erlangen, Germany.
His email address is lange@mi.uni-erlangen.de.

to our joint paper [LN1], the main results of which are as
follows:

Let 𝑋 be a smooth irreducible curve of genus 𝑔 over an
algebraically closed field of characteristic 0. For any vector
bundle 𝐸 of rank 2 over 𝑋 define the invariant 𝑠(𝐸) ∶=
deg𝐸 −2max deg(𝐿) where the maximum is taken over all
line subbundles of 𝐸. 𝐸 is stable if and only if 𝑠(𝐸) ≥ 1
and it is well known that 𝑠(𝐸) ≤ 𝑔. Denote by 𝑀(𝐸) the
subscheme of Pic(𝑋) formed by the maximal subbundles
of 𝐸. Maruyama proved that dim𝑀(𝐸) = 1 if 𝑠(𝐸) = 𝑔
and conjectured that 𝑀(𝐸) is finite whenever 𝐸 is not of
the form 𝐿 ⊕ 𝐿 and 𝑠(𝐸) ≤ 𝑔 − 1. Our main result is the
following

Theorem.

𝑠(𝐸) = 2: If deg𝐸 ≡ 0 mod 2, then dim𝑀(𝐸) = 0 for ev-
ery 𝐸 of rank 2 if and only if 𝑋 is not double elliptic. In
the double elliptic case every double elliptic cover yields a
𝑔-dimensional subspace of the moduli space of stable 𝐸 of
rank 2 with dim𝑀(𝐸) = 1.

𝑠(𝐸) = 3: For every 𝑔 ≥ 4 there is a curve 𝑋 of genus 𝑔 which
admits a vector bundle 𝐸 with 𝑠(𝐸)=3 and dim𝑀(𝐸)=1.

In each case, explicit examples are given. Themethod of
proof is to translate the problem into a problem of projec-
tive geometry: namely to determine curves of genus 𝑔 and
degree 2𝑔 in the projective space ℙ𝑔 and points in ℙ𝑔, not
on the curve, through which infinitely many secant lines
of the curve pass. The maximal subbundles correspond to
the secant lines passing through the point.

Our second paper was written during a visit of
Narasimhan in Erlangen. This time the subject was not
vector bundles, but abelian varieties.

According to a classical theorem of Lefschetz the 𝑛-th
power of an ample line bundle of an abelian variety is very
ample for any 𝑛 ≥ 3. The paper [LN2] deals with the anal-
ogous question for the second power of an ample line bun-
dle. The results are not new, however, most of the proofs
are. So for an ample line bundle 𝐿 on 𝑋 consider the map

Φ = Φ𝐿2 ∶ 𝑋 → ℙ𝑁 = 𝑃(𝐻0(𝐿2)).

To state the main theorem, let

(𝑋, 𝐿) = (𝑋1, 𝐿1) ×⋯ × (𝑋𝑠, 𝐿𝑠)

denote the decomposition of the polarized abelian variety
(𝑋, 𝐿) into a product of irreducible polarized abelian vari-
eties. Suppose that (𝑋𝜈, 𝐿𝜈) for 𝜈 = 1, … , 𝑟 are principally
polarized and for 𝜈 = 𝑟 + 1, … , 𝑠 are not principally polar-
ized. For 𝜈 ≤ 𝑟 let𝐾𝜈 = 𝑋𝜈/±𝑖𝑑 denote the Kummer variety
of 𝑋𝜈 with canonical projection 𝑝𝜈 ∶ 𝑋𝜈 → 𝐾𝜈.

1202 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 7



Define 𝐾 = 𝐾1 ×…𝐾𝑟 ×𝑋𝑟+1 ×⋯×𝑋𝑠 and 𝑝 = 𝑝1 ×⋯×
𝑝𝑟 × 𝑖𝑑𝑋𝑟+1 ×⋯ × 𝑖𝑑𝑋𝑠 . So Φ factorizes as

𝑋 Φ //

𝑝
��?

??
??

??
? ℙ𝑁

𝐾
𝜓

>>}}}}}}}}

with a holomorphic map 𝜓. The main result is,

Theorem. 𝜓 is an embedding.

SoΦ is of degree 2𝑟 onto its image. In particular, if none
of the (𝑋𝑖, 𝐿𝑖) is principally polarized, Φ is an embedding.
On the other hand, in the case of an irreducible princi-
pally polarized abelian variety, Φ embeds the Kummer va-
riety. The main contributors of this topic are Wirtinger,
Andreotti-Mayer, Sasaki, Ramanan and Ohbuchi.
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colleges/schools of education. Originally the STaR Program 
coincided with the Park City Mathematics Institute so that 
some speakers and experiences could be shared. The STaR 
Program continues to meet for one week annually in Park 
City, except in 2020 and 2021 when it was done remotely.  

What happens during the STaR institute? Prior to the 
five-day institute, selected participants are asked to identify 
their teaching and research interests. While research inter-
ests vary, most fall into areas such as teacher knowledge/
beliefs, teacher preparation, student learning, instructional 
materials/curriculum, and equity/diversity. Teaching in-
terests/responsibilities include courses (content and/or 
methods) for elementary, middle, or secondary teacher 
education candidates (undergraduate and graduate level). 

The summer institute consists of plenary sessions on 
teaching, research, and service that are led by a staff of 
experienced mathematics educators. In addition to the 
plenary sessions, special interest groups are established that 
focus on research and teaching. For example, participants 
teaching courses (content or methods) that are targeted 
toward middle school teachers meet to discuss what they 
are doing, share syllabi, discuss challenges they face, and 
exchange ideas about teaching these courses. These special 
interest groups continue to dialogue during the year as they 
teach comparable courses. In a similar manner, research 
groups allow STaR Fellows to meet with other mathematics 
educators sharing similar research interests and goals. The 
work of these groups often results in STaR Fellows designing 
and conducting joint research efforts across multiple insti-
tutions, and sometimes this work evolves into proposals for 
funding to support their collaborative research.

The STaR Program  
for New Doctorates  
in Mathematics Education  
is in its Second Decade
Barbara Reys and Robert Reys

In 2010 the first cohort of STaR Fellows gathered in Park 
City, UT. The program, now in its second decade, is de-
signed as an induction experience for doctoral graduates 
in mathematics education who are in their first- or sec-
ond-year appointment in an institution of higher educa-
tion. It was initially modeled on Project NExT, a successful 
program for mathematicians entering careers in institutions 
of higher education. The STaR Program was funded for its 
first four years by the National Science Foundation (Grant 
0922410), but thanks to continuing contributions from 
individuals and philanthropic groups, it continues under 
the oversight of the Association of Mathematics Teacher 
Educators (AMTE). This article provides an update on the 
program that derives its name (STaR) from the important 
work of higher education faculty in mathematics education:  
Service, Teaching and Research.

The STaR Program is intended to serve as many new 
mathematics educators in higher education as possible. 
However, there are generally more applicants that can be 
accommodated – about 25–35 people each year. Partic-
ipants are about equally distributed between those with 
academic appointments in mathematics departments and 
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Table 3 shows the Carnegie Basic Classification of in-
stitutions of higher education in the United States where 
the STaR Fellows are currently employed. More specifically, 
Table 3 shows that slightly over one-half of the STaR Fellows 
are employed in doctoral granting institutions, and about 
40 percent are employed in regional institutions offering 
a range of degrees.

How to become a STaR Fellow? The current application 
process requires a vita, a letter of recommendation from 
the applicant’s doctoral advisor, a letter of support from 
current department chair or dean, and a personal statement 
describing current work and how participation in the STaR 
Progam will advance their career. The complete application 
process is on the AMTE website at https://amte.net 
/star/apply. 

Each participant also shares at least one of their aca-
demic manuscripts with other participants and staff. These 
manuscripts are then reviewed and discussed within a small 
cohort group, providing valuable feedback. Continued 
work on these manuscripts has resulted in many scholarly 
publications by the STaR Fellows, some of which are coau-
thored with other STaR Fellows. 

Fireside Chats are optional informal conversations 
hosted by experienced mentors/staff about topics of cur-
rent interest and held during specified times outside of the 
Research, Teaching, and Service-related sessions they all at-
tend. Fellows can choose among different available chats to 
attend or can do their own thing during these times. There is 
also free time during the institute that allows for continued 
interaction among Fellows on topics of mutual interest.

The personal networking established during the insti-
tute and continued throughout the years following the 
institute is a particular strength of the program, as many 
STaR Fellows work in isolation at their home institution 
(e.g., they may be the only mathematics educator in their 
department). Fellows also meet at the next annual meet-
ing of AMTE following the institute, providing additional 
opportunities for networking and collaboration. 

The STaR Program is designed and delivered by senior 
faculty members in mathematics education, usually led 
by co-organizers. In addition to the co-organizers, 3–5 
other senior level mathematics educators serve as staff to 
mentor Fellows.   

The success of the initial funding of the STaR Program by 
NSF served as a catalyst to build, launch, and establish the 
program. The commitment of AMTE to continue oversight 
of the program has allowed it to become established as part 
of the culture of the profession. STaR Program leadership 
has regularly changed to ensure that the STaR Program is 
vibrant and does not become dependent on one or two 
people. Table 1 reports the organizers that provided major 
leadership in shaping the experiences for the STaR Fellows.

Where did the STaR Fellows graduate? Since 2010, a 
total of 399 STaR Fellows have completed the program. 
These STaR Fellows earned their doctorate in mathematics 
education from 102 different institutions. The ten institu-
tions producing the most STaR Fellows are shown in Table 
2. STaR Fellows graduated from each of the Big 10 institu-
tions and a total of 37 institutions that are members of the 
American Association of Universities (AAU). Most of the 
STaR Fellows earned their doctorate from AAU institutions.

Where are the STaR Fellows employed? STaR Fellows are 
employed in 247 different institutions of higher education 
across 45 states. The ten institutions hiring the most STaR 
Fellows are shown in Table 2. About 50 percent of the STaR 
Fellows are employed in mathematics departments. Nine 
STaR Fellows are now employed in private enterprise, K–12 
school districts, or in institutions of higher education in 
other countries. 

Year(s) Co-Organizers

2010–13
Barbara & Robert Reys, University of  
Missouri

2014–15
Denise Spangler, University of Georgia; 
Jeff Wanko, Miami University

2016
Denise Spangler, University of Georgia; 
Karen Hollebrands, North Carolina State 
University

2017 Karen Hollebrands, North Carolina State 
University; Jeffrey Shih, University of 
Nevada-Las Vegas

2018 Jeffrey Shih, University of Nevada-Las 
Vegas; Keith Leatham, Brigham Young 
University

2019 Keith Leatham, Brigham Young  
University; Beth Herbel-Eisenmann, 
Michigan State University; Marta Civil, 
University of Arizona

2020 Beth Herbel-Eisenmann, Michigan State 
University; Marta Civil, University of  
Arizona; Maria Fernandez, Florida  
International University

2021 Maria L. Fernandez, Florida International 
University; R. Judith Quander, Houston 
University

2022 R. Judith Quander, Houston University; 
Mathew Felton-Koestler, Ohio University

2023 Mathew Felton-Koestler, Ohio University; 
Dorothy White, University of Georgia

Table 1. Leadership organizers for the STaR Program.
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The organizations/foundations/companies that have 
supported the STaR Program include: American Statistical 
Association (ASA); AERA Special Interest Group/Research 
in Mathematics Education (SIG/RME); Brookhill Foun-
dation/Mathematics Institute of Wisconsin; Connected 
Mathematics Project/Michigan State University; College 
Preparatory Mathematics; Educational Advancement 
Project; National Council of Teachers of Mathematics 
(NCTM); Psychology of Mathematics Education-North 
America (PME-NA); and state organizations including the 
Association of Mathematics Teachers Educators-Texas (AM-
TE-TX); Association of Maryland Mathematics Teacher Ed-
ucators AMMTE; Georgia Mathematics Teachers Educators 
(GAMTA); Kentucky Association of Mathematics Teacher 
Educators (KAMTE); Michigan Association of Mathematics 
Teacher Educators (MI-AMTE); Mississippi Association of 
Mathematics Teacher Educators (MAMTE); Pennsylvania 
Association of Mathematics Teacher Educators (PAMTE); 
Hoosier Association of Mathematics Teacher Educators 

How is the STaR program currently supported? NSF 
funded the first four years of the program producing 150 
STaR Fellows. Since that time, a four-part strategy has been 
used to continue support of the program:

 • Administrative/organizational oversight facilitated by 
AMTE.

 • Donations from a variety of professional organizations 
(state, regional, and national), foundations and com-
panies.

 • Donations from individual members of the mathematics 
education community, including STaR Fellows and mid- 
and senior-level faculty.

 • Travel support to attend the summer institute is provided 
by the home institution of each Fellow.  

Carnegie Basic Classification  
of Institutions

# %

Doctoral Universities: Very High  
Research Activity

127 32.6

Doctoral Universities: High Research 
Activity

86 22.1

Doctoral/Professional Universities 40 10.3

Master's Colleges & Universities: Larger 
Programs

87 22.3

Master's Colleges & Universities:  
Medium Programs

12 3.1

Master's Colleges & Universities: Small 
Programs

12 3.1

Baccalaureate Colleges: Diverse Fields 11 2.8

Baccalaureate Colleges: Arts & Sciences 
Focus

10 2.6

Baccalaureate/Associate's Colleges: 
Mixed Baccalaureate/Associate's

1 0.0

Associate's Colleges: High  
Transfer-Mixed Traditional/ 
Nontraditional

4 1.0

Table 3. Percent of the 390 STaR Fellows currently employed in 
institutions of higher education reflecting their Carnegie Basic 
Classification.

Institutions  
graduating 
the most STaR 
Fellows from 
2010–2022

# Institutions  
employing the most 
STaR Fellows

#

Michigan State 
University

24 University of Alabama 8

University of 
Georgia

24 North Carolina State 
University

7

North Carolina 
State University

19 Kennesaw State  
University

7

University of 
Missouri

16 University of  
Northern Iowa

7

University of  
California,  
Berkeley

13 Georgia Southern 
University

6

Indiana University 12 Appalachian State 
University

5

Stanford  
University

11 East Carolina  
University

5

University of  
Delaware

11 University of South 
Carolina

5

Illinois State  
University,  
University of 
Michigan,  
University of 
Northern  
Colorado

9 Georgia Southern 
University, Iowa State 
University, James 
Madison University, 
Montclair State  
University

4

San Diego State 
University,  
University of  
California, San 
Diego

9 San Diego State 
University, Texas State 
University, University 
of Nebraska, West 
Chester University

4

Table 2. The ten institutions graduating the most STaR Fellows 
and the ten institutions employing the most STaR Fellows.
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(HAMTE); and the Utah Association of Mathematics 
Teacher Educators (UAMTE). For those interested in pro-
viding support for the STaR Program, see: https://amte 
.net/civicrm/contribute/transact?reset=1&id=13.

What is the future of the STaR Program? Each genera-
tion of scholars in a discipline has a responsibility to help 
educate and prepare their successors in the discipline – to 
serve as stewards of the discipline (3). The STaR Program is 
an effort to help initiate the next generation of mathematics 
educators in institutions of higher education, providing 
support for them to develop networks that can help them 
launch and establish successful and productive careers. We 
appreciate the vision of the National Science Foundation 
for supporting the establishment of the STaR Program, 
the many groups that have provided financial support, the 
mathematics educators that have served as organizers and 
institute staff, and the commitment of AMTE for continuing 
the effort. Donations, along with continued service through 
leadership of the program, will ensure the continuation of 
a vibrant, successful, and remarkably far-reaching induc-
tion program for higher education faculty in mathematics 
education.
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The Calculus of Complex Functions  
William Johnston, Butler University, Indianapolis, IN

The book introduces complex analysis as a natural extension of the calculus of 
real-valued functions. The mechanism for doing so is the extension theorem, which 
states that any real analytic function extends to an analytic function defined in a 
region of the complex plane. The connection to real functions and calculus is then 
natural. The introduction to analytic functions feels intuitive and their fundamental 
properties are covered quickly. As a result, the book allows a surprisingly large cover-
age of the classical analysis topics of analytic and meromorphic functions, harmonic 
functions, contour integrals and series representations, conformal maps, and the 
Dirichlet problem. 
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Lectures on the Philosophy
of Mathematics
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Lectures on the Philosophy
of Mathematics
Joel David Hamkins

Most mathematicians proba-
bly view mathematics as a
subject in which we estab-
lish eternal truths with abso-
lute certainty. What is there
for philosophers to do, when
contemplating mathematics,
other than stand back and ad-

mire its beautiful perfection? And yet, when one looks
more closely, one discovers that mathematics is full of
philosophical mysteries.

For example, what are numbers? No one has ever seen
one. (Of course, you can see the mark “5” on a piece of
paper, but that is no more the number five than I am the
sequence of letters “Dan.”) G. H. Hardy, in his A Math-
ematician’s Apology, famously claimed that mathematical
objects do not belong to physical reality, but rather to
“another reality, which I will call ‘mathematical reality’”
[Har92, p. 123]. What is the nature of this reality?

If mathematical objects belong to a reality that is sep-
arate from physical reality, how is it that their properties
are so useful for understanding physical reality? As Eugene
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and an adjunct professor of mathematics at the University of Vermont. His
email address is djvelleman@amherst.edu.
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Wigner put it, how do we explain “the unreasonable effec-
tiveness of mathematics in the natural sciences” [Wig85]?

How do we discover facts about mathematical reality?
It appears that we do it by pure thought. But how is it that,
just by thinking, we can discover properties of mathemati-
cal reality? Perhaps mathematical objects exist only in our
minds. But if so, does each of us have our own, private

Figure 1. Calvin and Hobbes, by Bill Watterson.
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version of mathematical reality, and are they different?
And if not—if, as Hardy believed, “mathematical reality
lies outside us” [Har92, p. 123]—how does thought give
us access to that reality?

And what are we to make of mathematical statements,
such as the continuum hypothesis, that are known to be
neither provable nor disprovable? Does the continuum
hypothesis have an objective truth value? If not, does that
mean that mathematical reality has an indeterminate qual-
ity? But if it has an objective truth value, then it seems to
be a truth value that neither our senses nor our thoughts
give us access to. Belief in such truth values begins to seem
more like religious faith than science; perhaps Calvin is
right about mathematics!

In the preface to his book Lectures on the Philosophy of
Mathematics, Joel Hamkins says his aim is “to present a
mathematics-oriented philosophy of mathematics.” This
orientation is reflected in the organization of the book
into eight chapters, each focusing on a different mathe-
matical topic: numbers, rigor, infinity, geometry, proof,
computability, incompleteness, and set theory. In each
chapter, Hamkins presents mathematical results of foun-
dational significance, but these mathematical results lead
naturally to discussions of a variety of philosophical issues
and positions.

For example, in the chapter on numbers, Hamkins
sketches constructions of the different number systems of
mathematics. He introduces the logicist program of Gott-
lob Frege and explains how Frege tried to define the natu-
ral numbers. For the case of the real numbers, he describes
constructions using both Dedekind cuts and equivalence
classes of Cauchy sequences. Of course, these two con-
structions yield isomorphic structures. One way to see this
is to observe that both constructions lead to a complete or-
dered field, and all complete ordered fields are isomorphic.
These mathematical results motivate the philosophical po-
sition of structuralism, according to which, for example,
there is nothing more to be said about what the real num-
bers are other than that they are a complete ordered field.
This characterizes the real numbers up to isomorphism,
which is all that mathematics requires. For the structural-
ist, the purpose of the constructions of the real numbers is
not to identify what the real numbers “really” are—there
is no such thing—but rather to give the existence half of
the proof that there exists a unique (up to isomorphism)
complete ordered field. Hamkins discusses several ver-
sions of structuralism, advocated by various philosophers.
Most mathematicians will find some version of structural-
ism appealing, but in my view it requires a background
theory, such as set theory, that is strong enough to allow
us to prove the necessary existence and uniqueness theo-
rems. Thus, it does not completely resolve the philosoph-
ical problems associated with defining numbers; rather, it
pushes those problems back to the background theory.

In Chapter 2, Hamkins tells the story of how calculus
was made rigorous by the introduction of the 𝜖-𝛿 defini-
tion of limits, and how this led to the understanding of
important subtle distinctions in analysis, such as the differ-
ence between convergence and uniform convergence. The
fact that calculus is used in almost all branches of science
leads naturally to the philosophical argument, put forward
by Hilary Putnam and Willard Van Orman Quine, that the
indispensability of mathematical objects for science is evi-
dence for the existence of those objects. Hamkins then de-
scribes the opposing argument by Hartry Field that math-
ematical objects are not actually indispensable for science,
but rather can be considered to be convenient fictions.

In the next chapter Hamkins presents Cantor’s theory of
different sizes of infinity, the infinite ordinal and cardinal
numbers, and the continuum hypothesis. Cantor’s work
brings up two philosophical questions. The first is whether
infinity should be regarded as actual or potential; that is,
whether infinite collections can be treated as completed to-
talities, or whether it is better to think of the infiniteness of
a collection as merely the unending potential to produce
more and more elements of the collection. This distinc-
tion was introduced by Aristotle, who believed all infinity
was potential. Cantor’s work was initially controversial, in
part because he treated infinity as actual. The second ques-
tion is whether a proof of the existence of a mathemati-
cal object should actually produce the object asserted to
exist; that is, whether existence proofs should be construc-
tive. It is sometimes claimed that Cantor’s proof of the ex-
istence of transcendental numbers is nonconstructive, but,
as Hamkins explains, a careful analysis of the proof shows
that it is actually constructive.

Chapter 4 describes Euclid’s axiomatic approach to ge-
ometry. What is the purpose of geometry? Is it to study
what can be proven from Euclid’s axioms, or perhaps what
can be constructed by straightedge and compass? Or is
it to discover the truth about space? Hamkins discusses
the views of Kant and Hume about geometry. The story
of the discovery of non-Euclidean geometry leads to the
modern view, as expressed by Poincaré, that all geome-
tries are equally mathematically correct. No geometry can
be picked out as the one true geometry, although physical
experiments might determine that one geometry is most
useful as a representation of physical space.

The subject of mathematical proof is taken up in the
next chapter. Hamkins explains several theorems of for-
mal logic, such as the soundness and completeness of clas-
sical first-order logic. And he addresses a number of philo-
sophical questions about proofs. What is the purpose of a
mathematical proof? Is it merely to certify that a theorem
is true, or is it to explain why it is true? Which is more con-
vincing, a formal proof of a theorem, every step of which
can (and must!) be checked, or an informal proof that
conveys an understanding of why the theorem is true? As
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Hamkins points out, the answer to this last question may
change as proof assistant software becomesmore powerful
and its use becomes more widespread. (Proof assistants
are programs, such as Isabelle, Coq, and Lean, that can
help a mathematician write a formal proof and verify that
the proof is correct. Further information about proof as-
sistants can be found in [Avi18, Hal08].) Hamkins also
discusses alternatives to classical logic, such as intuitionis-
tic logic, although he does not explain in detail how one
must revise many mathematical theorems if one pursues
mathematics using intuitionistic rather than classical logic.
For more on this, see [GV02] or [Hey71].

Chapter 6 is devoted to computability theory. Hamkins
presents the Turing machine model of computation, ex-
plains the undecidability of the halting problem, and in-
troduces the study of Turing degrees and complexity the-
ory. He also discusses the Church-Turing thesis, which
says that the Turingmodel accurately captures the intuitive
notion of computability. Might a computingmachine con-
structed to take advantage of some strange quantum me-
chanical or relativistic effect be able to go beyond the lim-
its of Turing computability?

Hamkins discusses Hilbert’s program in Chapter 7.
Hilbert made a distinction between finitary and infinitary
mathematics, and he proposed that infinitary mathemat-
ics should be viewed as a formal symbol-manipulation
game that is not meaningful itself but can be used to estab-
lish meaningful finitary truths. Hilbert hoped to establish,
by finitary means, the reliability of this formalist version
of infinitary mathematics by proving the consistency of in-
finitary mathematics.

It might have been helpful if Hamkins had given a lit-
tle more detail about how such a consistency proof would
have guaranteed the reliability of infinitary methods for
establishing finitary truths. To take an example, con-
sider Wiles’s proof of Fermat’s last theorem. If, following
Hilbert, we view this proof as just a meaningless arrange-
ment of symbols that obeys the formal rules of infinitary
mathematics, why should we trust the conclusion that Fer-
mat’s last theorem is true? One answer is that if there were
a counterexample to the theorem, then that counterexam-
ple, together with Wiles’s proof, would constitute a contra-
diction in infinitary mathematics. Thus, if we knew that
infinitary mathematics was consistent, then Wiles’s proof,
even when viewed as a meaningless arrangement of sym-
bols, would assure us that no such counterexample could
exist. (Hilbert used Fermat’s last theorem as an example in
his 1927 lecture Die Grundlagen der Mathematik, an Eng-
lish translation of which can be found in [vH67, pp. 464–
479]. For more details, see [Vel97].)

Unfortunately, Hilbert’s hopes were dashed by Gödel’s
incompleteness theorems. Hamkins sketches the proofs of
the incompleteness theorems and explains related results
concerning decidability and definability.

Finally, in Chapter 8, Hamkins explains how set the-
ory can serve as a foundation for all of mathematics. He
presents the cumulative hierarchy of sets and the ZFC ax-
ioms (the Zermelo-Fraenkel axioms, including the axiom
of choice) that describe that hierarchy. Then he explains
that much of modern research in set theory is concerned
with showing that various statements cannot be proven
from the ZFC axioms (assuming those axioms are consis-
tent), or that they are independent of the axioms—that is,
they are neither provable nor disprovable. This includes,
for example, the continuum hypothesis, as well as a long
list of statements asserting the existence of various kinds
of large infinite cardinal numbers. This raises a host of
philosophical questions. Should any of these statements
be accepted as new axioms? How do we choose axioms?
Must axioms be statements that are intuitively evident, or
can the fruitful consequences of a statement count as evi-
dence that it should be accepted as an axiom? Which is a
better foundation for mathematics, a weak theory that as-
sumes only those axioms in which we have the most confi-
dence, or a strong theory that describes mathematical real-
ity more fully through the inclusion of additional axioms
and therefore allows us to prove more? Is there a single
“real” universe of sets, in which independent statements
have their “correct” truth values? Or are theremultiple uni-
verses of set theory—what Hamkins calls a “multiverse”—
some in which the continuum hypothesis is true and some
in which it is false, some containing various kinds of large
cardinals and some with none?

Each chapter ends with a list of “questions for further
thought.” Some of these questions ask for solutions to
mathematical problems, and some ask for philosophical
reflection.

In the preface, Hamkins says that he has “tried to pro-
vide something useful for everyone, always beginning gen-
tly but still reaching deep waters.” My impression is that,
for themost part, Hamkins has student readers inmind; he
often devotes considerable space to explaining ideas, such
as the construction of the number systems, rigor in cal-
culus, or the distinction between countable and uncount-
able sets, that will be familiar to all professional mathe-
maticians. But there is still plenty of material that pro-
fessionals will find interesting. To give just one example,
he presents the standard proof of the irrationality of √2,
which will be familiar to all mathematicians, but he fol-
lows that with a lovely pictorial proof, due to Stanley Ten-
nenbaum, that I had not seen before. And, of course, even
readers who are already familiar with the mathematical
topics will find Hamkins’s philosophical discussions stim-
ulating and thought-provoking.

As the summary above makes clear, the book discusses
a very wide range of topics. Formost topics, Hamkins sum-
marizes the main ideas and then provides suggestions for
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further reading, and this approach usually works well. For
example, when discussing the construction of the number
systems, Hamkins explains how rational numbers can be
defined as equivalence classes of pairs of integers (the sec-
ond of which is nonzero) and how the basic arithmetic op-
erations can be defined on these equivalence classes, but
he doesn’t go through the tedious verification that these
operations satisfy the field axioms. Similarly, the explana-
tion of the incompleteness theorems gives a very good idea
of how the proofs go without getting bogged down in the
details of Gödel numbering.

However, occasionally Hamkins skips over enough de-
tails that readers may struggle a bit. For example, in the
chapter on infinity, Hamkins introduces the infinite cardi-
nal numbers ℶ𝛼 by saying that “at each stage we apply the
power set operationℶ𝛼+1 = 2ℶ𝛼 ,” but as far as I can tell, the
exponentiation operation on cardinal numbers was never
defined. Will readers figure out that ℶ𝛼+1 is the cardinality
of the power set of a set of cardinality ℶ𝛼?

Another example occurs when Hamkins is describing
the cumulative hierarchy of sets. He says that the hierarchy
is built up in stages, with each stage containing sets whose
elements were constructed at earlier stages, but he doesn’t
say that the stages are numbered by the ordinal numbers,
he doesn’t introduce the notation 𝑉𝛼 for the 𝛼th stage of
the construction, and he doesn’t introduce the terminol-
ogy that the rank of a set is the stage at which it is con-
structed. As a result, readers may have a hard time under-
standing what hemeans a few pages later when he refers to
“the set 𝑉𝜔+𝜔, the rank-initial segment of the cumulative hi-
erarchy up to rank 𝜔+𝜔.” Hamkins also sometimesmakes
use of the distinction between sets and proper classes, but
I was unable to find a place where this distinction was ex-
plained.

While most of the book is written at a level that an un-
dergraduate student will understand, Hamkins occasion-
ally refers to more advanced topics. For example, when
explaining why some geometric constructions cannot be
done with straightedge and compass, he uses some ideas
from the theory of field extensions. And every so often he
can’t resist quoting an interesting advanced idea that will
go over the heads of many student readers. Thus, students
will need to be willing to skip over the occasional passage
that is not explained at their level. The book would work
well as a set of readings for a seminar course, where the
professor could help students deal with these occasional
advanced topics.

The book is written in an engaging, conversational style,
with numerous well-drawn figures. There are very few ty-
pographical errors. (The only one I found that could cause
any confusion was the use of the word “transfinite” on
p. 258 where Hamkins clearly meant “transitive.”)

Of course, Hamkins does not resolve all of the philo-
sophical puzzles he discusses. So it is appropriate that he

ends his book, not with a conclusion, but with an invita-
tion: “Please join us in what I find to be a fascinating con-
versation.” The book can serve as an interesting and enjoy-
able introduction to this conversation for a wide range of
readers.
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need to have completed two semesters of calculus. More 
advanced undergraduates or mathematicians interested in 
understanding some basics about Fourier transforms would 
still find this a valuable read and would be able to skip the 
sections with review content in them. 

What’s the Use  
How Mathematics Shapes Everyday Life 

By Ian Stewart

Most of us have had the experience of being met with neg-
ativity when we tell someone that we are a mathematician. 
In addition, we have all had the experience of students 
reacting to a required course or even a topic within a course 
by asking “When will I ever need this?” Thanks to Stewart’s 
engaging book, we have a plethora of relevant examples to 
add to our artillery of responses.

What’s the Use focuses on instances where math has been 
applied to solve a problem that it was not developed to 
solve. For example, there is a chapter dedicated to the ways 
in which space filling curves, which were discovered in the 
1890s, are currently being used to help Meals on Wheels 
deliver meals. Stewart acknowledges that as technology 
has advanced, often using math in the background, it has 
become easier for people to dismiss math as obsolete. 
Throughout the book he works to show this is not the 
case, giving examples of how math is used to help make 
CGI motion smooth and to develop medical imaging 
techniques, among many other applications. In doing so, 
he touches on graph theory, number theory, and quantum 
mechanics, to name a few.

This book is a great read for anyone, regardless of math-
ematical background, interested in how mathematics is 
applied in critical ways on a daily basis. It is not mathemat-
ically deep and would be an excellent companion read to 
any liberal arts math course as it shows students how the 
topics they are learning (such as the bridges of Konigsberg) 
are connected to modern uses of math (like navigating the 
kidney transplant list). It can also be used as inspiration for 
outreach programs with an aim of exposing people to math 
topics that are relevant and easy to motivate yet outside the 
standard K–12 curriculum.   

The Fourier Transform 
A Tutorial Introduction 
By James V Stone

Visible and invisible waves are 
all around us. Fourier transforms 
allow us to break waves, or any 
periodic function, into unique 
sinusoidal expressions, allowing 
for more accessible analysis and 
study. Fourier transforms are used 
in applications such as CAT scans, 
data compression, and quantum 

mechanics, just to name a few.
This book is a self-contained guide to Fourier transforms. 

It includes a review of required material such as trigonomet-
ric identities and arithmetic involving complex numbers, 
making it accessible to someone early in their math journey. 
Topics in this book are explained in a clear, informal fash-
ion with many visual aids that support the ideas discussed. 
The book does not include any proofs, and instead focuses 
on providing the reader with an understanding of how 
Fourier transforms work and what they are used for. The 
book begins with a discussion of how to find the Fourier 
transform for a real-valued function and then repeats the 
process for complex-valued functions. Equipped with this 
information, the author introduces content such as Parse-
val’s Theorem, convolutions, and the Fourier transform of a 
Gaussian. Once the theoretical groundwork is in place, the 
author explains how Fourier transforms are applied in fields 
such as data compression and quantum physics. Interested 
readers may access a GitHub repository containing Python 
and MatLab code for various examples.

The Fourier Transform is well-suited to someone who 
wants to know what Fourier transforms are, their math-
ematical structure, and some examples of how they are 
used. At a minimum, someone reading this book would 
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insights. The notion of symmetry under permutations of 
roots arises naturally as Bewersdorff describes the work of 
Lagrange and Ruffini. After a brief digression into Gauss’s 
construction of the heptadecagon, Bewersdorff describes 
exactly what Galois did. Only later are abstract groups and 
fields and the standard point of view introduced, by which 
point it all seems thoroughly natural.

Combinatorial Convexity 
By Imre Bárány

If you have a collection of three 
or more intervals on the real 
line with the property that any 
two have non-empty intersec-
tion, then the entire collection 
has non-empty intersection. The 
d-dimensional analogue, called 
Helly’s Theorem, replaces “inter-
vals” with “convex sets” and “any 
two” with “any d + 1.” That is, if 

a collection of n ≥ d + 1 of convex sets in Rd has the prop-
erty that any d + 1 of them have non-empty intersection, 
then the entire collection has non-empty intersection. This 
result, first proved in 1913 by Helly, is paradigmatic of the 
results assembled in this slim volume.  

The book makes the case that there are regions of dis-
crete geometry that can be completely illuminated with 
just a little bit of exploitation of convexity and a touch of 
combinatorics or graph theory. A serious, and successful, 
effort to avoid deep technicalities is made with the result 
that the book is accessible to undergraduate students. The 
emphasis is on understanding the geometric content and 
implications. There are enough exercises so that it could be 
used as a textbook for a special topics course. The presen-
tation is welcoming and intuitive and it gets to some very 
modern results, thus it should appeal to graduate students 
and researchers as well as undergraduates. In fact, the book 
grew out a series of lectures delivered by the author to au-
diences including mathematicians from undergraduates to 
senior researchers at a number of different venues around 
the world.

Galois Theory for Beginners  
A Historical Perspective, Second Edition 
By Jörg Bewersdorff

To a student, the sources of 
mathematical knowledge can 
seem mysterious. How could 
anyone ever conceive of the idea 
of attaching a group to a poly-
nomial in a productive way? It 
appears that ideas like this only 
come to geniuses with access to 
sources of divine inspiration. 

Of course, we know that inspiration only arrives after 
prolonged, difficult struggle through murky convoluted 
details. But, this can be difficult to convey to students who 
are reading textbooks that contain beautifully constructed 
royal roads to deep truths. We rarely explain to our students 
that these clean approaches are works of massive hindsight. 
A teacher might, if he or she were brave, or foolhardy, at-
tempt to illustrate how inspiration arrives by leading one’s 
students along a path that retraces the historical evolution 
of a mathematical discovery. But, there are two obstacles 
to this. Most of us only vaguely know the historical path 
to most of the mathematics we teach. And, more impor-
tantly, those paths are full of misadventures and mistakes 
and misleading detours.  Surveying the landscape would 
take so much time and generate so much confusion, you’d 
never get to the big picture.

Fortunately for us, Jörg Bewersdorff is both brave and 
foolhardy; he is also clever enough and knowledgeable 
enough to clear away the confusion while revealing the 
essence. His goal in this volume is to explain what Galois 
theory is and how Galois came to think of it. He carefully 
lays out, mostly by way of detailed examples, developments 
in solving polynomials starting with the work of Cardano 
and his contemporaries. The examples are, in most cases, 
drawn directly from the original sources. The computa-
tions are carried out in enough detail that we are led to 
see the importance of intermediate steps in sparking future 

The AMS Bookshelf is prepared bimonthly by AMS Acquisitions Specialist 
for MAA Press titles Stephen Kennedy. His email address is skennedy 
@amsbooks.org.
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(1) To help the mathematical community un-
derstand the historical role of the AMS in racial 
discrimination; (2) To consider and recommend 
actions addressing the impact of such discrimination 
to the AMS Council and Board of Trustees.

Given the nature of the work, the two co-chairs, after 
consultations with the AMS President, chose as members 
of the Task Force a group of racially diverse mathematicians 
at a variety of institutions, who had leadership experience 
(including several current or past members of the AMS 
Council) and who would be able to conduct interviews 
with the sensitivity required.

The Task Force reviewed AMS archives, talked with AMS 
staff, interviewed mathematician colleagues, and sought 
direct input from the wider mathematics community. Our 
work was assisted by math historian Michael Barany and 
by AMS staff, especially Abbe Herzig and Andrea Williams. 
We produced the report Towards a Fully Inclusive Mathematics 
Profession, released in March 2021, that documented AMS 
policies, practices, and actions that have had discriminatory 
impact and described ways that the mathematics profession 
remains unwelcoming, especially to mathematicians of 
color. We also cataloged more recent efforts by many in the 
profession and the AMS to become more welcoming, and 
we made several recommendations for ways the AMS can 
improve how it fulfills the part of its mission that advocates 
for “the full participation of all individuals.”

Since the report’s release, we’ve heard a number of 
reactions from mathematician colleagues through direct 
conversation as well as on social media. These reflect the 
diversity of viewpoints within the ranks of the Society. 
Some feel the report does not go far enough to castigate 

Towards a Fully Inclusive 
Mathematics Profession— 
One Year Later
Tasha Inniss, Jim Lewis, Irina Mitrea, Kasso Okoudjou, 
Adriana Salerno, Francis Su, and Dylan Thurston 

Introduction
During the tumultuous summer of 2020, George Floyd, an 
unarmed African American man, was killed by policemen 
in Minneapolis. The tragic death of Mr. Floyd generated  
national outrage and brought into plain sight the dis-
crimination and the obstacles faced by African Americans 
in many spheres of life in our country. The mathematics 
profession has not been an exception. Following this event, 
AMS President Jill Pipher appointed us to serve on the AMS 
Task Force on Understanding and Documenting the Histor-
ical Role of the AMS in Racial Discrimination, co-chaired by 
Kasso Okoudjou and Francis Su. The creation of the Task 
Force (as we shall henceforth call it) was endorsed by the 
AMS Council in June 2020 with this charge:
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the AMS for its role in the lack of racial diversity in the 
profession. Others felt the exact opposite and suggested 
that the AMS is moving away from its core mission of 
research and scholarship. But it is clear to us that there is 
no contradiction for the AMS to “further the interests of 
mathematical research and scholarship, serve the national 
and international community through its publications, 
meetings, advocacy and other programs” as well as to make 
the profession more inclusive. Most would agree that there 
is a lack of diversity in the profession. Where disagreements 
begin is when questions of “why” and “what to do about 
it” are asked. Our report made several recommendations 
to try to address these issues.

You can see a partial list of actions taken on the Task 
Force recommendations and the Executive Summary of 
findings and recommendations from the report at the end 
of this article. 

The full report is available for download from the Task 
Force website at https://www.ams.org/understanding 
-ams-history. If you do not have time to read it all, we 
encourage you to read Chapter 1, which gives context for 
each of the findings and recommendations in the Executive 
Summary.

Below, we reflect on what we took away from the expe-
rience, what we found surprising, what might be missing 
from our report, and how the work can be used by math 
departments. We’ve ordered the reflections in a way that 
may make the most sense given what each of us chose to 
discuss, since some introduce events to which others later 
make reference.

Irina Mitrea
In a very challenging year from so many perspectives, in-
cluding historic, academic, and personal ones, the work 
on the AMS Task Force was an incredible roller coaster 
of experiences that is difficult to describe. Being asked to 
serve on this group is without a doubt the most significant 
AMS assignment I have ever been part of, counting here a 
previous three-year term on the AMS Council. While en-
gaged in the work on the report, I always had on my mind 
the weight of the responsibility of the Task Force’s charge, 
the burden of the immense loss of talent due to lack of 
diversity and inclusion in mathematics, the vastness of 
the relevant directions that had to be considered, the very 
painful personal and professional experiences revealed in 
the process, the insight and incredible generosity of the 
mathematicians who have agreed to be interviewed, the 
unabated commitment of my Task Force colleagues, the 
genuine team camaraderie that has ensued, the heightened 
hope for change, and the dispiriting thought that our work 
might simply end up shelved and ignored. Time will tell, 
but meanwhile I am very grateful for everything I learned 
along the way.

Dylan  Thurston
For me personally, one aspect of the Task Force work that 
hit home hard was learning about the involvement of my 
father, William Thurston, in these issues around diversity 
and inclusion many years ago. This was most obvious in 
reading through the report from a 1996 task force, which 
he was a member of. It also came through in interviews. 
Multiple people mentioned him as a positive force, espe-
cially in his role as director of MSRI. For instance, in 1995 
MSRI hosted the first Conference for African-American 
Researchers in the Mathematical Sciences (CAARMS), while 
my father was director there. It was bittersweet to learn 
about his work, while being unable to ask him about it.

The other thing that stands out to me is the importance 
of listening to voices that have so often been shut out. We 
must learn from them and work to fix the issues, and reflect 
on our own actions that have had negative influences. Are 
we really listening to our graduate students? What is their 
conference experience really like? Do you know? There is 
always more to learn!

It should be clear that the report is not a solution; it will 
only lead to positive change as far as people take these les-
sons to heart. After the 1996 report, many people worked 
hard at implementing these suggestions, but ultimately 
many of those efforts fell short, and I very much do not 
want that to happen again. Read the report; share it among 
your department, your mathematical circles, and your 
friends; discuss it; and then, most importantly, look for 
ways to implement solutions all around you. I guarantee 
you will find some way to improve things!

Tasha Inniss
Participating on the AMS Task Force to understand and 
document the historical role of AMS in racial discrimina-
tion was a very rewarding experience. We were all sincere in 
our desire to make our professional community one that is 
welcoming and supportive of all mathematicians. It would 
be good if departments agreed to read the report and then 
collaboratively develop strategies they feel would work best 
for their context, needs, and goals.

Our time was very limited, but if we had more time, I 
think developing an action plan with proposed strategies 
for implementation would have been incredibly useful for 
those departments who are serious about being inclusive. 
It may also have been good to do a survey of math depart-
ment chairs to see if any are working on diversity initiatives 
and implementing equitable practices to support all math 
undergraduate and graduate students. Hearing from them 
about their goals and processes related to diversity, equity, 
and inclusion may have been illuminating.

I appreciate working with a great group of people who 
helped to create a safe space for us to complete our task 
and report. It was a pleasure working with each of them!

https://www.ams.org/understanding-ams-history
https://www.ams.org/understanding-ams-history
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Jim Lewis
A surprise was that the Task Force worked so well together. 
Producing a report on such an important and sensitive sub-
ject in six months was a major ask. (I served on one AMS 
Task Force that took seven years to write its report.) Starting 
July 1, 2020, we met almost every week for six months. In 
addition, there were lots of interviews to gather informa-
tion, reports on interviews to write, etc., and eventually 
there was our report to write. So the time demand was sig-
nificant. One thing that stood out to me was that we really 
listened to each other during our meetings. Another is that 
we really focused on identifying steps the AMS could take 
that have the potential to make a meaningful difference 
over the next 5–10 years. However, one aspect we did not 
look at was an analysis of who gets a PhD in mathematics 
that focuses on US citizens and permanent residents—I sus-
pect it would reveal just how little progress we have made 
with respect to increasing the number of underrepresented 
people of color who earn a PhD in mathematics. Because 
mathematicians respond to data, that might increase our 
collective sense of urgency that we must do more.

Discovering the 1996 Task Force Report was another sur-
prise. It had a big impact on our Task Force. I am convinced 
that the AMS (especially the professional staff) really tried 
to implement the 1996 recommendations. But ultimately, 
the impact of the report was limited for reasons discussed 
in the report. To make things different this time will take 
sustained effort from the AMS leadership.

But I am optimistic that real change is possible this 
time. It is significant that about 80% of the AMS leadership 
(Council + Board of Trustees) who responded to our survey 
said they viewed racism as a concern in mathematics and 
90% said that the AMS has a role in addressing racism in 
the profession.

While our report focused on what the AMS should do as 
an organization, real change must come in our academic 
institutions. My department has created a Diversity Com-
mittee (in Fall 2020) and my Department Chair appointed 
me to chair the committee. I sense that the time is right 
to make changes with respect to an inclusive approach to 
teaching undergraduates, recruiting, and mentoring grad-
uate students, and recruiting faculty. For certain we will try.

Francis Su
Some have asked about our work: “why look back and dig 
up the problems of the past? Can’t we just let it go and try 
to move forward in an inclusive way?”

Being on the Task Force—reading through the historical 
record and interviewing Black mathematicians about their 
current experiences—has helped me draw the connection 
between the two. When I read that the AMS Council passed 
a non-discrimination motion in 1951, and yet that AMS 
meetings technically avoided running afoul of that by not 
having official social events (yet still holding informal ones 

Adriana Salerno
First of all, the experience itself was much more emotional 
than I thought it was going to be (and I thought it was 
going to be plenty emotional from the offset). I have grown 
to really love and respect the other members of the Task 
Force. We brought different strengths, experiences, and 
perspectives to the table.

It was also emotional because we were interviewing 
dozens of mathematicians, many of whom recounted some 
hard and painful experiences caused by their profession 
and professional society. It was hard to even ask, because 
the process itself felt extractive—“give us your stories, and 
we hope someone out there develops some more empathy 
because of it.” I can only hope that the community and the 
AMS understand that there is a moral imperative to change. 
I am well aware that many in our profession don’t believe 
that racism is a problem that mathematicians have to con-
tend with, and some even go as far as to say that there is not 
racism in mathematics. I was surprised to see the reactions 
of some mathematicians (mainly in our surveys) saying 
that dealing with this problem was bad for mathematics. 
Some said that if the AMS cares more about humans, then 
we will value research less. Some said that “we will basically 
become the MAA.” This false dichotomy has always been 
there, but it felt so much more callous because there are hu-
mans literally saying “you are hurting me, and that makes 
my math worse.” For some, the takeaway after reading the 
report was “OK, so Claytor was treated poorly, but the real 
reason that there are not that many Black mathematicians 
is that white people are better at math,” and in the same 
breath, call themselves not racist.

Another thing that really struck me was our discovery 
of a 1996 report, a report written by a task force much like 
ours, composed to deal with the issues of racism in mathe-
matics. We read it, and many of the recommendations they 
made in that report were similar to the recommendations 
we were writing up. And the kicker: very little had changed 
since 1996. For me, that was a gut punch. I suddenly saw 
myself in the “20 years later” flash forward at the end of 
the movie, in which another task force is formed, in space 
I presume, and that they are charged to detail the racist his-
tory of the AMS, and that our report surfaces and people ask 
“whatever happened to that? Why has nothing changed?” 
We were all shocked, and a little depressed, when we found 
this older report.

But this actually presented an opportunity — the oppor-
tunity to say to the AMS, the membership, the leadership, 
and mathematicians more generally, that a task force and 
a document on their own do nothing. That if there’s no 
accountability, and no commitment to change things, the 
world will stay how it is, for the most part. I really hope 
that, in 20 years, people look back at this document and 
say that it was the start of something good.
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to which Black mathematicians were not welcome), and I 
see a Notices ad for a 1958 meeting list a “colored” option 
for hotels, I could not help but feel that good intentions 
are not enough. When I read how the AMS missed several 
opportunities throughout the 1960’s to the 1990’s to 
improve the climate for mathematicians of color, it helps 
me see that the misguided desire of some AMS members 
to “think of only the math” is actually harming our Black 
colleagues’ ability to think of only the math. When I hear 
about the current climate for mathematicians of color 
from our interviews and the slights they continually face in 
doing their work, I think to myself: the AMS (which exists 
to promote mathematical research) is actually seeing less 
research done because some of our colleagues cannot do 
their research without dealing with this other stuff.

In our report is this remarkable statistic: Historically 
Black Colleges and Universities (HBCUs) produce nearly 
half of all mathematics bachelor’s degrees earned by Af-
rican-Americans in the United States, even though they 
represent just 3% of all colleges and universities in this 
country. Think about that. This statistic not only shows 
that HBCUs can be credited with producing many Afri-
can-American mathematicians, but it also reveals the extent 
to which mathematics departments at non-HBCUs are 
failing African-Americans and not fulfilling their missions 
to educate all students.

I felt that I learned a lot in our work on the Task Force, 
which will personally help me think about what being 
inclusive means. Research mathematicians are, first and 
foremost, human beings. The practice of doing research 
involves choices about whom to collaborate with, whom 
to invite to give talks, whom we talk with at social events 
where informal research discussions happen. We are failing 
our colleagues if we continue to practice business as usual.

I hope many will read our report and take action. 
Being welcoming and inclusive should not be an add-on. 
It should be integral to everything we do in our roles as 
researchers and as mathematical educators.

Kasso Okoudjou
Working on the Task Force would have been a daunting 
undertaking in normal circumstances, but was even more 
so in the middle of a pandemic. It was both emotionally 
draining and time consuming. Today I view it as both a 
rewarding experience as well as a big leap of faith. Faith 
in our capacity to seize the moment and act so as to make 
the profession truly inclusive of all. However, part of me 
is worried that the sense of urgency we all felt during the 
summer of 2020 will gradually dissipate and we will revert 
to reactiveness or will continue to make modest changes 
without ever touching the main issues. The events since the 
release of the Task Force report seem to support both that 
sense of optimism but also that worry. It is apparent that 
despite some stumbles, the AMS is trying to make Equity, 

Diversity, and Inclusion a central component of all its 
other activities. I hope the fear of making mistakes or being 
criticized will neither inhibit nor slow down the Society's 
ongoing efforts to make the profession more welcoming.

I hope the Society can lead the profession to set bold 
goals in increasing the participation of historically under-
represented groups in the mathematical sciences. Those 
goals should come with policy actions and benchmarks 
to access progress. We could look for a model developed 
by our colleagues in Physics and Astronomy who wrote a 
data-driven report setting such goals for increasing Afri-
can-American participation in their profession.

I also hope that the newfound attention and appreci-
ation by the AMS and the profession to the outsized role 
the HBCUs are continuously playing in educating, men-
toring, and nurturing generations of African Americans in 
the mathematical sciences will not be ephemeral. Finally, 
as I reflect on the Task Force work and its report, I regret 
that some voices were not not heard through our reports. 
These include people we tried to connect with but could 
not for some reasons, or people we simply did not think 
of reaching out to.

Postscript
Since the release of our report, several actions have already 
been taken on our recommendations. Many of our recom-
mendations address changing AMS structures and prac-
tices, which may not sound exciting but are actually very 
important in improving the climate for mathematicians 
of color. For instance, the Board of Trustees approved the 
creation of an AMS staff position on Equity, Diversity, and 
Inclusion, as we recommended, and the position has been 
filled. Other Task Force recommendations are currently 
being considered or implemented by appropriate AMS en-
tities. For accountability purposes, the newly formed AMS 
Committee on Equity, Diversity, and Inclusion (CoEDI) 
will ensure that our recommendations do not fall by the 
wayside and are properly considered.

We are heartened by this response, but we must not be 
naive and think that continuing the work of making our 
profession more inclusive will be easy. The AMS can pro-
vide leadership, but in fact, it is beyond the AMS’s power 
to make our profession fully inclusive. Change must begin 
with us, the people of the profession in mathematics de-
partments across the country, as we rethink the practices 
of our departments: how we teach mathematics, how we 
communicate mathematics, what mathematics we value, 
and whom we consider to be a mathematician. We hope 
our report will assist you in these efforts.

A partial list of actions taken on Task Force recommen-
dations as of the writing of this article include:

 • As a temporary measure, AMS President Ruth Char-
ney will assign a current Vice President to serve on 
the Committee on Equity, Diversity, and Inclusion.
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 • In January 2022, the AMS hired Dr. Leona Harris as 
Director of Equity, Diversity, and Inclusion.

 • AMS Ballot prompts have been modified to allow 
for the inclusion of a broader range of professional 
activities, effective with the 2022 election.

 • Through wider outreach by the Committee on 
Committees and Nominating Committee, the 
AMS has renewed efforts to seek a diverse pool of 
candidates for committee appointments and roles 
in governance. The AMS Council has approved 
adding a statement to the charges of these commit-
tees and the Editorial Boards Committee to remind 
them to keep diversity of all kinds in mind when 
selecting candidates.

 • In 2021, the AMS established the Claytor-Gilmer 
Fellowship, an annual award supporting the re-
search and scholarship of mid-career Black mathe-
maticians. Mohamed Omar (2021) and Ryan Hynd 
(2022) were the first recipients.

 • The AMS Programs that Make a Difference Award, 
which recognizes work that brings more people 
from underrepresented backgrounds into the 
profession, was elevated from being a policy 
committee award to being an award of the Society, 
starting in 2022.

 • Several recent AMS publications highlight the work 
of mathematicians of color. For instance, in 2021, 
the AMS published the book Testimonios: Stories of 
Latinx and Hispanic Mathematicians, and in 2022, 
the Notices of the AMS published the piece “Dr. 
Raymond L. Johnson: A Mathematical Journey 
and Some Reflections on African Americans in 
Graduate Mathematical Sciences Programs in the 
US.” In addition, in 2023, the Notices will publish 
memorial articles on Gloria Ford Gilmer, Bob 
Moses, and Shirley M. McBay.

 • The AMS Committee on Equity, Diversity, and 
Inclusion will provide annual updates on Task 
Force recommendations to Council beginning in 
April 2022.

Towards a Fully Inclusive 
Mathematics Profession

Report of
The Task Force on Understanding and Documenting the 

Historical Role of the AMS in Racial Discrimination

March 22, 2021

Executive Summary
Findings
• Racism is a concern of many mathematicians and leaders 

of the Society, and the AMS has a role in addressing racism 
in the profession.

• The effects of blatant discrimination in the mathematics 
community (and in the AMS) since its inception continue 
to have repercussions today in the development of Black 
mathematicians, the visibility and perceptions of their work, 
and the lack of recognition that further hinders their profes-
sional advancement.

• The AMS has missed several opportunities to improve the 
professional climate for mathematicians of color.

• Black mathematicians suffer from a lack of professional 
respect and endure microaggressions, even today.

• There is a profound lack of trust from Black mathematicians 
that the AMS represents them, speaks to them, hears them, 
and includes them in its decision making.

• Historically Black Colleges and Universities have an out-
sized influence on the production and the support of Black 
mathematicians, and providing outstanding models of 
successful mentoring.

• The history of the AMS has shown that sustained attention 
to problems has resulted in positive outcomes. Imple-
menting sustainable change is challenging and requires 
intentionality and continual vigilance.

Recommendations
Governance-Related Recommendations
1. Establish a Vice President for Equity, Diversity, 

and Inclusion.
2. Create a high-level staff position on Equity, Diversity, and 

Inclusion, with an Office/Division of Minority Affairs under 
its purview.

3. Reform election procedures.
4. Reform appointment procedures.

Program-Related Recommendations
5. Develop and implement an engagement plan to welcome 

the participation of Black mathematicians in the AMS.
6. Create and support programs to further the career 

development of mathematicians of color.
7. Include equity, diversity, and inclusion in the AMS’s 

professional development offerings.
8. Publicize the expertise of mathematicians of color.

Accountability-Related Recommendations
9. Request that the AMS provide annual updates on the status 

of these report recommendations.
10. Accept responsibility for not fulfilling the AMS’s own com-

mitment to increasing the participation of mathematicians 
of color in the profession, including Black mathematicians.

Full report available at 
www.ams.org/understanding-ams-history
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A repository of freely downloadable 
mathematical works in progress 

hosted by the American Mathematical 
Society as a service to researchers, 

teachers, and students.

Submit your unpublished course notes at
www.ams.org/open-math-notes

These draft works include
course notes, textbooks, research
expositions in progress, and items
previously published in the Journal of
Inquiry-Based Learning in Mathematics,
a refereed journal.

Some frequently downloaded notes include: 

Linear Algebra Course Notes by Terence Tao

Notes on Math 122 (Algebra-I) by Dennis Gaitsgory

Linear Algebra by Michael Taylor
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Ars Mathemalchemica: From
Math to Art and Back Again
Susan Goldstine, Elizabeth Paley,
and Henry Segerman

Mathemalchemy was on display at the National Acad-
emy of Sciences in Washington, DC, from mid-January
tomid-June, 2022. For information about other venues,
as well as supplementary information about the history,
development, and mathematical and artistic content of
the installation, see mathemalchemy.org.

Mathemalchemy is a collaborative multimedia art installa-
tion that celebrates the creativity and beauty of mathemat-
ics (Figure 1). The project is headed by mathematician
Ingrid Daubechies, a professor at Duke University, and
artistic director Dominique Ehrmann, a fiber artist based
in Québec (Figure 2A). Twenty-four core mathematicians
and artists created the installation, with additional contri-
butions from “adjuvant,” “coset,” “adjoint,” and “appren-
tice” mathemalchemists.

Reveling in both mathematics and art, Mathemalchemy
depicts multiple narrative scenes. Among them, a cat
and mouse prepare tessellating cookies in a bakery; a
bird gathers shiny mathematical treasures in a curio shop;
herons tag a new species of aquatic knots in the bay; a tor-
toise slowly but surely ambles toward the end of Zeno’s
path with her Sierpiński kite in tow; chipmunks explore

Susan Goldstine is a professor of mathematics at St. Mary’s College of Maryland.
Her email address is sgoldstine@smcm.edu.
Elizabeth Paley is an instructor in the Pratt School of Engineering at Duke
University and an independent studio artist in Durham, North Carolina. Her
email address is geekpots@gmail.com.
Henry Segerman is an associate professor of mathematics at Oklahoma State
University. His email address is segerman@math.okstate.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2515

Figure 1. The installation at its first public venue.

number games in the playground; squirrels chatter about
prime number algorithms in the garden; and an octo-
pus slips between two- and three-dimensional space to
paint graffiti under a lighthouse whose beams project
into the sky. The installation is fabricated with myriad
media: beadwork, ceramics, crochet, embroidery, knit-
ting, leatherwork, needlefelting, origami, painting, poly-
mer clay, 3D printing, quilting, sewing, stained glass, steel
welding, light, temari, weaving, wire bending, and wood-
working.

The artwork developed out of extended conversations
between our large group of collaborators, who brought
their different backgrounds and perspectives from math-
ematics, art, and the sciences. A recurrent theme of
these discussions was the relationship between mathemat-
ics and art and how they would intersect in the fantasia
we were constructing. Indeed, the authors of this paper
are two professionalmathematicians and one professional
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(A) Ingrid Daubechies and Dominique Ehrmann. (B) A spherical photograph of the installation surrounded by a subset of the mathemalchemists.

Figure 2. The installation at the completion of its construction at Duke University.

Figure 3. A map of the installation, by Bronna Butler.
Compare with Figure 2B. Pawprints indicate the path that
Harriet and Arnold take.

artist, though all three of us create art and explore mathe-
matical ideas.

As we talked over how to present Mathemalchemy in
this article, we kept returning to how our experiences
within our respective fields had shaped our perceptions
of this fabricated realm. In particular, the artist noted
several colleagues in the visual and musical arts who self-
deprecatingly deny having any aptitude for mathematics—

despite using mathematics in their disciplines. Our discus-
sions coalesced into an imagined dialogue between two of
the characters that inhabit the installation, one respond-
ing to their world through a mathematical lens, the other
through an artistic one. To highlight attitudes that we
have internalized, we toywith some common tropes about
mathematics and art—for example that art is accessible to
all, while math is accessible only to some. Our characters
interact with other creatures to reflect the challenges and
pleasures of collaboration and communication across di-
verse fields of expertise. Their discussion also gives us an
opportunity to tour parts of the exhibit. The map in Fig-
ure 3 shows the route that our protagonists take.

∗ ∗ ∗
Harriet,1 a bowerbird, has channeled her propensity for col-

lecting mathematically intriguing objects into a thriving busi-
ness. Her fine-math gallery, Conway’s Curios,2 is located in the
heart of Mathemalchemy’s vibrant downtown (Figure 4).

1Harriet is named after the Harriss Spiral, discovered by Edmund Harriss [4].
The spiral adorns her feathers and features prominently on the Curio Shop sign
and wall.
2Named after John H. Conway, with the permission of his family. Like Con-
way’s office, the shop is full of mathematical curiosities.
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(A) Harriet in her fine-math gallery, Conway’s
Curios.

(B) Arnold in his bakery, with his assistant Mo[u]se.3 (C) Harriet’s brother Horton4 runs the terrace café,
accessed via the lighthouse ramp.

Figure 4. Harriet and Arnold meet on the terrace.

One evening, Harriet meets her friend Arnold,5 a cat, on the
terrace above the shop. Arnold is the chef at theMandelbrot Bak-
ery next door, and he has brought some award-winning cookies
to share.

ARNOLD: Bon soir, bowerbird. How’s the new installa-
tion progressing?

HARRIET: Felicitations, my favorite feline; thanks for
asking. I’ve just hung a new Alexander Horned
Sphere next to the Möbius Strip in the window, op-
posite the Hopf Fibration of the Three-Sphere. You
must have caught a glimpse on your way to the café.
What do you think?

ARNOLD: Captivating! I don’t know math, but I know
what I like. You sure have an eye for it though, Har-
riet.

HARRIET: Why, you do too, Arnold. Consider your
cookies—don’t they tessellate?

ARNOLD: Oh, that’s art, not math. I created the inter-
twining forms as a metaphor for the intertwining in-
gredients, plus it prevents overworking the dough.
Artistic intuition and a practiced paw shaped these
delectable objets d’art.

HARRIET: Form follows flavor! You know, I wish I were
better at art. I used to be pretty good at it, but after I
fledged, my art teacher told me my “little bird brain”

3The unusually punctuated name of Arnold’s assistant is a tip of the hat to
Vladimir Arnold’s research collaborator Jürgen Moser, recognized in the name
of the KAM (Kolmogorov-Arnold-Moser) Theorem [5].
4Conway’s middle name.
5The folding and stretching of pastry dough brought to mind the stretching and
compressing of dynamical systems; thus Arnold was named after mathematician
Vladimir Arnold [1].

was better suited to math, and my art ability simply
evaporated.

ARNOLD: Alas, I’ve heard many a mathematician say
the same thing. Yet you obviously understand art:
your gallery is overflowing with it!

HARRIET: Art? You’ve seen my inventory—Klein bot-
tles, interlocking sliced tori, rhombicosidodeca-
hedra, double helices, fractal trees, borromean
rings. . . These are all objets de mathématique. I fill
my shop with reflections of fundamental truths,
Arnold—that is what math is all about.

∗ ∗ ∗
Mathemalchemy began when Ingrid saw Dominique’s

quilted installation, Time to Break Free [6], in which a fan-
tastical machine converts the flat figures on a traditional
quilt into fully three-dimensional characters (Figure 5).
This inspired Ingrid towonder whether something like this
could similarly bring the beauty and creativity of mathe-
matical ideas to life.

Figure 5. Time to Break Free, an installation by Dominique
Ehrmann.
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Figure 6. Mathemalchemists, from left to right, top to bottom: Emily Baker, Bronna Butler, Edmund Harriss, Elizabeth Paley,
Kimberly Roth, Edward Vogel; Dorothy Buck, Rochy Flint, Li-Mei Lim, Kathy Peterson, Henry Segerman, Jake Wildstrom; Ingrid
Daubechies, Faye Goldman, Sabetta Matsumoto, Samantha Pezzimenti, Jessica K. Sklar, Mary William; Dominique Ehrmann,
Susan Goldstine, Vernelle A. A. Noel, Tasha Pruitt, Daina Taimina, Carolyn Yackel.

Ingrid and Dominique presented at the Joint Mathe-
matics Meetings in January 2020, and a group coalesced
around the idea (Figure 6). When COVID preempted the
first planned in-person workshop in March 2020, the par-
ticipants began meeting regularly via Zoom. From an ini-
tial cornucopia of concepts, Dominique created a vividly
detailed quarter-scale maquette that served as the basis
for further discussion, revisions, prototyping, adjustments,
and collaborative construction from afar (facilitated by the
United States and Canadian postal services).

After 18 months of planning and long-distance making,
participants came together in July 2021 at Duke University
to assemble, trouble-shoot, and fine-tune the installation.

∗ ∗ ∗
Arnold and Harriet continue their discussion with a stroll, ex-

iting the terrace via the lighthouse ramp (Figure 4C). Between
them and the ground are a pair of puffins who tend the light-
house, absorbed in conversation.

HARRIET: I do enjoy a helical hop around the light-
house.

ARNOLD: I keep thinking I should make a lighthouse-
shaped pastry to celebrate this edifice.

HARRIET: Flavor follows form this time? Tell me more.

ARNOLD: Naturally, the flavor and texture must inspire
thoughts of light. I’ve tried my paw at an occasional
phyllo tower, but it’s a challenge to get free-standing
pastry to support itself.

DEL: Pardon, friends—could not help hearing
That pastry treats need engineering.

NABLA: Could steel beams here perhaps inspire
A means to make dough towers higher?

DEL: The long straight girders ’round axis Z
are shaped like Ts from sky to sea.6

NABLA: Attach the ramp with L-shaped brace
and phyllo dough should stay in place.

ARNOLD: Your thoughts for food are food for
thought. . . I’ll play around with that perpendicularity
idea to see if it helps with the strength.

HARRIET: Aha! Geometry does inform your art.
DEL: He’s won awards for pastries fine

when art, taste, math all intertwine!
ARNOLD: Touché, Harriet. Can you puffins also help

this bowerbird recognize the art in her math?
NABLA: We’d stay and chat, but must away;

We’re changing shifts, adieu, good day!

6With apologies to non-American readers.
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(A) The surface 𝑆,
with lines of
principal curvature 𝛾
drawn in red.

(B) Strips meet along
the curves 𝛾, forming
T- or L- shaped
cross-sections.

(C) The lighthouse stands
nine feet tall.

(D) The steel frame was cut and assembled at the University of
Arkansas.

(E) A Fresnel lens focuses a beam of light
through the stained glass dodecahedron.

Figure 7. Design and construction of the lighthouse. The renders in Figures 7A and 7B are by Sabetta Matsumoto.

∗ ∗ ∗
We designed the art in the installation to incorpo-

rate mathematical details that would appeal as much to
inquisitive non-mathematicians as to those devoted to
the field. The mathematics includes expositions of clas-
sical results, demonstrations of recent mathematical in-
novations,7 and mathematics developed specifically in re-
sponse to the challenges of constructing our vision.

The construction of the lighthouse (Figure 7) is an ex-
ample of this last connection. The key idea comes from
Edmund Harriss and Emily Baker [3]. We want to repre-
sent a surface 𝑆 (the shape of the lighthouse) by a grid of
curves on 𝑆. Each such curve 𝛾 is built by bending then
welding together two strips of metal, forming either a T- or
L-shaped cross-section. Thin sheets of metal can be bent
out of plane without too much effort, but twisting them is
very difficult. After welding, each strip reinforces the bends
we make in its partner, resulting in a rigid structure. De-
forming the welded strips would require twisting themetal
(or bending within the plane of the metal sheet).

One of the line segments of the T- or L- shaped cross-
section is tangent to 𝑆 while the other is perpendicular.
These two directions together with the tangent to the curve
𝛾 form the Darboux frame for 𝛾. Keeping the metal from
twisting corresponds to this frame having no torsion. It
turns out that this restricts 𝛾 to being a line of principal cur-
vature of 𝑆.

Sabetta Matsumoto designed a surface 𝑆 with interest-
ing lines of principal curvature that would produce an at-
tractive lighthouse. It is a perturbed hyperboloid of one
sheet, with one of the lines of principal curvature giving a
gentle spiral ramp. The lighthouse was physically built by
Emily Baker and her students.

7For example, the stained glass dodecahedron (Figure 7E) atop the lighthouse il-
lustrates that unlike the other four platonic solids, the dodecahedron admits geo-
desic paths from a vertex back to itself that don’t cross any other vertices, a result
that was published in May 2020 [2].

(A) Visiting knot theorists Adélie,
Chinstrap, and Gentoo in the penguin’s
nest.

(B) The herons lead a knot tag-and-release
program.

Figure 8. Teamwork is essential at sea (and in many other
contexts).

∗ ∗ ∗
Having reached the base of the lighthouse, Harriet and

Arnold are delighted to hear music coming from the bay (Fig-
ure 8).

HERONS [SINGING]: Come put these knots in order
’cause they’ve tangled in the water,
Heave away, me jollies, heave away;
Come put these knots before us, hyperbolic, sat’lite,
torus,
Heave away, me jolly birds, we’ll all heave away!

PENGUINS [SHOUTING]: Ahoy, cousin bird, ahoy
friend cat!

HARRIET: Look Arnold! Up in the crow’s nest—
penguins!

ADÉLIE8: Where we come from, we call it a penguin’s
nest, thank you very much.

ARNOLD: Have you traveled far, friend birds?
HERONS: I wrote me knot a letter, ’twas a Theta sweet

and smooth,

8Many of our characters are named after species. Chinstrap, Adélie, and Gen-
too are species in the genus Pygoscelis.
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Heave away, me jollies, heave away;
Then along came Reidemeister—twist, poke, slide—
he made his move.
Heave away, me jolly birds, we’ll all heave away!

CHINSTRAP: Quite far! We’re visiting scholars, knot
theorists by trade. We’re here to assist the herons
with their wavebreaking baywork—

ADÉLIE: —That’s groundbreaking fieldwork, as you
land mammals say—

CHINSTRAP: They’ve started a critical tag-and-release
program to study the behavior of—

HERONS: Sometimes a spotted Cinquefoil, sometimes
striped Stevedore,
Heave away, me jollies, heave away;
But now we’ve found empirically what theorists
thought were lore!
Heave away, me jolly birds, we’ll all heave away!

GENTOO: What the herons sing is true. We did not
expect that amphibichiral theta-curves9 could realisti-
cally survive in brackish water, so when the herons
notified us of their newly discovered invertiblate10—

ADÉLIE: —well naturally, we came to assist. They have
a completely different perspective on the deck down
below than we have up here from this tower. Thanks
to their preliminary data—

CHINSTRAP: —we’re now able to computationally
model the spawning locations—

GENTOO: —and the herons are classifying new knots
by the netload!—

HERONS: Heave away, me jolly birds, we’ll all heave
away!

∗ ∗ ∗
From concept to realization, we benefited immensely

from the diverse skills and expertise of our twenty-four
core collaborators. The seeds planted through Mathe-
malchemy’s regular large and small group discussions ger-
minated into playful layerings of mathematical concepts
within scenes, as well as intersections and recurring themes
across scenes. Mathematics inspired narrative elements
that inspired artistic design. In tandem, artistic vision in-
spired narrative elements that shaped mathematical de-
sign.

At the same time, we faced real challenges in how to fit
the contributions from so many different perspectives to-
gether. The mathematical content had to be correct and
mathematically interesting, and the assembled work had
to be structurally sound. But a cohesive whole also re-
quired making aesthetic and materials-related judgment

9Knotted theta-curves [8] are a current topic of study. “Amphibichiral” is a
made up word.
10This is also made up.

(A) Tess the tortoise and her to-do list. (B) Zeno’s path.

Figure 9. Tess keeps herself busy by walking Zeno’s Path
every day.

calls. We learned to appreciate—or at least have patience
with—one anothers’ different disciplinary priorities and
modes of communication. Compromise, flexibility, and
trust were essential from conception to fabrication to in-
stallation. We embraced variety and abundance as part of
our aesthetic, and relied on Dominique’s keen artistic eye
to keep us on track.

∗ ∗ ∗
The two friends arrive at Zeno’s Path and enter through the

ornamental gate (Figure 9).

HARRIET: Oh, look, Tess is up ahead! I haven’t talked
to her in ages.

ARNOLD: Let’s catch up!
HARRIET: Arnold, you try racing on Zeno’s Path every

time we come here, and it never works.
ARNOLD: I’m sure it will work this time—I’ve been

training, and Tess walks so much slower than we do.
Ready, set. . .

ARNOLD: Well, that’s odd. We’ve been almost to the
end for a while now, and we still haven’t caught up.

HARRIET: This trail always takes forever. Why don’t we
just aim for the playground instead?

Some time later, Harriet and Arnold arrive at the edge of the
garden, where chipmunks are enthusiastically arranging acorns
on the playground (Figure 10).

HARRIET: How delightful—the chipmunks are playing
their prime numbers game.

ARNOLD: Evening, kids! Who’s winning?
UINTA: We both are. We’re practicing for a doubles tour-

nament, working on technique and artistry.
DURANGO: You might think Pickle-Prime is all about

the numbers—
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Figure 10. Uinta and Durango play a game with Babylonian
cuneiform numeral tiles and acorns.

UINTA: —determining whether a game tile is prime or
composite—

DURANGO: —but acorn placement is becoming in-
creasingly important to the judges.

UINTA: We’ve decided freestyle layout is just too
. . . distracting. Makes us want to eat all the acorns.
So we’re going with this parallel placement instead.

HARRIET: And the braided rings?
DURANGO: They remind us not to eat the remainders.

∗ ∗ ∗
The pandemic forced us to substantially extend the ini-

tial timeline for completingMathemalchemy, as six months
stretched into almost eighteen. That extra time allowed
us to refine our underlying story-telling. The initial pro-
posal for Mathemalchemy depicted studious mice at work,
not play, and woe to a tearful mouse who struggled to un-
derstand prime and composite numbers. Our Garden sub-
team set about changing the narrative: now, two inquisi-
tive chipmunks actively engage in collaborative, hands-on
play with tangible three-dimensional objects, reveling in
their discoveries as much as in the game’s outcomes. We
similarly hope Mathemalchemy itself offers viewers a vehi-
cle for joyfully engaging with mathematics.

∗ ∗ ∗
Harriet and Arnold leave the chipmunks to their practice and

continue through the garden, stopping at the gaussian-integer
stepping stones to watch the squirrels (Figure 11).

ARNOLD: Looks like the squirrels are getting ready for
their annual Sieving of the Primes!

HARRIET: Gets bigger every year.
ARNOLD: How many sieves do they have? 2. . . 3. . . 5,

and now 7 and 11 are rolling in. . .Where do they
store them?

HARRIET: Behind the Riemann Cliffs. I used to lend
them storage space in Conway’s Curios, but they kept
adding sieves. Even without the sieves, I hardly have
room to turn around.

Figure 11. 3D printed polyhedra appear as stamens and pistils
for origami flowers in the garden and as sea creatures in the
reef. In the background, two squirrels discuss prime number
algorithms in front of their Sieve of Eratosthenes.

∗ ∗ ∗
Just like Harriet, we had to make some decisions about

what to include in the installation. Our criteria included
mathematical and artistic considerations. Despite our ex-
tra months, we were also restricted by time.

Over one hundred small, 3D printed models of poly-
hedra adorn Mathemalchemy (Figure 11). We have the pla-
tonic, archimedean, and Johnson solids, and the first few
prisms and antiprisms, totalling over a hundred pieces.
These could have been made in ceramics, paper, or wood,
but it would have taken far longer. By 3D printing them,
wewere able to save time on themanufacturing end, which
allowed more time for Tasha Pruitt to envision how they
could be incorporated into the exhibit. Supplemented
with paint, embroidery, and beadwork, they manifest as
stamens and pistils, boulders, cushions, planters, jellyfish,
and other imaginative adornments.

Decisions about how to optimize quality and quantity
also played a role in the two arches of thread-wrapped balls
that rise above the garden (Figure 12). One arch illustrates
a geometric series, while the other illustrates a diverging
series.11 The visible portions of these series involve over
120 woven balls, a selection of which are embroidered fol-
lowing a form of Japanese folk art called temari. Early on,
it became clear that embellishing all of the balls was nei-
ther feasible nor visually desirable, so the team faced the

11The ratio of the (𝑛 + 1)st ball diameter to the 𝑛th is (𝑛/(𝑛 + 1))2/3.
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(A) The diverging ball arch plunges into the bay. (B) The converging ball arch reaches upwards.

Figure 12. The ball arches alone required hundreds of hours of work.

mathematical, practical, and aesthetic question of which
to embellish and which to leave plain. The solution was
to embroider the 22 balls at the indices of the twin primes.
This choice extends the theme of primes associated with
the garden below, yields a manageable number of temari,
and gives a pleasingly irregular arrangement.

∗ ∗ ∗
ARNOLD: You do have a lot of mathematical pieces in

the gallery. Is it difficult to curate such a large collec-
tion?

HARRIET: I try to make objective decisions, so I rely on
basic principles of the field. Simplicity, clarity, par-
simony. . .universal facts—I always try to have some
of the classics on hand. Of course, it’s also nice to
have contemporary work; unexpected connections
between distant fields. And elegance; I’m so fond of
elegant proofs. . .

ARNOLD: What makes something elegant?
HARRIET: Something is elegant when. . .well, when. . .

it’s. . . elegant. Hmm. On reflection, elegance is not
so easy to define. I know it when I see it.

ARNOLD: That doesn’t sound terribly objective.
HARRIET: Now you mention it, topics do go in and out

of vogue in mathematics. . .Rigor is particularly pop-
ular these days, possibly at the expense of intuitive
understanding. . .

ARNOLD: Wait wait wait, aren’t those all matters of aes-
thetics?

HARRIET: Aesthetics? Aesthetics. I suppose so...
ARNOLD: WhyHarriet, I believe you have amind for art

after all.

∗ ∗ ∗

In our imagined narrative, Harriet is about to rediscover
her confidence in matters of art, overcoming the internal-
ized lessons of her youth. In the world the authors inhabit,
it is mathematics, not art, whose students often receive the
message that this domain is not meant for them. Mathe-
malchemy harnesses art and narrative to invite viewers to
participate in the joy of mathematics. This invitation is
embodied by three human silhouettes experiencing math-
ematics at different stages of life: a child improvises music
with her trumpet; a teenager surfs across a swirling vortex
of ideas, trailing a pennant that whips in the wind; and
an adult releases an exuberant cavalcade of mathematical
notes and jottings into the world (Figures 13A and 13B).
Whether they are observing Mathemalchemy or imagining
it into existence is up to the viewer to decide.

The three silhouettes are deliberately coded as female.
This choice stems from a desire on the part of the core
mathemalchemists, twenty of whom are women, to sup-
port the cultural shift that is making mathematics a more
gender-inclusive field. In the installation, we celebrate
the mathematical work of many women. A “Great Doo-
dle Page” quilt floats with the cavalcade above the play-
ground (Figure 13C); it features drawings by womenmath-
ematicians, including Maryam Mirzakhani, to date the
only woman awarded a Fields Medal. On the artistic
side, Mathemalchemy incorporates a variety of art forms
such as crochet, knitting, and cross stitch, that the fine
arts community has traditionally dismissed as “crafts” or
“women’s work” but that are weaving their way into fine art.
The quilted bakery floor is appropriately adorned with a
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(A) Perched on a stack of books, the child blows into a
trumpet.

(B) A cavalcade of mathematical pages flutters into the world. (C) The Great Doodle Page features doodles by seven
women mathematicians.

Figure 13. We inspire and are inspired by mathematics.

convex pentagonal tiling discovered by amateur mathe-
matician Marjorie Rice in her kitchen. Of the now-proven
complete list of fifteen pentagonal tiling types, Rice discov-
ered four, working in her spare time [7]. Her story serves as
a reminder that mathematicians can be anyone, anywhere.
Our hope is that Mathemalchemy fulfills a similar purpose,
inviting its audience to see mathematics as an enterprise
open to all intrepid explorers.
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the Simons Foundation and the Leverhulme Trust
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Figure 1. Richard Stanley in the memorial room of Professor 
Wen-tsun  Wu.

Richard Stanley has been Professor Emeritus of Mathemat-
ics at MIT since January 2018. He received his BS in mathe-
matics from Caltech in 1966, and his PhD in mathematics 
from Harvard University in 1971, under the direction of 
Gian-Carlo Rota. He joined the MIT faculty in applied 
mathematics in 1973, and became a professor in 1979. Pro-
fessor Stanley’s research concerns problems in algebraic and 
enumerative combinatorics. Professor Stanley’s distinctions 
include the SIAM George Pólya Prize in applied combina-
torics in 1975, a Guggenheim fellowship in 1983, the Leroy 
P. Steele Prize for Mathematical Exposition in 2001, the 
Rolf Schock Prize in Mathematics in 2003, and the Leroy 
P. Steele Prize for Lifetime Achievement in 2022. Professor 
Stanley was the inaugural Levinson Professorship Chair of 
Mathematics at MIT, 2000–2010. He was appointed Senior 
Scholar at the Clay Mathematics Institute in 2004, and 
received an Honorary Doctorate from the University of 
Waterloo. In 2007, he received an Honorary Professorship 
from Nankai University. He is a Fellow of the American 
Academy of Arts & Sciences (1988) and a Member of the 
National Academy of Sciences (1995). He was an invited 
speaker at ICM1983 and a plenary speaker at ICM2006.
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SC (Shaoshi Chen): Thank you very much for accepting this 
interview. We would like to ask you some questions about you 
and your mathematics. Let’s start with: When did you realize 
that you loved mathematics and wanted to be a mathematician?

RS (Richard Stanley): I think it was roughly at the age 
of thirteen when I was in the ninth grade. I moved to Sa-
vannah, Georgia. There was another student in my class 
(named Irvin Asher) who seemed to be doing something 
that I thought was very advanced mathematics. I was very 
interested in what he was doing and became inspired to 
learn more about mathematics. That was the start. I then 
began to go to the library and check out all of the popular 
math books in order to learn as much math as I could.

SC: Did anyone help you understand the books? Or did you just 
study by yourself?

RS: At that time in Savannah there were really no mathe-
maticians, no good universities or anything similar, and I 
was on my own.

SC: When did you make the decision that you wanted to be a 
mathematician?

RS: Maybe in high school when I was thirteen or fourteen 
years old. I thought I would go into astronomy or physics, 
and after the experience with this classmate, then math 
became a possibility. By the time I graduated from high 
school, I was pretty sure that I preferred mathematics. In 
college, I took a lot of physics courses to see which I liked 
better, but I never really changed my mind about math.

SC: During your undergraduate study, was there a teacher who 
influenced you very much? Who made you understand or learn 
more about mathematics?

RS: I remember there were many good teachers at Caltech. 
Maybe the one with the most influence on me was Mar-
shall Hall. He is a very well-known group theorist, but 
he was also interested in combinatorics and wrote one 
of the few books on combinatorics at that time. I was 
mainly interested in group theory from his influence, not 
combinatorics. In fact, I was not interested in taking a 
combinatorics course from Marshall Hall because I did not 
consider combinatorics to be a serious subject! I wanted 
to go to Harvard University to be a graduate student and 
work with the group theorist Richard Brauer. Finite group 
theory is like a combination of combinatorics and algebra, 
so you can see I had some nascent combinatorial interests. 
But when I graduated from Caltech I was thinking only of 
algebra, or perhaps number theory. Incidentally, I took 
a graduate group theory course from Marshall Hall, and 
in the same class was Michael Aschbacher who became 
very famous later for his role in the classification of finite 
simple groups. I should also mention that it was Marshall 
Hall who got me a summer job at JPL (the Jet Propulsion 
Laboratory, operated by Caltech for NASA, and responsible 
for the missions of unmanned extraterrestrial spacecraft). 
I spent around seven consecutive summers working in the 
coding theory group at JPL.

SC: Maybe I will ask a stupid question, namely, I know there 
is another group theorist named Phillip Hall. So is there any 
connection between those two Hall’s?

RS: People always ask this question. The answer is that 
there is no connection.

SC: I know that the famous combinatorist Gian-Carlo Rota was 
your PhD supervisor. Can you say something about Rota and 
how he supervised you or how he influenced you during your 
graduate study?

RS: Yes, certainly his biggest influence was to get me to work 
in combinatorics. I never thought that it was really a serious 
subject, but I got interested in some combinatorial prob-
lems mainly from my job at JPL. I asked people at Harvard 
(where I was a graduate student) about my problems. They 
suggested that I should see Gian-Carlo Rota at MIT. Rota 
was very enthusiastic, suggesting all kinds of combinatorics 
that I should learn and convinced me that I should work 
with him in combinatorics. But I actually ended up doing 
most of the work on my own, just talking to him about 
other topics, not directly related to my research.

SC: What is combinatorics in your opinion?

RS: People are always asking me about that. The answer 
depends on their level of mathematics. Combinatorics 
deals with discrete structures. There are many different 

Figure 2. Richard Stanley with the author in the memorial room 
of Professor Wen-tsun Wu.
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career it actually worked amazingly well. For instance, a 
complicated power series in several variables arose in the 
theory of reduced decompositions of permutations. I had 
no idea on how to get any information about it unless it 
happened to be a symmetric function. It was just wishful 
thinking that it might be a symmetric function; I didn’t 
have any reason to believe that it should be. I did some 
computations and saw that it seemed to be true. Once it 
seems to be true, then you can try to prove it and use it. I 
think it's a good idea when doing research to try to think 
about the best thing that could happen so you can make 
further progress, and then see if it works.

SC: I think it’s connected to your mathematical intuition. Before 
you really do the rigorous proof, you have intuition to believe 
it’s true.

RS: I call it wishful thinking because it is just a hope that 
might work. The key difference between wishful thinking 
and other kinds of conjecturing and guessing in mathemat-
ics is that in wishful thinking, you don't have any reason 
for believing your wish might come true. Intuition is not 
yet involved, but a good knowledge of possible tools and 
techniques is essential.

SC: Many of your papers arise from some questions asked by 
non-mathematicians or mathematicians who are not doing com-
binatorics. Your answers to these questions increase the impact 
of combinatorics on other topics because it impresses people that 
combinatorics is a powerful tool to solve some questions that 
they want to answer. Can you say something about how combi-
natorics is connected to other areas, similar to how you already 
talked about the connection between algebra and combinatorics, 
according to your understanding?

RS: Many subjects are connected with combinatorics. In the 
past, people worked on their problems and usually found 
the solutions by doing some combinatorial computations. 
They just leave it at that and think that's the answer. But 
combinatorics can actually push you much further. Solv-
ing combinatorial problems that arise in other areas gives 
you all kinds of insights into these areas. For instance in 
topology, which has concepts like tori, spheres, and ways 
of putting on handles and twisting space, you can easily 
imagine that some combinatorial structures are involved. 
Biology is another example that is full of combinatorial 
considerations, from phylogenetic trees to the genetic 
code to protein folding. The question is how to make this 
intuition rigorous and precise and related to serious com-
binatorics. I think that almost any branch of mathematics, 
as well as many other areas, has some connection to com-
binatorics. You could try to do some serious mathematics 
by explaining these connections in a precise way.

questions you can ask: what are the best ways or most effi-
cient ways of arranging things and organizing them? How 
many ways are there to do it? How easy is it to find these 
solutions or prove that solutions exist or connect them 
with other things? It’s very basic for much of mathematics 
to arrange discrete objects according to certain rules in the 
best and most elegant ways, or to see how many ways (or 
approximately how many ways, if an exact answer cannot 
be found) there are to do it, and to understand the structure 
formed by all these arrangements. Thus I think the problem 
of how to arrange discrete objects in certain interesting 
and elegant ways, and to understand how many of them 
there are and how they are related to each other, are basic 
questions in combinatorics.

SC: On your MIT homepage, it says that your main research area 
is algebraic combinatorics. Can you give a brief introduction to 
algebraic combinatorics?

RS: Well, it is basically the way in which combinatorics and 
algebra are connected with each other. I like both subjects: 
combinatorics and algebra—they are very natural to me. In 
algebraic combinatorics, you can go in either direction. You 
can apply algebra to combinatorics by embedding combi-
natorial objects into algebraic structures and using algebra 
to obtain information about the combinatorics objects. 
Or you can do it in the other direction, to understand the 
algebraic objects by looking at their combinatorial prop-
erties, and applying combinatorial reasoning. People were 
doing this since Euler, Jacobi, Cayley, and others. Of special 
importance to algebraic combinatorics today is the work of 
Frobenius, Young, Schur, and others on the representation 
theory of the symmetric group. These people never really 
thought of algebraic combinatorics as a separate subject, 
but they were very well-qualified to find some connections 
between algebra and combinatorics. The idea, mainly due 
to Rota, to try to develop algebraic combinatorics (also 
geometric combinatorics) in a systematic way really ap-
pealed to me.

SC: Recently, I was reading the AMS book The Mathematical 
Legacy of Richard P. Stanley, which is in celebration of your 
70th birthday. In this book, you wrote a very nice note on all 
your publications, briefly discussing how your papers started and 
how you finished them. You mentioned the “wishful thinking 
proof technique.” I was curious about how this technique works.

RS: Yes, this is the idea that when you’re trying to prove 
something, you think about what is the best possible sit-
uation that could be true so that you could prove it or at 
least make further progress. It’s a kind of wishful thinking 
that if only this were true, then I would have a chance of 
proving it. There’s no reason to believe it's true at first, and 
most of the time it doesn’t work. But several times in my 
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SC: You have written two classical books on enumerative com-
binatorics, Enumerative Combinatorics, volumes 1 and 2 
(known as EC1 and EC2) which now are perhaps the most 
influential books in combinatorics. When did you start this 
writing project?

RS: It was in 1979, I was visiting UCSD (University of 
California at San Diego) when Pierre Leroux was visiting 
there from Montreal. We decided that it would be a good 
idea to write a book on enumerative combinatorics. I would 
write the text and he would make the problems. That was 
the original plan. But after I started to work on it, I realized 
that I wanted to do the whole thing by myself. I had a strong 
idea about how to do the problems and in many cases their 
solutions. So that was the start in 1979, and it took seven 
years before the first volume came out. That volume almost 
doubled in size in a second edition published in 2012. The 
second volume was published in 1999.

SC: In these books there are many interesting exercises which 
come from different papers. How did you collect so many inter-
esting exercises? How did you organize them?

RS: Even before I started writing the book, maybe just after 
I got my PhD, I thought it would be a good idea to write 
down any kind of facts that I thought interesting or possi-
bly useful. As you know there were no personal computers 
back then, so I got a lot of 3x5 index cards. I just wrote 
down some interesting fact on each card and put them in 
a file box. I still have them at my MIT office. When I started 
writing up exercises for my book, I used these cards as a 
basis. Any time I came across something interesting from 
reading, going to lectures, etc., I would just write it down 
on an index card. Thus this was my way to collect exercises.

SC: It’s a very good habit. Could you talk about some of your 
work in graph theory and your opinion on the importance of the 
theory of graphs and networks?

RS: Well, concerning my own work in graph theory, I 
think it is purely algebraic and enumerative, and not too 
closely related to all these applications in network theory, 
operations research, etc. As an example of my work in 
graph theory, I earlier gave a talk in your institute about the 
chromatic polynomials of graphs. They are a special case 
of characteristic polynomials of hyperplane arrangements. 
They're connected with Mobius functions and partially 
ordered sets. I found all these connections very interesting. 
What could you say about chromatic polynomials or other 
polynomials arising from combinatorics? One special topic 
is about the reciprocity that arises when a polynomial is 
defined to have some nice combinatorial meaning for pos-
itive integers, and then turns out to have a nice meaning 
for negative integers. In a rather indirect way I was led to 

ask whether something like this happens with chromatic 
polynomials. That was one motivation for me to work in 
the area of graph theory.

SC: Nowadays we use computers every day and everywhere. 
Can you say something about the influence of computers on 
combinatorics, or on mathematics in general?

RS: Well, for just one thing, you can do experiments with 
a computer far beyond what you can do by hand. Some-
times you make discoveries that you just never could see 
by hand. In order to see a pattern in some data, you might 
have to work up to n=16, but by hand you can only go up 
to n=4. There are many examples like that. For myself, I 
use computers as a way to generate data for making con-
jectures. But as you know some people use computers to 
prove new theorems, like proving the four-color conjecture 
or Kepler’s conjecture. I don’t really go in that direction, 
but certainly these are very interesting developments which 
are different from just generating a lot of data and trying 
to make sense of it.

SC: I think you have visited China many times. When was the 
first time?

RS: In 1986, I attended a graph theory conference at Shan-
dong University in Jinan. After the meeting I spent a few 
days in Beijing and visited Beijing University.

SC: Can you tell us some stories about your collaborations with 
Chinese mathematicians?

RS: Well, it started out with Bill Chen, my mathematical 
brother, that is, we have the same thesis adviser (Gian-Carlo 

Figure 3. Richard Stanley with the author in the memorial room 
of Professor  Wen-tsun Wu, in front of the bulletin board about 
how Wu promoted Computer Mathematics in China.
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Rota). When Bill was a graduate student at MIT, I was a 
professor and taught him some classes. We started our 
collaboration then. Subsequently I had some Chinese 
PhD students. I didn’t write joint papers with them when 
they were students (I like to have my students work as in-
dependently as possible), but I certainly collaborated with 
them on their thesis research. I guess you know Fu Liu, 
my Chinese student with whom I have most collaborated. 
I had very good collaborations with her resulting in two 
published papers. My Chinese graduate students (including 
students who grew up in Taiwan) and their degree dates 
are Bo-Yin Yang (1991), Wungkum Fong (2000), Fu Liu 
(2006), Jingbin Yin (2009), and Nan Li (2013). Other 
Chinese mathematicians I have worked with include 
Ruoxia (Rosena) Du, Yinghui Wang, Yuping (Eva) Deng, 
Huafei (Catherine) Yan, Xiaoying (Ellen) Qu, Xingmei 
(Sabrina) Pang, Beifang Chen, Xiaomei Chen, Xueshan 
(Teresa) Li, Lili Mu, Wuxing (Tommy) Cai, and Guoliang 
(David) Wang. Often I would first meet them in China at 
some meeting, and they would ask if they could visit MIT. 
I would make the arrangements, and then we would start 
the collaboration.

SC: Yes, it’s very helpful that people can go to MIT so that they 
can communicate with leading scholars, and thereby enlarge 
their research area. Up to now, you have supervised 60 PhD 
students in total. Many of them have become famous like Ira 
Gessel and Thomas Lam. Do you have any advice for young 
researchers or PhD students, especially in combinatorics?

RS: Of course, giving some general advice to any students 
is not so easy, but I think it’s very good that the students 
learn how to generate their own research problems or 
questions. Always keep your eyes open to something that 
is interesting, and if you think there’s some way that you 
might be able to make a contribution, you shouldn’t be 
afraid and say “that’s not my area” or “people have already 

worked on this.” You should, as long as you have some kind 
of “reasonable” idea, go ahead and pursue it. You need to 
have a bit of judgment about what is reasonable. For in-
stance, I would not recommend working on the Riemann 
hypothesis unless you really think you have a new idea. 
When someone gives a talk and mentions some problem, 
if you find it interesting and even if it’s not your exact area, 
I would say keep it in mind, go for it. Even if you don't get 
anywhere, you should try to remember everything, because 
you never know whether someday you might find some-
thing that you can use to eventually make progress or even 
solve the problem.

SC: My last question. Which open problem in combinatorics is 
your favorite one? I think you have many in your mind. And 
you would like to see the solutions in the future?

RS: Well, I could name two. The first one is definitely the 
g-conjecture for spheres (or certain more general simplicial 
complexes called Gorenstein). What can be the number of 
faces of each dimension of a triangulation of a sphere? Lou 
Billera, Carl Lee, and I solved this problem for simplicial 
convex polytopes in 1979. Since 1979, the g-conjecture 
is probably the biggest open problem in the area of the 
combinatorics of simplicial complexes. There has been 
some recent progress on this problem, in particular, by 
Karim Adiprasito, who posted a proof of the g-conjec-
ture for spheres on the arXiv (see https://arxiv.org 
/abs/1812.10454), but so far no one has read the whole 
proof. It will be very exciting if it’s correct.1

Another open problem I especially like is the e-positiv-
ity conjecture for certain chromatic symmetric functions, 
because it’s connected with so many other areas like Kazh-
dan-Lusztig theory and Hessenberg varieties. I think there’s 
all kinds of deep mathematics going on behind this con-
jecture, and I would really like to see what this looks like.

Credits
All figures are courtesy of the author.

1In an email to me on March 17, 2022, Richard asked me to add a footnote 
here: “After this interview, Adiprasito’s proof was carefully checked and is 
now accepted as correct.”

Figure 4. In the coffee room of Academy of Mathematics and 
Systems Science, CAS: Richard Stanley (sitting next to Atsuko 
Kida) was discussing the e-positivity conjecture with Dun Qiu, 
Arthur L.B. Yang, and Philip B. Zhang.

https://arxiv.org/abs/1812.10454
https://arxiv.org/abs/1812.10454
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Taylor-West’s conversations with Crane were part of his 
education as an artist-in-residence at the University of 
Bristol’s School of Mathematics. A composer working to-
ward a doctorate at the Royal College of Music in London, 
Taylor-West had been drawn to the residency—enabled by 
a partnership between the university and CREATE-REACT, 
an organization that pairs artists and scientists to foster 
interdisciplinary collaborations—because he had already 
begun injecting some mathematics into his music. He was 
incorporating randomization processes as a way of adding 
variation and unpredictability to how chords were built, 
for instance. “I felt that the ideas being studied by math-
ematicians would be an excellent source of inspiration 
for my work and would push me beyond my own simple 
experiments,” he remembers. 

More than 20 Bristol mathematicians expressed interest 
in exploring with Taylor-West how their research might 
inform or inspire sonic art. Crane, for one, hoped that work-
ing with Taylor-West might bolster his perhaps rusty ability 
to communicate with the mathematically uninitiated. “I 
think we owe it to the taxpayers who fund much of our 
research to explain something about what we’re doing and 
why, in a non-technical way,” he says. “The idea of being 
helped to express something about my research in a totally 
new and non-technical way appealed to me.” 

Artist Residency Sparks  
Fruitful Collaboration
Sophia D. Merow 

Edward Crane and Liam-Taylor West began meeting in 
September 2020, sometimes via Zoom, sometimes at one 
of the glass whiteboards in the courtyard of the University 
of Bristol’s Fry Building. 

During these one-on-ones, Crane sketched—without 
recourse to equations, mind—the big ideas behind his re-
search1 on self-organized criticality. Consider such complex 
real-world phenomena as avalanches, financial crashes, and 
electrical cascades in the brain, he prompted. All involve 
a slow build-up of energy or potential followed by a large 
release, the precise timing of which is unpredictable. At 
scales large and small, Crane explained, the frequency of 
these releases is related to their size by a power law. Self-or-
ganized criticality aims to understand why.

As the two talked, Taylor-West tried to distill what Crane 
told him into a handful of pithy phrases, jotting them in 
his notebook to run by Crane for accuracy later. Until he 
had a solid grasp of the concepts discussed, Taylor-West did 
his best to refrain from considering how they might lend 
themselves to audiovisual artistry.

Then Crane shared some colorful videos showing sim-
ulations of forest fire models.

Sophia D. Merow is a freelance writer and editor. Her email address is 
sdmerow@gmail.com.
1See, for instance, https://arxiv.org/abs/1811.07981. 

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

DOI: https://dx.doi.org/10.1090/noti2511
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Crane and Taylor-West 
both deem “Forest Fire” a 
success. Taylor-West thinks 
he accomplished what he 
set out to do with the piece: 
to render the workings of 
the forest fire model obvi-
ous to the general viewer 
and to convey the sense 
that random events can cre-
ate structured, predictable 
systems. Crane, who vetted 
both the code that under-
lies the installation and the 
few sentences of descriptive 

text that accompany it, admires how Taylor-West identified 
the heart of the self-organized criticality matter and devised 
an intuitive and engaging way to present it to a general au-
dience. “I love the way that by interacting physically with 
the piece you get a great sense of how the feedback works, 
which you wouldn’t get from simply reading about it or 
looking at graphs,” he says. 

And both Taylor-West and Crane expect the residency to 
have a positive impact moving forward. 

“Almost all of the work I have lined up is related to it 
in some way,” Taylor-West reported in February. He was 
writing a piece for the BBC Concert Orchestra based on 
the structure and growth of aperiodic sequences (to which 
Bristol mathematicians Felix Flicker, Henna Koivusalo, 
and Demi Allen had introduced him); he and some of his 
School of Mathematics collaborators were hoping to secure 
grant funding for continued work together; “Forest Fire” 
and the other pieces from the IN/FINITE show were slated 
for exhibition at other venues. 

For his part, Crane came away from the collaboration 
more motivated than ever to devote time and effort to 
explaining his work to non-mathematicians. “I think it is 
important that this is seen as part of our professional re-
sponsibility and not just a nice add-on,” he says. “Working 
with Liam has reminded me that ‘explaining my work’ can 
mean a huge range of different things, depending on the 
audience.”

Credits
Figure 1 is by Lloyd Coleman.
Figure 2 is by Liam Taylor-West.
Author photo is by Igor Tolkov.

From the spark of Crane’s 
simulation show-and-tell 
grew “Forest Fire,” one 
of five2 interactive light 
and sound installations 
included in Taylor-West’s 
January 2022 exhibition 
IN/FINITE: Order in the 
Unknown. While a mathe-
matician might recognize 
in the piece a very small 
instance of the Dross-
el-Schwabl forest fire 
model,3 there’s no math-
ematical prerequisite for 
viewer engagement with 
the 10-by-10 grid of LED 
lights. A green light rep-

resents a tree, a red light fire. Trees grow and fires start at 
random, and viewers can alter the probabilities of these 
events via a no-touch controller. As forests sprout, as fires 
ignite and spread to neighboring trees, cascades of color 
illuminate the grid.4

And there’s a musical dimension too! Each of the grid’s 
100 squares can be dark, red, or green, and there’s a sound 
associated with each of these possible states. A dark square 
is silent. When a square goes green, it triggers a slow mel-
ody that outlines a chord, which becomes more dissonant 
as it rises. When a square turns red, it produces a sharp, 
punch bass note; these notes form a rhythmic sequence as 
the forest goes up in flames. Taylor-West added variety to 
the simulation’s score by recording several versions of the 
melody, some on clarinet (Lloyd Coleman) and some on 
synthesizer (Georgie Ward). The bass note associated with 
the fire also varies among three possibilities, switching 
whenever more than half of the grid is green. 

2Read more about the other installations at https://bit.ly/3h6KHn5.
3“It is quite closely related to site percolation on the square lattice, a model 
that a lot of mathematicians would be familiar with,” says Crane. “The 
Drossel-Schwabl model is simple but it turns out to be very difficult to analyse 
mathematically, unlike the mean-field forest fire model (which I work on) 
and some one-dimensional forest fire models that are pretty well understood. 
The Drossel-Schwabl model hasn’t been proven to display the key features of 
self-organized criticality, and big simulations suggest that maybe it doesn’t. 
But it does make for a very nice visual model of the feedback mechanism.”
4Watch footage of “Forest Fire” in action, and you’ll spot a third color: 
yellow. Taylor-West added a process to the piece that was not present in 
the mathematical model that inspired it: tree aging. Green squares in the 
artwork become more yellow over time. “This means that if the probability 
of fire breaking out is really low,” Taylor-West notes, “you eventually end 
up with a full grid of green lights slowly turning yellow, which adds to your 
sensation as an audience member that a fire MUST be about to start soon 
(which of course is not how random events work, but it is interesting that 
we expect a fire to be more likely after a period without any).”

Figure 1. Liam Taylor-West’s 
residency-culminating 
exhibition, IN/FINITE: Order in 
the Unknown, ran at Liberty 
House in Bristol January 19–30, 
2022.

Figure 2. A freeze-frame of 
“Forest Fire” in action. See 
video—and hear sound!—at 
https://bit.ly/33nz3Bc.

Sophia D. Merow 



From the AMS Secretary

TO ALL AMS MEMBERS:
PLEASE VOTE
Voting Information 
for the 2022 AMS Election
Voting Online
AMS members who have chosen to vote online will receive 
an email on August 15, 2022.

The email will come from “AMS Election Coordinator” via 
noreply@directvote.net and the subject will be “AMS 2022 
Election—login information below” (you may want to use this 
information to con� gure your spam � lter to ensure delivery of 
this email). The body of the message will provide your unique 
voting login information and the web address of the voting website. 

Please vote by midnight (US Eastern Time) on November 1, 2022. 
After midnight, the website will stop accepting votes.

Voting by Paper Ballot
AMS members who have chosen to vote by paper will receive 
their ballot by the middle of September. Unique voting login 
information will be printed on the ballot should you wish to 
vote online.

Paper ballots received after November 1, 2022 will not be counted.

For Further Information
Additional information regarding the 2022 AMS 
Election is available in Frequently Asked Questions at: 
www.ams.org/election-info. 

If you have questions, please email election@ams.org or call 
800.321.4267, extension 4129 (US & Canada), 401.455.4129 
(worldwide).

Thank you, and please remember to vote.

Boris Hasselblatt

To learn more visit:

www.ams.org/election-info
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As AMS Executive Director, my job is to manage and coordi-
nate all Society operations and serve as the primary liaison 
between staff and volunteer bodies that govern the Society. 
In this report, I’ll describe AMS activities and accomplish-
ments from 2021. The mission of the AMS is to advance 
research and we do this mainly through conferences and 
publications. We also have a range of professional pro-
grams and services, and we advocate in DC on behalf of 
our mathematics community.

The AMS budget typically increases each year, although 
in 2021 we budgeted lower than the prior year in an-
ticipation of negative impacts related to the COVID-19 
pandemic. Nonetheless, the AMS was able to continue its 
practice of ending the year on a positive financial note, 
details of which will appear in a future issue of the Notices. 
We returned to our usual practice in 2022 with an increased 
budget of approximately $33 million. Our primary reve-
nue sources are derived from library subscriptions to AMS 
products such as MathSciNet® and our research journals. 
Our endowment, currently valued at about $230 million, 
funds our many prizes and awards and provides operating 
income that supports a wide variety of professional pro-
grams and activities. We also receive membership dues, 
conference registration fees, and income from selling our 
books. Did you know that purchasing books directly from 
the AMS Bookstore (https://bookstore.ams.org) will 
both save you money and increase the amount that comes 
to the AMS over purchasing elsewhere?

All of our income, along with donation and grant sup-
port, helps us advance research and support the mathemat-
ics profession. We achieve this through AMS meetings and 
conferences, a multitude of AMS programs, our member 
journals, Bulletin and Notices, as well as our DC-based ad-
vocacy work. We have a robust development program to 
help raise funds for new prizes and awards and to further 
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throughout 2021 as this conversion has enabled us to 
update the Mathematical Reviews database itself, opening 
the door to a greater variety of future enhancements to 
MathSciNet.

In July 2021, employees started to return to our AMS of-
fice buildings part time (although I’ll note that our printing 
and distribution center maintained in person operations 
throughout the pandemic). Our DC office completed its 
move from Dupont Circle to its new location within blocks 
of the US Capitol building. The space is spectacular for 
hosting AMS committee meetings, as well as convenings 
of other small groups. Did you know that if you contact us 
ahead of time, we can help arrange for you to meet mem-
bers of your Congressional delegation and we can coach 
you on how to have an effective visit? We hope you will 
visit when you are in the area!

In the fall, as the pandemic threat lessened (and prior 
to the omicron variant that shut everything down again), 
three of Council’s policy committees, as well as a meeting 
of the Executive Committee of the Council and the Board 
of Trustees (ECBT), were able to be held in person. The 
AMS organized an in-person Congressional briefing in 
December with the Mathematical Sciences Research In-
stitute. It was one of the first such briefings in Congress 
in two years, and it was exciting to have mathematicians 
initiate the resumption of this important advocacy program 
in Congress. Dr. Cédric Villani spoke about Mitigating 
climate change: science and policy. Sadly, the resurgence of 
the pandemic at the end of 2021 forced us to postpone the 
in-person JMM 2022 and to offer it in a virtual format three 
months later. Throughout the two years of the pandemic, 
however, we successfully maintained one of our signature 
programs, the Mathematics Research Communities (MRCs) 
using virtual tools. We also ran several virtual sectional 
meetings, workshops, and webinars. We are now thinking 
deeply about how to engage our community of mathema-
ticians effectively as we emerge from the pandemic. What 
are your ideas?

One of the most complex projects in 2021 involved 
finalizing plans for the reimagined Joint Mathematics Meet-
ings1 (JMM). In response to the AMS Council affirming 
that the JMM would be welcoming to all mathematicians, 
the Secretariat created a new expanded abstract proposal 
classification scheme2 so as to permit a much wider range of 
topics. We introduced several new lectures, receptions, and 
other events. We created memoranda of understanding with 
our dozen (and growing!) partners. Our team rebranded 
the JMM with a new logo and developed promotional 
materials including emails, flyers, social media campaigns, 
signage, as well as the app and website. The new JMM Pro-
gram Committee reviewed panel proposals and initiated 

1https://www.jointmathematicsmeetings.org
2https://www.ams.org/session-classifications

support initiatives of the Society. The budget for the AMS 
each year follows several key principles, including that we 
apply our revenue to keep our fees low. Did you know that 
the AMS subsidizes membership benefits, AMS conferences, 
and more in order to help keep prices low so as to benefit 
as many people as possible? Indeed, we publish books 
when we believe they will be of value to the mathematics 
community, even as we recognize that some may not be 
commercially viable. Our DC-based advocacy work ensures 
the voices and values of our community are represented on 
many important issues and is completely paid for by the 
AMS. Did you know that 70% of federal funding for math-
ematics comes from the National Science Foundation? We 
work with other scientific societies and Congress to increase 
support for the NSF, which helps advance research across 
our discipline. Indeed, in 2021, our AMS Director of Gov-
ernment Relations made some 75 visits with Congressional 
offices, many times accompanied by other mathematicians. 
This is vastly more than in preceding years, which was 
made possible because these were all virtual meetings due 
to the pandemic.

There have been several significant donations to the 
AMS in 2021 and I’ll mention just a few here. One donor 
has agreed to underwrite a new translation effort to make 
widely available historically important transcripts of 
mathematics lectures from the University of Göttingen. 
The AMS received a pledge of $750,000 from another 
donor to support our BEGIN (Business, Entrepreneurial, 
Government, Industry, and Non-profit sectors) initiative, 
which will enhance employment connections for mathe-
maticians outside of academia. We learned recently that we 
will receive an unrestricted bequest of roughly $3 million 
from the estate of a donor. Generous gifts such as these are 
testaments to the confidence our many donors have in the 
long-term mission and values of the AMS. Have you ever 
thought about contributing to a fund at the AMS in support 
of mathematics? If you have thoughts about helping the 
AMS enhance its ability to increase our prizes, awards, pro-
grams, and activities and would like to have a conversation 
with me, please reach out at croberts@ams.org.

It seems the pandemic affected just about everything at 
the AMS. And even today, we recognize that our work and 
mission have been impacted in ways we don’t yet fully un-
derstand. AMS staff had to figure out how to accomplish 
our goals working from home. We replaced office desktop 
computers with portable laptops. We implemented cloud 
storage, sharing of files, and new collaboration tools. As an 
unsurprising sign of the times, the AMS undertook multiple 
security-related projects. This included software upgrades, 
addressing issues of external network penetration and web 
application scans, and upgrading our internal network.

Perhaps most notably, the entire Mathematical Reviews 
pipeline was converted from paper to digital during the first 
months of the pandemic. This herculean task continued  
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your member profile at https://www.ams.org to set your 
preferences (e.g., paper or print Notices and Bulletin) and 
to share your demographic data to help us understand our 
membership better?

We established our first Communications Department, 
which has been fully staffed for one year. In its first year, this 
department helped centralize our pandemic communica-
tions and conducted campaigns around AMS priorities such 
as promoting JMM Reimagined. This department wrote 
and distributed 18 long-form feature articles highlighting 
the positive impact of AMS programs on mathematicians; 
several of these articles were among our most highly 
viewed and shared digital content of the year. Although 
we continue to develop and implement more robust and 
sophisticated approaches to our communication strategy 
and messaging, we have struggled as an organization to 
navigate some delicate situations. Given that we are living 
in a world where reasonable discourse seems to be dimin-
ishing daily, identifying resources of patience and grace 
as we transverse this rocky terrain is essential to moving 
forward. I am pleased that Dr. Leona Harris, our new Di-
rector of Equity, Diversity, and Inclusion, has expressed as 
one of her priorities leveraging AMS communications to 
better inform our community and help bring the commu-
nity together. Working together, I believe we can serve all 
mathematicians.

In closing, it is my absolute pleasure to serve this math-
ematics community in my role as Executive Director. It is 
deeply rewarding to work with exceptional employees and 
hundreds of dedicated volunteers. The pandemic has been 
rough on everyone, including me. The support we give each 
other is so important. Even when we disagree on the best 
approaches, it is clear that we share a common desire to 
advance mathematics in the most impactful ways possible. 
Thank you. 

Dr. Catherine A. Roberts
Executive Director

May 2022

a series of professional development opportunities called 
PEPs (Professional Enhancement Programs) in response to 
community feedback requesting more such programming. 
A communications campaign to introduce our partnership 
model and program additions has generated tremendous 
excitement. Will you join us in Boston in January 2023?

Significant advancements occurred in the publishing 
arena at the AMS in 2021. In October, Communications of 
the AMS, our brand new diamond open access primary 
journal, debuted its first article. The Mathematical Reviews 
database now has over 4 million items, having added a 
record number of new items (137,576) in 2021. Library 
subscriptions to MathSciNet remain stable, and use of the 
database continues to grow. In fact, MathSciNet had its 
busiest year ever in 2021, which continues the trend of an 
average increase in usage of over 9% per year over the pre-
vious five years. So, even with the pandemic, MathSciNet 
continues to be relied upon heavily worldwide. We pub-
lished 75 new books, many of them research monographs. 
We have also made progress on accessibility to our content 
across our books and journals. For example, all 39 of the 
2021 feature articles in Notices of the AMS were converted to 
HTML, which is an important step in our efforts to improve 
reader accessibility.

Next, some people news. In 2021 we on-boarded and 
supported several new members of governance and staff. 
In 2021, this included Dr. Doug Ulmer, Treasurer, Dr. Boris 
Hasselblatt, Secretary, Dr. Torina Lewis, Associate Executive 
Director of Meetings and Professional Services, and Lucy 
Maddock, Chief Financial Officer and Associate Executive 
Director of Administration. Our 2021–2022 Congressional 
Fellow is Dr. AJ Stewart, who is working for Senator War-
nock from Georgia. We also welcomed Dr. Tyler Kloefkorn, 
Associate Director of the Office of Government Relations 
and Dr. Justin Eilersten, who joined us as an Associate Ed-
itor at Mathematical Reviews, with a specialty in numerical 
analysis and statistics. With 200 employees, the AMS has 
not been immune to the increased employee turnover and 
the severe labor shortage you have been hearing about. If 
you would like to join our talented team in support of the 
global mathematics community, our open positions are 
listed here: https://www.ams.org/ams-jobs and those 
requiring a doctorate can also be found on Mathjobs.org.

You may recall that part of implementation of our 
2016–2020 Strategic Plan addressed communication. Ef-
fective communication remains an important priority for 
the AMS. We spent two years redesigning our AMS logo 
and propagating it throughout the organization. We made 
significant improvements to the printed and digital formats 
of the Notices of the AMS. We continue to progress through 
a multi-year project to upgrade ams.org. We upgraded our 
bi-weekly member newsletter, Headlines & Deadlines, as 
well as printed materials originating from Membership 
and Development. Did you know that you can log into 
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and inclusion (EDI) in math departments. Attendees repre-
sented departments ranging in size from seven faculty and 
staff to more than 50 and spanning community colleges, 
liberal arts schools, and large research universities. 

Making a Difference as Chair
Dave Kung began the workshop with an interactive session 
about diversifying the mathematics community. Kung, 
the director of policy at the Charles A. Dana Center and 
the director of MAA Project NExT, urged participants to 
consider how structures that seem neutral might actually 
hinder EDI. For instance, at many institutions, students 
with the most earned credits enroll before the rest of their 
peers each semester. Given that white students are more 
likely than Black students to enter college with credits, 
this system tends to push Black students out of the classes 
that they want or need in their first year, exacerbating an 
inequity that persists through graduation, he said.

Next was a session on inclusive 
hiring practices co-led by Emille 
Davie Lawrence, the chair of the 
Department of Mathematics and 
Statistics at the University of San 
Francisco. “I feel like the con-
versation needs to start to shift 
and expand away from these very 
strict notions of what math fac-
ulty should look like,” she said 
later. Rather than just consider-
ing the length and prestige of a 
candidate’s publication list, she 
said, hiring committees should 
ask themselves, “[Does the candi-
date] reflect the students in your 

Mathematicians excel in learning from books and papers. 
But serving as an academic department chair presents a dif-
ferent set of challenges—nuanced interpersonal situations 
requiring soft skills no mathematics textbook can teach.

“We don’t have any manage-
ment training, […] and all of a 
sudden we’re middle manage-
ment,” said May Mei, who is start-
ing her second year as the chair of 
the mathematics department at 
Denison University. “On the one 
hand, I now report to someone 
that’s much higher up than me, 
and on the other hand, I’m in 
charge of people.”

According to Mei, the only way 
to learn how to be an effective 
department chair is to talk with 
the leaders of other mathematics 
departments. To that end, the an-

nual AMS Workshop for Department Chairs and Leaders 
provides a space for chairs from around the country to share 
their experiences and build a supportive community. The 
workshop is typically held in January immediately preced-
ing the Joint Mathematics Meetings.

Around 50 participants gathered virtually on April 5 for 
this year’s workshop, which focused on equity, diversity, 

Department Chairs Discuss 
Challenges and Solutions at 
Annual Workshop
Scott Hershberger

May Mei became chair 
as her department 
was restructuring its 
curriculum.

Scott Hershberger is an incoming master’s student in science communication 
at the University of Wisconsin–Madison. When he wrote this piece, he was 
the communications and outreach content specialist at the AMS. His email 
address is scotthersh42@gmail.com. 

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

DOI: https://dx.doi.org/10.1090/noti2503

Emille Davie Lawrence 
first attended the 
workshop in 2021 and 
co-organized it this year.
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“A Deeply Human Endeavor” 
During session breaks, partici-
pants continued a lively discus-
sion of the issues they faced. Juan 
Gutiérrez talked about his efforts 
to increase student success in in-
troductory mathematics courses at 
the University of Texas at San An-
tonio (UTSA). Around 13,000 stu-
dents—nearly one-third of the stu-
dent body at this Hispanic-Serving 
Institution—take courses in the 
department each year.

When Gutiérrez became chair 
in 2019, he requested granular 
data on students’ grades, choices 

of majors, and more. He found that success or failure in 
mathematics was the largest factor in whether students 
stayed in STEM majors or even graduated at all. “Mathemat-
ics truly is a measurable gateway to social mobility,” he said.

For courses with a large standard deviation in the num-
ber of D’s, F’s, and withdraws (DFWs) across sections, the 
UTSA math instructors implemented tighter coordination 
of curriculum. Now a wiki holds lesson-by-lesson details 
for most courses. As a result of this and other data-driven 
efforts, the rate of DFWs in the department dropped from 
38% to 25% in just two years.

For Gutiérrez and Lawrence, the workshop provided 
valuable insights into the broader trends in mathematics 
departments. “Once you are embedded in one single en-
vironment it is very difficult to know what is specific to 
you and what is general,” Gutiérrez said. “The importance 
of knowing general problems is that they might permit 
general solutions, or at least the input of many people to 
try to find a solution.” The event also fostered camaraderie 
and connections: The following week, Gutiérrez had one-
on-one meetings with two fellow attendees to share more 
of the strategies that are working for him at UTSA. 

As more than four dozen department leaders shared 
their perspectives, one common theme emerged. Whether 
a chair is negotiating with the dean, addressing student 
concerns, or sitting on a hiring committee, “it is a deeply 
human endeavor to try to lead other humans,” said Mei.

Credits
Photo of May Mei is courtesy of Aaron 
Conway, Denison University.
Photo of Emille Davie Lawrence is 
courtesy of Emille Davie Lawrence.
Photo of Luca Capogna is courtesy of 
Luca Capogna.
Photo of Juan Gutiérrez is courtesy of 
University of Texas at San Antonio.
Author photo is courtesy of Scott  
Hershberger.

university? Would they potentially meet the needs of those 
students?”

Before becoming chair, Lawrence heard others in the 
position complain that it was too much work to manage the 
politics and personalities involved. But two years into the 
role, Lawrence has a different view: “I like trying to make a 
difference for the better. Being chair is a perfect opportunity 
to get a bird’s-eye view of your department and try to fix 
the problems that you see.” 

As chair, Lawrence has worked to improve advisor-ad-
visee relationships and successfully encouraged more 
incoming students to declare a math major or minor. She 
co-organized this year’s chairs workshop and plans to do 
so for two more years, in large part to convey the joys of 
leading a department. 

Ongoing Challenges
Luca Capogna, a three-time co-or-
ganizer, first attended the work-
shop in 2014 and finds it valu-
able every year. Capogna served 
as department head at Worcester 
Polytechnic Institute from 2013 to 
2020 and is now department chair 
at Smith College. Like Lawrence, 
he enjoys helping colleagues and 
students, though he acknowledges 
the many challenges that come 
with the role. Math departments 
are involved in research, teaching 
of majors, teaching of other STEM 
students, service to the college, and 
service to society at large. “Some of 

these needs are actually at odds with each other,” he said. 
“It’s a constant effort in trying to find an equilibrium.”

Multiple workshop attendees noted that they carry sub-
stantial responsibility yet little authority. Limited resources, 
already a perennial concern, have taken center stage as a 
result of the COVID-19 pandemic. Capogna and others 
are struggling to fill gaps in the teaching staff. At schools 
like Denison, with increasing enrollment, but no budget 
for hiring new math faculty, “Our choice is basically to cut 
an upper-division course or to increase the size of [calcu-
lus] classes,” Mei said. “Neither of those are comfortable 
options.” Meanwhile, more faculty and students alike are 
struggling with their mental health.

All these stresses can lead to difficult conversations with 
students, faculty, staff, or university leadership. In the final 
workshop session, Kevin Knudson of the University of Flor-
ida and Anne Fernando of Norfolk State University advised 
attendees to approach these potentially fraught interactions 
from a place of empathy. First and foremost, Knudson said, 
a chair must listen and help people feel understood. Scott Hershberger

Along with Emille 
Davie Lawrence, Luca 
Capogna co-led a 
session on inclusive 
hiring practices.

Juan Gutiérrez is 
working to increase 
graduation rates at 
UTSA.
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Anuraag Bukkuri 
Named 2022 AMS 
Mass Media Fellow

Anuraag Bukkuri, a PhD student in 
integrated mathematical oncology 
at the University of South Florida 
and Moffitt Cancer Center, is the 
2022 AMS Mass Media Fellow. He is 
working this summer as a journalist 
for The Miami Herald, reporting on 
science and related topics.

In his research, Bukkuri applies 
perspectives from mathematics, ecol-
ogy, evolution, and Earth history to 

cancer therapies. He studied mathematics as an undergrad-
uate at Dartmouth College and the University of Minne-
sota. Growing up, he wrote short stories and poems, but 
his interests in science and writing did not overlap at first.

“In more recent years is when I saw a big gap in the 
mathematical field for bringing our ideas, our passion for 
math, [and] the applications of math in the real world to 
the public,” Bukkuri said. In an article appearing in The 
Conversation last year, he described how evolutionary game 
theory could improve cancer treatment.

COVID-19, climate change, rising sea levels, the Ever-
glades—all these scientific topics matter to the people of 
South Florida, Bukkuri said. He is glad to have the oppor-
tunity to talk with local experts and use his training as a 
mathematician to write for Herald readers in a clear and 
methodical style.

Bukkuri is one of 28 fellows embedded in newsrooms 
across the country this summer. “To join this group of 
truly distinguished people—not only in my cohort, but for 
decades—is truly an honor, and I hope to be able to learn 
from everyone over the years to come.” After the fellowship, 
Bukkuri plans to pursue an academic research career while 
continuing to write.

About the Fellowship
Organized by the American Association for the Advance-
ment of Science (AAAS), the Mass Media Science and 

2022 Mathematical 
Art Awards
The 2022 Mathematical Art Exhibit Awards were made in 
April at the Virtual Joint Mathematics Meetings (JMM) “for 
aesthetically pleasing works that combine mathematics and 
art.” These awards were established in 2008 through an 
endowment provided to the AMS by an anonymous donor 
who wishes to acknowledge those whose works demon-
strate the beauty and elegance of mathematics expressed 
in a visual art form. 

The winners of the 2022 awards are:
 • Best Photograph, Painting, or Print: David Rei-

mann
 • Best Textile, Sculpture, or Other: Laura Nica
 • Co-Honorable Mention:  Public Math and the 

University of Kentucky Math Lab (Nathan Field-
steel, et al.)

View these and more than ninety other works from 
mathematicians and artists from around the world at 
https://bit.ly/3P1RRc2.

—AMS Programs Department

Clockwise from top left: “Septenary Circles” by David Reimann, 
“Scherk Minimal Surfaces” by Laura Nica, “Is It Complete? 
Children’s Solutions to The Hexagon Challenge” by Public 
Math, “Symmetric group on 4 Letters” by University of 
Kentucky Math Lab.

Anuraag Bukkuri
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“I grew up mediating amongst my family members. 
[…] I was right in the middle, always trying to keep them 
calm,” Wright said. “I want to bring a calm, steady voice 
to Washington to try to cut through some of the animosity 
and hatred.” According to Wright, mathematicians’ knack 
for logical reasoning can help ensure that policy decisions 
are made for legitimate reasons.

Wright is looking forward to learning about the inner 
workings of the legislative branch. He anticipates that the 
network he builds during the fellowship will facilitate his 
transition into the policy or nonprofit world.

About the Fellowship
Each year, the AMS sponsors a Congressional Fellowship 
in conjunction with the American Association for the 
Advancement of Science. The fellowship provides PhD 
mathematicians a unique public policy learning experience, 
demonstrates the value of science-government interaction, 
and brings a technical background and external perspective 
to the congressional decision-making process. In addition 
to working on the staff of a member of Congress or that of 
a congressional committee, fellows receive an orientation 
on congressional and executive branch operations and 
participate in a year-long seminar series on issues involving 
science, technology, and public policy. Learn more about 
the fellowship at https://bit.ly/2X5Yi3D.

—AMS Communications Department

Deaths of AMS Members 
H. Bechtell, of Eatonton, Georgia, died on May 22, 2022. 

Born on April 26, 1929, he was a member of the Society 
for 65 years.

Herbert H. Diekhans, of Evanston, Illinois, died on De-
cember 23, 2019. Born on March 4, 1925, he was a member 
of the Society for 55 years.

Herbert I. Freedman, of the University of Alberta, died 
on November 21, 2017. Born on November 16, 1940, he 
was a member of the Society for 52 years.

Earl J. Taft, of New York, New York, died on August 9, 
2021. Born on August 27, 1931, he was a member of the 
Society for 67 years.

Credits
2022 Mathematical Art Exhibit images are courtesy of the art-

ists.
Photo of Anuraag Bukkuri is courtesy of Anuraag Bukkuri.
Photo of Duncan Wright is courtesy of Duncan Wright.

Engineering Fellowship program improves public under-
standing of science and technology by placing advanced 
undergraduate, graduate, and postgraduate science, math-
ematics, and engineering students in media outlets na-
tionwide. Fellows work for 10 weeks over the summer as 
reporters, researchers, and production assistants alongside 
media professionals to sharpen their communication skills 
and increase their understanding of the editorial process 
by which events and ideas become news. Now in its 47th 
year, the fellowship program counts over 750 scientists and 
science communicators as alumni. The AMS has sponsored 
a Mass Media Fellow most years since 1997. Learn more 
about the fellowship at https://bit.ly/2tiZceq.

—AMS Communications Department

Duncan Wright 
Named 2022–2023 AMS 
Congressional Fellow

Duncan Wright, a postdoc at Worces-
ter Polytechnic Institute (WPI), will 
be the 2022–2023 AMS Congres-
sional Fellow. He will spend a year 
working on the staff of a member of 
Congress or that of a congressional 
committee, assisting in legislative 
and policy areas that require scien-
tific and technical input.

Wright earned his PhD in math-
ematics in 2019 at the University of 

South Carolina (USC), studying quantum information 
theory. At WPI, he collaborates with chemical engineers 
to model how neuronal cells retract after a change in the 
concentration of surrounding salts. He has also partici-
pated in STEM outreach to Massachusetts middle schoolers 
through WPI’s STEM Education Center, STEAM Together, 
and AmeriCorps VISTA.

During his fellowship, Wright hopes to work on educa-
tion policy, diplomacy, or foreign policy. “It’s an honor to 
be able to try to effect change on a much larger scale than 
just my class of 50 [or] 100 students at a time,” he said. 
“It’s an incredible opportunity that I’m very excited for.”

Wright became interested in policy while teaching at 
USC as a PhD student. Seeing some students fail college 
algebra multiple times, he knew that inequities throughout 
the educational system were at play, some of which could 
be addressed through better policies. He was also drawn 
to Washington by a desire to counter the increasingly toxic 
political environment.

Duncan Wright
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or up to ten years post-PhD, are eligible. Awardees receive 
US$1 million distributed over five years.

—From an NSF announcement

Aggarwal and Tikhomirov 
Receive Rollo Davidson 
Prizes

Amol Aggarwal of Columbia Univer-
sity and Konstantin Tikhomirov of 
the Georgia Institute of Technology 
have been awarded the 2022 Rollo 
Davidson Prizes. Aggarwal was hon-
ored “for fundamental contributions 
to random matrix theory and inte-
grable probability.” Tikhomirov was 
recognized “for deep new results on 
the singularity of random Bernoulli 
matrices.” Aggarwal received his PhD 
from Harvard University in 2020 
under the direction of Alexei Boro-
din. He was awarded a Clay Research 
Five-Year Fellowship in 2020 and 
the 2021 International Association 
of Mathematical Physics Early Ca-
reer Award from the International 
Congress of Mathematical Physics. 
Tikhomirov received his PhD from 
the University of Alberta in 2016, ad-
vised by Nicole Tomczak-Jaegermann 

and Vlad Yaskin. From 2016–2018 he was an instructor at  
Princeton University, then he held a postdoctoral fel-
lowship at the Mathematical Sciences Research Institute 
in Berkeley before joining the School of Mathematics at 
Georgia Tech. The Davidson Prize is awarded annually to 
early-career probabilists.

—James Norris 
Chair, Rollo Davidson Trustees

Larremore Receives 
NSF Waterman Award

Daniel B. Larremore of the Univer-
sity of Colorado Boulder has been 
named a corecipient of the 2022 
National Science Foundation (NSF) 
Alan T. Waterman Award for his 
work in using mathematics to “track 
and understand the mechanisms by 
which human diseases spread.” Ac-
cording to the prize citation, he has 
“used networks, modeling and math-
ematics in a diversity of topics, from 

infectious diseases and epidemiology to social inequalities 
and algorithms for network analysis.” The citation reads in 
part: “Larremore’s work during the COVID-19 pandemic 
used the tools of computational epidemiology to answer 
urgent questions about pandemic countermeasures. How 
should the first doses of a scarce vaccine be targeted to 
minimize deaths or infections? What role could widely 
available rapid testing play in mitigating viral transmission 
prior to the arrival of vaccines? In his research, Larremore 
combined mathematics and computation with real-world 
data to create new models that provide answers to globally 
important questions like these.” Larremore received his 
PhD in applied mathematics from the University of Colo-
rado Boulder in 2012. He was a postdoctoral fellow at the 
Harvard T. H. Chan School of Public Health (2012–2015) 
and an Omidyar Fellow at the Santa Fe Institute (2015–
2017) before joining the faculty at Boulder, where he is an 
assistant professor in the Department of Computer Science 
and the BioFrontiers Institute. He tells the Notices: “I live 
with my wife, Liana, in Boulder, where we like to do ste-
reotypically Colorado things like rock climbing, mountain 
biking, and skiing. My favorite days at work are the long 
afternoons spent with students and colleagues, taking turns 
at the whiteboard.”

The Waterman Award annually recognizes an outstand-
ing young researcher in any field of science or engineering 
supported by NSF. Researchers forty years of age or younger, 

Daniel B. Larremore

Amol Aggarwal

Konstantin 
Tikhomirov
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Wang Awarded 
2022 Brin Prize

Zhiren Wang of Pennsylvania State 
University has been awarded the elev-
enth Michael Brin Prize in Dynamical 
Systems for his “fundamental contri-
butions to the study of topological 
and measure rigidity of higher rank 
actions, and his proof of Möbius 
disjointness for several classes of 
dynamical systems.” He received his 
PhD in 2011 from Princeton Univer-
sity under the supervision of Elon 

Lindenstrauss. He was Gibbs Assistant Professor at Yale 
University (2011–2014) before joining the faculty at Penn 
State in 2014 as an assistant professor. He has been associ-
ate professor since 2019. He was awarded an NSF CAREER 
grant for 2018–2023 and a von Neumann Fellowship at the 
Institute for Advanced Study in 2022.

The Brin Prize recognizes mathematicians who have 
made substantial impact in dynamical systems and related 
fields at an early stage of their careers. It carries a cash award 
of US$18,000.

—Giovanni Forni, Chair 
Brin Prize Selection Committee

NCTM Awards Announced
The National Council of Teachers of Mathematics has 
announced its Lifetime Achievement Awards for the year 
2021. The awardees are Elizabeth Fennema (University of 
Wisconsin-Madison), Marta Civil (University of Arizona), 
and Steven Leinwand (American Institutes for Research).

Fennema received her PhD in 
education with emphasis on math 
education from the University of 
Wisconsin–Madison and taught at 
Madison from 1962 to 1997. She was 
a pioneer in mathematics education 
for women, among other accom-
plishments. According to the prize 
citation, she was “known for two 
field-changing bodies of work, either 
of which alone would be worthy of 
lasting recognition. First is her work 

about gender in mathematics. After publishing a review 
of gender differences literature in the Journal for Research 
in Mathematics Education in 1974, she teamed with Julia 
Sherman to produce what are now known as the Fennema–
Sherman studies. With methodological rigor and new  

DeMarco Named 
Noether Lecturer

Laura DeMarco of Harvard Uni-
versity and the Radcliffe Insti-
tute for Advanced Study has been 
awarded the 2023 AWM–AMS Emmy  
Noether Lectureship of the Associa-
tion for Women in Mathematics and 
the AMS. She will deliver the lecture 
at the Joint Mathematics Meetings 
in Boston in January 2023. The prize 
citation reads: “DeMarco has made 
fundamental and influential con-

tributions to complex dynamics, arithmetic dynamics, 
and arithmetic geometry. In complex dynamics, she in-
troduced the bifurcation current to study the stable locus 
in moduli spaces of rational maps and constructed a dy-
namically natural compactification of these spaces. Both 
groundbreaking ideas opened new directions of research 
in complex dynamics. She is a leading architect of the field 
of arithmetic dynamics. In her joint work with Matthew 
Baker, a far-reaching dynamical analog of the André–Oort 
conjecture in arithmetic geometry was formulated. Cases of 
the conjecture were proved using ingenious combinations 
of ideas from complex dynamics, logic, and number theory. 
In arithmetic geometry, her recent joint work with Krieger 
and Ye addressed a conjecture of Bogomolov, Fu, and 
Tschinkel on uniform bounds on the number of common 
torsion points on two elliptic curves, and they obtained 
the first uniform result for a complex family of curves in 
the Manin–Mumford Conjecture. This paper, published in 
Annals of Mathematics in 2000, won the 2020 Alexanderson 
Award of the American Institute of Mathematics.”

DeMarco received her PhD from Harvard University 
in 2002 under the direction of Curtis McMullen. She has 
held positions at the University of Chicago (2002–2007), 
at the University of Illinois at Chicago (2007–2014), and at 
Northwestern University (2014–2020). She is an inaugural 
Fellow of the AMS. Other honors include an NSF CAREER 
Award (2008–2013), a Simons Foundation Fellowship 
(2015), and the AMS Ruth Lyttle Satter Prize (2017). She is 
active in serving the mathematics community, particularly 
undergraduate women in mathematics. She gave an invited 
address at the 2018 International Congress of Mathemati-
cians. She is an elected member of the National Academy 
of Sciences.

—From an AWM announcement

Laura DeMarco Zhiren  Wang

Elizabeth Fennema
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of journal articles and book chapters, as well as coeditor 
of eleven books. She has served as an officer and on vari-
ous committees for the National Academy of Sciences, the 
Association of Mathematics Teacher Educators, the NCTM 
Research Committee, TODOS–Mathematics for All, and 
Psychology in Mathematics Education. She enjoys traveling 
throughout the world and trying all kinds of food.

Leinwand received an MS in edu-
cational supervision and administra-
tion from Central Connecticut State 
University in 1976. He taught high 
school for seven years in Connecti-
cut, then served as a mathematics 
coordinator, as a project director for 
two National Science Foundation–
sponsored summer institutes, and 
as a college instructor of secondary 
mathematics courses at Wesleyan 

University. As mathematics supervisor for the Connecticut 
Department of Education, he was responsible for “the 
development and oversight of a broad statewide program 
of activities in K–12 mathematics education, including 
the provision of technical assistance and professional de-
velopment, the evaluation of programs, the assessment of 
student achievement and teacher competency, the dissem-
ination of information, and the coordination of programs 
and activities that resulted in consistently high NAEP 
mathematics scores.” He has been a member of the board 
of directors of the NCTM and a member and president 
of the National Council of Supervisors of Mathematics 
Board of Directors and has been involved in leadership of 
mathematics education in many capacities. He is currently 
the principal research analyst for the American Institutes 
for Research (AIR; 2002–present), working on projects that 
focus on high-quality mathematics instruction.

The NCTM Lifetime Achievement Awards are presented 
for achievement in leadership, teaching, and service for a 
minimum of twenty-five years of distinguished service to 
mathematics education.

—From NCTM announcements

Churchill Scholars 
Announced
The Winston Churchill Foundation of the United States has 
announced the recipients of the Churchill Scholarships for 
the academic year 2022–2023. Two mathematical scientists 
are among the awardees. Andrew Burke of the University 
of Notre Dame and Steven Jin of the University of Mary-
land, College Park, were both awarded scholarships in pure 

measurement tools (the Fennema–Sherman Scales), the 
pair redefined knowledge and perspectives on the inter-
section between gender and achievement in mathematics, 
showing that underperformance by females was sociocul-
tural in nature and a function of opportunity, and not due 
to differences in biology. In the 1980s, Dr. Fennema joined 
Thomas Carpenter and others for another grand body of 
work that came to be known as cognitively guided instruc-
tion (CGI). The research program was a model for applying 
new theories of constructivism to children's mathematics 
learning. Dr. Fennema’s work in CGI took equally seriously 
the development of professional development to empower 
teachers to use their findings to improve elementary math-
ematics education. This combination of understanding 
student cognition and developing teacher learning in the 
same research program was ambitious and relatively novel 
for the time. As a result, few, if any, mathematics research 
programs to date have been as comprehensive, rigorous, 
and beneficial to the field of mathematics education as 
CGI.” 

Fennema received numerous honors during her career 
for her work and service, including the Presidential Cita-
tion from the American Educational Research Association 
(AERA; 1997). She gave the inaugural awardee presentation 
for Outstanding Contribution to Research on Women and 
Education, and she was named a member of the National 
Academy of Education (NAE) in 1997. Elizabeth Fennema 
passed away in December 2021.

Civil received her PhD in mathe-
matics education from the University 
of Illinois at Urbana–Champaign. 
She joined the faculty of the Depart-
ment of Mathematics at the Univer-
sity of Arizona in 1990 and currently 
holds the Roy F. Grasser Endowed 
Chair there. The prize citation reads 
in part: “One of her most notable 
achievements is that she served as 
the lead principal investigator for 

the National Science Foundation–funded Center for the 
Mathematics Education of Latinos. She is noted for her 
ability to continually organize a large and complex project 
that involved four research universities over the course of a 
decade. Dr. Civil’s scholarly work has been and continues 
to be innovative and unique in mathematics education. 
She is nationally known for developing the project Math 
and Parent Partnerships in the Southwest, which was an 
NSF-funded project involving immigrant parents, primarily 
women whose home country is Mexico, in learning about 
mathematics education in the United States.” She has 
contributed greatly to diversity, equity, and social justice 
in mathematics education, particularly in regard to the im-
migrant Mexican community, and is devoted to mentoring 
and supporting students of color. She is a prolific author 

Marta Civil

Steven Leinwand
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 • Mark Kisin, Harvard University
 • Rafe Mazzeo, Stanford University
 • Endre Szemerédi, Rutgers University
 • Claire Voisin (International Honorary Member), 

Centre National de la Recherche Scientifique
 • Sijue Wu,University of Michigan

The following new members whose work also involves 
the mathematical sciences were elected to other sections.

 • Shamit Kachru, Stanford University
 • Robert Calderbank, Duke University
 • Adi Shamir (International Honorary Member), 

Weizmann Institute of Science
 • Leslie Valiant, Harvard University
 • Alberto Abadie, Massachusetts Institute of Tech-

nology
 • Elie Tamer, Harvard University
 • Bernard Harris, National Math + Science Initiative

Gangbo, Hida, Kisin, Mazzeo, and Calderbank are mem-
bers and Fellows of the AMS.

—From an AAAS announcement

Fellows of the Royal Society
The Royal Society of London has announced the names 
of its newly elected Fellows for 2022. Following are the 
new Fellows and Foreign Fellows whose work involves the 
mathematical sciences. 

 • Luis Fernando Alday, University of Oxford 
 • Alain Goriely, University of Oxford
 • Jane Hillston, University of Edinburgh
 • Mark Newman, University of Michigan
 • Yvonne Rogers, University College London
 • Paul Seymour, Princeton University

Elected as Foreign Fellows were:
 • Peter Scholze, University of Bonn
 • Howard Stone, Princeton University

—From a Royal Society announcement

MathWorks Math Modeling 
(M3) Challenge
The 2022 MathWorks Math Modeling competition asked 
students to use math modeling to predict the future of 
remote work, analyzing the percentage of jobs that are 
remote-ready and whether workers in those jobs will be 
willing or able to work remotely, then determining the 
percentage of workers who will go remote in a given city 
or metro area.

The Challenge Champion team prize of US$20,000 
was awarded to a team from Homestead High School in 

mathematics. The scholarships provide for one year of mas-
ter’s study at Churchill College, University of Cambridge.

—From a Churchill Foundation announcement

National Academy 
of Sciences Election
The National Academy of Sciences (NAS) has elected 120 
new members and 30 international members for 2022. Fol-
lowing are the names and institutions of the mathematical 
scientists who are among the new members.

 • Fedor A. Bogomolov, Courant Institute of Math-
ematical Sciences

 • Amir Dembo, Stanford University
 • Michael Harris, Columbia University
 • Svetlana Jitomirskaya, University of California, 

Irvine
 • Mikhail Lyubich, Stony Brook University
 • Michael Shelley, Courant Institute of Mathemat-

ical Sciences
 • Karen Vogtmann, University of Warwick

Elected as international members were:
 • Alice Guionnet, Ecole Normale Supérieure de 

Lyon (France)
 • Yurii E. Nesterov, Université Catholique de Lou-

vain (Belgium and Russia)
 • Laure Saint-Raymond, Institut des Hautes Etudes 

Scientifiques (France)
 • Sara A. van de Geer, ETH Zürich (the Nether-

lands).
Harris, Lyubich, and Vogtmann are members and Fel-

lows of the AMS. Jitomirskaya is a member of the AMS. 
Vogtmann previously served as AMS vice president and as 
a member of the AMS Board of Trustees.

—From an NAS announcement

AAAS Election
The American Academy of Arts and Sciences has elected 
261 new members to the class of 2022. The following new 
members were elected to the Section on Mathematics, Ap-
plied Mathematics, and Statistics.

 • Roman Bezrukavnikov, Massachusetts Institute 
of Technology

 • Panagiota Daskalopoulos, Columbia University
 • Wilfrid Gangbo, University of California, Los 

Angeles
 • Alice Guionnet (International Honorary Mem-

ber), Ecole Normale Supérieure de Lyon
 • Haruzo Hida, University of California, Los Angeles
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Mequon, Wisconsin. The team members were Adam Gar-
sha, Jacob Schmidman, Eric Wan, and Ethan Wang. Their 
coach was Weizhong Wang.

The Challenge Runner Up team prize of US$15,000 
went to a team from New Trier Township High School, 
Winnetka, Illinois. The team members were Aruni Chenxi, 
Nika Chuzhoy, Max Hartman, Connor Lane, and Nathan 
Liu. They were coached by Bradley Kuklis.

The Third Place team prize of US$10,000 was earned 
by a team from Pine View School in Osprey, Florida. The 
team members were Nolan Boucher, Uday Goyat, John 
Halcomb, Max Rudin, and Lisa Zhang. Their coach was 
Mark Mattia. The team was also awarded the Technical 
Computing Finals team prize of US$3,000.

Finalist team prizes of US$5,000 were awarded to three 
teams. Two teams from Adlai E. Stevenson High School 
in Lincolnshire, Illinois, were honored. The first team 
consisted of Jack Chen, Collin Fan, Aadit Juneja, Aayush 
Kashyap, and Nathan Ma. The members of the second 
team from Stevenson were Spandan Goel, Andrew Liu, 
Joy Qu, Greycen Ren, and Gabriel Visotsky. Both teams 
were coached by Paul Kim. The third Finalist prize went 
to a team from High Technology High School in Lincroft, 
New Jersey. The members were David Chang, Andrew Eng, 

Kevin Guan, Alexander Postovskiy, and Ivan Wong. This 
team was also awarded a US$2,000 Technical Computing 
Runner Up prize. A team from New Century Tech High 
School in Huntsville, Alabama, received a US$1,000 Tech-
nical Computing Third Place award. The team consisted of 
Ella Duus, Donal Higgins, Alexander Ivan, and Shreyas 
Puducheri; their coach was Clifford Pate. 

The M3 Challenge invites teams of high school juniors 
and seniors to solve an open-ended, realistic, challeng-
ing modeling problem focused on real-world issues. The 
competition is sponsored by MathWorks, a developer of 
computing software for engineers and scientists, and is 
organized by the Society for Industrial and Applied Math-
ematics (SIAM).

—From a MathWorks/SIAM announcement

Credits
Photo of Daniel B. Larremore is by Glenn Asakawa/Universi-

ty of Colorado.
Photo of Laura DeMarco is courtesy of Stephanie Mitchell.
Photo of Zhiren Wang is courtesy of Svetlana Katok.
Photo of Elizabeth Fennema is courtesy of University of Wis-

consin–Madison.
Photo of Marta Civil is courtesy of Olga Yiparaki.
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sustained contributions to the mathematical sciences. The 
deadline for nominations is October 1, 2022.

The Alice T. Schafer Mathematics Prize is awarded to an 
undergraduate woman for excellence in mathematics. The 
nominee must be an undergraduate when nominated. The 
deadline is October 1, 2022.

The AWM Dissertation Prizes honor outstanding disser-
tations by women mathematical scientists defended within 
the previous two years. The deadline for nominations is 
October 1, 2022.

For further information on all these prizes, see https://
awm-math.org/awards/.

—From an AWM announcement

Early Career Opportunity

Call for Nominations 
for Gerald Sacks Prize

The Association for Symbolic Logic (ASL) invites nom-
inations for the Gerald Sacks Prize for the most out-
standing doctoral dissertation in mathematical logic. 
The deadline for nominations is September 30, 2022. 
See the website http://aslonline.org/other 
-information/prizes-and-awards/sacks-prize 
-recipients/sacks-prize-nominations/. 

—From an ASL announcement

Early Career Opportunity

Research Experiences  
for Undergraduates

The Research Experiences for Undergraduates (REU) pro-
gram supports student research in areas funded by the 
National Science Foundation (NSF) through REU sites and 
REU supplements. See www.nsf.gov/funding/pgm_summ 
.jsp?pims_id=5517. The deadline date for proposals 
from institutions wishing to host REU sites is August 24, 

Call for Nominations 
for Popov Prize

The Vasil A. Popov Prize is awarded every three years to a 
young mathematician for outstanding research contribu-
tions in approximation theory and related areas of mathe-
matics. The tenth prize will be awarded at the Foundation 
of Computational Mathematics International Conference 
in 2023. The deadline for nominations is January 31, 2023. 
See https://www.ljll.math.upmc.fr/popov-prize 
/pdf/flier_popov2023-2.pdf.

—Albert Cohen, Sorbonne University

Call for Nominations 
for AWM Prizes

The Association for Women in Mathematics (AWM) awards 
a number of prizes throughout the year. The following 
prizes are currently open for nominations.

The Ruth I. Michler Memorial Prize honors outstanding 
women who have recently been promoted to associate 
professor or an equivalent position in the mathematical 
sciences. It provides a research fellowship for a semester in 
the mathematics department at Cornell University without 
teaching obligations. The deadline for nominations is 
October 1, 2022.

The Sonia Kovalevsky Lectureship, sponsored by AWM 
and the Society for Industrial and Applied Mathematics 
(SIAM), recognizes significant contributions of women to 
applied or computational mathematics. The deadline for 
nominations is October 1, 2022.

The Etta Zuber Falconer Lectureship, sponsored by AWM 
and the Mathematical Association of America (MAA), hon-
ors women who have made distinguished contributions to 
the mathematical sciences or mathematics education. The 
deadline for nominations is October 1, 2022.

The Emmy Noether Lectureship, sponsored by AWM and 
the AMS, honors women who have made fundamental and 

https://www.ljll.math.upmc.fr/popov-prize/pdf/flier_popov2023-2.pdf
https://www.ljll.math.upmc.fr/popov-prize/pdf/flier_popov2023-2.pdf
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5517
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5517
http://aslonline.org/other-information/prizes-and-awards/sacks-prize-recipients/sacks-prize-nominations/
http://aslonline.org/other-information/prizes-and-awards/sacks-prize-recipients/sacks-prize-nominations/
http://aslonline.org/other-information/prizes-and-awards/sacks-prize-recipients/sacks-prize-nominations/
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Anderson (Virginia Polytechnic Institute and State Uni-
versity) and Laura Schaposnik (University of Illinois at 
Chicago).

August 29–September 2, 2022: Introductory Workshop: 
Analytic and Geometric Aspects of Gauge Theory. Organizers: 
Aleksander Doan (Trinity College; University College 
London), Laura Fredrickson (University of Oregon), and 
Michael Singer (University College London).

September 8–9, 2022: Connections Workshop: Floer Homo-
topy Theory. Organizers: Teena Gerhardt (Michigan State 
University), Kristen Hendricks (Rutgers University), and 
Ailsa Keating (University of Cambridge).

September 12–16, 2022: Introductory Workshop: Floer 
Homotopy Theory. Organizers: Sheel Ganatra (University of 
Southern California), Tyler Lawson (University of Minne-
sota Twin Cities), Robert Lipshitz (University of Oregon), 
and Nathalie Wahl (University of Copenhagen).

October 24–28, 2022: New Four-Dimensional Gauge 
Theories. Organizers: Andriy Haydys (Université Libre 
de Bruxelles), Lotte Hollands (Heriot-Watt University,  
Riccarton Campus), Eleny-Nicoleta Ionel (Stanford Uni-
versity), Richard Thomas (Imperial College, London), and 
Thomas Walpuski (Humboldt-Universität).

November 14–18, 2022: Floer Homotopical Methods in Low 
Dimensional and Symplectic Topology. Organizers: Moham-
med Abouzaid (Columbia University), Andrew Blumberg 
(Columbia University), Jennifer Hom (Georgia Institute of 
Technology), Emmy Murphy (Northwestern University), 
and Sucharit Sarkar (University of California, Los Angeles).
2023 Summer Research in Mathematics
The goal of this program is to enhance the mathematical 
sciences by providing opportunities for research and career 
growth to individuals who may have been dispropor-
tionately affected by such obstacles as family obligations, 
professional isolation, or access to funding. The deadline 
for applications is November 1, 2022. For details about eli-
gibility, application processes, and funding, see the website 
www.msri.org/summer.
Forthcoming Compendium from 2021 MSRI 
Workshop on Mathematics and Racial Justice
In June of 2021, MSRI held a virtual Workshop on Math-
ematics and Racial Justice, which convened nearly 300 
mathematicians, statisticians, computer scientists, and 
STEM educators to critically examine the role that mathe-
matics plays in today’s movement for racial justice. A free 
and publicly available compendium on the workshop is 
expected to be released on the occasion of Juneteenth 2022. 

Mathematics is often viewed as one of the main tools 
responsible for scientific progress, and developments in 
mathematics are behind some of society’s most signifi-
cant technological advancements. While mathematics has 
been used to push society forward, there are also well- 
documented instances of mathematics being used as a tool 

2022. Dates for REU supplements vary with the research 
program (contact the program director for more informa-
tion). Students apply directly to REU sites; see www.nsf 
.gov/crssprgm/reu/list_result.jsp?unitid=5044 
for active REU sites.

—From an NSF announcement

NSF Focused Research Groups

The National Science Foundation (NSF) Focused Research 
Group program supports collaborative groups employing 
innovative methods to solve specific major research chal-
lenges in the mathematical sciences. The deadline for full 
proposals is September 14, 2022. See https://www.nsf 
.gov/funding/pgm_summ.jsp?pims_id=5671&org 
=NSF&sel_org=MPS&from=fund.

—From an NSF announcement

Joint DMS/NIGMS Initiative 
to Support Research at the 
Interface of the Biological 
and Mathematical Sciences

The National Science Foundation (NSF) and the National 
Institute of General Medical Sciences (NIGMS) at the 
National Institutes of Health (NIH) support research in 
mathematics and statistics on questions in the biological 
and biomedical sciences. The application period is Sep-
tember 1–19, 2022. For more information, see https:// 
www.nsf.gov/funding/pgm_summ.jsp?pims_id=5300.

—From an NSF announcement

News from MSRI

The Mathematical Sciences Research Institute (MSRI) an-
nounces several upcoming programs.
Fall Scientific Workshops
MSRI plans to hold the following workshops in the fall of 
2022. For further information, see the website www.msri 
.org/workshops.

August 25–26, 2022: Connections Workshop: Analytic 
and Geometric Aspects of Gauge Theory. Organizers: Lara  

The most up-to-date listing of NSF funding opportunities from the Division 
of Mathematical Sciences can be found online at www.nsf.gov/dms 
and for the Directorate of Education and Human Resources at www.nsf 
.gov/dir/index.jsp?org=ehr. To receive periodic updates, subscribe 
to the DMSNEWS listserv by following the directions at www.nsf.gov 
/mps/dms/about.jsp. 

http://www.nsf.gov/crssprgm/reu/list_result.jsp?unitid=5044
http://www.nsf.gov/crssprgm/reu/list_result.jsp?unitid=5044
https://www.nsf.gov/funding?pgm_summ.jsp?pims_id=5671&org=NSF&sel_org=MPS&from=fund
https://www.nsf.gov/funding?pgm_summ.jsp?pims_id=5671&org=NSF&sel_org=MPS&from=fund
https://www.nsf.gov/funding?pgm_summ.jsp?pims_id=5671&org=NSF&sel_org=MPS&from=fund
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5300
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5300
http://www.msri.org/workshops
http://www.msri.org/workshops
http://www.nsf.gov/dms
http://www.nsf.gov/dir/index.jsp?org=ehr
http://www.nsf.gov/dir/index.jsp?org=ehr
http://www.nsf.gov/mps/dms/about.jsp
http://www.nsf.gov/mps/dms/about.jsp
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the organization of this compendium: Bias in Algorithms 
and Technology; Public Health Disparities; Racial Inequi-
ties in Mathematics Education; and Fair Division, Alloca-
tion, and Representation.

The 2021 workshop was organized by Omayra Ortega 
(Sonoma State University), Robin Wilson (California State 
Polytechnic University, Pomona), Caleb Ashley (Boston 
College), Ron Buckmire (Occidental College), Duane Coo-
per (Morehouse College), and Monica Jackson (American 
University) and supported by the American Mathematical 
Society (AMS), the Center for Minorities in the Mathemat-
ical Sciences (CMMS), the Mathematical Sciences Research 
Institute (MSRI), the National Association of Mathemati-
cians (NAM), the National Science Foundation (NSF), and 
the Society for Industrial and Applied Mathematics (SIAM).

—MSRI announcements

of racial oppression. The inequities faced by the Black com-
munity have become more and more difficult to ignore, and 
mathematicians have increasingly been answering the call 
to engage with issues of social justice within their research, 
their teaching, and in the broader scientific community. 
This workshop and the resulting compendium are a part 
of this movement and make the distinct contribution of 
centering issues of mathematics and racial justice, with 
focus on the Black community.

The 2021 keynotes by Robert Berry (University of Vir-
ginia) and Rediet Abebe (University of California, Berkeley) 
set the stage for this volume: Berry, by presenting a histor-
ically informed view of the way mathematics education as 
it is often implemented dehumanizes people of color, and 
Abebe, by demonstrating the power of data and computer 
science to study social problems and guide their solutions. 
Following their contributions, the workshop was divided 
into four primary thematic areas, which have also guided 

A resource for teachers, students, 
and anyone curious about how 
math crops up in today’s headlines.

Monthly posts include:
• Summaries of news stories

that involve mathematics
• Classroom activities connected

to the math concepts in the news
• A deeper dive into developments

in the world of mathematics

MATH IN MATH IN THE MEDIATHE MEDIA
Classroom Concepts from Current EventsClassroom Concepts from Current Events

See the current Math in the Media
and subscribe to receive email updates at 

www.ams.org/mathmedia
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Classified Advertising
Employment Opportunities

The Notices Classified Advertising section is devoted to listings of current employment opportunities. The publisher reserves the right to reject any listing 
not in keeping with the Society’s standards. Acceptance shall not be construed as approval of the accuracy or the legality of any information therein. Advertis-
ers are neither screened nor recommended by the publisher. The publisher is not responsible for agreements or transactions executed in part or in full based 
on classified advertisements. 
The 2022 rate is $3.65 per word. Advertisements will be set with a minimum one-line headline, consisting of the institution name above body copy, unless 
additional headline copy is specified by the advertiser. Headlines will be centered in boldface at no extra charge. Ads will appear in the language in which they 
are submitted. There are no member discounts for classified ads. Dictation over the telephone will not be accepted for classified ads.
Upcoming deadlines for classified advertising are as follows: October 2022—July 22, 2022; November 2022—August 26, 2022; December 2022—September 
23, 2022.
US laws prohibit discrimination in employment on the basis of color, age, sex, race, religion, or national origin. Advertisements from institutions outside the 
US cannot be published unless they are accompanied by a statement that the institution does not discriminate on these grounds whether or not it is subject to 
US laws.
Submission: Send email to classads@ams.org.
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CHINA

Tianjin University, China 
Tenured/Tenure-Track/Postdoctoral Positions at 

the Center for Applied Mathematics

Dozens of positions at all levels are available at the recently 
founded Center for Applied Mathematics, Tianjin Univer-
sity, China. We welcome applicants with backgrounds in 
pure mathematics, applied mathematics, statistics, com-
puter science, bioinformatics, and other related fields. We 
also welcome applicants who are interested in practical 
projects with industries. Despite its name attached with 
an accent of applied mathematics, we also aim to create a 
strong presence of pure mathematics.

Light or no teaching load, adequate facilities, spacious 
office environment and strong research support. We are 
prepared to make quick and competitive offers to self-mo-
tivated hard workers, and to potential stars, rising stars, as 
well as shining stars.

The Center for Applied Mathematics, also known as the 
Tianjin Center for Applied Mathematics (TCAM), located 
by a lake in the central campus in a building protected as 
historical architecture, is jointly sponsored by the Tianjin 
municipal government and the university. The initiative 
to establish this center was taken by Professor S. S. Chern. 
Professor Molin Ge is the Honorary Director, Professor 
Zhiming Ma is the Director of the Advisory Board. Professor 
William Y. C. Chen serves as the Director.

TCAM plans to fill in fifty or more permanent faculty 
positions in the next few years. In addition, there are a 
number of temporary and visiting positions. We look for-
ward to receiving your application or inquiry at any time. 
There are no deadlines.

Please send your resume to mathjobs@tju.edu.cn.
For more information, please visit cam.tju.edu.cn 

or contact Mr. Albert Liu at mathjobs@tju.edu.cn, tele-
phone: 86-22-2740-6039.

07

http://cam.tju.edu.cn
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Amenability of Discrete 
Groups by Examples
Kate Juschenko, University of 
Texas, Austin, TX

The main topic of the book is 
amenable groups, i.e., groups 
on which there exist invariant 
finitely additive measures. It was 
discovered that the existence or 
non-existence of amenability is 
responsible for many interesting 
phenomena such as, e.g., the 

Banach-Tarski Paradox about breaking a sphere into two 
spheres of the same radius. Since then, amenability has 
been actively studied and a number of different approaches 
resulted in many examples of amenable and non-amenable 
groups.

In the book, the author puts together main approaches 
to study amenability. A novel feature of the book is that 
the exposition of the material starts with examples which 
introduce a method rather than illustrating it. This allows 
the reader to quickly move on to meaningful material 
without learning and remembering a lot of additional 
definitions and preparatory results; those are presented 
after analyzing the main examples. The techniques that 
are used for proving amenability in this book are mainly 
a combination of analytic and probabilistic tools with 
geometric group theory.

This item will also be of interest to those working in geometry 
and topology.

Mathematical Surveys and Monographs, Volume 266
August 2022, approximately 167 pages, Softcover, ISBN: 
978-1-4704-7032-6, 2010 Mathematics Subject Classifica-
tion: 20–03, 20L99, 22–02, List US$125, AMS members 
US$100, MAA members US$112.50, Order code SURV/266

bookstore.ams.org/surv-266

Analysis

Completion Problems on 
Operator Matrices
Dragana S. Cvetković Ilić, Uni-
versity of Nis, Visegradska, Nis, 
Serbia

Completion problems for op-
erator matrices are concerned 
with the question of whether a 
partially specified operator ma-
trix can be completed to form an 
operator of a desired type. The 
research devoted to this topic 

provides an excellent means to investigate the structure of 
operators. This book provides an overview of completion 
problems dealing with completions to different types of 
operators and can be considered as a natural extension of 
classical results concerned with matrix completions.

The book assumes some basic familiarity with functional 
analysis and operator theory. It will be useful for graduate 
students and researchers interested in operator theory and 
the problem of matrix completions.

This item will also be of interest to those working in applications.

Mathematical Surveys and Monographs, Volume 267
September 2022, 170 pages, Softcover, ISBN: 978-1-4704-
6987-0, 2010 Mathematics Subject Classification: 47A08, 
47B01, 47B02, 47A53, 15A83, List US$125, AMS members 
US$100, MAA members US$112.50, Order code SURV/267

bookstore.ams.org/surv-267

 Mathematical
Surveys

and 
Monographs

Volume 267

Completion 
Problems on 
Operator 
Matrices
Dragana S. Cvetkovic Ilic’’

http://bookstore.ams.org/surv-267
http://bookstore.ams.org/surv-266


NEW BOOKS

1258    Notices of the AmericAN mAthemAticAl society Volume 69, Number 7

Discrete Mathematics 
and Combinatorics

An Invitation to 
Pursuit-Evasion Games 
and Graph  Theory
Anthony Bonato, Toronto Met-
ropolitan University, ON, Canada

Graphs measure interactions be-
tween objects such as friendship 
links on Twitter, transactions be-
tween Bitcoin users, and the flow 
of energy in a food chain. While 
graphs statically represent inter-
acting systems, they may also be 

used to model dynamic interactions. For example, imagine 
an invisible evader loose on a graph, leaving only behind 
breadcrumb clues to their whereabouts. You set out with 
pursuers of your own, seeking out the evader’s location. 
Would you be able to detect their location? If so, then how 
many resources are needed for detection, and how fast can 
that happen? These basic-seeming questions point towards 
the broad conceptual framework of pursuit-evasion games 
played on graphs. Central to pursuit-evasion games on 
graphs is the idea of optimizing certain parameters, whether 
they are the cop number, burning number, or localization 
number, for example.

This book would be excellent for a second course in 
graph theory at the undergraduate or graduate level. It 
surveys different areas in graph searching and highlights 
many fascinating topics intersecting classical graph theory, 
geometry, and combinatorial designs. Each chapter ends 
with approximately twenty exercises and five larger scale 
projects.

Student Mathematical Library, Volume 97
September 2022, 254 pages, Softcover, ISBN: 978-1-
4704-6763-0, 2010 Mathematics Subject Classification: 
05C57, 05C05, 05C90, 68R10, List US$59, AMS members 
US$47.20, AMS institutional member US$47.20, MAA 
members US$47.20, Order code STML/97

bookstore.ams.org/stml-97

General Interest

A History of Mathematics 
in the United States 
and Canada
Volume 2: 1900–1941
David E. Zitarelli ,  Della 
Dumbaugh, University of Rich-
mond, VA, and Stephen F. Ken-
nedy, Carleton College, Northfield, 
MN, and MAA Press, Providence, 
RI

This is the first truly comprehen-
sive and thorough history of the 

development of a mathematical community in the United 
States and Canada. This second volume starts at the turn 
of the twentieth century with a mathematical community 
that is firmly established and traces its growth over the next 
forty years, at the end of which the American mathematical 
community is pre-eminent in the world.

In the preface to the first volume of this work Zitarelli 
reveals his animating philosophy, “I find that the human 
factor lends life and vitality to any subject.” History of 
mathematics, in the Zitarelli conception, is not just a 
collection of abstract ideas and their development. It is 
a community of people and practices joining together 
to understand, perpetuate, and advance those ideas and 
each other. Telling the story of mathematics means telling 
the stories of these people: their accomplishments and 
triumphs; the institutions and structures they built; their 
interpersonal and scientific interactions; and their failures 
and shortcomings.

One of the most hopeful developments of the period 
1900–1941 in American mathematics was the opening 
of the community to previously excluded populations. 
Increasing numbers of women were welcomed into math-
ematics, many of whom—including Anna Pell Wheeler, 
Olive Hazlett, and Mayme Logsdon—are profiled in these 
pages. Black mathematicians were often systemically ex-
cluded during this period, but, in spite of the obstacles, 
Elbert Frank Cox, Dudley Woodard, David Blackwell, and 
others built careers of significant accomplishment that are 
described here. The effect on the substantial community 
of European immigrants is detailed through the stories of 
dozens of individuals.

In clear and compelling prose Zitarelli, Dumbaugh, and 
Kennedy spin a tale accessible to experts, general readers, 
and anyone interested in the history of science in North 
America.

http://bookstore.ams.org/stml-97
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Spectrum, Volume 103
September 2022, approximately 547 pages, Softcover, ISBN: 
978-1-4704-6730-2, 2010 Mathematics Subject Classification: 
01A05, 01A60, List US$120, AMS members US$90, AMS 
institutional member US$96, MAA members US$90, Order 
code SPEC/103

bookstore.ams.org/spec-103

Mathematics 2023: 
Your Daily Epsilon of Math
12-Month Calendar—January 
2023 through December 2023
Rebecca Rapoport, Harvard 
University, Cambridge, MA, and 
Michigan State University, East 
Lansing, MI and Dean Chung, 
Harvard University, Cambridge, 
MA, and University of Michigan, 
Ann Arbor, MI

Keep your mind sharp all year long with Mathematics 
2023: Your Daily Epsilon of Math, a 12” x 12” wall calendar 
featuring a new math problem every day and 12 beautiful 
math images!

Let mathematicians Rebecca Rapoport and Dean Chung 
tickle the left side of your brain by providing you with a 
math challenge for every day of the year. The solution is 
always the date, but the fun lies in figuring out how to 
arrive at the answer, and possibly discovering more than 
one method of arriving there.

Problems run the gamut from arithmetic through grad-
uate level math. Some of the most tricky problems require 
only middle school math applied cleverly. With word 
problems, math puns, and interesting math definitions 
added into the mix, this calendar will intrigue you for the 
whole year.

End the year with more brains than you had when it 
began with Mathematics 2023: Your Daily Epsilon of Math.

June 2022, approximately 16 pages, Softcover, ISBN: 978-
1-4704-7107-1, 2010 Mathematics Subject Classification: 
00A07, 00A09, 00A06, 00A08, 00A05, List US$18, AMS 
members US$14.40, MAA members US$16.20, Order 
code MBK/144

bookstore.ams.org/mbk-144

Grothendieck-Serre 
Correspondence
Bilingual Edition
Pierre Colmez, Ecole Normale 
Superieure, Paris, France and Jean-
Pierre Serre, College de France, 
Paris, France, Editors

This extraordinary volume con-
tains mathematical correspon-
dence between A. Grothendieck 
and J-P. Serre, two central figures 
who were key to the develop-

ment of algebraic geometry. This correspondence forms 
a vivid introduction to the topic during a period of years 
in which algebraic geometry went through a remarkable 
transformation. This book will interest all mathematicians 
who want to experience the unfolding of great mathemat-
ics; strongly recommended for booksellers.

This item will also be of interest to those working in algebra and 
algebraic geometry.

This book is jointly published by the AMS and the Société Mathématique 
de France. SMF members are entitled to AMS member discounts.

May 2022, 600 pages, Softcover, ISBN: 978-1-4704-6939-9, 
LC 2003062815, 2010 Mathematics Subject Classification: 
14–03; 01A25, List US$85, AMS members US$68, MAA 
members US$76.50, Order code CGS.S

bookstore.ams.org/cgs-s

Geometry and Topology

The Tiling Book
An Introduction to 
the Mathematical Theory 
of Tilings
Colin Adams, Williams College, 
Williamstown, MA

Tiling theory provides a wonder-
ful opportunity to illustrate both 
the beauty and utility of math-
ematics. It has all the relevant 
ingredients: there are stunning 
pictures; open problems can be 

stated without having to spend months providing the 
necessary background; and there is both deep mathematics 
and applications.

http://bookstore.ams.org/mbk-144
http://bookstore.ams.org/cgs-s
http://bookstore.ams.org/spec-103
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This volume contains the proceedings of the 18th Interna-
tional Conference on Arithmetic, Geometry, Cryptography, 
and Coding Theory, held (online) from May 31 to June 4, 
2021.

For over thirty years, the biennial international confer-
ence AGC2T (Arithmetic, Geometry, Cryptography, and 
Coding Theory) has brought researchers together to forge 
connections between arithmetic geometry and its applica-
tions to coding theory and to cryptography.

The papers illustrate the fruitful interaction between 
abstract theory and explicit computations, covering a large 
range of topics, including Belyi maps, Galois representa-
tions attached to elliptic curves, reconstruction of curves 
from their Jacobians, isogeny graphs of abelian varieties, 
hypergeometric equations, and Drinfeld modules.

This item will also be of interest to those working in applications.

Contemporary Mathematics, Volume 779
September 2022, approximately 192 pages, Softcover, 
ISBN: 978-1-4704-6794-4, 2010 Mathematics Subject Clas-
sification: 11G20, 11G30, 11G32, 11G40, 11T71, 14G10, 
14H40, 14Q05, 20C20, 20G41, List US$125, AMS mem-
bers US$100, MAA members US$112.50, Order code 
CONM/779

bookstore.ams.org/conm-779

New AMS-Distributed 
Publications

Lecture Notes on the 
Gaussian Free Field
Wendelin Werner, ETH Zürich, 
Switzerland and Ellen Powell, 
Durham University, United King-
dom

The Gaussian Free Field (GFF) 
in the continuum appears to 
be the natural generalisation of 
Brownian motion, when one 
replaces time by a multidimen-
sional continuous parameter. 

While Brownian motion can be viewed as the most natural 
random real-valued function defined on ℝ+  with B (0)  =  0, 
the GFF in a domain D  of ℝd  for d  ≥  2 is a natural random 
real-valued generalised function defined on D  with zero 
boundary conditions on ∂ D . In particular, it is not a ran-
dom continuous function.

The goal of these lecture notes is to describe some as-
pects of the continuum GFF and of its discrete counterpart 

Furthermore, tiling theory happens to be an area where 
many of the sub-fields of mathematics overlap. Tools can 
be applied from linear algebra, algebra, analysis, geometry, 
topology, and combinatorics. As such, it makes for an ideal 
capstone course for undergraduates or an introductory 
course for graduate students. This material can also be used 
for a lower-level course by skipping the more technical 
sections. In addition, readers from a variety of disciplines 
can read the book on their own to find out more about 
this intriguing subject.

This book covers the necessary background on tilings 
and then delves into a variety of fascinating topics in the 
field, including symmetry groups, random tilings, aperiodic 
tilings, and quasicrystals. Although primarily focused on 
tilings of the Euclidean plane, the book also covers tilings 
of the sphere, hyperbolic plane, and Euclidean 3-space, 
including knotted tilings. Throughout, the book includes 
open problems and possible projects for students. Readers 
will come away with the background necessary to pursue 
further work in the subject.

This item will also be of interest to those working in discrete 
mathematics and combinatorics.

September 2022, approximately 295 pages, Hardcover, 
ISBN: 978-1-4704-6897-2, 2010 Mathematics Subject Clas-
sification: 05–01, 05B45, 52–01, 52C20, 52C22, 52C23, 
List US$59, AMS members US$47.20, MAA members 
US$53.10, Order code MBK/142

bookstore.ams.org/mbk-142

New in Contemporary 
Mathematics
Algebra and 
Algebraic Geometry

Arithmetic, Geometry, 
Cryptography, and 
Coding Theory 2021
Samuele Anni, Aix-Marseille 
Université, Cedex, France, Val-
entijn Karemaker, Universiteit 
Utrecht, The Netherlands, and 
Elisa Lorenzo García, Université 
de Neuchâtel, Switzerland, Editors

ONTEMPORARY
ATHEMATICS

C
M

779

Samuele Anni
Valentijn Karemaker
Elisa Lorenzo García 

Editors

Arithmetic, Geometry, 
Cryptography, 
and Coding 
Theory 2021

http://bookstore.ams.org/mbk-142
http://bookstore.ams.org/conm-779
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Their category is closely related to Voevodsky’s category of 
motives and 𝔸1 -invariant theories: assuming resolution of 
singularities, the authors identify the latter with the full 
subcategory comprised of 𝔸1 -local objects in the category 
of logarithmic motives. Fundamental properties such as 

-homotopy invariance, Mayer-Vietoris for coverings, the 
analogs of the Gysin sequence and the Thom space isomor-
phism as well as a blow-up formula and a projective bundle 
formula witness the robustness of the setup.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 433
May 2022, 280 pages, Softcover, ISBN: 978-2-85629-957-
9, 2010 Mathematics Subject Classification: 14A21, 14A30, 
14F42, 18N40, 18N55, 18F10, 18G35, 19E15, List US$82, 
AMS members US$65.60, Order code AST/433

bookstore.ams.org/ast-433

A Theory of 
Dormant Opers on 
Pointed Stable Curves
Yasuhiro Wakabayashi, Tokyo 
Institute of Technology, Japan

This manuscript presents a de-
tailed and original account of 
the theory of opers defined on 
pointed stable curves in arbitrary 
characteristic and their mod-
uli. In particular, it includes the 
development of the study of 

dormant opers, which are opers of a certain sort in posi-
tive characteristic. The author’s goal is to give an explicit 
formula, conjectured by Joshi, for the generic number of 
dormant opers.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 432
May 2022, 296 pages, Softcover, ISBN: 978-2-85629-956-
2, 2010 Mathematics Subject Classification: 14H10, 14H60, 
List US$90, AMS members US$72, Order code AST/432

bookstore.ams.org/ast-432

defined on lattices, with the aim of providing a gentle 
self-contained introduction to some recent developments 
on this topic, such as the relation between the continuum 
GFF, Brownian loop-soups and the Conformal Loop En-
sembles CLE4 .

This is an updated and expanded version of the notes 
written by the first author (Wendelin Werner) for graduate 
courses at ETH Zürich (Swiss Federal Institute of Technol-
ogy in Zürich) in 2014 and 2018. It has benefited from 
the comments and corrections of students, as well as of a 
referee. The exercises that are interspersed in the first half 
of these notes mostly originate from the exercise sheets 
prepared by the second author (Ellen Powell) for this 
course in 2018.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Cours Spécialisés—Collection SMF, Number 28
May 2022, 184 pages, Hardcover, ISBN: 978-2-85629-952-
4, 2010 Mathematics Subject Classification: 60G60, 60G15, 
60J67, 82B20, 82B21, List US$65, AMS members US$52, 
Order code COSP/28

bookstore.ams.org/cosp-28

Algebra and 
Algebraic Geometry

Triangulated Categories 
of Logarithmic Motives 
Over a Field
Federico Binda, Universitá degli 
Studi di Milano, Italy, Doosung 
Park, Universität Zürich Win-
terthurerstrasse, Switzerland, and 
Paul Arne Østvær, University of 
Oslo, Norway

In this work the authors develop 
a theory of motives for logarith-
mic schemes over fields in the 

sense of Fontaine, Illusie, and Kato. The authors’ construc-
tion is based on the notion of finite log correspondences, 
the dividing Nisnevich topology on log schemes, and the 
basic idea of parameterizing homotopies by , i.e., the 
projective line with respect to its compactifying logarith-
mic structure at infinity. The authors show that Hodge 
cohomology of log schemes is a -invariant theory that 
is representable in the category of logarithmic motives. 

http://bookstore.ams.org/cosp-28
http://bookstore.ams.org/ast-432
http://bookstore.ams.org/ast-433
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Geometric Local ε-Factors
Quentin Guignard, Institut de 
Mathématiques de Jussieu-Paris 
Rive Gauche, France

Inspired by the work of Laumon 
on local ε -factors and by Del-
igne’s 1974 letter to Serre, the 
author gives an explicit coho-
mological definition of ε -factors 
for ℓ -adic Galois representations 
over henselian discrete valuation 
fields of positive equicharac-

teristic p  =ℓ , with (not necessarily finite) perfect residue 
fields. These geometric local ε -factors are completely 
characterized by an explicit list of purely local properties, 
such as an induction formula and the compatibility with 
geometric class field theory in rank 1, and satisfy a product 
formula for ℓ -adic sheaves on a curve over a perfect field 
of characteristic p .

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 431
May 2022, 137 pages, Softcover, ISBN: 978-2-85629-953-1, 
2010 Mathematics Subject Classification: 14F20, List US$65, 
AMS members US$52, Order code AST/431

bookstore.ams.org/ast-431

Number Theory

On Mod p Local-Global 
Compatibility for GLn(QQp) 
in the Ordinary Case
C. Park, Ulsan National Institute 
of Science and Technology, Republic 
of Korea and Z. Qian, University 
of Toronto, Ontario, Canada

In this paper, the authors show 
that the isomorphism class of 
r−|Gal(Qp/Fw) is determined by 
GLn(Fw)-action on a space of 
mod p algebraic automorphic 

forms cut out by the maximal ideal of a Hecke algebra 
associated to r−.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Mémoires de la Société Mathématique de France, Num-
ber 173
March 2022, 150 pages, Softcover, ISBN: 978-2-85629-945-
6, 2010 Mathematics Subject Classification: 11F80, 11F33, List 
US$65, AMS members US$52, Order code SMFMEM/173

bookstore.ams.org/smfmem-173

Probability and Statistics

Séminaire Bourbaki
Volume 2019/2021 
Exposés 1166–1180

This 72nd volume of the Bour-
baki Seminar gathers the texts 
of the fifteen survey lectures de-
livered from November 2019 to 
June 2021: Herman’s positive en-
tropy conjecture, pseudospectral 
estimates and stability of planar 
vortices, a closing C∞-lemma, 
pseudospectrum and resolvents 

of non-selfadjoint operators, Hodge theory and o-mini-
mality, forcing theory for surface homeomorphisms, nodal 
sets of eigenfunctions of the Laplace operator, Ratner-type 
phenomena for hyperbolic manifolds, the inverse theorem 
for Gowers norms, reconstruction of an algebraic variety 
from its topology, special values of Riemann’s zeta func-
tion and polylogarithms, a fractal uncertainty principle, 
totally geodesic subvarieties of the moduli space of curves, 
asymptotic counting of minimal surfaces in hyperbolic 
manifolds, and continuous logic and property (T) of Ro-
elcke-precompact groups.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 430
May 2022, 565 pages, Softcover, ISBN: 978-2-85629-931-
9, 2010 Mathematics Subject Classification: 60K35, 60F17, 
60J67, 60G57, List US$120, AMS members US$96, Order 
code AST/430

bookstore.ams.org/ast-430

http://bookstore.ams.org/ast-431
http://bookstore.ams.org/ast-430
http://bookstore.ams.org/smfmem-173


August 2022  Notices of the AmericAN mAthemAticAl society   1263

Meetings & Conferences of the AMS
August Table of Contents

Meetings in this Issue
  2022  

July 18–22 Grenoble, France 
 (AMS-SMF-EMS) p. 1264
September 17–18 El Paso, Texas p. 1266
October 1–2 Amherst, Massachusetts p. 1267
October 15–16 Chattanooga, Tennessee p. 1268
October 22–23 Salt Lake City, Utah p. 1270

  2023  
January 4–7 Boston, Massachusetts 
 (JMM 2023) p. 1271
March 18–19 Atlanta, Georgia p. 1271
April 1–2 Spring Eastern Virtual p. 1272
April 15–16 Cincinnati, Ohio p. 1272
May 6–7 Fresno, California p. 1273
September 9–10 Buffalo, New York p. 1274
October 7–8 Omaha, Nebraska p. 1274
October 13–15 Mobile, Alabama p. 1274
October 21–22 Albuquerque, NM p. 1275
December 4–8 Auckland, New Zealand p. 1275

  2024  
January 3–6 San Francisco, California 
 (JMM 2024) p. 1275
April 6–7 Washington, DC p. 1275
May 4–5 San Francisco, California p. 1275
July 23–26 Palermo, Italy p. 1276
October 26–27 Riverside, California p. 1276

  2026  
January 4–7 Washington, DC
 (JMM 2026) p. 1276

The AMS strives to ensure that participants in its activities 
enjoy a welcoming environment. Please see our full Policy 

on a Welcoming Environment at https://www.ams 
.org/welcoming-environment-policy.

The Meetings and Conferences section of the Notices gives 
information on all AMS meetings and conferences ap-
proved by press time for this issue. Please refer to the page 
numbers cited on this page for more detailed information 
on each event. Paid meeting registration is required to submit 
an abstract to a sectional meeting.

Invited Speakers and Special Sessions are listed as soon 
as they are approved by the cognizant program committee; 
the codes listed are needed for electronic abstract sub-
mission. For some meetings the list may be incomplete. 
Information in this issue may be dated. 

The most up-to-date meeting and conference informa-
tion can be found online at www.ams.org/meetings.

Important Information About AMS Meetings: Potential 
organizers, speakers, and hosts should refer to https://
www.ams.org/meetings/meetings-general for general 
information regarding participation in AMS meetings and 
conferences.

Abstracts: Speakers should submit abstracts on the 
easy-to-use interactive Web form. No knowledge of LATEX 
is necessary to submit an electronic form, although those 
who use LATEX may submit abstracts with such coding, and 
all math displays and similarly coded material (such as 
accent marks in text) must be typeset in LATEX. Visit www.ams 
.org/cgi-bin/abstracts/abstract.pl. Questions 
about abstracts may be sent to abs-info@ams.org. Close 
attention should be paid to specified deadlines in this issue. 
Unfortunately, late abstracts cannot be accommodated.

Associate Secretaries of the AMS
Central Section: Betsy Stovall, University of Wisconsin–
Madison, 480 Lincoln Drive, Madison, WI 53706; email: 
stovall@math.wisc.edu; telephone: (608) 262-2933.

Eastern Section: Steven H. Weintraub, Department of 
Mathematics, Lehigh University, Bethlehem, PA 18015-
3174; email: steve.weintraub@lehigh.edu; telephone: 
(610) 758-3717.

Southeastern Section: Brian D. Boe, Department of Math-
ematics, University of Georgia, 220 D W Brooks Drive, 
Athens, GA 30602-7403; email: brian@math.uga.edu; 
telephone: (706) 542-2547.

Western Section: Michelle Manes, University of Hawaii, 
Department of Mathematics, 2565 McCarthy Mall, Keller 
401A, Honolulu, HI 96822; email: mamanes@hawaii.edu; 
telephone: (808) 956-4679.

http://www.ams.org/cgi-bin/abstracts/abstract.pl
http://www.ams.org/cgi-bin/abstracts/abstract.pl
https://www.ams.org/welcoming-environment-policy
https://www.ams.org/welcoming-environment-policy
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MEETINGS & CONFERENCES

IMPORTANT information regarding meetings programs: AMS Sectional Meeting programs do not appear in the print 
version of the Notices. However, comprehensive and continually updated meeting and program information with links 
to the abstract for each talk can be found on the AMS website. See https://www.ams.org/meetings. 

Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL.

New: Sectional Meetings Require Registration to Submit Abstracts. In an effort to spread the cost of the sectional 
meetings more equitably among all who attend and hence help keep registration fees low, starting with the 2020 fall 
sectional meetings, you must be registered for a sectional meeting in order to submit an abstract for that meeting. 
You will be prompted to register on the Abstracts Submission Page. In the event that your abstract is not accepted or 
you have to cancel your participation in the program due to unforeseen circumstances, your registration fee will be 
reimbursed.
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Grenoble, France
AMS-SMF-EMS Joint International Meeting

Université de Grenoble-Alpes

July 18–22, 2022
Monday – Friday

Meeting #1168
Associate Secretary for the AMS: Brian D. Boe
Program first available on AMS website: Not applicable

Issue of Abstracts: Not applicable

Deadlines
For organizers: Expired
For abstracts: To be announced

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/internmtgs.html.

Invited Addresses
Andrea Bertozzi, University of California, Los Angeles, USA, Title to be announced.
Peter Bühlmann, ETH Zürich, Switzerland, Title to be announced.
Maria Chudnovsky, Princeton University, USA, Title to be announced.
Hugo Duminil-Copin, Institut des Hautes Études Scientifiques (IHÉS), Bures-sur-Yvette, France, Title to be announced.
Alessio Figalli, ETH Zürich, Switzerland, Title to be announced.
Vincent Lafforgue, Université de Grenoble Alpes & CNRS, France, Title to be announced.
Peter Sarnak, Institute for Advanced Study (IAS), Princeton, USA, Title to be announced.
Claire Voisin, Collège de France, Paris, France, Title to be announced.
Simone Warzel, Technische Universität München (TUM), Munich, Germany, Title to be announced.
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Special Sessions
Advances in Functional Analysis and Operator Theory, Marat V. Markin, California State University, Fresno, USA, Igor 

Nikolaev, St. John’s University, USA, Jean Renault, Universite d’Orleans, France, and Carsten Trunk, Technische Univer-
sitat Ilmenau, Germany.

Algebraic Geometry (Associated with Plenary Speaker Claire Voisin), Radu Laza, Stony Brook University, USA, Catriona 
Maclean, Grenoble, France, and Claire Voisin, Paris, France.

Automorphic Forms, Moduli Spaces, and Representation Theory (Associated with Plenary Speaker Vincent Lafforgue), Jean-
François Dat, Sorbonne Université, France, and Bao-Chau Ngo, University of Chicago, USA.

Classical and Quantum Fields on Lorentzian Manifolds, Dietrich Häfner, Université Grenoble Alpes, France, and Andras 
Vasy, Stanford University, USA.

Combinatorial and Computational Aspects in Topology, Eric Samperton, University of Illinois, USA, Saul Schleimer, Uni-
versity of Warwick, United Kingdom, and Greg McShane, Université Grenoble-Alpes, France.

Deformation of Artinian algebras and Jordan type, Anthony Iarrobino, Northeastern University, USA, Pedro Macias 
Marques, Universidade de Evora, Portugal, Maria Evelina Rossi, Universita degli Studi di Genova, Italy, and Jean Valles, 
Universite de Pau et des Pays de l’Adour, France.

Deformation Spaces of Geometric Structures, Sara Maloni, University of Virginia, USA, Andrea Seppi, Université Grenoble 
Alpes, France, and Nicolas Tholozan, Ecole Normale Superieure de Paris, France.

Derived Categories and Rationality, Matthew Ballard, University of South Carolina, USA, Emanuele Macrì, Université 
Paris-Saclay, France, and Patrick McFaddin, Fordham University, USA.

Differential Geometry in the Tradition of Élie Cartan (1869–1959), Vincent Borelli, Université Claude Bernard, Bogdan 
Suceavă,California State University, Fullerton, USA, Mihaela B. Vajiac, Chapman University, USA, Joeri Van der Veken, 
KU Leuven, Belgium, Marina Ville, Université Paris-Est Créteil, and Luc Vrancken, Université Polytechnique Hauts-de- 
France, Valenciennes, France.

Drinfeld Modules, Modular Varieties and Arithmetic Applications, Tuan Ngo Dac, CNRS Université Claude Bernard Lyon 
1, France, Matthew Papanikolas, Texas A&M University, USA, Mihran Papikian, Pennsylvania State University, USA, and 
Federico Pellarin, Université Jean Monnet, France.

Financial Mathematics, Beatrice Acciaio, ETH Zürich, Switzerland, Carole Bernard, Grenoble Ecole de Management, 
Grenoble, France, and Stephan Sturm, Worcester Polytechnic Institute, USA.

Fractal Geometry in Pure and Applied Mathematics, Hafedh Herichi, Santa Monica College, USA, Maria Rosaria Lancia, 
Sapienza Universita di Roma, Italy, Therese-Marie Landry, University of California, Riverside, USA, Anna Rozanova-Pier-
rat, CentralSuplec, Universite Paris- Saclay, France, and Steffen Winter, Karlsruhe Institute of Technology, Germany.

Functional Equations and Their Interactions, Guy Casale, IRMAR, Université de Rennes 1, France, Thomas Dreyfus, 
IRMA, Université de Strasbourg, France, Charlotte Hardouin, IRMAR, Université de Toulouse 3, France, Joel Nagloo, 
CUNY, New York, USA, Julien Roques, Institut Camille Jordan, Université de Lyon 1, France, and Michael Singer, North 
Carolina State University, Raleigh, USA.

Graph and Matroid Polynomials: Towards a Comparative Theory, Emeric Gioan, LIRMM, France, Johann A. Makowsky, 
Israel Institute of Technology- IIT, Israel, and James Oxley, Louisiana State University, USA.

Groups and Topological Dynamics, Nicolas Matte Bon, University of Lyon, France, Constantine Medynets, United States 
Naval Academy, USA, Volodymyr Nekrashevych, Texas A&M University, USA, and Dmytro Savchuk, University of South 
Florida, USA.

Group Theory, Algorithms and Applications, Indira Chatterji, Université de Nice, France, Francois Dahmani and Martin 
Deraux, Institut Fourier, Université Grenoble, Alpes, France, and Delaram Kahrobaei, CUNY and NYU, USA.

History of Mathematics Beyond Case-Studies, Catherine Goldstein, CNRS, IMJ-PRG, France, and Jemma Lorenat, Pitzer 
College, USA.

Integrability, Geometry, and Mathematical Physics, Luen-Chau Li, Pennsylvania State University, USA, and Serge Parmen-
tier, Universite Claude Bernard Lyon 1, France.

Inverse Problems, Hanna Makaruk, Los Alamos National Laboratory (LANL), USA, Robert Owczarek, University of New 
Mexico, Albuquerque and Los Alamos, USA, Tomasz Lipniacki, Polish Academy of Sciences, Poland, and Piotr Stachura, 
Warsaw University of Life Sciences-SGGW, Poland.

Low-Dimensional Topology, Paul Kirk, University Bloomington, USA, Christine Lescop, CNRS, Institut Fourier, Université 
Grenoble Alpes, France, and Jean-Baptiste Meilhan, Institut Fourier, Université Grenoble, Alpes, France.

Mathematical Challenges in Complex Quantum Systems (Associated with Plenary Speaker Simone Warzel), Alain Joye, Institut 
Fourier, Université Grenoble Alpes, France, Jeffrey Schenker, Michigan State University, USA, Nicolas Rougerie, Ecole 
Normale Supérieure de Lyon and CNRS, France, and Simone Warzel, Zentrum Mathematik, TU München, Germany.
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Mathematical Knowledge Management in the Digital Age of Science, Patrick Ion, University of Michigan, Ann Arbor, USA, 
Thierry Bouche, Université Grenoble-Alpes, France, and Stephen Watt, University of Waterloo, Canada.

Mathematical Physics of Gravity, Geometry, QFTs, Feynman and Stochastic Integrals, Quantum/Classical Number Theory, Al-
gebra, and Topology, Michael Maroun, AMS-MRC Boston, USA, Pierre Vanhove, EMS/SMF CEA Paris Saclay, France, and 
Federico Zerbini, EMS/SMF CEA Paris Saclay.

Modular Representation Theory, Pramod N. Achar, Louisiana State University, USA, Simon Riche, Universite Clermont 
Auvergne, France, and Britta Spath, Bergische Universitat Wuppertal, Germany.

Percolation and Loop Models (Associated with Plenary Speaker Hugo Duminil-Copin), Ioan Manolescu, University of Fri-
bourg, Switzerland.

Quantitative Geometry of Transportation Metrics, Florent Baudier, Texas A&M University, USA, Dario Cordero-Erausquin, 
Sorbonne Universite, France, Alexandros Eskenazis, University of Cambridge, United Kingdom, and Eva Pernecka, Czech 
Technical University in Prague, Czech Republic.

Recent Advances in Diffeology and their Applications, Jean-Pierre Magnot, Université d’Angers, France, and Jordan Watts, 
Central Michigan University, USA.

Rough Path and Malliavin Calculus, Fabrice Baudoin, University of Connecticut, USA, Antoine Lejay, University of 
Lorraine, France, and Cheng Ouyang, University of Illinois at Chicago, USA.

Spectral Optimization, Richard S. Laugesen, University of Illinois at Urbana Champaign, USA, Enea Parini, Aix Marseille 
University, France, and Emmanuel Russ, Grenoble Alpes University, France.

Statistical Learning (Associated with Plenary speaker Peter Bühlmann), Christophe Giraud, Paris Saclay University, France, 
Cun-Hui Zhang, Rutgers University, USA, and Peter Bühlmann, ETH Zürich, Switzerland.

Sub-Riemannian Geometry and Interactions, Luca Rizzi, CNRS, Institut Fourier, Grenoble, France, and Fabrice Baudoin, 
University of Connecticut, USA.

El Paso, Texas
University of Texas at El Paso

September 17–18, 2022
Saturday – Sunday

Meeting #1179
Central Section
Associate Secretary for the AMS: Betsy Stovall

Program first available on AMS website: August 5, 2022
Issue of Abstracts: Volume 43, Issue 3

Deadlines
For organizers: Expired
For abstracts: July 26, 2022

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Caroline Klivans, Brown University, Title to be announced.
Brisa N. Sánchez, Drexel University, Measuring spatial access to community amenities and its association with health.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic, Geometric, and Topological Combinatorics (Code: SS 17A), Art M. Duval, The University of Texas at El Paso, 
Caroline J. Klivans, Brown University, and Jeremy L. Martin, University of Kansas.

Algebraic Structures in Topology, Logic, and Arithmetic (Code: SS 4A), John Harding, New Mexico State University, and 
Emil D. Schwab, The University of Texas at El Paso.

Banach Fixed Point Theorem: 100th year Celebration (Code: SS 5A), Parin Chaipunya, King Mongkut University of Tech-
nology, Thailand, and Mohamed A. Khamsi, Osvaldo Mendez, and Julio C. Urenda, The University of Texas at El Paso.

Eliiptic and Parabolic PDEs in Complex Fluid and Free Boundary Problems (Code: SS 6A), Alaa Haj Ali, Arizona State Uni-
versity, and Hengrong Du, Vanderbilt University.
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From points to neighborhoods and beyond: frames and locales and their applications (Code: SS 14A), Julio Urenda and Fran-
cisco Avila, The University of Texas at El Paso, and Angel Zaldivar and Miriam Borcardo, Universidad de Guadalajara.

Geometry of Submanifolds (Code: SS 19A), Hung Tran, Texas Tech University, Stephen McKeown, UT Dallas, Alvaro 
Pampano, Texas Tech University, and Magdalena Toda, Texas Tech.

High-Frequency Data Analysis, Complex Datasets, and Applications (Code: SS 3A), Maria Christina Mariani and Michael 
Pokojovy, The University of Texas at El Paso, Ambar Sengupta, University of Connecticut, Osei K. Tweneboah, Ramapo 
College of New Jersey, and Maria Pia Beccar Varela, The University of Texas at El Paso.

Interactions between Combinatorics and Commutative Algebra (Code: SS 16A), Louiza Fouli, New Mexico State University, 
Christopher Eur, Harvard University, and Jonathan Montano, New Mexico State University.

Low dimensional topology and knot theory (Code: SS 15A), Luis Valdez-Sanchez, The University of Texas at El Paso, and 
Ross E. Staffeldt, New Mexico State University.

Mathematical and Computational Methods in Omics Research (Code: SS 13A), Ming-Ying Leung and Jonathon E. Mohl, 
The University of Texas at El Paso.

Methods and Applications in Data Science (Code: SS 7A), Xiaogang Su, Ming-Ying Leung, and Amy Wagler, The Uni-
versity of Texas at El Paso.

Numerical Partial Differential Equations and Applications (Code: SS 11A), Son Young Yi and Xianyi Zeng, The University 
of Texas at El Paso.

Ordered Structures (Code: SS 2A), Piotr Wojciechowski, University of Texas at El Paso.
Recent advances in scientific computing and applications (Code: SS 12A), Natasha Sharma, The University of Texas at El 

Paso, and Annalisa Quaini, University of Houston.
Statistical Methodology and Applications (Code: SS 10A), Ori Rosen, Suneel Chatla, Asim Dey, and Abhijit Mandal, 

The University of Texas at El Paso.
Stochastic Analysis and Applications (Code: SS 9A), Adina Oprisan and Dante DeBlassie, New Mexico State University, 

and Robert Smits, New Mexico State.
Stochastic dynamics: Theory and Applications in Biology (Code: SS 18A), Tuan Anh Phan, Institute for Modeling Collab-

oration and Innovation, University of Idaho, and Jianjun Paul Tian, New Mexico State University.
The Intersection of Number Theory and Combinatorics (Code: SS 8A), Katie Anders, University of Texas at Tyler, and Tim-

othy Huber and Brandt Kronholm, University of Texas Rio Grande Valley.
Topics in Applied Analysis (Code: SS 1A), Behzad Djafari-Rouhani, University of Texas at El Paso, and Gisele Goldstein 

and Jerome Goldstein, University of Memphis.

Amherst, Massachusetts
University of Massachusetts-Amherst

October 1–2, 2022
Saturday – Sunday

Meeting #1180
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub

Program first available on AMS website: August 18, 2022
Issue of Abstracts: Volume 43, Issue 4

Deadlines
For organizers: Expired
For abstracts: August 16, 2022

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Melody Chan, Brown University, Title to be announced.
Steven J. Miller, Williams College, Title to be announced.
Tadashi Tokieda, Stanford University, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.
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Algebraic and Analytic theory of Elliptic Curves (Code: SS 1A), Alina Cojocaru, University of Illinois, Chicago, Seoyung 
Kim, Grand Valley State University, Steven J. Miller, Williams College, and Jesse A Thorner, University of Florida.

Combinatorial Algebraic Geometry (Code: SS 18A), Melody Chan and Madeline Brandt, Brown University, and Juliette 
Bruce, University of California Berkeley.

Connections Between Theoretical and Applied Dynamical Systems: a session in honor of the 60th birthdays of Renato Feres and 
Boris Hasselblatt (Code: SS 19A), Timothy Chumley, Mount Holyoke College, and Yao Li and Hongkun Zhang, University 
of Massachusetts.

Game-Theoretic and Agent-Based Approaches to Modeling Biological and Social Systems (Code: SS 7A), Olivia Chu, Dart-
mouth College, and Daniel Cooney, University of Pennsylvania.

Geometric Aspects of algebraic Combinatorics (Code: SS 10A), Theo Douvropoulos, University of Massachusetts, Edward 
Richmond, Oklahoma State University, and Vasu Tewari, University of Hawaii.

Higher Structures and Homotopical Algebra (Code: SS 11A), John Berman, University of Massachusetts, Michael Ching 
and Ivan Contreras, Amherst College, and Owen Gwilliam and Martina Rovelli, University of Massachusetts.

Iwasawa Theory (Code: SS 6A), Robert Pollack, Boston University, Anwesh Ray, University of British Columbia, and 
Tom Weston, University of Massachusetts.

Lagrangian and Legendrian Submanifolds (Code: SS 2A), Dani Alvarez-Gavela, Massachusetts Institute of Technology, 
and Mike Sullivan, University of Massachusetts.

Latinx and Hispanics in Combinatorics, Number Theory, Geometry and Topology (Code: SS 9A), Iván Contreras, Amherst 
College, Pamela E. Harris, Williams College, Alejandro Morales, University of Massachusetts, and Geremías Polanco 
Encarnación, Smith College.

Machine Learning Methods for PDEs (Code: SS 15A), Yulong Lu, University of Massachusetts, and Wuzhe Xu, University 
of Minnesota.

Math and Democracy: perspectives in research and teaching (Code: SS 17A), Ben Blum-Smith, New York University and 
The New School, and Stanley Chang and Andrew Schultz, Wellesley College.

Non-Abelian Hodge Theory and Minimal Surfaces (Code: SS 4A), Robert Kusner, Charles Ouyang, and Franz Pedit, 
University of Massachusetts.

Nonlinear waves and Applications: a Celebration of Dimitri Frantzeskakis 60th Birthday (Code: SS 5A), Ricardo Carretero, 
San Diego State University, and Panos Kevrekidis, University of Massachusetts.

Nonsmooth Analysis and Geometry (Code: SS 12A), Ryan J. Alvarado, Amherst College, and Armin Schikorra, University 
of Pittsburgh.

Ramsey Theory (Code: SS 3A), Louis DeBiasio, Miami University, and Gábor Sárközy, Worcester Polytechnic Institute 
and Alfréd Rényi Institute of Mathematics.

Recent Advances in Causal Inference (Code: SS 20A), Haben Michael, University of Massachusetts.
Some Tantalizing Conjectures in Discrete Mathematics (Code: SS 13A), Laura Colmenarejo, North Carolina State Univer-

sity, Nadia Lafreniére, Dartmouth College, and Annie Raymond, University of Massachusetts.
Structure-preserving machine learning (Code: SS 16A), Wei Zhu, University of Massachusetts.
The Combinatorics and Geometry of Jordan type and Commuting Varieties (Code: SS 21A), Peter Crooks, Iva Halacheva, 

and Anthony Iarrobino, Northeastern University, and Leila Khatami, Union College.
Topics in PDEs and Harmonic Analysis (Code: SS 8A), Zongyuan Li, Rutgers University, Weinan Wang, University of 

Arizona, Xueying Yu, University of Washington, and Zhiyuan Zhang, New York University.
Young Voices in Combinatorics (Code: SS 14A), Laura Colmenarejo and Jianping Pan, North Carolina State University.

Chattanooga, Tennessee
University of Tennessee at Chattanooga

October 15–16, 2022
Saturday – Sunday

Meeting #1181
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe

Program first available on AMS website: September 1, 2022
Issue of Abstracts: Volume 43, Issue 4

Deadlines
For organizers: Expired
For abstracts: August 23, 2022
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The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Giulia Saccà, Columbia University, Title to be announced.
Chad Topaz, Williams College, Mathematical and Computational Approaches to Social Justice.
Xingxing Yu, Georgia Institute of Technology, Graph structure and graph coloring.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Active Learning Methods and Pedagogical Approaches in Teaching College Level Mathematics (Code: SS 6A), Hashim Saber, 
University of North Georgia.

Applied Knot Theory (Code: SS 1A), Jason Cantarella, University of Georgia, Eleni Panagiotou, University of Tennessee 
at Chattanooga, and Eric Rawdon, University of St Thomas.

Boundary Value Problems for Differential, Difference, and Fractional Equations (Code: SS 9A), John R Graef and Lingju 
Kong, University of Tennessee at Chattanooga, and Min Wang, Kennesaw State University.

CANCELED: Ends and Boundaries of Groups: On the Occasion of Mike Mihalik’s 70th Birthday (Code: SS 11A), Craig Guil-
bault, University of Wisconsin-Milwaukee, and Kim Ruane, Tufts University.

Combinatorial Commutative Algebra (Code: SS 8A), Michael Cowen, Hugh Geller, Todd Morra, and Keri Sather-Wag-
staff, Clemson University.

Deterministic and Stochastic PDEs: Theoretical and Numerical Analyses (Code: SS 16A), Hakima Bessaih, Florida Interna-
tional University, and Pelin Guven Geredeli, Iowa State University.

Enumerative Combinatorics (Code: SS 10A), Miklós Bóna and Vince Vatter, University of Florida.
Geometric and Topological Generalization of Groups (Code: SS 4A), Bikash C Das, University of North Georgia.
Geometry and Arithmetic of Hyperkähler Manifolds (Code: SS 12A), Giulia Saccà, Columbia University, and Laure Flapan, 

Massachusetts Institute of Technology.
Interactions Between 3-Manifolds and 4-Manifolds (Code: SS 13A), Jonathan Simone, Georgia Institute of Technology, 

Bulent Tosun, University of Alabama, and Hannah Turner, Georgia Institute of Technology.
Modern Applied Mathematics and Spectral Analysis (Code: SS 18A), Boris Belinskiy and Roger Nichols, University of 

Tennessee at Chattanooga.
Multiplicative Ideal Theory and Arithmetical Properties of Monoids and Domains (Code: SS 15A), Scott Chapman, Sam 

Houston State University, Jim Coykendall, Clemson University, and Richard Hasaenauer, Northeastern State University.
New Developments in Operations Research and Management Sciences (Code: SS 20A), Aniekan Ebiefung and Lakmali 

Weerasena, University of Tennessee at Chattanooga.
Nonstandard Elliptic and Parabolic Regularity Theory with Applications (Code: SS 2A), Hongjie Dong, Brown University, 

and Tuoc Phan, University of Tennessee, Knoxville.
Probability and Statistical Models with Applications (Code: SS 5A), Sher Chhetri, University of South Carolina, Sumter, 

and Cory Ball, Florida Atlantic University.
Qualitative Analysis and Control Theory of Evolutionary Partial Differential Equations (Code: SS 19A), George Avalos, Uni-

versity of Nebraska-Lincoln, and Weiwei Hu, University of Georgia.
Quantitative Approaches to Social Justice (Code: SS 7A), Chad Topaz, Williams College.
Recent Advances in Mathematical Biology (Code: SS 14A), Xiunan Wang and Jin Wang, University of Tennessee at Chat-

tanooga.
Reliable and Efficient Machine Learning for Scientific Forward and Inverse Problems (Code: SS 21A), Anuj Abhishek, Univer-

sity of North Carolina at Charlotte, Feng Bao, Florida State University, Lan Gao, University of Tennessee at Chattanooga, 
Taufiquar Khan, University of North Carolina at Charlotte, and Jin Wang, University of Tennessee at Chattanooga.

Structural and Extremal Graph Theory (Code: SS 3A), Hao Huang, Emory University, and Xingxing Yu, Georgia Institute 
of Technology.

Topological, Measurable, and Symbolic Dynamics, and Interactions with Geometry (Code: SS 17A), Chris Johnson, Western 
Carolina University, and Martin Schmoll, Clemson University.
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Salt Lake City, Utah
University of Utah

October 22–23, 2022
Saturday – Sunday

Meeting #1182
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: September 8, 2022
Issue of Abstracts: Volume 43, Issue 4

Deadlines
For organizers: Expired
For abstracts: August 30, 2022

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Bhargav Bhatt, University of Michigan, Title to be announced.
Jonathan Brundan, University of Oregon, Title to be announced.
Mariel Vazquez, UC Davis, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic Combinatorics and Applications in Harmonic Analysis (Code: SS 3A), Joseph Iverson and Sung Y. Song, Iowa 
State University, and Bangteng Xu, Eastern Kentucky University.

Approximation Theory and Numerical Analysis (Code: SS 2A), Vira Babenko, Drake University, and Akil Narayan, Uni-
versity of Utah.

Arithmetic Dynamics (Code: SS 28A), Jamie Juul, Colorado State University, Bella Tobin, Oklahoma State University, 
and Bianca Thompson, Westminster College.

Building Bridges Between Commutative Algebra and Nearby Areas (Code: SS 5A), Benjamin Briggs and Josh Pollitz, 
University of Utah.

Commutative Algebra (Code: SS 4A), Adam Boocher, University of San Diego, Eloísa Grifo, University of California, 
Riverside, and Jennifer Kenkel, University of Michigan.

Data, Parameters, and Inverse Problems for Dissipative Systems (Code: SS 7A), Jared Whitehead, Brigham Young University, 
Adam Larios, University of Nebraska - Lincoln, and Vincent Martinez, CUNY.

Extremal Graph Theory (Code: SS 1A), József Balogh, University of Illinois, and Bernard Lidický , Iowa State University.
Fractal Geometry, Dimension Theory, and Recent Advances in Diophantine Approximation (Code: SS 9A), Alexander M. 

Henderson, University of California, Machiel van Frankenhuijsen, Utah Valley University, and Edward K. Voskanian, 
The College of New Jersey.

Free Boundary Problems Arising in Applications (Code: SS 14A), Mark Allen, Brigham Young University, Mariana Smit 
Vega Garcia, Western Washington University, and Braxton Osting, University of Utah.

Geometry and Representation Theory of Quantum Algebras and Related Topics (Code: SS 6A), Mee Seong Im, United States 
Naval Academy, Annapolis, Bach Nguyen, Xavier University of Louisiana, and Arik Wilbert, University of Georgia.

Graphs and Matrices (Code: SS 11A), Emily Evans, Mark Kempton, and Ben Webb, Brigham Young University.
Heegaard Floer Homology in Topology, Algebra, and Physics (Code: SS 21A), Aaron Lauda, University of Southern Califor-

nia, and Andrew Manion, NC State University.
Higher Topological and Algebraic K-Theories (Code: SS 18A), Agnès Beaudry, University of Colorado Boulder, Jonathan 

Campbell, Duke University, and John Lind, California State University, Chico.
Hypergeometric functions and q-series (Code: SS 25A), Howard S. Cohl, National Institute of Standards and Technology, 

Robert Maier, University of Arizona, and Roberto S. Costas-Santos, Universidad de Alcalá.
Inverse Problems (Code: SS 12A), Hanna Makaruk, Los Alamos National Laboratory, and Robert Owczarek, University 

of New Mexico.
Mathematical Modeling of Biological and Social Systems (Code: SS 26A), Daniel Cooney, Daniel Gomez, and Hyunjoong 

Kim, University of Pennsylvania.
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Mathematics of Collective Behavior (Code: SS 10A), Daniel Lear and Roman Shvydkoy, University of Illinois at Chicago.
Partitioning and Redistricting (Code: SS 22A), Wesley Hamilton, University of Utah, and Tyler Jarvis, BYU.
Quantum groups, Hopf Algebras and Applications: In honor of Professor Earl J. Taft (Code: SS 24A), Susan Montgomery 

and Siu-Hung Ng, University of Southern California.
Recent Advances in Algebraic Geometry and Commutative Algebra in or Near Characteristic p (associated with the Invited 

Address by Bhargav Bhatt) (Code: SS 8A), Bhargav Bhatt, University of Michigan, and Karl Schwede, University of Utah.
Recent Advances in the Theory of Fluid Dynamics (Code: SS 17A), Elaine Cozzi, Oregon State University, and Magdalena 

Czubak, University of Colorado Boulder.
Recent Advances of Numerical Methods for Partial Differential Equations with Applications (Code: SS 16A), Joe Koebbe and 

Jia Zhao, Utah State University, and Yunrong Zhu, Idaho State University.
Recent Developments in Inverse Problems for PDEs and Applications (Code: SS 20A), Loc Nguyen, University of North 

Carolina at Charlotte, Dinh-Liem Nguyen, Kansas State University, and Fernando Guevara Vasquez, University of Utah.
Several Complex Variables: Emerging Applications, Connections, And Synergies (Code: SS 13A), Jennifer Brooks, Brigham 

Young University, and Dusty Grundmeier, Harvard University.
Special Session on 4-dimensional topology (Code: SS 15A), Mark Hughes, Brigham Young University, and Maggie Miller 

and Patrick Naylor, Princeton University.
Topics in Graphs, Hypergraphs and Set Systems (Code: SS 19A), John Engbers, Marquette University, David Galvin, Uni-

versity of Notre Dame, and Cliff Smyth, The University of North Carolina at Greensboro.
Topology and geometry of multi-stranded nucleic acids (associated with the Invited Address by Mariel Vazquez) (Code: SS 23A), 

Mariel Vazquez, University of California Davis, Christine E. Soteros, University of Saskatchewan, Margherita Maria 
Ferrari, University of South Florida, and Javier Arsuaga, University of California Davis.

Boston, Massachusetts (JMM 2023)
John B. Hynes Veterans Memorial Convention Center, Boston Marriott Hotel, and Boston Sheraton Hotel

January 4–7, 2023
Wednesday – Saturday

Meeting #1183
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: Volume 44, Issue 1

Deadlines

For organizers: Expired

For abstracts: September 13, 2022

Atlanta, Georgia
Georgia Institute of Technology

March 18–19, 2023
Saturday – Sunday

Meeting #1184
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe

Program first available on AMS website: January 26, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: August 18, 2022
For abstracts: January 17, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advanced Topics in Graph Theory and Combinatorics (Code: SS 1A), Songling Shan, Illinois State University, and Guang-
ming Jing, Augusta University.
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Commutative Algebra and its Interactions with Algebraic Geometry (Code: SS 10A), Michael K. Brown and Henry K. 
Schenck, Auburn University.

Fractal Geometry and Dynamical Systems (Code: SS 11A), Scott Kaschner, Butler University, and Mrinal Kanti Roychow-
dhury, University of Texas Rio Grande Valley.

Groups, Geometry, and Topology (Code: SS 4A), Dan Margalit and Yvon Verberne, Georgia Institute of Technology.
Knots, Skein Modules and Categorification (Code: SS 8A), Rhea Palak Bakshi and Józef H. Przytycki, George Washing-

ton University, Radmilla Sazdanovic, North Carolina State University, and Marithania Silvero, Universidad de Sevilla.
Recent Developments in Commutative Algebra (Code: SS 5A), Florian Enescu, Georgia State University, and Thomas 

Polstra, MSRI and University of Virginia.
Recent Developments on Analysis and Computation for Inverse Problems for PDEs (Code: SS 2A), Dinh-Liem Nguyen, Kansas 

State University, and Loc Nguyen and Khoa Vo, University of North Carolina at Charlotte.
Representation Theory of Algebraic Groups and Quantum Groups: A Tribute to the Work of Cline, Parshall and Scott (CPS) 

(Code: SS 6A), Chun-Ju Lai, Academia Sinica, Taiwan, Daniel K. Nakano, University of Georgia, and Weiqiang Wang, 
University of Virginia.

Singer-Hopf Conjecture in Geometry and Topology (Code: SS 9A), Luca Di Cerbo, University of Florida, and Laurentiu 
Maxim, University of Wisconsin-Madison.

Stochastic Analysis and its Applications (Code: SS 7A), Parisa Fatheddin, Ohio State University, Marion, and Kazuo 
Yamazaki, Texas Tech University.

Topology and Geometry of 3- and 4-Manifolds (Code: SS 3A), Siddhi Krishna, Georgia Institute of Technology and Colum-
bia University, Miriam Kuzbary, Georgia Institute of Technology, and Beibei Liu, Max Planck Institute for Mathematics 
and Georgia Institute of Technology.

Spring Eastern Virtual Sectional Meeting
Meeting virtually, EDT (hosted by the American Mathematical Society)

April 1–2, 2023
Saturday – Sunday

Meeting #1185
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub

Program first available on AMS website: February 9, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: September 1, 2022
For abstracts: January 31, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Sigal Gottlieb, University of Massachusetts, Dartmouth, Title to be announced.
Samuel Payne, University of Texas, Title to be announced.

Cincinnati, Ohio
University of Cincinnati

April 15–16, 2023
Saturday – Sunday

Meeting #1186
Central Section
Associate Secretary for the AMS: Betsy Stovall, University 
of Wisconsin-Madison

Program first available on AMS website: February 23, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: September 15, 2022
For abstracts: February 14, 2023
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The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Nathaniel Whitaker, University of Massachusetts Amherst, 2023 AMS Einstein Public Lecture in Mathematics.

Fresno, California
California State University, Fresno

May 6–7, 2023
Saturday – Sunday

Meeting #1187
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: March 16, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: October 1, 2022
For abstracts: March 7, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Sami Assaf, University of Southern California, Title to be announced.
Natalia Komarova, University of California, Irvine, Title to be announced.
Joseph Teran, University of California, Los Angeles, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advances by Scholars in the Pacific Math Alliance (Code: SS 22A), Andrea Arauza Rivera, California State University, East 
Bay, Mario Banuelos, California State University, Fresno, and Jessica De Silva, California State University, Stanislaus.

Advances in Functional Analysis and Operator Theory (Code: SS 6A), Michel L. Lapidus, University of California, Riverside, 
Marat V. Markin, California State University, Fresno, and Igor Nikolaev, St. John’s University.

Algebraic Structures in Knot Theory (Code: SS 4A), Carmen Caprau, California State University, Fresno, and Sam Nelson, 
Claremont McKenna College.

Algorithms in the Study of Hyperbolic 3-manifolds (Code: SS 26A), Robert Haraway, III and Maria Trnkova, University 
of California, Davis.

Analysis of Fractional Differential and Difference Equations with its Application (Code: SS 20A), Bhuvaneswari Samband-
ham, Dixie State University, and Aghalaya S. Vatsala, University of Louisiana at Lafayette.

Artin-Schelter Regular Algebras and Related Topics (Code: SS 27A), Ellen Kirkman, Wake Forest University, and James 
Zhang, University of Washington.

Combinatorics Arising from Representations (associated with the Invited Address by Sami Assaf) (Code: SS 16A), Sami Assaf, 
University of Southern California, Nicolle Gonzalez, University of California, Los Angeles, and Brendan Pawloski, 
University of Southern California.

Complexity in Low-Dimensional Topology (Code: SS 14A), Jennifer Schultens, University of California, Davis, and Eric 
Sedgwick, DePaul University.

Data Analysis and Predictive Modeling (Code: SS 8A), Earvin Balderama, California State University, Fresno, and Adriano 
Zambom, California State University, Northridge.

Inverse Problems (Code: SS 5A), Hanna Makaruk, Los Alamos National Laboratory, and Robert Owczarek, University 
of New Mexico, Albuquerque and University of New Mexico, Los Alamos.

Math Circle Games and Puzzles that Teach Deep Mathematics (Code: SS 13A), Maria Nogin and Agnes Tuska, California 
State University, Fresno.

Mathematical Biology: Confronting Models with Data (Code: SS 21A), Erica Rutter, University of California, Merced.
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Mathematical Methods in Evolution and Medicine (associated with the Invited Address by Natalia Komarova) (Code: SS 1A), 
Natalia Komarova and Jesse Kreger, University of California, Irvine.

Methods in Non-Semisimple Representation Categories (Code: SS 11A), Eric Friedlander, University of Southern California, 
Los Angeles, Julia Pevtsova, University of Washington, Seattle, and Paul Sobaje, Georgia Southern University, Statesboro.

Recent Advances in Mathematical Biology, Ecology, Epidemiology, and Evolution (Code: SS 10A), Lale Asik, Texas Tech Uni-
versity, Khanh Phuong Nguyen, University of Houston, and Angela Peace, Texas Tech University.

Research in Mathematics by Early Career Graduate Students (Code: SS 7A), Doreen De Leon, Marat Markin, and Khang 
Tran, California State University, Fresno.

Scientific Computing (Code: SS 19A), Changho Kim, University of California, Merced, and Roummel Marcia.
The Use of Computational Tools and New Augmented Methods in Networked Collective Problem Solving (Code: SS 18A), Mario 

Banuelos, California State University, Fresno, Andrew G. Benedek, Research Centre for the Humanities, Hungary, and 
Agnes Tuska, California State University, Fresno.

Women in Mathematics (Code: SS 12A), Doreen De Leon, Katherine Kelm, and Oscar Vega, California State University, 
Fresno.

Zero Distribution of Entire Functions (Code: SS 9A), Tamás Forgács and Khang Tran, California State University, Fresno.

Buffalo, New York
University at Buffalo (SUNY)

September 9–10, 2023
Saturday – Sunday

Meeting #1188
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub

Program first available on AMS website: July 27, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: February 9, 2023
For abstracts: July 18, 2023

Omaha, Nebraska
Creighton University

October 7–8, 2023
Saturday – Sunday

Meeting #1190
Central Section
Associate Secretary for the AMS: Betsy Stovall, University 
of Wisconsin-Madison

Program first available on AMS website: August 17, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: March 7, 2023
For abstracts: August 8, 2023

Mobile, Alabama
University of South Alabama

October 13–15, 2023
Friday – Sunday

Meeting #1189
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe

Program first available on AMS website: August 17, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: March 6, 2023
For abstracts: August 8, 2023
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Albuquerque, New Mexico
University of New Mexico

October 21–22, 2023
Saturday – Sunday

Meeting #1191
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: August 31, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: March 21, 2023
For abstracts: August 22, 2023

Auckland, New Zealand
December 4–8, 2023
Monday – Friday
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

San Francisco, California (JMM 2024)
Moscone West Convention Center

January 3–6, 2024
Wednesday – Saturday
Associate Secretary for the AMS: Michel L. Lapidus
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Washington, District of Columbia
Howard University

April 6–7, 2024
Saturday – Sunday
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

San Francisco, California
San Francisco State University

May 4–5, 2024
Saturday – Sunday
Western Section
Associate Secretary for the AMS: Michelle Ann Manes
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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Palermo, Italy
July 23–26, 2024
Tuesday – Friday
Associate Secretary for the AMS: Brian D. Boe
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Riverside, California
University of California, Riverside

October 26–27, 2024
Saturday – Sunday
Western Section
Associate Secretary for the AMS: Michel L. Lapidus
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Washington, District of Columbia (JMM 2026)
Walter E. Washington Convention Center and Marriott Marquis Washington DC

January 4–7, 2026
Sunday – Wednesday
Associate Secretary for the AMS: Betsy Stovall
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced



The Mathematical Moments program promotes 
appreciation and understanding of the role mathematics 
plays in science, nature, technology, and human culture.

www.ams.org/mathmoments

MM/161

Deblurring Images

Imagine snapping a quick picture of a flying bird—the 
image is likely to come out blurry. But thanks to math-
ematics, you might be able to use software to improve the 
photo. Scientists often deal with blurry pictures, too. Linear 
algebra and clever numerical methods allow researchers 
to fix imperfect photos in medical imaging, astronomy, and 
more. In a computer, the pixels that make up an image can 
be represented as a column of numbers called a vector. 
Blurring happens when the light meant for each pixel spills 
into the adjacent pixels, changing the numbers in a way 
that can be mathematically represented as an enormous 
matrix. But knowing that matrix is not enough if you want 
to reconstruct the original (non-blurry) image.

That’s because pixels in the blurred image will have extra 
errors (or “noise”) resulting from the physical process 
of taking the photo. If you don’t account for them, trying 
to recreate the original image amplifies these errors. 
Mathematicians have developed various approaches to get 

rid of the noise while still retaining as much correct information as possible. 
The best way to do so depends on the cause of the blur, whether the original 
image had sharp edges or was smooth, and the physics underlying how the 
image was captured. In ongoing research, experts are working to speed up the 
necessary computer calculations and store vast amounts of image data effi-
ciently. Whether you’re getting an MRI scan of your body or admiring a photo 
of a distant galaxy, mathematics helped make the image crystal-clear.

For More Information: “The Image Deblurring Problem: Matrices, Wavelets, 
and Multilevel Methods,” D. Austin, M. Espanol, M. Pasha, Notices of the American 
Mathematical Society 69, 2022 (forthcoming).

Watch an interview 
with an expert!

This image was deblurred using code available at
https://www.mathworks.com/help/images/ref/deconvwnr.html
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Free shipping for members 
in the USA (including Puerto Rico) and Canada.

Discover more titles at bookstore.ams.org

NEW RELEASES from the AMS = Textbook

Ultrafilters Throughout 
Mathematics  
Isaac Goldbring, University of 
California, Irvine, CA

Ultrafilters and ultraproducts 
provide a useful generalization of 
the ordinary limit processes which 
have applications to many areas of 
mathematics. Typically, this topic 
is presented to students in special-
ized courses such as logic, func-
tional analysis, or geometric group 
theory. In this book, the basic facts 
about ultrafilters and ultraproducts 
are presented to readers with no 
prior knowledge of the subject and 
then these techniques are applied 
to a wide variety of topics.

Graduate Studies in Mathematics, 
Volume 220; 2022; 408 pages; Hardcover; 
ISBN: 978-1-4704-6900-9; List US$125; 
AMS members US$100; MAA members 
US$112.50; Order code GSM/220

Theory of
Operator Spaces  
Edward G. Effros, and Zhong-
Jin Ruan, University of Illinois at 
Urbana-Champaign, IL

This book provides the main 
results and ideas in the theories 
of completely bounded maps, 
operator spaces, and operator 
algebras, along with some of their 
main applications. It requires only 
a basic background in functional 
analysis to read through the book. 
The descriptions and discussions 
of the topics are self-explained. It is 
appropriate for graduate students 
new to the subject and the field.

AMS Chelsea Publishing, Volume 386; 
2022; 358 pages; Softcover; ISBN: 978-1-
4704-6505-6; List US$60; AMS members 
US$48; MAA members US$54; Order 
code CHEL/386

Count Me In
Community and Belonging
in Mathematics
Della Dumbaugh, University 
of Richmond, VA, and Deanna 
Haunsperger, Carleton College, 
Northfield, MN, Editors

This groundbreaking work explores 
the powerful role of communi-
ties in mathematics. It introduces 
readers to twenty-six different 
mathematical communities and 
addresses important questions 
about how they form, how they 
thrive, and how they advance indi-
viduals and the group as a whole. 
The chapters celebrate how diver-
sity and sameness bind colleagues 
together, showing how geography, 
gender, or graph theory can create 
spaces for colleagues to establish 
connections in the discipline. 

Classroom Resource Materials, Volume 
68; 2022; 241 pages; Softcover; ISBN: 
978-1-4704-6566-7; List US$65; AMS 
members US$48.75; MAA members 
US$48.75; Order code CLRM/68

GRADUATE STUDIES
IN MATHEMATICS 220

Ultrafilters 
Throughout
Mathematics

Isaac Goldbring 

AMS CHELSEA PUBLISHING

Theory ofTheory of
Operator SpacesOperator Spaces

Edward G. EffrosEdward G. Effros
Zhong-Jin RuanZhong-Jin Ruan

http://bookstore.ams.org
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