
A.T.V.’s for (Geometric)
Off-roading: A Gentle

Introduction to Arithmetic
Toric Varieties

Patrick K. McFaddin
1. Introduction
A fundamental problem in mathematics is how to deter-
mine whether a given finite collection of polynomials has
a common solution, and how to quantify and qualify the
shape of this solution set in a meaningful way. Indeed,
linear algebra is the study of polynomials of degree one,
and the theory of quadratic forms investigates polynomi-
als of degree two. In general, this is the staring point of
algebraic geometry and the theory of algebraic varieties. Over
the past few centuries, algebraic geometers have developed
a wide array of tools called invariants for studying such
geometric objects. Invariants are pieces of data (numbers,
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sets, groups, vector spaces, categories) associated to mathe-
matical objects which produce the same output on objects
which are effectively identical, i.e., those which are isomor-
phic in the appropriate sense. In other words, invariants
are those associations which are invariant under isomor-
phism.

Invariants help us distinguish algebraic varieties which
have distinct geometric properties, greatly improving our
ability to classify them. To study varieties, it is necessary
to study their invariants, how to effectively compute them,
and what information they reflect about the algebra, ge-
ometry, and arithmetic of a given variety. Often one gains
a great deal of insight by computing invariants on large
classes of particularly nice varieties. Toric varieties defined
over the complex numbers have proved to be an extremely
useful class of geometric objects to test the flexibility and
robustness of a slew of algebro-geometric invariants. Our
understanding of divisor class groups, Picard groups, al-
gebraic 𝐾-theory, derived categories, moduli problems,
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geometric invariant theory, and the minimal model pro-
gram has been greatly improved by investigating these in-
variants for toric varieties [CLS11].
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To investigate the utility and limitations of these in-
variants in the arithmetic case, i.e., for varieties over non-
algebraically closed fields, one aims to find a similarly use-
ful class of varieties. Simply taking the naive, analogous
definition of toric varieties over arbitrary fields yields a the-
ory which is too similar to the complex case and fails to
faithfully reflect arithmetic. Instead, one looks to twisted
forms of toric varieties, which we call arithmetic toric vari-
eties. For such varieties, the combinatorial nature of com-
plex toric varieties persists, but additional Galois-theoretic
analysis plays a crucial role. The study of arithmetic toric
varieties is then reduced to understanding combinatorial
objects (fans, cones, etc.) and how Galois groups asso-
ciated to certain field extensions act on these objects. In
this way, arithmetic toric varieties serve as a convenient
bridge between arithmetic and combinatorial algebraic ge-
ometry, which we hope to exploit to study derived invari-
ants. By veering off of the geometrically beaten path with
our A.T.V.’s, we hope to gain deeper insight into various in-
variants and their limitations in reflecting arithmetic data.
Here we highlight two properties of interest in the arith-
metic setting: the existence of rational points and rationality.
The first is the problem of determining whether a collec-
tion of polynomials admits a common solution. The sec-
ond focuses on how to parametrize the solution set of a
collection of polynomials using only rational functions.

The purpose of this manuscript is to give a small sam-
pling of the theory of arithmetic toric varieties, focusing
on simple examples in low dimension using explicit poly-
nomial equations. Even with this restricted “cheat-sheet”
type viewpoint, there is hope that the reader may glean a
general sense of the analysis of such objects. While some
topics are only glossed over, and some terminology is de-
fined in a colloquial manner, we hope that thismanuscript

serves as an invitation to the reader to look more deeply
into these topics and ideas.

A second goal is to highlight the class of arithmetic
toric varieties as the most natural testing ground to study
the limitations of algebro-geometric invariants in the arith-
metic setting. There is already a rich history of such work,
including the analysis of del Pezzo surfaces and Severi-
Brauer varieties. Using more recent work which system-
atically investigates arithmetic toric varieties using Galois
(and non-ablelian) cohomology [Dun16,ELFST14,MP97],
we hope to gain new insights into this class of objects. We
point out one particular success story in this line of inves-
tigation concerning the invariant given by the coherent de-
rived category. It has been found that unless the derived
category has a fine decomposition into very simple pieces,
it does not generally reflect rationality properties well. This
yields a broader understanding of the derived category as
an arithmetic invariant. On the other hand, one might
share the author’s disappointment that the derived cate-
gory is not better suited to this task. C’est la vie! Our hope
is that the class of arithmetic toric varieties will be used to
probe other invariants in an analogous fashion.
Organization. We begin by recalling some basic termi-
nology from the theory of algebraic varieties and their
arithmetic, including a discussion of algebraic groups and
twisted forms. In Section 3, we discuss toric varieties de-
fined over the complex numbers, introducing the combi-
natorial description of these geometric objects in low di-
mension. In Section 4, arithmetic toric varieties are in-
troduced and examples are provided. In Section 5, we re-
port on recent results which provide insight into the use
of arithmetic toric varieties in studying the limitations of
the derived category as an arithmetic invariant of smooth
projective varieties.
Notation and conventions. All rings are associative with
identity and all vector spaces are finite-dimensional. A
monoid is a set together with an associative binary opera-
tion which admits an identity element. Given a field 𝑘, a
𝑘-algebra is a ring which also admits the structure of a 𝑘-
vector space, and these operations are compatible. A divi-
sion ring (resp., division 𝑘-algebra) is a ring (resp., 𝑘-algebra)
in which every non-zero element has a multiplicative in-
verse. Given two objects 𝐴 and 𝐵 in the same category, we
use Hom(𝐴, 𝐵) to denote the collection of all morphisms
(i.e., structure preserving functions) from 𝐴 to 𝐵. Through-
out, we let ℂ denote the field of complex numbers, and
𝑘 ⊆ ℂ a Galois extension of fields.

2. Varieties, Groups, and Twisted Forms
Let us begin by giving an overview of varieties defined over
the field of complex numbers. An affineℂ-variety is a subset
of ℂ𝑛 of the form

𝐕(𝐼) = {𝐚 = (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ℂ𝑛 ∣ 𝑓(𝐚) = 0 for all 𝑓 ∈ 𝐼}
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for some ideal 𝐼 ⊴ ℂ[𝑥1, … , 𝑥𝑛]. Given a finite set of poly-
nomials 𝑓1, .., 𝑓𝑚 ∈ ℂ[𝑥1, … , 𝑥𝑛], we similarly define the
variety given by the set of simultaneous zeros of all the 𝑓𝑖,
i.e., 𝐕(𝑓1, … , 𝑓𝑛) = {𝐚 ∈ ℂ𝑛 ∣ 𝑓𝑖(𝐚) = 0 for all 𝑓𝑖}. This coin-
cides with the variety associated to the ideal generated by
the 𝑓𝑖, and any variety is given by the vanishing of finitely
many polynomials, a consequence of theHilbert Basis The-
orem [Eis95, Thm. 1.2].

Conversely, given any affine ℂ-variety 𝑉 ⊆ ℂ𝑛, we ob-
tain the defining ideal of 𝑉

𝐈(𝑉) = {𝑓 ∈ ℂ[𝑥1, … , 𝑥𝑛] ∣ 𝑓(𝐚) = 0 for all 𝐚 ∈ 𝑉}.
The quotient ring ℂ[𝑉] ≔ ℂ[𝑥1, … , 𝑥𝑛]/𝐈(𝑉) is the coordi-
nate ring of 𝑉 . Notice that if 𝑊 ⊆ 𝑉 is an inclusion of
affine ℂ-varieties, then 𝐈(𝑉) ⊆ 𝐈(𝑊). The constructions 𝐈
and𝐕 are are inverses of one another if we restrict to a nice
class of ideals. Indeed, for any ideal 𝐼 ⊴ ℂ[𝑥1, … , 𝑥𝑛], we
have

𝐈(𝐕(𝐼))=√𝐼={𝑓 ∈ ℂ[𝑥1, … , 𝑥𝑛] ∣ 𝑓𝑚 ∈ 𝐼 for some 𝑚 ∈ ℤ}
by Hilbert’s Nullstellenstatz [Eis95, Thm. 1.6]. This re-
sult, which crucially relies on the fact thatℂ is algebraically
closed, yields a bijective correspondence between affine va-
rieties and radical ideals (i.e., ideals satsifying 𝐼 = √𝐼). In
other words, the geometric object, given by solution sets
of polynomials, completely determines the underlying al-
gebraic data, and vice versa.

The naturalmaps between affineℂ-varieties are given by
polynomial functions. If 𝑉 ⊆ ℂ𝑛 and 𝑊 ⊆ ℂ𝑚 are affine
ℂ-varieties, a morphism or regular function 𝜑 ∶ 𝑉 → 𝑊 has
both geometric and algebraic descriptions:

1. Geometric: A function 𝜑 ∶ 𝑉 → ℂ is regular if there is
a polynomial 𝐹 ∈ ℂ[𝑥1, .., 𝑥𝑛] such that 𝜑(𝑥) = 𝐹(𝑥)
for all 𝑥 ∈ 𝑉 . A function 𝜑 ∶ 𝑉 → 𝑊 is regular if there
exist regular functions 𝜑1, .., 𝜑𝑚 ∶ 𝑉 → ℂ such that
𝜑(𝑥) = (𝜑1(𝑥), … , 𝜑𝑚(𝑥)) for all 𝑥 ∈ 𝑉 .

2. Algebraic: A regular function 𝑉 → 𝑊 is equivalent
to the data of a ℂ-algebra homomorphism ℂ[𝑊] →
ℂ[𝑉]. If 𝜑 ∶ 𝑉 → 𝑊 is a regular function, the cor-
responding ℂ-algebra homomorphism is defined as
𝜑∗(𝑓) = 𝑓 ∘ 𝜑, for 𝑓 ∈ ℂ[𝑊].

An isomorphism of affine ℂ-varieties is a regular map
which has a regular inverse. Equivalently, an isomorphism
of affine ℂ-varieties 𝑉 and 𝑊 is given by an isomorphism

of ℂ-algebras ℂ[𝑊] ∼−→ ℂ[𝑉]. A general ℂ-variety is a space
which locally looks like an affine ℂ-variety, i.e., each point
has a neighborhood which is isomorphic to an affine ℂ-
variety. If 𝑉 and 𝑊 are ℂ-varieties, a function 𝜑 ∶ 𝑉 → 𝑊
is regular if for each 𝑥 ∈ 𝑉 and any affine open sub-
set 𝑉 ⊆ ℂ𝑚 containing 𝜑(𝑥), there is a neighborhood
𝑥 ∈ 𝑈 ⊆ 𝑉 such that 𝜑(𝑈) ⊆ 𝑉 and 𝜑 ∶ 𝑈 → 𝑉 is regular.
This is analogous to the definition of a manifold, which is
locally Euclidean space.

In the case where the base field is not algebraically
closed, the Nullstellensatz no longer holds, and the geo-
metric data of the variety is not enough to fully determine
its underlying algebraic structure. For this reason, our def-
inition of 𝑘-variety centers on algebraic data. For our pur-
poses, we adopt (a simplified version of) the approach
given in [Bor91,Spr98] using 𝑘-structures on varieties.

A 𝑘-structure on a ℂ-algebra 𝐴 is a 𝑘-subalgebra 𝐴𝑘 ⊆ 𝐴
such that the homomorphism ℂ⊗𝑘 𝐴𝑘 → 𝐴 is an isomor-
phism. If 𝐴 is a ℂ-algebra with 𝑘-structure 𝐴𝑘 and 𝐽 ⊴ 𝐴,
then 𝐽 is defined over 𝑘 if 𝐽 ∩ 𝐴𝑘 generates 𝐽 as an ideal.
If 𝜑 ∶ 𝐴 → 𝐵 is a homomorphism of ℂ-algebras with 𝑘-
structures 𝐴𝑘 and 𝐵𝑘, then 𝑓 is defined over 𝑘 if 𝜑(𝐴𝑘) ⊆ 𝐵𝑘.
An affine ℂ-variety 𝑉 ⊆ ℂ𝑛 is defined over 𝑘 if there exist
𝑓1, … , 𝑓𝑚 ∈ 𝑘[𝑥1, … , 𝑥𝑛] such that 𝑉 = 𝐕(𝑓1, … , 𝑓𝑚). From
this perspective, 𝑘-varieties are given by ℂ-varieties whose
defining polynomials are elements of 𝑘[𝑥1, … , 𝑥𝑛], and we
use this perspective onward.

Definition 2.1 (Affine 𝑘-variety). An affine 𝑘-variety is a
finite collection of polynomials

𝑋 = {𝑓𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛]}.
Such a collection gives rise to the following algebraic and
geometric data:

1. Algebraic: The defining ideal 𝐈(𝑋) = (𝑓1, … , 𝑓𝑚) and
coordinate ringℂ[𝑋], which admits a 𝑘-structure given
by 𝑘[𝑋] ∶= 𝑘[𝑥1, … , 𝑥𝑛]/𝐈(𝑋) ⊆ ℂ[𝑋]. Relative to this
𝑘-structure, the ideal 𝐈(𝑋) is defined over 𝑘.

2. Geometric: The set of 𝑘-rational points (or simply
𝑘-points) is given by

𝑋(𝑘) ∶= {𝐚 ∈ 𝑘𝑛 ∣ 𝑓𝑖(𝐚) = 0 for all 𝑓𝑖} ⊆ 𝑘𝑛.
More generally, for any field extension 𝑘 ⊆ 𝐹, the set
of 𝐹-points is given by

𝑋(𝐹) ∶= {𝐚 ∈ 𝐹𝑛 ∣ 𝑓𝑖(𝐚) = 0 for all 𝑓𝑖}.
Notice that the solution set of the defining equations

of a variety is just one piece of information that we can
extract. The ability to consider the set of solutions over
extensions of 𝑘 allow us to probe deeper questions about
the arithmetic of varieties.

We may refer to a variety by describing its set of points,
but will often remind the reader of its full variety structure
when necessary, i.e., we write 𝑋 = {𝑓𝑖 = 0} to denote a
variety 𝑋 defined by {𝑓𝑖}. In certain cases, e.g., the point-
less conic of Example 2.4, varieties may have no points
at all, yet still provide interesting examples of “geometric
objects,” via their algebraic and arithmetic data. In these
cases (especially in Section 4) it is necessary to include the
full variety structure.

The sets given by the collection of common zeros
of finitely many polynomials are the closed sets in a
topology on 𝑘𝑛 called the Zariski topology. If we view a
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polynomial 𝑓 ∈ 𝑘[𝑥1, .., 𝑥𝑛] as a function 𝑘𝑛 → 𝑘, then
the Zariski topology is the coarsest topology in which all
polynomials are continuous [Kem11, Rmk 3.3(g)]. Alge-
braic varieties are often described in terms of sets together
with this topology. For instance, the set 𝑘𝑛 together with
its Zariski topology is the variety 𝔸𝑛𝑘 called affine 𝑛-space.
We can also describe it using a (quite trivial!) polynomial
equation.

Example 2.2 (Affine space). Consider the 𝑘-variety 𝔸𝑛𝑘
whose defining polynomial is the 0 polynomial in
𝑘[𝑥1, … , 𝑥𝑛]. Since every element of 𝑘𝑛 vacuously satis-
fies this equation 0 = 0, the 𝑘-points of 𝔸𝑛𝑘 are given by
𝔸𝑛𝑘(𝑘) = 𝑘𝑛. We will often denote this variety simply by 𝑘𝑛,
e.g., ℂ𝑛 denotes the variety 𝔸𝑛ℂ and ℝ𝑛 denotes 𝔸𝑛ℝ.

Note that any affine variety 𝑋 can be viewed as a sub-
variety of affine space. This is easiest to see on points. In-
deed, a point of𝑋 is a simultaneous solution of its defining
equations. But such solutions are elements of 𝑘𝑛 = 𝔸𝑛𝑘 by
definition.

Example 2.3 (Circle group). Consider the ℝ-variety 𝑋 =
{𝑥2 + 𝑦2 − 1 = 0}. Then 𝑋(ℝ) is given by the unit circle
in ℝ2. For that reason, we denote this variety by 𝑆1. It
also has the structure of a group, which comes from the
action of rotation matrices on the coordinates 𝑥, 𝑦 of the
ambient space ℝ2 = 𝔸2ℝ, and we call this variety the circle
group. We will encounter a few other algebraic groups below
(Example 2.5 and Subsection 2.1).

Example 2.4 (Pointless real conic). Consider theℝ-variety
𝑋 = {𝑥2 + 𝑦2 + 1 = 0}. Then 𝑋(ℝ) = ∅, so there exist
ℝ-varieties which have no ℝ-points, a fact we all remem-
ber from solving equations in grade school! Even though
this variety has no points, it is still useful to view it as a
one-dimensional geometric object, i.e., a curve. This is the
benefit of remembering its defining equation (i.e., its full
structure as a variety). This reflects the arithmetic complex-
ity of ℝ versus that of ℂ, particularly the fact that ℂ is al-
gebraically closed while ℝ is not. We expect arithmetically
complicated fields to admit many examples of such vari-
eties.

Example 2.5 (Multiplicative group). Consider the ℝ-
variety 𝑋 = {𝑥𝑦 − 1 = 0}. The set of ℝ-points of 𝑋 is given
by a hyperbola in ℝ2. Projecting this hyperbola onto the
𝑥-axis gives us ℝ∗ = ℝ ⧵ {0}. This variety is called the mul-
tiplicative group and is an algebraic group, i.e., it simulta-
neously has the structure of an affine variety and a group.
When we wish to remember its structure as a variety (i.e.,
its defining equation), wewill denote it by𝔾𝑚 or𝔾𝑚,ℝ. We
will also denote this variety by ℝ∗, since this set defines its
ℝ-points.

The defining equation of 𝔾𝑚,ℝ is equivalent to 𝑦 = 𝑥−1,
and so this variety is often described by the polynomial
ring ℝ[𝑥, 𝑥−1]. This gives an intuitive understanding of

how polynomial functions define our varieties. When we
restrict our attention to non-zero elements of ℝ = 𝔸1ℝ,
both 𝑥 and

1
𝑥

are well-defined functions which satisfy the

relation 𝑥 ⋅ 1
𝑥
= 1. Conversely, the one-dimensional geo-

metric space on which both 𝑥 and
1
𝑥

are well-defined is
given by the non-zero elements of ℝ. We also realize 𝔾𝑚,ℝ
as an open subset of the affine line. In the Zariski topology,
the polynomial function 𝑓(𝑥) = 𝑥 has zero set {0}, which
is a closed set. Its complement is then the open set ℝ∗, a
quasi-affine variety.

We may equally well view 𝑋 as a variety over ℚ or ℂ, or
any field 𝑘; they all contain 0 and 1, and this is all that is
needed for its defining equation. In these cases, we write
𝔾𝑚,ℚ,𝔾𝑚,ℂ, or𝔾𝑚,𝑘 but will also useℚ∗,ℂ∗, and 𝑘∗, respec-
tively. We also refer to the multiplicative group as the one-
dimensional torus. This moniker is discussed in Section 3.

Definition 2.6. Let 𝑋 and 𝑌 be affine 𝑘-varieties. A mor-
phism 𝑋 → 𝑌 is given by the data of a ℂ-algebra homo-
morphism 𝜑 ∶ ℂ[𝑌] → ℂ[𝑋] which is defined over 𝑘, i.e.,
𝜑 satisfies 𝜑(𝑘[𝑌]) ⊆ 𝑘[𝑋]. A morphism 𝑋 → 𝑌 is an iso-
morphism if the corresponding map of ℂ-algebras is an
isomorphism defined over 𝑘.

A morphism 𝑋 → 𝑌 of 𝑘-varieties defined over 𝑘 in-
duces a function 𝑋(𝐹) → 𝑌(𝐹) on 𝐹-points for any 𝑘 ⊆ 𝐹,
which makes senses even if the domain has no points (by
including the empty set as a subset). A nice class of ex-
amples is provided by twisted-linear subvarieties of Severi-
Brauer varieties [GS06, §5.1]. If the domain has a point,
the image of this point is then a point in the codomain.
This is a useful fact that can be used to argue the non-
existence of morphisms between 𝑘-varieties, e.g., any ℝ-
variety which has ℝ-points cannot admit a morphism to
the pointless ℝ-conic in Example 2.4.

Examples 2.3 and 2.4 above show us the difficulty in
determining when a 𝑘-variety admits rational points. In-
deed, the circle group and pointless conic have nearly iden-
tical defining equations, but starkly contrasting algebro-
geometric properties; one has lots ofℝ-points and a group
structure while the other has neither.

A related problem is to determine when a given va-
riety contains a dense open subset which is isomorphic
to an open subset of affine space 𝔸𝑛𝑘. Such varieties are
called rational, and this property is equivalent to having a
parametrization by rational functions. Such varieties have
lots of rational points, corresponding to all the points of
𝔸𝑛𝑘. Again, 𝑆1 and the pointless conic are quite distinct in
this regard. The variety 𝑆1 is rational (stereographic projec-
tion onto a line is one way to see this), while the pointless
conic is not rational since it does not have any rational
points.
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Determining whether a given variety is rational (or
unirational, stably rational, retract rational) is a long-
standing problem in arithmetic and algebraic geome-
try. Recent work has invoked the use of sophisticated
(co)homological techniques, including Chow groups,
unramified cohomology, and derived categories (see
[AB17, Pir18] for surveys on these topics). In Section 5
we provide a discussion on a particular success story in the
theory of derived categories.
2.1. Algebraic groups. Since our main objects of interest
are certain varieties which admit a group structure (and
partial compactifications thereof), we give a formal defini-
tion of algebraic groups, their morphisms, and additional
examples.

Definition 2.7. An algebraic group or group variety over 𝑘 is
a 𝑘-variety𝐺 which also admits the structure of a group. In
other words, an algebraic group is a variety together with
the following regular maps (morphisms in the category of
varieties)

1. group multiplication 𝑚 ∶ 𝐺 × 𝐺 → 𝐺
2. inclusion of the identity element 𝑒 ∶ ∗ → 𝐺
3. inversion inv ∶ 𝐺 → 𝐺.

Here, ∗ denotes the variety which consists of a single point,
e.g., {𝑥 = 0} ⊆ 𝔸1𝑘. These maps are then required to satisfy
additional compatibility properties, mimicking the usual
group axioms and which we leave to the reader. We note
that if 𝐺 is an algebraic group, its set of points 𝐺(𝑘) has a
group structure (in the usual sense of abstract groups), but
this does not fully define the algebraic group structure on
𝐺. Given algebraic groups 𝐺 and 𝐻, an algebraic group mor-
phism 𝜑 ∶ 𝐺 → 𝐻 is a regular map which preserves the al-
gebraic group structure, i.e., a homomorphism of groups.

Example 2.8 (General linear group). Consider the poly-
nomial ring 𝑅 = 𝑘[𝑥11, 𝑥12, … , 𝑥𝑛𝑛, 𝑦] in 𝑛2 + 1 variables,
and let 𝑋 = (𝑥𝑖𝑗) be the matrix of indeterminates. The de-
terminant of 𝑋 is a polynomial, so that det(𝑋)𝑦 − 1 ∈ 𝑅.
Let GL𝑛,𝑘 denote the affine 𝑘-variety defined by this poly-
nomial. Notice that its 𝑘-points GL𝑛(𝑘) are given by pairs
(𝑀, 𝑑) where 𝑀 is an invertible 𝑛 × 𝑛 matrix with entries
in 𝑘 and 𝑑 = det(𝑀)−1. Since invertibility of a matrix is
equivalent to its determinant being non-zero, the defin-
ing equation recovers the usual definition encountered in
group theory. Moreover, this description realizes GL𝑛,𝑘 as

a subvariety of 𝔸𝑛2+1𝑘 .

Example 2.9 (Algebraic tori). It wasmentioned above that
𝔾𝑚,𝑘 = 𝑘∗ is also an algebraic group. In fact, we can real-
ize it as a subvariety of GL𝑛,𝑘. Indeed, if we take our matrix
of variables 𝑋 , to be the diagonal matrix diag(𝑥11, 1, … , 1),
then the equation det(𝑋)𝑦 = 1 becomes 𝑥11𝑦 = 1. But
this is exactly the defining equation of 𝔾𝑚,𝑘 = 𝑘∗ (apart
from the names of our indeterminants). More generally,

𝔾𝑛
𝑚,𝑘 = 𝔾𝑚,𝑘 × ⋯ × 𝔾𝑚,𝑘 is the subvariety of GL𝑛,𝑘

where we take our matrix of variables to be 𝑋 =
diag(𝑥11, 𝑥22, … , 𝑥𝑛𝑛).
Example 2.10 (Determinant, special linear group). The de-
terminant map det ∶ GL𝑛,𝑘 → 𝔾𝑚,𝑘 defines a morphism of
algebraic groups and has kernel SL𝑛,𝑘, the affine 𝑘-variety
given by det(𝑋) = 1. If we consider the 𝑘-points of each of
these algebraic groups, we recover our usual determinant
map det ∶ GL𝑛(𝑘) → 𝑘∗, which has kernel SL𝑛(𝑘).
2.2. Twisted forms. For 𝑘 ⊆ ℂ, any 𝑘-variety may be con-
sidered as a ℂ-variety simply by viewing the defining equa-
tions as having coefficients in ℂ. We denote this ℂ-variety
by 𝑋ℂ. The process of enlarging the field of coefficients of
a given variety is called base extension or extension of scalars.

Example 2.11. Let ℝ∗ = {𝑢𝑣 − 1 = 0} be the real multi-
plicative group and let 𝑆1 = {𝑥2 + 𝑦2 − 1 = 0} be the circle
group. As ℝ-varieties, these are non-isomorphic. Indeed,
one may consider the invariant given by the number of
connected components of ℝ-points. On the other hand,
we note that the defining equations yield isomorphic vari-
eties when we view them as polynomial equations over ℂ,
i.e., after extending scalars. Indeed, the equation 𝑢𝑣−1 = 0
over ℂ defines the variety 𝔾𝑚,ℂ = ℂ∗, and we have an iso-
morphism ℂ∗ ≅ 𝑆1ℂ given by 𝑢 ↦ (𝑥+ 𝑖𝑦) and 𝑣 ↦ (𝑥− 𝑖𝑦).

Since varieties defined over ℂ are completely deter-
mined by their geometric structure, we view 𝑋ℂ as a geo-
metric “shadow” of 𝑋 , and use its nicer geometric proper-
ties to extract information about𝑋 . For this reason, proper-
ties of 𝑘-varieties andmorphisms which hold overℂ are of-
ten labelled as geometric. In the above example, ℝ∗ and 𝑆1
are geometrically isomorphic since they are isomorphic over
ℂ.

How can we get a handle on systematically studying ex-
amples of geometrically isomorphic varieties? One solu-
tion is to parametrize the collection of all such varieties
in a way that reduces the study of 𝑘-varieties 𝑋 to under-
standing their geometric avatar 𝑋ℂ, and the arithmetic re-
lationship between 𝑘 andℂ. This can be achieved using the
theory of Galois cohomology. Given a Galois field extension
𝑘 ⊆ ℂ, the Galois group Gal(ℂ/𝑘) = {𝜎 ∈ Aut(ℂ) ∣ 𝜎|𝑘 = id𝑘}
is the set of those field automorphisms of ℂ which fix 𝑘
pointwise. If 𝑋 is a 𝑘-variety, the action of the Galois group
on ℂ induces an action on 𝑋ℂ, where an automorphism
𝜎 ∈ Gal(ℂ/𝑘) is applied to the coefficients of the defining
polynomial equations.

Example 2.12. Consider the ℝ-variety 𝑋 = {𝑥2 + 𝑦2 =
0}. The ℝ-points of 𝑋 are given by 𝑋(ℝ) = {(0, 0)}. If we
consider 𝑋 as a ℂ-variety, then we get a factorization of its
defining equation. That is, 𝑋ℂ = {(𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 0}.
This variety consists of two pieces, given by {𝑥 = 𝑖𝑦} and
{𝑥 = −𝑖𝑦}. The Galois group Gal(ℂ/ℝ) ≅ ℤ/2 acts on 𝑋ℂ via
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conjugation, and this action swaps its two components. It
also acts on the ℂ-points, e.g., (𝑖, −1) ↦ (−𝑖, −1).
Definition 2.13 (Twisted form). Let𝑋 be a 𝑘-variety (resp.,
𝑘-algebra). A twisted form of 𝑋 is a 𝑘-variety (resp. 𝑘-
algebra) 𝑌 such that 𝑋ℂ ≅ 𝑌ℂ. We let Tw(𝑋) denote the
set of isomorphism classes of twisted forms of 𝑋 . This set
is pointed, i.e., it comes with a canonical distinguished ele-
ment given by 𝑋 itself.

Example 2.14. As we saw in Example 2.11, the variety 𝑆1
is a twisted form of ℝ∗. Indeed, we have 𝑆1ℂ ≅ ℂ∗ ≅ (ℝ∗)ℂ.
This is a complete list, so that Tw(ℝ∗) = {ℝ∗, 𝑆1}, and the
distinguished element is ℝ∗.

There is a natural (in the technical sense of the word)
way to parametrize the collection of twisted forms of a
given variety. This comes from the theory of profinite
group cohomology and its application in the case of Ga-
lois groups associated to field extensions provides an in-
valuable tool in the study of twisted forms.

Theorem 2.15 ([Ser79, Ser02]). There is a bijection of
pointed sets Tw(𝑋) ≅ 𝐻1(𝑘, Aut(𝑋)).

Let us roughly define 𝐻1(𝑘,Aut(𝑋)), following [Jah00].
Given a finite group 𝐺, a 𝐺-group 𝑀 is a group with an ac-
tion of 𝐺 such that 𝑔 ⋅ (𝑎𝑏) = (𝑔 ⋅ 𝑎)(𝑔 ⋅ 𝑏) for all 𝑎, 𝑏 ∈ 𝑀
and 𝑔 ∈ 𝐺, so that the group structure of 𝑀 is compatible
with the group action of 𝐺. A cocycle from 𝐺 to𝑀 is a func-
tion 𝜑 ∶ 𝐺 → 𝑀 such that 𝜑(𝑔ℎ) = 𝜑(𝑔)𝑔 ⋅ 𝜑(ℎ). This may
be viewed as a twisted version of a group homomorphism,
where the twisting occurs when moving an application of
𝜑 past 𝑔. Two cocycles 𝜑 and 𝜓 are cohomologous if there
is an element 𝑏 ∈ 𝑀 so that 𝜓(𝑔) = 𝑏−1𝜑(𝑔)𝑔 ⋅ 𝑏 for all
𝑔 ∈ 𝐺 (a “twisted conjugate”). This defines an equivalence
relation on cocycles, and the set of equivalence classes is
denoted 𝐻1(𝐺,𝑀). This set is pointed by the trivial cocy-
cle given by 𝜑 ∶ 𝐺 → 𝑀 via 𝜑(𝑔) = 𝑒 for all 𝑔 ∈ 𝐺.
We extend this definition to profinite groups, i.e., (projec-
tive) limits of finite groups, by taking the colimit of infla-
tion maps over all open normal subgroups of 𝐺. Given a
Galois extension 𝑘 ⊆ ℂ, the group Gal(ℂ/𝑘) is profinite.
If 𝑋 is a 𝑘-variety, the automorphism group Aut(𝑋ℂ) of
𝑋ℂ is a Gal(ℂ/𝑘)-group, so we can consider its first group
cohomology 𝐻1(Gal(ℂ/𝑘),Aut(𝑋ℂ)), which we denote by
𝐻1(𝑘,Aut(𝑋)) as above.

The advantage of the above result is that we have a
purely algebraic and functorial method to parameterize
the collection of all twisted forms of a given variety (as
long as it is nice enough; Theorem 2.15 holds for quasi-
projective varieties where Aut(𝑋) is an algebraic group).
This makes analysis of such twisted forms much more sys-
tematic.

Example 2.16. A classical example of the above
framework is the bijective correspondence between

Severi-Brauer varieties and central simple algebras. A
Severi-Brauer variety 𝑋 is a twisted form of projective space,
i.e., 𝑋ℂ ≅ ℙ𝑛−1ℂ . A central simple algebra 𝐴 is a twisted form
of a matrix algebra, i.e., 𝐴 ⊗𝑘 ℂ ≅ 𝑀𝑛(ℂ). The automor-
phism group of both the matrix algebra 𝑀𝑛(ℂ) and pro-
jective space ℙ𝑛−1ℂ is the projective linear group PGL𝑛(ℂ).
Thus, we get bijections

Tw(𝑀𝑛(ℂ)) ≅ 𝐻1(𝑘,PGL𝑛) ≅ Tw(ℙ𝑛−1ℂ ),
and therefore a bijection between Severi-Brauer varieties
and central simple algebras. This assoication has an ex-
plicit description in low dimension (see Example 4.6).

3. Toric Varieties
We discuss the beautiful class of toric varieties via low-
dimensional examples. Our goal is to put forth the sys-
tematic combinatorial description of these varieties using
cones and fans. The standard references for this mate-
rial are [Ful93, CLS11]. Throughout this section we only
work over the field ℂ, and so will almost solely work
with rational points. As such, we let ℂ∗ = ℂ ⧵ {0} de-
note the multiplicative group 𝔾𝑚,ℂ, which we also call
the one-dimensional algebraic torus. More generally, we let
(ℂ∗)𝑛 = 𝔾𝑛

𝑚,ℂ denote the 𝑛-dimensional algebraic torus.
The reason we use the term “torus” in this context (at the
risk of ignoring the true etymology) is that the topologi-
cal circle is a deformation retract of ℂ∗. Since products of
the topological circle are called tori, it is natural to view
products of ℂ∗ as algebraic tori.

Definition 3.1 (Toric variety). A torus is any algebraic
group 𝑇 isomorphic to 𝔾𝑛

𝑚,ℂ = (ℂ∗)𝑛. A toric variety is a
variety 𝑋 that contains a torus 𝑇 as a dense open subset so
that the natural group multiplication 𝑇 × 𝑇 → 𝑇 extends
to an action 𝑇 × 𝑋 → 𝑋 of 𝑇 on 𝑋 .

The fact that 𝑋 contains a torus as a dense open set al-
lows us to view toric varieties as (partial) compactifications
of tori, i.e., varieties which look nearly identical to (ℂ∗)𝑛,
but which have some or all of the holes filled in. It turns
out that our most basic examples of algebraic varieties are
toric.

Example 3.2 (Affine space). Affine 𝑛-space has the struc-
ture of a toric variety. We have a dense open inclusion
(ℂ∗)𝑛 ⊆ ℂ𝑛 = 𝔸𝑛ℂ. The action of (ℂ∗)𝑛 is via scaling,
i.e., for (𝜆1, … , 𝜆𝑛) ∈ (ℂ∗)𝑛 and (𝑎1, … , 𝑎𝑛) ∈ 𝔸𝑛𝑘 , we have
(𝜆1, … , 𝜆𝑛) ⋅ (𝑎1, … , 𝑎𝑛) = (𝜆1𝑎1, … , 𝜆𝑛𝑎𝑛). This clearly ex-
tends the group multiplication of (ℂ∗)𝑛.
Example 3.3 (Projective space). Projective 𝑛-space is de-
fined via an equivalence relation on punctured affine space
𝔸𝑛+1ℂ ⧵{𝟎}, identifying any two points which are scalar mul-
tiples of one another. Points of ℙ𝑛ℂ are denoted [𝑥0 ∶ 𝑥1 ∶
𝑥2 ∶ ⋯ ∶ 𝑥𝑛], so that [𝑥0 ∶ ⋯ ∶ 𝑥𝑛] = [𝜆𝑥0 ∶ ⋯ ∶ 𝜆𝑥𝑛] for
any 𝜆 ∈ ℂ∗. Two points of 𝔸𝑛+1ℂ which lie on the same line
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yield the same point of ℙ𝑛ℂ, so we view projective space as
the collection of lines in 𝔸𝑛+1ℂ passing through the origin.

Projective space is a 𝑘-variety since it is locally an affine
variety. Indeed, any point [𝑥0 ∶ ⋯ ∶ 𝑥𝑛] with 𝑥0 ≠ 0 is
equal to [1 ∶ 𝑋1 ∶ 𝑋2 ∶ ⋯ ∶ 𝑋𝑛], where 𝑋𝑖 =

𝑥𝑖
𝑥0

. The set of

points of this form defines a copy of 𝔸𝑛ℂ with coordinates
given by 𝑋1, … , 𝑋𝑛. Proceeding with 𝑥1 ≠ 0, 𝑥2 ≠ 0, etc., we
arrive at a union ℙ𝑛ℂ = 𝔸𝑛ℂ ∪⋯ ∪ 𝔸𝑛ℂ of 𝑛 + 1 copies of 𝔸𝑛ℂ
which cover ℙ𝑛ℂ. This description holds for any base field
𝑘, and this defines the (points of the) variety ℙ𝑛𝑘.

Projective space compactifies affine space. Indeed, in
the case of the projective line we can write ℙ1ℂ = {[𝑎 ∶ 1] ∣
𝑎 ∈ ℂ} ∪ {[1 ∶ 𝑏] ∣ 𝑏 ∈ ℂ} = 𝔸1ℂ ∪ 𝔸1ℂ. The first set in this
union is only missing the point [1 ∶ 0] ∈ ℙ1𝑘 since any
point of the form [1 ∶ 𝑏] with 𝑏 ≠ 0 can already be written
as [𝑎 ∶ 1], via [1 ∶ 𝑏] = [ 1

𝑏
1 ∶ 1

𝑏
𝑏] = [ 1

𝑏
∶ 1]. The projective

line is thus a union ℙ1ℂ = {[𝑎 ∶ 1] ∣ 𝑎 ∈ ℂ} ∪ {[1 ∶ 0]}. The
first subset is 𝔸1ℂ and the second is the “point at ∞.” The
real projective line ℙ1ℝ has points which are given by the
circle. The complex projective line is given by the Riemann
sphere (the one-point compactification of ℂ). The action
of the torus ℂ∗ on ℙ1ℂ is given by 𝜆 ⋅ [𝑥 ∶ 𝑦] = [𝜆𝑥 ∶ 𝑦],
extending the action of ℂ∗ on itself.

Example 3.4 (Products). Products of toric varieties are
toric varieties, stemming from the fact that products of tori
are tori. If 𝑋 and 𝑌 are toric varieties, then we have dense
inclusions (ℂ∗)𝑛 ⊆ 𝑋 and (ℂ∗)𝑚 ⊆ 𝑌 . Thus, we also have
a dense inclusion (ℂ∗)𝑛+𝑚 ≅ (ℂ∗)𝑛 × (ℂ∗)𝑚 ⊆ 𝑋 × 𝑌 . One
checks that the induced action extends the group multipli-
cation of (ℂ∗)𝑛+𝑚. In particular, the variety ℙ1ℂ × ℙ1ℂ is a
toric variety. See also Figure 2, as well as Examples 4.7 and
4.9.

3.1. Extracting combinatorial data. The amazing fact
about toric varieties is that their geometry can be en-
coded combinatorially via fans, i.e., collections of cones
in affine/Euclidean space. This comes from considering
their characters and cocharacters, which are simply algebraic
group morphisms (see Definition 2.7) to and from the
one-dimensional torus 𝔾𝑚,ℂ = ℂ∗.

Definition 3.5. Let 𝐺 be an algebraic group. A character
of 𝐺 is an algebraic group morphism 𝜒 ∶ 𝐺 → ℂ∗. We let
𝐺 = Hom(𝐺,ℂ∗) denote the set of all characters of 𝐺. A
cocharacter (sometimes called a one-parameter subgroup) of
𝐺 is an algebraic group morphism 𝜆 ∶ ℂ∗ → 𝐺. We let
Λ(𝐺) = Hom(ℂ∗, 𝐺) denote the collection of all cocharac-
ters of 𝐺.

Proposition 3.6. Let 𝑇 = (ℂ∗)𝑛 be a torus
1. For each 𝑚 = (𝑚1, … ,𝑚𝑛) ∈ ℤ𝑛, we have a char-
acter 𝜒𝑚 ∶ (ℂ∗)𝑛 → ℂ∗ defined by 𝜒𝑚(𝑡1, … , 𝑡𝑛) =
𝑡𝑚1
1 ⋅ 𝑡𝑚2

2 ⋯𝑡𝑚𝑛𝑛 . All characters of 𝑇 are of the form 𝜒𝑚
for some 𝑚 ∈ ℤ𝑛, yielding a group isomorphism 𝑇 ≅ ℤ𝑛.

2. For each 𝑢 = (𝑏1, … , 𝑏𝑛) ∈ ℤ𝑛, we have a cocharacter
𝜆 ∶ ℂ∗ → (ℂ∗)𝑛 defined by 𝜆 (𝑡) = (𝑡𝑏1 , … , 𝑡𝑏𝑛). All
cocharacters of 𝑇 are of the form 𝜆 for some 𝑢 ∈ ℤ𝑛,
yielding a group isomorphism Λ(𝑇) ≅ ℤ𝑛.

Remark 3.7. Given a torus 𝑇 = (ℂ∗)𝑛, it is customary to use
𝑀 and 𝑁 to denote 𝑇 and Λ(𝑇), respectively. By the very
definition of these lattices, duality yields a pairing ⟨⋅, ⋅⟩ ∶
𝑀 × 𝑁 → ℤ. If compatible bases are chosen for both 𝑀
and 𝑁, this is just given by the dot product.

Remark 3.8. Characters 𝜒 ∶ 𝑇 → ℂ∗ define regular func-
tions on𝑇, and rational functions (regular functions defined
on open dense subsets) on any toric variety 𝑋 ⊇ 𝑇. Simi-
larly, cocharacters 𝜆 ∶ ℂ∗ → 𝑇 define curves in 𝑇 and any
toric𝑇-variety𝑋 . The geometry of𝑋 is thus easier to extract
from subsets of 𝑁 = Λ(𝑇), while the algebraic properties
of 𝑋 are more easily extracted from subsets of 𝑀 = 𝑇.

3.2. One-dimensional toric varieties (toric curves). Let
us exhibit the process for producing toric varieties from
subsets of 𝑁 = Λ(𝑇), beginning with the case of curves.
Our focus will be on smooth or nonsingular varieties. If 𝑇 =
ℂ∗ is the one-dimensional torus, then 𝑀 = 𝑇 ≅ ℤ and
𝑁 = Λ(𝑇) ≅ ℤ.
Step 1. Choose a cone in 𝑁ℝ ≔ 𝑁 ⊗ℤ ℝ ≅ ℝ.

Definition 3.9. Given an ℝ-vector space 𝑉 , a cone in 𝑉 is
is a subset of the form

𝜎 = {𝛼1𝑣1 +⋯+ 𝛼𝑠𝑣𝑠 ∣ 𝛼𝑖 ∈ ℝ≥0}.
We can view cones as “vector half-spaces.” For certain

technical reasons, we only consider those cones which are
strongly convex, rational, and polyhedral [Ful93, §1]. In di-
mension one, there are only three such cones 𝜎1, 𝜎0, and
𝜎−1 in𝑁ℝ = ℝ, given by the non-negative real numbers, {0},
and the non-positive real numbers, respectively. We view
these as those cones generated by 1, 0, and -1, respectively.
While other cones do exist (e.g., the cone generated by 2),
these do not yield smooth varieties.

𝜎1 𝜎0
𝜎−1

Step 2. Compute the dual cones in 𝑀ℝ = 𝑀 ⊗ℤ ℝ ≅ ℝ.

Definition 3.10. Given a cone 𝜎 ⊆ 𝑁ℝ, its dual cone is 𝜎∨ =
{𝑣 ∈ 𝑀ℝ ∣ ⟨𝑣, 𝑢⟩ ≥ 0 for all 𝑢 ∈ 𝜎}.

The dual cones of 𝜎1, 𝜎0 and 𝜎−1 are given below. We
view these cones as being generated by powers of 𝑥, ob-
tained by exponentiating the generators of 𝜎𝑖. That is, 𝜎∨1
is generated by 𝑥1 since 1 ∈ ℝ = 𝑀 ⊗ℝ generates 𝜎1. Sim-
ilarly, 𝜎∨0 = ⟨𝑥, 𝑥−1⟩ and 𝜎∨−1 = ⟨𝑥−1⟩.

𝜎∨1 𝜎∨0

𝜎∨−1
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Step 3. Having utilized the vector spaces 𝑁ℝ and 𝑀ℝ for
cone geometry, we nowproduce functions on our resulting
toric variety, i.e., elements of 𝑀. For each cone 𝜎 ⊆ 𝑁,
we can form the monoid 𝑆𝜍 = 𝜎∨ ∩ 𝑀 ⊆ 𝑀. In our one-
dimensional case, these are given by

𝑆𝜍1 ≔ {1, 𝑥, 𝑥2, … } ≅ ℕ,

𝑆𝜍0 = {… , 𝑥−2, 𝑥−1, 1, 𝑥, 𝑥2, … } ≅ ℤ,

𝑆𝜍−1 = {1, 𝑥−1, 𝑥−2, … } ≅ ℕ.

Step 4. The monoid algebra ℂ[𝑆𝜍𝑖 ] associated to 𝑆𝜍𝑖 gener-
alizes the common notion of the group algebra or group
ring. These algebras have basis given by the elements of
𝑆𝜍𝑖 , so that a general element of ℂ[𝑆𝜍𝑖 ] is given by a finite
sum ∑𝑎𝑔𝑔 with 𝑔 ∈ 𝑆𝜍𝑖 and 𝑎𝑔 ∈ ℂ. Addition is given
component-wise and multiplication is the usual convolu-
tion product. In our case

ℂ[𝑆𝜍1] = ℂ[ℕ] = ℂ[𝑥],

ℂ[𝑆𝜍0] = ℂ[ℤ] = ℂ[𝑥, 𝑥−1],

ℂ[𝑆𝜍−1] = ℂ[ℕ] = ℂ[𝑥−1].

Step 5. We determine generators and relations for our ℂ-
algebras which yield polynomial equations, and in turn
define affine varieties. We have

𝑉𝜍1 ≔ Specℂ[𝑆𝜍1] = Specℂ[𝑥] = 𝔸1ℂ,
𝑉𝜍0 ≔ Specℂ[𝑆𝜍0] = Specℂ[𝑥, 𝑥−1]

= Specℂ[𝑥, 𝑦]/(𝑥𝑦 − 1) = ℂ∗,
𝑉𝜍−1 ≔ Specℂ[𝑆𝜍−1] = Specℂ[𝑥−1] = 𝔸1ℂ.

Step 6. We build new toric varieties from these affine ones
by gluing. This is prescribed by the data of a collection of
cones and the way in which they fit together.

Definition 3.11. A fan Σ in𝑁ℝ is a collection of cones such
that

1. each face of a cone in Σ is also a cone in Σ
2. the intersection of two cones in Σ is a face of each.

In our case, we take Σ = {𝜎−1, 𝜎0, 𝜎1}, and we realize
𝜎0 as the intersection 𝜎1 ∩ 𝜎−1. The fan Σ defines a toric
variety 𝑋(Σ) which is built from the affine pieces 𝑉𝜍𝑖 and
the gluing data is encoded in the combinatorics of the fan
structure. This defines the variety ℙ1ℂ as the union of affine
spaces from Example 3.3:

𝑉𝜍−1 ⊇ 𝑉𝜍0 ⊆ 𝑉𝜍1
∥ ∥ ∥
𝔸1ℂ ⊇ ℂ∗ ⊆ 𝔸1ℂ

(A) The fan for 𝔸2ℂ is given by a
single cone, generated by (1, 0)
and (0, 1). These correspond to
the variables 𝑥 and 𝑦 in the
lattice 𝑀.

(B) The fan for ℙ2ℂ. Note that it
contains the cone for 𝔸2ℂ. In fact,
you can see the three copies of
𝔸2ℂ which give an affine cover
described in Example 3.3.

Figure 1.

3.3. Two-dimensional toric varieties (toric surfaces). In
dimension 2, our torus is 𝑇 = (ℂ∗)2, so that 𝑀 ≅ 𝑁 ≅ ℤ2.
Example 3.12 (Affine plane, Figure 1A). Consider the
cone 𝜎 in 𝑁ℝ ≅ ℝ2 given by the first quadrant, i.e., gen-
erated by (1, 0) and (0, 1). The dual cone 𝜎∨ is then given
by the first quadrant in𝑀ℝ ≅ ℝ2 since this is the collection
of vectors which have non-negative dot product with ele-
ments of 𝜎. Intersecting this cone with𝑀 gives the genera-
tors 𝑥, 𝑦, so that the associated affine toric variety is given
by 𝑉𝜍 = Specℂ[𝑥, 𝑦] = 𝔸2ℂ.
Example 3.13 (Projective plane, Figure 1B). The fan given
by three cones 𝜎1 = ⟨(1, 0), (0, 1)⟩, 𝜎2 = ⟨(0, 1), (−1, −1)⟩,
and 𝜎3 = ⟨(−1, −1), (1, 0)⟩, as shown in Figure 1B, defines
the variety ℙ2ℂ. Indeed, each cone gives a copy of 𝔸2ℂ, and
these are precisely the three affine patches described in Ex-
ample 3.3. These are glued to one another according to
the combinatorics of the cone intersections.

Example 3.14. Consider the fan generated by the four
cones depicted in Figure 2. This yields the variety ℙ1ℂ ×ℙ1ℂ,
which comes from the fact that products of fans corre-
spond to products of the associated toric varieties. That
is, given fans Σ, Δ ⊆ 𝑁ℝ, the fan Σ×Δ ∶= {𝜎×𝜏 ∣ 𝜎 ∈ Σ, 𝜏 ∈
Δ} ⊆ 𝑁×𝑁 defines the toric variety 𝑋(Σ×Δ) = 𝑋(Σ)×𝑋(Δ).
Sinceℙ1ℂ has an associated fan consisting of two cones (the
positive and negative real lines) given in Step 6 above, the
description of the fan of ℙ1ℂ × ℙ1ℂ follows.

Figure 2. The fan for ℙ1ℂ × ℙ1ℂ consists of 4 cones,
corresponding to the product of the fans which define ℙ1ℂ as
described in Example 3.14.
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Example 3.15 (Blowups, Figures 3A and 3B). Recall that
the blowup Bl𝟎(𝔸2ℂ) of 𝔸2ℂ at the origin is a subvariety of
𝔸2ℂ × ℙ1ℂ given by the equation 𝑥𝑤1 = 𝑦𝑤0, where (𝑥, 𝑦)
are coordinates on 𝔸2ℂ and [𝑤0 ∶ 𝑤1] are coordinates on
ℙ1ℂ. Covering this variety by its affine pieces {𝑤0 ≠ 0} =
𝔸2ℂ × 𝔸1ℂ ≅ 𝔸3ℂ and {𝑤1 ≠ 0} ≅ 𝔸3ℂ, our defining equation
becomes 𝑦 = 𝑥𝑤1

𝑤0
and 𝑥 = 𝑦𝑤0

𝑤1
on these respective sets.

We can thus generate our corresponding ℂ-algebras by 𝑥
and

𝑤1
𝑤0

= 𝑥−1𝑦 on the first affine subset (since their prod-

uct determines 𝑦) and by 𝑦 and
𝑤0
𝑤1

= 𝑥𝑦−1 on the second

(since their product determines 𝑥).
Consider the fan given in Figure 3A. A simple system

of equations gives a description of the corresponding dual
cones as ⟨𝑥, 𝑥−1𝑦⟩ and ⟨𝑦, 𝑥𝑦−1⟩, which are precisely the
same generators that arise in the blowup construction! We
see from this example that blowups can be described by
subdivision of a cone.

The del Pezzo surface of degree 6 over ℂ is the blowup of
ℙ2ℂ at three non-colinear points. As such, we can recover
its fan by staring with the fan of ℙ2ℂ (see Figure 1B), and di-
viding each of its three cones. This results in the fan given
in Figure 3B.

(A) The fan for the blowup of 𝔸2ℂ
at the origin. The blowup
construction has the effect of
subdividing cones.

(B) The fan for the del Pezzo
surface of degree 6, which is the
blowup of ℙ2ℂ at 3 non-colinear
points. This fan is obtained from
the fan of ℙ2ℂ by subdividing
each of its three cones.

Figure 3.

4. Arithmetic Toric Varieties
The advantage of working with toric varieties over ℂ is the
combinatorially encoded geometry, which allows one to
effectively compute various algebro-geometric invariants
using the data of fans. On the other hand, these varieties
are geometrically and arithmetically simple since they are
rational varieties andℂ is algebraically closed. We treat the
appropriately analogous class of varieties over 𝑘 ⊆ ℂ. The
computationally effective understanding of the geometry
of complex toric varieties allows one to corner arithmetic
aspects of this new class of varieties defined over arbitrary
fields. We revisit Example 2.11 to motivate a more general
notion of “torus.”

Example 4.1 (Non-isomorphic tori of equal dimension).
The real one-dimensional torus ℝ∗ = {𝑢𝑣 = 1} and the
circle group 𝑆1 = {𝑥2 + 𝑦2 − 1 = 0} are non-isomorphic
ℝ-varieties but become isomorphic after extending scalars

to ℂ. The isomorphism ℂ∗ ∼−→ 𝑆1ℂ is given by 𝑢 ↦ 𝑥 + 𝑖𝑦
and 𝑣 ↦ 𝑥 − 𝑖𝑦.

This example encourages us to enlarge our definition
of “algebraic tori” to include those varieties which become
isomorphic to (ℂ∗)𝑛 after base extension, i.e., twisted forms
of the algebraic tori (ℂ∗)𝑛 = 𝔾𝑛

𝑚,ℂ.

Definition 4.2 (Arithmetic toric variety). A 𝑘-torus (also
called a 𝔾𝑛

𝑚,𝑘-torsor) is a group variety 𝑇 such that 𝑇ℂ ≅
(ℂ∗)𝑛 = 𝔾𝑛

𝑚,ℂ. If 𝑇 is a 𝑘-torus such that 𝑇 ≅ (𝑘∗)𝑛, then
we call 𝑇 a split torus. An arithmetic toric variety is a variety
with a faithful action of a torus 𝑇 with dense open orbit.
Given an arithmetic toric variety 𝑋 with torus 𝑇, we say 𝑋
is split if 𝑇 is a split torus.

Remark 4.3. Example 4.1 shows that both ℝ∗ and 𝑆1 are
ℝ-tori, where the former is a split torus.

As in the case of toric varieties over ℂ, arithmetic toric
varieties should be viewed as (partial) compactifications
of algebraic tori (in this more general sense). The study
of arithmetic toric varieties is relatively new, having been
taken up over the past few decades. They were first used
as tools to study general tori via their compactifications
[Kun82, Kun87, Vos98]. A systematic classification and
analysis via Galois cohomology was only treated within
the last decade or two [Dun16, ELFST14]. The 𝐾-theory
of tori and arithmetic toric varieties was also studied in
[MP97], and the analysis therein was thematically aligned
with the theory of non-commutative motives.

Example 4.4 (Split toric varieties). Over any field 𝑘, the
split tori 𝔾𝑛

𝑚,𝑘 = (𝑘∗)𝑛 provide a geometrically rich class of
tori. The analysis of (𝑘∗)𝑛-toric varieties via the associated
combinatorial data of fans and cones is nearly identical
to the complex case. One example of this phenomenon
arises via the analysis of the divisor class group and Picard
group. If𝑋 is a split toric variety with torus 𝑇 = 𝔾𝑛

𝑚,𝑘, there
are canonical isomorphisms Cl(𝑋) ≅ Cl(𝑋ℂ) and Pic(𝑋) ≅
Pic(𝑋ℂ) [Dun16, §4].

Example 4.5 (Real projective space). The variety ℙ1ℝ ad-
mits the structure of an arithmetic toric variety for two
non-isomorphic tori, ℝ∗ and 𝑆1. Viewed as an ℝ∗-toric
variety, ℙ1ℝ is a split arithmetic toric variety. When we ex-
tend scalars to ℂ, both tori become isomorphic to ℂ∗, and
(ℙ1ℝ)ℂ ≅ ℙ1ℂ.
Example 4.6 (Pointless real conic). The variety 𝑋 = {𝑥2 +
𝑦2 + 𝑧2 = 0} is an arithmetic toric variety with torus
𝑆1 = {𝑥2+𝑦2 = 1}, where the 𝑆1-action is given by rotation
matrices. Note that the pointless conic of Example 2.4 is
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an affine open subset in 𝑋 . The variety 𝑋 is not a toric va-
riety for the split torus ℝ∗. Again, the torus 𝑆1 is a twisted
form of ℂ∗, and 𝑋ℂ ≅ ℙ1ℂ. This gives our first example of a
(truly) non-split arithmetic toric variety. That is, no choice
of torus gives 𝑋 the structure of a split toric variety.

The above example arises naturally in the study of cen-
tral simple algebras. Indeed, the variety 𝑋 given above is
the Severi-Brauer variety SB(ℍ) = {𝑥2 + 𝑦2 + 𝑧2 = 0} asso-
ciated to Hamilton’s quaternion ℝ-algebra ℍ. This is the
four-dimensional ℝ-algebra given by

ℍ = ⟨1, 𝑖, 𝑗, 𝑘 ∣ 𝑖2 = 𝑗2 = −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘⟩.
In fact, to any quaternion 𝑘-algebra (𝑎, 𝑏)𝑘 ≔ ⟨1, 𝑖, 𝑗, 𝑘 ∣
𝑖2 = 𝑎, 𝑗2 = 𝑏, 𝑖𝑗 = −𝑗𝑖 = 𝑘⟩ we have the associated conic
𝐶(𝑎, 𝑏) = {𝑎𝑥2 + 𝑏𝑦2 = 𝑧2}, which is a one-dimensional
𝑘-subvariety of ℙ2𝑘 and a twisted form of ℙ1ℝ [GS06]. Note
that ℍ = (−1,−1)ℝ and 𝑀2(ℝ) = (1, 1)ℝ.

The associated conic is a special case of the general con-
struction of the Severi-Brauer variety associated to a central
simple algebra 𝐴, encountered in Example 2.16 via Galois
cohomology. Such varieties are all examples of arithmetic
toric varieties, although one needs to additionally specify
a torus to completely determine their toric structure (just
as in the case of ℙ1ℝ).
Example 4.7 (Weil restriction). Given a ℂ-variety 𝑋 , we
may view it as an ℝ-variety of twice the dimension by
rewriting the defining equations of𝑋 using anℝ-basis ofℂ.
This process restricts our field of scalars to a subfield, and
is called theWeil restriction of scalars [Vos98, §3.12]. For in-
stance, taking {1, 𝑖} as an ℝ-basis of ℂ, where 𝑖 = √−1, any
function 𝑓 ∈ ℂ[𝑧] can be written in terms of the variables
𝑥1, 𝑥2 given by 𝑧 = 𝑥1+𝑥2𝑖, and thusmay be viewed as an el-
ement of ℝ[𝑥1, 𝑥2]. We use the notation 𝖱ℂ/ℝ(𝑋) to denote
the Weil restriction. Since the 0-polynomial in ℂ[𝑧] (the
defining equation of 𝔸1ℂ) corresponds to the 0-polynomial
in ℝ[𝑥1, 𝑥2] in this basis, we have 𝖱ℂ/ℝ(𝔸1ℂ) = 𝔸2ℝ.

The Weil restriction is best described using points. If 𝑋
is a ℂ-variety and 𝑘 ⊆ ℂ, then the 𝑘-variety 𝖱ℂ/𝑘(𝑋) has
𝑘-points given by

𝖱ℂ/𝑘(𝑋)(𝑘) = 𝑋(𝑘 ⊗𝑘 ℂ) = 𝑋(ℂ),
i.e., the ℂ-points of 𝑋 . Each ℂ-point must be specified
using a 𝑘-basis of ℂ, so that 𝑋(ℂ) has dimension [ℂ ∶
𝑘]⋅dimℂ(𝑋(ℂ)) as a 𝑘-variety. This is consistent with our ex-
ample of the Weil restriction of the affine line above. More
generally, we have 𝖱ℂ/𝑘(𝔸𝑛ℂ) = 𝔸𝑛[ℂ∶𝑘]ℝ .

Weil restrictions of tori are tori. For instance, 𝖱ℂ/ℝ(𝔾𝑚,ℂ)
has ℝ-points given by 𝖱ℂ/ℝ(𝔾𝑚,ℂ)(ℝ) = 𝔾𝑚,ℂ(ℝ ⊗ℝ ℂ) =
ℂ∗. Since [ℂ ∶ ℝ] = 2, we have ℂ = ℝ2 as sets, and taking
units gives ℂ∗ = (ℝ∗)2. Extending scalars to ℂ, we obtain
(ℂ∗)2, and thus 𝖱ℂ/ℝ(𝔾𝑚,ℂ) is a twisted form of 𝔾2

𝑚,ℂ =
(ℂ∗)2. Similarly, one can show that 𝖱ℂ/ℝ(ℙ1ℂ) is a twisted
form of ℙ1 × ℙ1.

This gives us many new examples of arithmetic toric va-
rieties. The varieties 𝖱ℂ/ℝ(𝔸𝑛ℂ) and 𝖱ℂ/ℝ(ℙ𝑛ℂ) are arithmetic
toric varieties with torus 𝑇 = 𝖱ℂ/ℝ(𝔾𝑛

𝑚,ℂ). More generally,
if 𝑋 is a complex toric variety with torus 𝑇, then 𝖱ℂ/𝑘(𝑋) is
an arithmetic toric variety with torus 𝖱ℂ/𝑘(𝑇).
Example 4.8 (Norm tori, [Vos98, p. 53]). A related con-
struction is given by the norm-one torus. For 𝑘 ⊆ ℂ a Ga-
lois extension, the Weil restriction 𝖱ℂ/𝑘(𝔾𝑚,ℂ) has 𝑘-points
given by 𝔾𝑚,ℂ(𝑘 ⊗ ℂ) = 𝔾𝑚,ℂ(ℂ) = ℂ∗. There is a natural
map 𝑁 ∶ ℂ∗ → 𝑘∗ given by the field norm

𝑧 ↦ ∏
𝜍∈Gal(ℂ/𝑘)

𝜎(𝑧).

This induces an algebraic group morphism 𝖱ℂ/𝑘(𝔾𝑚,ℂ) →
𝔾𝑚,𝑘. Its kernel is denoted 𝖱(1)ℂ/𝑘(𝔾𝑚,ℂ), called the norm-
one torus.

The circle group 𝑆1 arises as such a torus. If we apply
the above construction in the case 𝑘 = ℝ, real points of
𝖱ℂ/ℝ(ℂ∗) areℂ∗, and the field normℂ∗ → ℝ∗ is given by the
product of a non-zero complex number and its conjugate
𝑧 ↦ 𝑧 ̄𝑧 = |𝑧|2. This induces a group variety morphism
𝖱ℂ/ℝ(𝔾𝑚,ℂ) → 𝔾𝑚,ℝ. Thus 𝖱(1)ℂ/ℝ(ℂ∗) consists of all those
complex numbers of modulus 1. This yields the unit circle
𝑆1.
Example 4.9 (Products [Dun16, Ex. 5.8 and 6.9]). Just
as in the split case (Example 3.4), products of arithmetic
toric varieties are arithmetic toric varieties. This stems from
the fact that products of twisted forms of tori are twisted
forms of tori. We have already encountered one example
of a twisted form ofℙ1ℂ×ℙ1ℂ with its standard torus (ℂ∗)2 in
Example 4.7, given by 𝖱ℂ/ℝ(ℙ1ℂ)with torus 𝖱ℂ/ℝ(𝔾𝑚,ℂ). Let
us dive further into this analysis for examples of products.

Of course, we have the split example ℙ1ℝ×ℙ1ℝ with torus
(ℝ∗)2. We can use this same variety together with the non-
split tori 𝑆1 ×ℝ∗ and 𝑆1 ×𝑆1. Let 𝑋 = {𝑥2 +𝑦2 +𝑧2 = 0} be
the (projectivized) pointless conic encountered in Exam-
ple 4.6. Then we have the arithmetic toric variety 𝑋 × ℙ1ℝ
with torus 𝑆1 × ℝ∗ or 𝑆1 × 𝑆1. We can also replace both
factors of ℙ1ℝ, to obtain 𝑋 ×𝑋 with torus 𝑆1×𝑆1. This gives
all possible twisted forms of ℙ1ℂ × ℙ1ℂ.
Example 4.10 (See [Dun16, ELFST14]). Arithmetic toric
varieties are twisted forms of split toric varieties, so they
may be described via Galois cohomology, as in Theo-
rem 2.15 and Example 2.16. If 𝑋 is an arithmetic toric
variety over 𝑘 and 𝑇 is the split torus of the split toric va-
riety 𝑋ℂ, the Galois group Gal(ℂ/𝑘) acts on 𝑋ℂ, so its el-
ements can be viewed as automorphisms of 𝑋ℂ. Since a
toric variety is completely determined by its associated fan
Σ ⊆ 𝑁ℝ = Λ(𝑇)ℝ, these automorphisms of 𝑋ℂ determine
automorphisms of Σ. This gives Aut(Σ) the structure of a
Gal(ℂ/𝑘)-group, and the particular form 𝑋 can be associ-
ated to a cocycle 𝛽 ∈ 𝐻1(𝑘,Aut(Σ)). This still leaves the
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choice of torus for the arithmetic toric variety structure on
𝑋 , which is determined by a cocycle 𝛼 ∈ 𝐻1(𝑘, 𝛽𝑇), where
𝛽𝑇 denotes the twisted form of 𝑇 corresponding to the co-
cycle 𝛽. In general, any twisted form of 𝑋 corresponds to
a cocycle 𝛾 ∈ 𝐻1(𝑘, 𝑇 ⋊ Aut(Σ)).

The above cohomological description shows that the
study of arithmetic toric 𝑘-varieties may be reduced to un-
derstanding split toric varieties 𝑋ℂ together with the action
of the Galois group Gal(ℂ/𝑘) on the fan associated to 𝑋ℂ.
In many cases, the automorphism group of the fan is easy
to identify. For instance, the automorphism group of the
fan of ℙ2ℂ (Figure 1B) is 𝑆3 given by permuting each of the
three (maximal) cones. The automorphism group of the
fan associated to ℙ1ℂ × ℙ1ℂ (Figure 2) is 𝐷4, the dihedral
group of order 8. And the automorphism group of the fan
associated to 𝖽𝖯𝟨 (Figure 3B) is 𝐷6, the dihedral group of
order 12.

5. A.T.V.’s Are What Derive Us
Arithmetic toric varieties provide a wonderful class of ob-
jects on which to test the capabilities of certain invari-
ants to reflect arithmetic and geometric data. One inter-
esting invariant is given by the coherent derived category
𝖣𝖻(𝑋) = 𝖣𝖻(𝖼𝗈𝗁(𝑋)), a triangulated category which probes
the geometry of a variety through sheaves ofmodules. This
should be viewed as a globalization of the study of rings
via their modules. An affine variety 𝑋 may be recovered
from its defining ideal 𝐈(𝑋) or associated coordinate ring
𝑅 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐈(𝑋) (Defn. 2.1). In this case, 𝖣𝖻(𝑋)
has objects given by chain complexes of finitely-generated
𝑅-modules, where two complexes are identified if they
are quasi-isomorphic, i.e., if their associated homology
groups are isomorphic in all degrees. For a general vari-
ety, one considers the category of coherent 𝒪𝑋 -modules.

As an invariant, the derived category sits between alge-
bra and topology. Viewing the derived category as an alge-
braic invariant, our interest lies in its decompositions into
indecomposable pieces in the vein of vector spaces, mod-
ules, and representations. On the other hand, this category
is non-abelian, and its triangulated structure allows one
to use more topological approaches in the study of these
decompositions. One such decomposition is given by an
exceptional collection.

Definition 5.1. Let 𝑋 be a 𝑘-variety and 𝐷 a division
𝑘-algebra. An object 𝐸 ∈ 𝖣𝖻(𝑋) is 𝐷-exceptional if
(1) End(𝐸) = 𝐷, concentrated in degree 0, and (2)
Hom(𝐸, 𝐸[𝑛]) = 0 if 𝑛 ≠ 0 (here 𝐸[𝑛] denotes the shift
of the complex 𝐸 by 𝑛). An exceptional object is étale if
𝐷 is a field extension of 𝑘. A totally ordered set {𝐸1, … , 𝐸𝑛}
of exceptional objects in 𝖣𝖻(𝑋) is an exceptional collection
if Hom(𝐸𝑗 , 𝐸𝑖[𝑛]) = 0 for all 𝑛 whenever 𝑗 > 𝑖. It is full if

the only triangulated subcategory of 𝖣𝖻(𝑋)which contains
every 𝐸𝑖 is all of 𝖣𝖻(𝑋).

Remark 5.2. Throughout the literature, the term “excep-
tional” often means “𝑘-exceptional,” as we have defined
above. Thismore restrictive definition is appropriate in the
case where 𝑘 is algebraically closed. The definition given
here is a strict generalization. If 𝑘 is algebraically closed,
these definitions coincide since there are no non-trivial di-
vision algebras over such fields.

From the algebraic perspective, such a collection
is analogous to decomposing a vector space via an
(semi-)orthonormal basis. Indeed, the objects 𝐸𝑖 should
be viewed as basis elements of 𝖣𝖻(𝑋), which are semi-
orthonormal relative to the (categorified) bilinear form
Hom(−,−). From the topological viewpoint, such a col-
lection provides a decomposition of the derived category
into a collection of subcategories with maps in only one
direction. One may view such maps as the instructions for
gluing these subcategories together, analogous to a simpli-
cial/cell complex.

The use of derived categories to study questions of ratio-
nality in the arithmetic setting was motivated by the suc-
cess in the geometric case for rationality of three- and four-
dimensional varieties. The use of 𝖣𝖻(𝑋) in determining
whether a variety admits rational points was motivated by
a question ofH. Esnault. This was answered in the negative
in [AAFH19]. Related work was carried out in [AKW17],
showing that twisted forms cannot always be disinguished
by the derived category, even in nice situations in low di-
mension. Examples in both cases were non-toric. Thus, it
turns out the derived category is generally not an appropri-
ate invariant to determine if a collection of polynomials
has a common solution, although there is evidence that
higher-categorical invariants might do the trick.

To better understand the derived category of an arith-
metic toric variety, we would like to leverage the com-
binatorial tools available over ℂ. The following theo-
rem shows that the Galois-theoretic philosophy described
above holds for the derived category. Indeed, the existence
of an exceptional collection on a 𝑘-variety 𝑋 is guaranteed
by the existence of an exceptional collection on 𝑋ℂ where
the Galois group action permutes the elements of the ex-
ceptional collection (stable).

Theorem 5.3 (Descent for exceptional
collections, [BDM19, Thm. 1.3]). Let 𝑘 ⊆ ℂ be a Galois
extension and let 𝑋 be a smooth projective 𝑘-variety. Then 𝑋
admits a (full, strong) exceptional collection if and only if 𝑋ℂ
admits a Gal(ℂ/𝑘)-stable (full, strong) exceptional collection.

Recently, arithmetic toric varieties have been success-
fully used to determine the limitations of the derived cat-
egory in the arithmetic setting in regards to questions
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of rationality. In particular, while the existence of a 𝑘-
exceptional collection is sufficient to determine that an
arithmetic toric variety is rational, the existence of a gen-
eral exceptional collection is not sufficient to determine
whether a variety is even retract rational, a much weaker
property.

Theorem 5.4 ([BDLM, Thm. 1 and 2]). (1) Let 𝑋 be a
smooth projective arithmetic toric variety over a field 𝑘 with
𝑋(𝑘) ≠ 0. If 𝖣𝖻(𝑋) admits a full 𝑘-exceptional collection, then
𝑋 is 𝑘-rational. (2) There exists a smooth threefold 𝑋 defined
over ℚ which admits a full étale exceptional collection but is not
𝑘-rational.

With this success story in hand, it is our hope that other
invariants may be investigated using the class of arithmetic
toric varieties. Indeed, such varieties are so well-suited to
act as a proving ground for analyzing geometric invariants
and their ability to faithfully reflect arithmetic informa-
tion.
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