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Solution spaces of polynomial equations in ℂ𝑛 or its nat-
ural compactification ℂℙ𝑛 form the basic objects to study
in algebraic geometry. Because such a space, called an al-
gebraic variety, has an underlying topology inherited from
the Euclidean topology of the complex spaces, it can also
be studied through complex differential geometry. The in-
terplay between these two kinds of geometries has been in-
vestigated by some of the greatest minds in mathematical
history, started from Abel, Jacobi, Riemann, Weierstrass,
Enriques, Lefschetz, Hodge, Weil, Chern, Kodaira, to more
recently Serre, Mumford, Griffiths, Siu, Deligne, Yau, Mori,
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Kollár, Donaldson, Demailly, Tian, Voisin etc, and it leads
to monumental progress in mathematics.

In this article, we want to convince the reader as with
previous landmark theorems, in the last decade, there is
another major step forward along this direction. The re-
search originates from the searching of Einstein metrics on
a manifold, with a root from physics. This topic has pre-
vailed in geometry for more than a century, and on a com-
plex variety, one should consider Kähler metrics. Themost
challenging case is when the variety has a positive Chern
class, called a Fano variety. The research results in purely
algebro-geometric theorems such as the construction of
moduli spaces parametrizing Fano varieties, which is far
beyond the original scope of the field. In fact, an aston-
ishingly huge amount of mathematical topics, including
geometric analysis, metric geometry, pluripotential theory,
geometric invariant theory, non-archimedean geometry,
higher dimensional geometry etc., are linked together by
one theme.
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The central notion is called K-stability. The term was
coined by Tian, following Mabuchi’s definition of K-
energy, where “K” stands for the first letter of the Ger-
man word “Kanonisch.” It has been known for decades
that the solution of the Kähler-Einstein Problem has strik-
ing consequences in algebraic geometry, as exhibited fa-
mously in Yau’s work. The relation between the existence
of canonical metrics on algebraic objects and its stability
from the Geometric Invariant Theory has also been inten-
sively investigated. In the more recent episode, to under-
stand the Kähler-Einstein Problem of Fano varieties, one
crucial shift in viewpoint is the realization that one has
to go beyond the Geometric Invariant Theory and invoke
the tools provided by the Minimal Model Program. This
bridges two previously well-studied areas. Discovering it
not only sheds new light on longstanding central ques-
tions and eventually leads to their complete solutions, but
also points toward unseen research directions.

In this article, we will discuss some of the main ideas in-
volved in 𝐾-stability theory stemmed from different parts
of mathematics, with a focus on the recently founded alge-
braic part of the story.
Canonical metrics and stability. A smooth complex va-
riety 𝑋 admits a class of metrics which are called Kähler.
More precisely, for any Riemannianmetric 𝑔, there is an as-
sociated 2-form 𝜔(𝑋, 𝑌) = 𝑔(𝐽𝑋, 𝑌)where 𝐽 is the complex
structure on the tangent bundle 𝑇𝑋 . The Kähler condition
is equivalent to saying that 𝜔 is a closed 2-form. While a
given Kähler metric 𝜔 is analytic, its class [𝜔] ∈ 𝐻2(𝑋, ℝ)
is a topological invariant. For a Kähler form 𝜔, one can at-
tach the Ricci form Ric(𝜔). It is also a closed two form and
a remarkable fact is that its class [Ric(𝜔)] is the first Chern
class 𝑐1(𝑋).

Around the 50s, two fundamental questions became
central in complex geometry. The first one is called the
Calabi Conjecture, which claims

Given a compact Kähler manifold (𝑋, 𝜔) together with a 2-
form 𝑅 representing 𝑐1(𝑋), one can always find a Kähler form
�̃� such that [𝜔] = [�̃�] and Ric(�̃�) = 𝑅.

This conjecture was proved in Yau’s famous work in the
late 70s. The second question, called the Kähler-Einstein
Problem, first asked by Kähler in the 30s and later advertised
by Calabi, considers whether there exists a Kähler metric
satisfying the Einstein equation. This requires the exis-
tence of a Kähler formwhose class is proportional to 𝑐1(𝑋),
and that the Kähler-Einstein Problem is equivalent, to ask
whether the equation 𝑐1(𝑋) = 𝜆⋅[𝜔] (𝜆 = −1, 0 or +1) can
be lifted to the level of form, i.e.,

Does there always exist a Kähler form 𝜔KE on 𝑋, such that
Ric(𝜔KE) = 𝜆 ⋅ 𝜔KE?

A solution 𝜔KE yields a Kähler-Einstein metric.

When dimℂ 𝑋 = 1, the Kähler-Einsten metric
is given by the Poincaré Uniformization Theo-
rem.

One immediately sees that when 𝜆 = 0, 𝑋 always has a
Kähler-Einstein metric by the solution of the Calabi Con-
jecture, since one can choose the form representing 𝑐1(𝑋)
to be 0. It was also proved, by Aubin and Yau indepen-
dently, when 𝜆 = −1, 𝑋 admits a Kähler-Einstein metric.
These results have tremendous influence on people’s un-
derstanding of algebraic varieties with 𝑐1(𝑋) being zero or
negative.

When 𝜆 = 1, 𝑋 is called Fano (named after Italian math-
ematician Fano). In this case, the Kähler-Einstein Prob-
lem becomes more subtle as there is no definitive answer.
The first obstruction was found in the late 50s, when Mat-
sushima showed that a Fano manifold 𝑋 has a Kähler-
Einstein metric would require Aut(𝑋) to be reductive. This
can be applied to, e.g., the blow up 𝑋 of a point on ℂℙ2
to conclude it does not admit a Kähler-Einstein metric. In
the early 80s, Futaki found a deeper obstruction which is
the vanishing of Fut(𝑣) for any vector field 𝑣 on 𝑋 . Here
Fut(𝑣) is a numerical invariant that we will discuss more
later.

In the late 80s, Tian proved that for a compact complex
Fano surface𝑋 ,Aut(𝑋) being reductive is the necessary and
sufficient condition for admitting a Kähler-Einstein metric.
However, the proof was a case-by-case study and there was
no reason to believe this would be the general situation.

In fact, Yau had a profound speculation that for a Fano
manifold 𝑋 , having a Kähler-Einstein metric should be
equivalent to deeper algebraic properties of 𝑋 , namely cer-
tain kind of stability. There are two reasons to make the
speculation. Firstly, based on the solution of the Calabi
Conjecture, it was believed that a variant of 𝐶0-estimate
would be the key analytic input, but such an estimate
should be governed by algebraic data. Secondly, prior to
the Kähler-Einstein Problem, this philosophy of canoni-
cal metric/stability correspondence had already appeared
in a different setting: by the work of Donaldson and
Uhlenbeck-Yau, a vector bundle on a compact Kähler man-
ifold admits a Hermitian-Einstein metric if and only if it is
slope polystable, which is now called the Hitchin-Kobayashi
Correspondence. Here the Hermitian-Einstein on a vector
bundle has a similar nature to the Kähler-Einstein met-
ric. However, the non-linear feature of varieties makes the
Kähler-Einstein Problem manifestly harder, and to deal
with the difficulty, there is a major shift of viewpoint in
regard to how to understand the stability condition in al-
gebraic geometry.

In the late 90s, Tian [Tia97] proposed the precise state-
ment and defined the notion of K-stability: For a given
Fano manifold 𝑋 , Tian considers ℂ∗-equivariant families
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𝒳 → ℂ, such that the fiber 𝒳𝑡 ≅ 𝑋 for any 𝑡 ≠ 0, and the
special fiber 𝑋0 is mildly singular (we will discuss this tech-
nical assumption later), so that one can define the (gen-
eralized) Futaki invariant Fut(𝒳) ≔ Fut(𝑋0, 𝑣) where 𝑣 is
the vector field on 𝑋0 induced by the ℂ∗-action. Then
Tian showed that 𝑋 admits a Kähler-Einstein metric im-
plies Fut(𝒳) ≥ 0 for all 𝒳 and the equality holds only
when𝒳 ≅ 𝑋 ×ℂ. This latter condition posted on 𝑋 , which
is of a global nature, is called K-polystablity.

Later Donaldson [Don02] considered a similar setting
of ℂ∗-equivariant degenerations but for all polarized pro-
jective varieties (𝑋, 𝐿)with no assumptions on the degener-
ation, and defined the Futaki invariant algebraically. Under
this setting, one can extend the study to the existence of a
constant scalar curvature metric, but we will only focus on
Fano varieties in this article.

One major step forward in the field is that the converse
direction of Tian’s theorem is also true.

Theorem (Yau-Tian-Donaldson Conjecture). Let 𝑋 be a
Fano variety, then 𝑋 admits a Kähler-Einstein metric if and
only if 𝑋 is K-polystable.

The Yau-Tian-Donaldson Conjecture was first proved
for smooth Fano manifolds by Chen-Donaldson-Sun
[CDS15] and Tian [Tia15], following the strategy called the
Cheeger-Colding-Tian theory in Riemannian geometry.

Later based on many earlier works of understanding
the geometry of the space of Kähler metrics, notably
by Mabuchi, Tian, Donaldson, Chen, Eyssidieux, Guedj,
Zeriahi, Berndtsson, Darvas, and many others, Berman-
Boucksom-Jonsson [BBJ21] proceeded along a completely
different route, namely the variational approach, which fo-
cuses on (the completion of) the space of Kähler metrics.
The argument was extended by Li-Tian-Wang and later to
all singular cases by Li [Li22]. It relies on far less differen-
tial geometry input than the Cheeger-Colding-Tian theory.
However, on the algebraic side it has to assume a stronger
condition called uniform K-stability.

Therefore, it remains to verify the subtle equivalence be-
tween uniform 𝐾-stability and 𝐾-stability, which is an al-
gebraic question. Built on the powerful machinery devel-
oped in the Minimal Model Program, the equivalence is
eventually established by Liu-Xu-Zhuang [LXZ21], as part
of the project to construct the moduli space of Fano va-
rieties. (The easier direction that the existence of Kähler-
Einsteinmetric implies K-polystability was achieved earlier
in [Ber16].) In the rest of this article, we will survey these
ideas, with a focus on the algebraic theory.

For now let us explain why this kind of condition is
called stability. The term “stability” used in algebraic ge-
ometry is often related to the construction of moduli
spaces. While the connection between 𝐾-stability and
moduli space is a profound topic that we will extensively

discuss later, we first compare it with a more classical no-
tion in the moduli theory, which is the geometric invariant
theory (GIT) stability.

As far as we know, the notion of stability in algebraic
geometry first implicitly appeared in Hilbert’s work on in-
variant theory, and later was explicitly coined by Mumford
in the geometric invariant theory, which considers the set-
ting of a reductive group 𝐺 acting on a projective variety
𝑀. To form the quotient space, which is the ‘moduli space’
parametrizing orbits, one has to throw away some unstable
points on 𝑀. To make the setting pragmatical, one often
also considers a very ample line bundle 𝐿 over𝑀 such that
the action on𝐺 can be lifted to 𝐿 as linear maps 𝐿𝑥 → 𝐿𝑔(𝑥)
for any 𝑥. Then the Hilbert-Mumford criterion says that to
check whether 𝑥 ∈ 𝑀 is stable, one only needs to consider
for any one parameter subgroup ℂ∗ ⊂ 𝐺, the sign of the
weight of theℂ∗-action on 𝐿|𝑥0 ≅ ℂwhere 𝑥0 ≔ lim𝑡→0 𝑡⋅𝑥.

Now let 𝑋 be a Fano variety, and [𝑋] the correspond-
ing point in the Hilbert scheme 𝑀, under an embedding
𝑋 → ℙ𝑁 induced by | − 𝑟𝐾𝑋 | for some 𝑟. Let ℂ∗ be any
subgroup of PGLℂ(𝑁 + 1). The closure ℂ∗ ⋅ [𝑋] yields a
morphism ℂ → 𝑀, and the pull-back of the universal fam-
ily induces a ℂ∗-equivariant family (𝒳,ℒ) over ℂ. This is
precisely the notion of a test configuration (with index 𝑟).
Then the Futaki invariant for a test configuration 𝒳 can be
considered as the weight of a ℂ∗-action on the restriction
of a line bundle, namely the CM line bundle, over the point
[𝑋0] where [𝑋0] ≔ lim𝑡→0 𝑡 ⋅ [𝑋]. There is a deeper reason
to adopt the GIT stability into the consideration, proposed
by Donaldson, following the famous work of Atiyah-Bott.
We first recall Kempf-Ness’s interpretation of stability: let
𝐺 be the complexification of a compact group 𝐾, and as-
sume a projective manifold (𝑀, 𝐿) admits a 𝐺-action with
a 𝐾-invariant norm ‖ ⋅ ‖ on 𝐿. Define the function

𝑓∶ 𝐺/𝐾 → ℝ, 𝑥 → log ‖𝑔 ⋅ ̂𝑥‖,

where ̂𝑥 is a non-zero lift of 𝑥. This function is convex
along any geodesicℂ∗ → 𝐺/𝐾, therefore 𝑓 has aminimum
on 𝐺/𝐾 if and only if the limit lim𝑡→∞ 𝑓′(𝑒𝑖𝑡𝜉 ⋅ 𝑥) at infinity
is positive for any 𝜉 ∈ Lie(𝐾). The latter is precisely the
weight of the ℂ∗-action on 𝐿|𝑥0 , so combining with the
Hilbert-Mumford criterion, we know

𝑥 is stable if and only if 𝑓 has a minimum.

In the Kähler-Einstein Problem, one can view the space
ℋ of Kähler metrics with the same class as an infinite
dimensional analogue of symmetric spaces, and the exis-
tence of the Kähler-Einsteinmetric is equivalent to the exis-
tence of a minimum for certain geometric functional, e.g.,
the Mabuchi functional, on ℋ. For a test configuration
(𝒳,ℒ), the pullbacks 𝜔𝑡 of the (normalized) Fubini-Study
metric along 𝑋𝑡 ⊆ ℙ𝑁 gives a ray in ℋ. The derivative
of the Mabuchi functional on 𝜔𝑡 at infinity is the Futaki
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invariant. This clear analogy makes the comparison of
Kähler-Einstein Problem with the finite dimensional GIT
fruitful.

However, there are two fundamental differences be-
tween the 𝐾-stability and the standard GIT: since we con-
sider all 𝒳, a priori we need to take into account all suffi-
ciently large 𝑟; moreover, the CM line bundle is not ample.
Therefore, the usual geometric invariant theory fails to ap-
ply here. With the benefit of hindsight, it is the more in-
trinsicMinimalModel Program theorywhich remedies the
study of𝐾-stability as an algebro-geometric subject and en-
ables people to go beyond the GIT.
Fano varieties. As one of the three building blocks of an
arbitrary variety, the class of Fano varieties has been the
central subject in higher dimensional geometry for more
than a century. The only Fano manifold in dimension
one is ℂℙ1. In dimension two, it is a classical result that
there are 10 families of them, namely blowing up 𝑚 gen-
eral points on ℂℙ2 for 0 ≤ 𝑚 ≤ 8 and ℂℙ1 × ℂℙ1. For
dimension three, in the 80s Iskovskikh and Mori-Mukai
classified that there are 105 smooth families. Fano mani-
folds often have rich geometry, as they could have many
interesting birational models. However, this also makes
the study of them intricate. Moreover, from the view of
Minimal Model Program, one needs to also consider Fano
varieties with mild singularities. In particular, these sin-
gular Fano varieties naturally appear as degenerations of
Fano manifolds.

Example. To see a basic example, we look at the family
given by the equation

(𝑡𝑥𝑑0 +
𝑛
∑
𝑖=1

𝑥𝑑𝑖 = 0) ⊂ ℂℙ𝑛 × ℂ (2 ≤ 𝑑 < 𝑛). (1)

If 𝑡 ≠ 0, we get a Fano manifold 𝑋𝑡 isomorphic to the Fano
Fermat hypersurface ∑𝑛

𝑖=0 𝑥𝑑𝑖 = 0; and if 𝑡 = 0, the Fano
variety 𝑋0 is a cone over a Fano hypersurface of one dimen-
sional lower, with a singularity at (1, 0, … , 0). Therefore,
this family of Fano varieties is trivial over ℂ∗, but the alge-
braic structure changes over 𝑡 = 0. We note that as a com-
parison, this phenomenon can not occur when 𝑐1(𝑋) ≤ 0.
Moreover, let 𝑓∶ 𝑌 → 𝑋0 be the blow up at (1, … , 0). The
exceptional divisor is 𝐸, and a simple calculation yields

𝑓∗(𝜔𝑋0)((𝑛 − 𝑑 − 1)𝐸) = 𝜔𝑌 .
Definition. Let 𝐸 be a divisor over 𝑋 , i.e., 𝐸 is a divisor on
a normal birational model 𝜇∶ 𝑌 → 𝑋 . We define the log
discrepancy along 𝐸 to be

𝐴𝑋(𝐸) = (the coefficient of 𝐾𝑌/𝑋 along 𝐸) + 1.
We say 𝑋 has Kawamata log terminal (klt) singularities if

𝐴𝑋(𝐸) > 0 for any divisor 𝐸 over 𝑋 . It is known it suffices
to check 𝐴𝑋(𝐸) > 0 for divisors 𝐸 appearing on a fixed log
resolution.

In particular, 𝑋0 in (1) is a klt Fano variety.
Admittedly, it is not easy to see at the first glance why

klt singularities are important. Nevertheless, built on four
decades’ experience accumulated by people working in
the Minimal Model Program theory, it becomes clear that,
from various viewpoints in higher dimensional geometry,
klt varieties form the right class of singular varieties to be
studied.

For instance, one non-trivial property, established in
[LX14], is that klt Fano varieties are closed under degen-
eration: Let 𝑋∘ → Δ∘ be a family of klt Fano varieties over
a punctured disc Δ∘ = Δ ⧵ {0}, then after a possible base
change of Δ∘, we can fill in the limit with a klt Fano vari-
ety.
New ideas from algebraic geometry. The exploration of
the connection between 𝐾-stability and the MMP was ini-
tiated in the work in Odaka [Oda13] and Li-Xu [LX14]
around the early 2010s. After a small gap of a few years,
it started to blossom around 2015. The meeting of these
two subjects brings up many new insights to both sides.
Onemain advantage is that this algebraicmethod provides
a stronger tool to treat Fano varieties with singularities,
which are currently beyond the reach of the original metric
geometry approach.

There are five fundamental new ideas coming out to ad-
vance the study of 𝐾-stability via higher dimensional ge-
ometry. These new ideas are related to each other. Nev-
ertheless, they are somewhat different. In my later discus-
sions, I will elaborate three of them:

1. Various equivalent characterizations of 𝐾-stability.
2. The uniqueness of K-polystable degeneration.
3. The higher rank finite generation.

I will only briefly mention the last two:

4. The connection of the 𝐾-stability of fibers and the pos-
itivity of the CM line bundle on the base, via Harder-
Narashimhan filtration.

5. The local 𝐾-stability theory via the normalized vol-
ume function.

Valuative criterion of 𝐾-stability. One fundamental de-
velopment of the algebraic theory of 𝐾-stability, underly-
ing the further progress in various directions, is the equiv-
alent description of the notions of 𝐾-stability, using valua-
tions over the function field 𝐾(𝑋).

Let 𝑋 be a Fano variety with klt singularities, a prime
divisor 𝐸 yields a valuation ord𝐸 given by the vanishing
multiplicity along 𝐸 for any meromorphic function, i.e.,
for any meromorphic function 𝑓,

ord𝐸(𝑓) ≔ mult𝐸(div(𝑓)).

Definition. Let 𝐸 be a prime divisor over 𝑋 , i.e., 𝐸 is
a prime divisor on a normal birational model 𝜇∶ 𝑌 →
𝑋 . Let dim𝐻0(−𝑚𝐾𝑋) = 𝑁𝑚, we can choose a basis
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{𝑠1, … , 𝑠𝑁𝑚 } compatible with the filtration on 𝐻0(−𝑚𝐾𝑋)
induced by ord𝐸 , i.e., for any 𝜆, the subspace

ℱ𝜆
𝐸𝐻0(−𝑚𝐾𝑋)

= {𝑠 ∈ 𝐻0(−𝑚𝐾𝑋) | ord𝐸(𝑠) ≥ 𝜆 } (2)

is generated by 𝑠𝑖 of {𝑠1, … , 𝑠𝑁𝑚 } with 𝑠𝑖 ∈ ℱ𝜆
𝐸𝐻0(−𝑚𝐾𝑋).

We define

𝑆𝑚(𝐸) ≔ lim
𝑚→∞

1
𝑚𝑁𝑚

𝑁𝑚

∑
𝑖=1

ord𝐸(𝑠𝑖),

and the expected vanishing order

𝑆𝑋(𝐸) =
1

(−𝐾𝑋)𝑛
∫

∞

0
vol(𝜇∗(−𝐾𝑋) − 𝑡𝐸)𝑑𝑡.

Then 𝑆𝑋(𝐸) = lim𝑚→∞ 𝑆𝑚(𝐸). We also denote the stability
threshold by

𝛿(𝑋) = inf
𝐸
𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

,

where 𝐸 runs through over all prime divisors over 𝑋 .

Theorem (Valuative criterion). We have the following equiv-
alent characterization of notions in 𝐾-stability.
1. 𝑋 is K-semistable if and only if 𝛿(𝑋) ≥ 1;
2. 𝑋 is uniformly K-stable if and only if 𝛿(𝑋) > 1; and
3. 𝑋 is K-stable if and only if 𝐴𝑋(𝐸) > 𝑆𝑋(𝐸) for any 𝐸.

The Statement 1 is proved by Fujita [Fuj19] and Li
[Li17], which we will explain below. A similar argument is
used to prove Statement 2 in [Fuj19], as well as Statement
3 in [Fuj19,Li17] with a technical assumption, which was
later removed by Blum-Xu [BX19].

Before explaining the ideas of proving the valuative cri-
terion, to exemplify its strength, we first give an applica-
tion to the Bishop-Gromov type Comparison Theorem for
Kähler manifolds.

Example (Fujita). Let𝑋 be an 𝑛-dimensional K-semistable
Fano variety, e.g., 𝑋 admits a Kähler-Einstein metric. Then
(−𝐾𝑋)𝑛 ≤ (𝑛 + 1)𝑛.

This can be seen in the following way. Let 𝜇∶ 𝑌 → 𝑋 be
the blow up of a smooth point 𝑥 ∈ 𝑋 with the exceptional
divisor 𝐸. Then

𝐻0(𝜇∗(−𝑚𝐾𝑋) − 𝑡𝑚𝐸) = 𝐻0(𝒪𝑋 ⊗𝔪⌈𝑡𝑚⌉
𝑥 ),

which implies that

vol(−𝜇∗𝐾𝑋 − 𝑡𝐸) ≥ (−𝐾𝑋)𝑛 − 𝑡𝑛.
The valuative criterion implies that

𝑛(−𝐾𝑋)𝑛 ≥ ∫
((−𝐾𝑋)𝑛)

1
𝑛

0
((−𝐾𝑋)𝑛 − 𝑡𝑛)d𝑡.

Therefore, (−𝐾𝑋)𝑛 ≤ (𝑛 + 1)𝑛.

What is striking about the valuative criterion is that
𝐾-stability notions are checked by looking at valuations
which are apparently different from test configurations as
in the original definition. A connection is observed by
Boucksom-Hisamoto-Jonsson: for any irreducible compo-
nent 𝐹 of the special fiber 𝑋0 of a test configuration 𝒳,
since 𝒳 is birational to 𝑋 × 𝔸1𝑡 , 𝐾(𝒳) ≅ 𝐾(𝑋)(𝑡), the re-
striction of ord𝐹 on the subfield 𝐾(𝑋) ⊆ 𝐾(𝒳) is of the
form 𝑎 ⋅ ord𝐸 for some divisor 𝐸 over 𝑋 , as long as 𝐹 is not
from 𝑋 × {0}.

A deeper result, proved in [LX14], says that started
with any test configuration (𝒳,ℒ) we can use the Minimal
Model Program techniques to run a process to obtain a
new normal test configuration𝒴 such that−𝐾𝒴 is relatively
ample and the central fiber 𝑋0 is also a klt Fano variety.
These test configurations are called special. Moreover, up

to a base change ℂ 𝑧𝑑−−→ ℂ,

Fut(𝒳,ℒ) ≥ Fut(𝒴, −𝐾𝒴) ≔ Fut(𝒴).

As a consequence, verifying 𝐾-stability on all test config-
urations as in Donaldson’s definition, is equivalent to re-
stricting over special test configurations. This subclass is
smaller than the one allowed in Tian’s definition, there-
fore, for Fano varieties, Donaldson’s definition is indeed
equivalent to Tian’s.

Given a non-trivial special test configuration 𝒳, let 𝑎 ⋅
ord𝐸 be the valuation on 𝐾(𝑋) induced by the unique com-
ponent 𝑋0 as above. One can calculate

Fut(𝒳) = 𝑎(𝐴𝑋(𝐸) − 𝑆𝑋(𝐸)),

and we immediately conclude that if 𝛿(𝑋) ≥ 1, then 𝑋 is
K-semistable.

There are two different approaches to prove the con-
verse direction. The first one was given in [Fuj19,Li17]. It
needs the notion of Ding stability, which is algebraically
defined by Berman [Ber16], by looking at the sign of the
Ding invariant Ding(𝒳,ℒ) for all test configurations (𝒳,ℒ).
Berman-Boucksom-Jonsson [BBJ21] and Fujita [Fuj19] ob-
served that the Minimal Model Program process in [LX14]
also can be used to show testing Ding stability notions on
general test configurations and special test configurations
are equivalent. As a consequence, one immediately sees
that 𝐾-stability notions are equivalent to the correspond-
ing Ding-stability ones, as Futaki invariants are identical
to Ding invariants on special test configurations.

Then Fujita makes the key observation that the defi-
nition of Ding invariant can be extended from test con-
figurations to any linearly bounded (decreasing) multi-
plicative filtration ℱ• ≔ (ℱ𝑡𝑅)𝑡∈ℝ on the anti-canonical
ring 𝑅 = ⨁𝑚𝐻0(−𝑚𝐾𝑋), and Ding semistability implies
Ding(ℱ•) ≥ 0 for any such filtration ℱ•. For a divisor 𝐸
over 𝑋 , one can define the filtration ℱ•

𝐸 by (2). Moreover,
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we have

𝐴𝑋(𝐸) − 𝑆𝑋(𝐸) ≥ Ding(ℱ•
𝐸).

Therefore, K-semistability, which is equivalent to Ding
semistability, implies that 𝛿(𝑋) ≥ 1.
Complements and log canonical places. The second ap-
proach reinterprets special test configurations using val-
uations with a concrete geometric description, following
[BLX19]. For this we need to first introduce the concept of
complements defined by Shokurov.

Definition. For a Fano variety 𝑋 , a ℚ-divisor 𝐷 is an 𝑁-
complement, if 𝐷 = 1

𝑁
Γ for some divisor Γ ∈ | − 𝑁𝐾𝑋 |

and (𝑋, 𝐷) is log canonical.
We say 𝐷 is a ℚ-complement, if it is an 𝑁-complement

for some 𝑁.

At first sight it is merely a technical concept. However,
the following deep result, conjectured by Shokurov and
proved by Birkar, sheds light on Fano varieties: there exists
a uniform 𝑁 which only depends on dim(𝑋), such that 𝑋
always has an 𝑁-complement. This is surprising since 𝑛-
dimensional Fano varieties are unbounded.

Below, we will explain how complements play an im-
portant role in the study of 𝐾-stability, through the con-
struction of the basis type divisor. For a sufficiently divisible
𝑚, we say 𝐷 is a 𝑚-basis type divisor if

𝐷 = 1
𝑚 ⋅ 𝑁𝑚

(div(𝑠1) +⋯+ div(𝑠𝑁𝑚)),

where 𝑁𝑚 = dim𝐻0(𝑋, −𝑚𝐾𝑋) and {𝑠1, … , 𝑠𝑁𝑚 } forms a
basis of 𝐻0(𝑋, −𝑚𝐾𝑋). This concept was introduced by
Fujita-Odaka, and they considered

𝛿𝑚(𝑋) = inf
𝐷
lct(𝑋, 𝐷) = inf

𝐷
inf
𝐸

𝐴𝑋(𝐸)
ord𝐸(𝐷)

where 𝐷 runs through over all𝑚-basis type divisors, and 𝐸
runs through over all prime divisors over 𝑋 . Together with
Jonsson-Blum’s work, they show

lim
𝑚→∞

𝛿𝑚(𝑋) = 𝛿(𝑋). (3)

We note that this gives us a way to verify 𝐾-stability for
explicit Fano varieties, by estimating 𝛿𝑚(𝑋).

For a Fano variety 𝑋 and a ℚ-complement 𝐷, we say
a prime divisor 𝐸 over 𝑋 is a log canonical place of 𝐷 if
𝐴𝑋(𝐷) = ord𝐸(𝐷). Then using (3), one can show that

if 𝛿(𝑋) ≤ 1, 𝛿(𝑋) = inf
𝐸
𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

,

where 𝐸 runs through over all log canonical places of a ℚ-
complement.

An observation made in [BLX19] is that any divisor
𝐸 arises from a special test configuration only if it is a
log canonical place of a ℚ-complement. In particular, if

𝛿(𝑋) < 1, then there exists a special test configuration 𝒳
with

Fut(𝒳) = 𝐴𝑋(𝐸) − 𝑆𝑋(𝐸) < 0,
i.e., 𝑋 is K-unstable. Additionally, by using the minimum
norm function ‖𝒳‖m introduced by Dervan, a more pre-
cise relation can be given when 𝛿(𝑋) ≤ 1:

𝛿(𝑋) ≔ inf
𝐸
𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

= 1 + inf
𝒳
Fut(𝒳)
‖𝒳‖m

. (4)

Then [BLX19] applied Birkar’s theorem on the exis-
tence of bounded complements to investigate log canon-
ical places of ℚ-complements, and proved that there exists
a uniform 𝑁, which only depends on dim(𝑋), such that if
𝐸 is a log canonical place of ℚ-complement, it is indeed
a log canonical place of an 𝑁-complement 𝐷. As all 𝑁-
complements form a bounded family, their log canonical
places are toroidal divisors over a bounded family of log
resolutions. Both𝐴𝑋(𝐸) and 𝑆𝑋(𝐸) are deformation invari-

ant, so we can assume 𝛿(𝑋) = lim𝐸𝑖
𝐴𝑋(𝐸𝑖)
𝑆𝑋(𝐸𝑖)

for a sequence

of lc places 𝐸𝑖 of 𝑁-complements, which is toroidal over
the same log resolution. Thus after a rescaling of ord𝐸𝑖
and passing to a subsequence, there exists a limiting quasi-

monomial valuation 𝑣 and it satisfies that 𝛿(𝑋) = 𝐴𝑋(𝑣)
𝑆𝑋(𝑣)

.

(There are straightforward generalization of various defi-
nitions and invariants from divisors to quasi-monomial
valuations 𝑣 over 𝑋 .)
Higher rank finite generation. In the above discussion,
the valuation 𝑣 has its toroidal coordinates the limit of the
ones of a rescaling of ord𝐸𝑖 . In particular, it could be ℚ-
linearly independent. In other words, 𝑣 could be a quasi-
monomial valuation of higher rational rank. For any valu-
ation 𝑣, its values on 𝑅 = ⨁𝑚𝐻0(−𝑚𝐾𝑋) form a monoid
Φ contained in ℝ≥0. For any 𝜆 ∈ Φ, we define 𝐼𝜆 ⊆ 𝑅 to
be the ideal consisting of sections 𝑠 ∈ 𝑅 with 𝑣(𝑠) ≥ 𝜆; and
𝐼>𝜆 ⊆ 𝑅 to be the ideal of sections 𝑠 with 𝑣(𝑠) > 𝜆. Then
the associated graded ring of 𝑅 with respect to 𝑣 is

gr𝑣(𝑅) ≔⨁
𝜆∈Φ

𝐼≥𝜆/𝐼>𝜆.

To further advance the theory, we need another major
recipe which is the following finite generation theorem,
proved by Liu-Xu-Zhuang [LXZ21].

Theorem (Higher rank finite generation). Let 𝑋 be a Fano
variety with 𝛿(𝑋) ≤ 1. Let 𝑣 be the quasi-monomial valua-

tion constructed above satisfying that 𝛿(𝑋) = 𝐴𝑋(𝑣)
𝑆𝑋(𝑣)

. Then the

associated graded ring gr𝑣(𝑅) is finitely generated.

In the above theorem, if 𝑣 arises from a divisor, the finite
generation easily follows from the work of Birkar-Cascini-
Hacon-McKernan [BCHM10], as 𝑣 is a log canonical place
of aℚ-complement. However, it does not always hold that
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gr𝑣(𝑅) is finitely generated if a higher rational rank valua-
tion 𝑣 is merely assumed to be a log canonical place of aℚ-
complement. Therefore, finer properties have to been ex-
tracted from the quasi-monomial valuation 𝑣 computing
𝛿(𝑋), and the proof needs various new recipes, especially
deep results on the boundedness of Fano varieties.
Revisit stability. As we already emphasized, roughly
speaking, stability can be thought of as a condition to
pick out the optimal degeneration for a family. As seen in
Kempf-Ness’s classical theorem, the theory often can be
extended to associating every unstable object an “optimal
destabilization.” An example is to degenerate an unstable
sheaf to the direct summand of the graded sheaves of its
Harder-Narasimhan filtration. The notion is coined into
the term Θ-stratification by Halpern-Leistner.

Our finite generation theorem yields such a theory for
𝐾-stability. In fact, one can show from it that there exists
a divisorial valuation 𝑎 ⋅ ord𝐸 sufficiently close to 𝑣, with
𝛿(𝑋) = 𝐴𝑋(𝐸)

𝑆𝑋(𝐸)
and 𝐸 induces a special test configuration.

As a consequence, we have

Theorem (Optimal Destabilization Theorem). Let 𝑋 be a
Fano variety with 𝛿(𝑋) ≤ 1. Then there exists a divisor 𝐸 which

induces a special test configuration and satisfies 𝛿(𝑋) = 𝐴𝑋(𝐸)
𝑆𝑋(𝐸)

.

In particular, if 𝑋 is K-stable then it is uniformly K-stable.
In particular, 𝑋 is K-stable if and only if 𝛿(𝑋) > 1.
The “optimal” in our theorem is with respect to the

minimum norm as (4) shows. Székelyhidi explored the
optimal degeneration with respect to 𝐿2-norm for toric va-
rieties. Nevertheless, for a general Fano variety, the min-
imum norm fits better into our machinery. To help the
reader to understand the features of different approaches,
we would like to give a panoramic comparison in each ap-
proach of how the stability is applied to the degeneration
process.

Philosophically speaking, a key point to study-
ing 𝐾-stability is understanding how to get the
limit of a sequence of Fano varieties 𝑋𝑡 with ex-
tra conditions, or similarly a sequence of test
configurations of a fixed Fano variety, which
approximates the infimum of the normalized
Futaki invariants.

In the Cheeger-Colding-Tian theory, one starts with a
Fano manifold 𝑋 without a Kähler-Einstein metric, and
it suffices to construct a test configuration destabilizing
𝑋 . Donaldson introduced the idea of using an auxiliary
boundary divisor and conic metrics along it. More pre-
cisely, fix any smooth divisor Γ ∈ | −𝑚𝐾𝑋 |, one can find a
sequence 𝛽𝑖 ∈ (0, 1

𝑚
) with 𝛽 = lim𝑖 𝛽𝑖 such that (𝑋, 𝛽𝑖 ⋅ Γ)

admits a conical Kähler-Einstein metric 𝜔𝑖, but (𝑋, 𝛽 ⋅
Γ) does not. After passing through a subsequence, the

Gromov-Hausdorff limit 𝑋∞ of the conical Kähler-Einstein
Fano manifolds (𝑋, 𝜔𝑖) exists as a metric space. Then it
took a large endeavor to show that 𝑋∞ is indeed the under-
lying space of the Chow limit when one uses an orthonor-
mal basis (with respect to 𝜔𝑖) of |−𝑁𝐾𝑋 | (for some𝑁 ≫ 0)
to embed 𝑋 into a projective space. Moreover if we take Γ∞
to be the Chow limit of Γ, then (𝑋∞, 𝛽 ⋅ Γ∞) has a conical
Kähler-Einstein metric. Then we obtain a test configura-
tion degenerating 𝑋 to 𝑋∞ with a negative Futaki invari-
ant, which implies 𝑋 is K-unstable. However, for now this
kind of analytic argument is restricted to the case when 𝑋
is smooth.

The variational approach focuses on the space of
smooth Kähler metrics and its various completions. The
existence of a Kähler-Einstein metric is equivalent to the
Mabuchi (or Ding) functional having a critical point. Fol-
lowing the infinite dimensional GIT picture, one should
concentrate on the functional along geodesic rays by the
analogue of the Hilbert-Mumford criterion in this setting.
For simplicity, here we restrict ourselves to the case that
the automorphism group is finite. It is shown that the
existence of a critical point of the Ding functional fol-
lows from the coercivity, which means for any geodesic
𝑈 ∶ ℝ → ℰ1 in the space of Kähler metrics ℰ1 with fi-
nite energy plurisubharmonic (psh) potentials, the Ding
functional 𝐃 grows at least linearly. After establishing
the convexity of 𝐃 along the geodesic ray, it is sufficient
to understand the growth

1
𝑡
𝐃(𝑈𝑡) when 𝑡 → ∞, where a

translation dictionary between the archimedean and non-
archimedean setting is established. We note that the space
of non-archimedean metrics contains all test configura-
tions, so we have a chance to connect the algebraic con-
dition of 𝐾-stability and the analytic condition of the exis-
tence of Kähler-Einstein metrics.

The positivity of Ding invariants on non-archimedean
metrics (with finite energy) implies coercivity, as when 𝑡 →
∞,

lim
𝑡→∞

𝐃(𝑈𝑡)
𝑡 ≥ Ding(𝜙) > 0

for a non-archimedean metric 𝜙 attached to the geodesic
ray 𝑈. Moreover, while 𝜙 might not come from a test
configuration, it can be approximated by a sequence of
non-archimedean metrics 𝜙𝑖 coming from test configura-
tions (constructed by Demailly’s regularization) such that
the Ding invariants satisfy lim𝑖→∞Ding(𝜙𝑖) ≤ Ding(𝜙).
However, to have positivity of the limiting Ding invariant
Ding(𝜙), positivity of Ding(𝜙𝑖) is not enough, but we have
to assume uniform Ding stability.

As we mentioned before, uniform 𝐾-stability is known
to be the same as uniform Ding stability. It remains to
show the equivalence between 𝐾-stability and uniform
𝐾-stability, which is addressed by the Optimal Destabi-
lization Theorem, obtained with deep results from the

1132 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 7



Minimal Model Program. In other words, the algebro-
geometric approach provides the necessary compactness
result.

In the work of stability, this kind of study on the limit
of a family of Fano varieties is clearly related to moduli
spaces. In fact, the progress of our understanding on the
fundamental concepts of 𝐾-stability intertwines with the
construction of moduli spaces of 𝐾-polystable Fano vari-
eties. We will continue to discuss the latter topic.
Moduli of Fano varieties. It is one of the most fundamen-
tal questions in algebraic geometry to construct moduli
spaces of varieties. For instance, for 𝑔 ≥ 2 the moduli
spaceℳ𝑔 of curves and its compactificationℳ𝑔 are among
the most studied objects in algebraic geometry. Built
on the machinery of the Minimal Model Program and
progress on understanding the moduli problem of higher
dimensional varieties, KSB (Kollár-Shephard-Barron) sta-
bility gives a satisfying theory to generalize the construc-
tion of ℳ𝑔 to higher dimensions. In particular, an appro-
priate definition of families of arbitrary dimensional vari-
eties (or even log pairs) was given by Kollár. As the output,
we get a projective scheme which parametrizes KSB stable
varieties 𝑋 , whose canonical class 𝐾𝑋 is ample.

The opposite case when −𝐾𝑋 is ample had been mys-
terious for a long time. It is trivial when dim(𝑋) = 1 as
𝑋 = ℂℙ1. However, in higher dimensions, it is much trick-
ier. As (1) shows, an isotrivial family 𝑋𝑡 could jump to 𝑋0
with a different complex structure, which does not occur
for a KSB stable family. So it has been well understood
for a long time that the Minimal Model Program itself is
unlikely to be sufficient to provide a satisfactory moduli
theory for Fano varieties. However, in the example (1),
the central fiber is 𝐾-unstable, so there is a chance that if
we restrict ourselves to Fano varieties with 𝐾-stability as-
sumptions, this pathology does not occur.

Various results from the analytic side, especially “the
partial 𝐶0-estimate” in the works of Tian and Donaldson-
Sun, suggest that the condition on the existence of Kähler-
Einstein metrics could sort out a class of Fano varieties
to be parametrized by well-behaved moduli spaces. As 𝐾-
stability is the corresponding algebraic condition, it is nat-
ural to hope that it yields a robust moduli theory. Specula-
tion is also inspired by the successful role that the Hitchin-
Kobayashi correspondence plays in the study of compact
moduli spaces parametrizing them. However, for fami-
lies of K-stable Fano varieties it was far from clear how
to use the definition of 𝐾-stability itself to actually estab-
lish the list of properties needed to construct the moduli
space. This could be the reason that such a topic did not at-
tract people’s attention in the decade right after the inven-
tions of the notion. Li-Xu [LX14] studied families of Fano
varieties from the perspective of 𝐾-stability and provided
a hint that K-stability may lead to an algebraic moduli

theory. Nevertheless, only until people have obtained
enough fundamental knowledge on 𝐾-stability, e.g., the
valuative criterion, we could start to get definitive results.

The main theorem is the following.

Theorem (K-moduli). Fix a positive integer 𝑛, and a rational
number 𝑉 . Then
1. There exists an Artin stack 𝔛kss𝑛,𝑉 of finite type, which

parametrizes families of 𝑛-dimensional K-semistable Fano
varieties 𝑋 → 𝑇, with (−𝐾𝑋𝑡)𝑛 = 𝑉 for any 𝑡 ∈ 𝑇.

2. The stack 𝔛kss𝑛,𝑉 admits a proper good moduli space 𝔛kss𝑛,𝑉 →
𝑋kps
𝑛,𝑉 , whose points correspond to K-polystable Fano vari-

eties. Moreover, the CM line bundle ΛCM is ample on
𝑋kps
𝑛,𝑉 .

The proof of the above theorem is a combination of
many people’s contributions. We will explain below the
content of the K-moduli Theorem, and sketch the circle of
ideas involved in the proof.

Example. Consider cubic hypersurfaces

𝑋 ⊂ ℙ𝑛+1 (𝑛 ≥ 2). (5)

It is not hard to verify 𝐾-stability for some special cubic
hypersurface, e.g., the Fermat 𝑋 = (𝑥30+⋯+𝑥3𝑛+1) = 0. As
we will see this implies that there is a Zariski open locus
of the parametrizing space, such that any corresponding
cubic hypersurface is K-semistable.

It is shown by Odaka-Spotti-Sun for 𝑛 = 2, Liu-Xu for
𝑛 = 3, and Liu for 𝑛 = 4, that in these cases, the GIT stabil-
ity of cubic hypersurfaces is exactly the same as 𝐾-stability.
In other words, the K-moduli is given by the GIT moduli
space.

𝐾-moduli stack. By definition, the K-moduli stack 𝔛kss𝑛,𝑉
admits a universal family 𝔘kss

𝑛,𝑉 → 𝔛kss𝑛,𝑉 , such that for
any scheme 𝑇, all pull-back families under morphisms
in Hom(𝑇, 𝔛kss𝑛,𝑉 ) precisely correspond to all isomorphic
classes of families of 𝑛-dimensional K-semistable Fano va-
rieties with volume 𝑉 over 𝑇.

To prove the first part of the K-moduli theorem, we first
need to show the boundedness which says that there exists
a uniform 𝑀 = 𝑀(𝑛, 𝑉) such that for any 𝑛-dimensional
K-semistable Fano variety, −𝑀𝐾𝑋 is very ample, i.e., the
linear system | − 𝑀𝐾𝑋 | induces an embedding of 𝑋 into a
same projective space ℂℙ𝑁 . This was first proved by Jiang,
who reduced the question to Birkar’s proof of the Borisov-
Alexeev-Borisov Conjecture.

We consider (𝑋, 𝑓) for 𝑋 with an embedding 𝑓∶ 𝑋 →
ℙ𝑁 as above. These pairs are parametrized by a locus 𝑍
of the Hilbert scheme Hilb(ℙ𝑁). It suffices to prove 𝑍 is
locally closed in Hilb(ℙ𝑁), since

𝔛kss𝑛,𝑉 = [𝑍/PGLℂ(𝑁 + 1)], (6)
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as two embeddings of 𝑋 differ by an element in PGLℂ(𝑁 +
1).

The locus in Hilb(ℙ𝑁) parametrizing Fano subvarieties
of ℙ𝑁 is locally closed, so it remains to prove for a family
of Fano varieties 𝑋 → 𝑇, the locus 𝑈 ⊆ 𝑇 parametrizing K-
semistable fibers is open. One way to get this is using the
fact that the function 𝑡 → min{𝛿(𝑋𝑡), 1} is constructible and
lower semi-continuous. This was first proved in [BLX19]
for 𝛿(𝑋 ̄𝑡) instead of 𝛿(𝑋𝑡), where ̄𝑡 is the geometric point
given by 𝑡. Then Zhuang verified 𝛿(𝑋 ̄𝑡) = 𝛿(𝑋𝑡).
𝐾-moduli space. From the above discussion, we see that
for any fixed positive number 𝛿0 ∈ (0, 1], we still get an
Artin stack of finite type if we replace the K-semistability
condition for 𝔛kss𝑛,𝑉 by 𝛿(𝑋𝑡) ≥ 𝛿0. However, a much more
delicate property which distinguishes 𝔛kss𝑛,𝑉 is that it admits
a space which parameterizes points up to orbit closure
equivalence, i.e., the 𝑆-equivalence after Seshadri, called
the good moduli space.

One difficulty in constructing moduli space of Fano va-
rieties is the fact that a Fano variety 𝑋 may have a posi-
tive dimensional automorphism group Aut(𝑋). This con-
trasts to the case of the KSB stability, where the moduli
is a separated Deligne-Mumford stack for which one can
apply Keel-Mori’s theorem to conclude the existence of a
coarse moduli space. When a stack has points with posi-
tive dimensional stabilizer groups, it usually does not ad-
mit any coarse moduli space. Nevertheless, a replacement
construction initiated by Alper, called the good moduli space,
provides a good framework to treat this more complicated
case, at least in characteristic 0.

Definition. Let 𝔛 be a stack. We say 𝑋 is a good moduli
space of 𝔛, if the quasi-compact morphism 𝜙∶ 𝔛 → 𝑋 sat-
isfies

1. The push-forward functor 𝜙∗ is exact on quasi-
coherent sheaves;

2. There is an isomorphism 𝒪𝑋 → 𝜙∗(𝒪𝔛).

Example. Let ℂ∗ act on ℂ by 𝑡 ⋅ 𝑥 → 𝑡𝑥, then the stack
[ℂ/ℂ∗] admits a good moduli space, which is a point.

However, if we replace ℂ by ℂℙ1, with the action 𝑡 ⋅
[𝑥0, 𝑥1] → [𝑥0, 𝑡𝑥1], then the stack [ℂℙ1/ℂ∗] has no good
moduli space.

The definition of good moduli space is simple, how-
ever it has strong implications. For a quotient stack [𝑍/𝐺]
if it admits a good moduli space, it implies that for any
𝑧 ∈ 𝑍, the closure 𝐺 ⋅ 𝑧 ⊂ 𝑍 has a unique minimal orbit
𝐺 ⋅ 𝑧∗. Moreover, the stabilizer of 𝑧∗ is reductive. For 𝔛kss𝑛,𝑉
(see (6)), this means that for any K-semistable Fano vari-
ety 𝑋 , there is a unique K-polystable Fano variety 𝑌 which
is 𝑆-equivalent to 𝑋 , and Aut(𝑌) is reductive. The latter
was Matsushima’s theorem when 𝑌 is a smooth Kähler-
Einstein Fano manifold.

A prototype example of good moduli space is given by
𝔛 = [Spec(𝐴)/𝐺] where 𝐺 is a reductive group acting on
an affine variety Spec(𝐴) (over characteristic 0), where the
good moduli space is 𝑋 = Spec(𝐴𝐺). More generally, for
a polarized projective variety (𝑌, 𝐿) with a reductive group
action, then one can take 𝔛 = [𝑌 ss/𝐺] where 𝑌 ss is the
GIT semistable locus and the good moduli space of 𝔛 is
the GIT quotient 𝑋 = 𝑌/𝑠𝑠𝑙𝑎𝑠ℎ𝐺. Nevertheless, there is
no known way to interpret the K-moduli problem as a GIT
problem, so we have to rely on a more general abstract
method. Fortunately, a valuative criterion of the existence
of good moduli space, which is a version of Keel-Mori’s
theorem for Artin stacks, is established in [AHLH18]. Ap-
plying their work, built on earlier analysis in [LWX21] and
[BX19], the existence of the goodmoduli space and its sep-
aratedness are proved in [ABHLX20].

While the existence of the good moduli space 𝑋kps
𝑛,𝑉

should justify that 𝐾-stability gives the right notion of
moduli theory of Fano varieties, arguably themost remark-
able property of 𝑋kps

𝑛,𝑉 is its properness.

Let 𝑋∘ → Δ∘ be a family of K-semistable Fano
varieties over a punctured curve, then after a
base change of Δ∘, there exists a unique K-
polystable Fano filling.

For a family whose general fibers are smooth with
Kähler-Einstein metrics, the existence of the limit is given
as the deepest consequence from the Cheeger-Colding-
Tian theory. For the general case, the compactness result
essentially relies on the Optimal Destabilization Theorem.

Another fundamental property of 𝑋kps
𝑛,𝑉 is its projectiv-

ity, i.e., 𝑋kps
𝑛,𝑉 is a subscheme of ℙ𝑁 for some 𝑁. The CM

line bundle ΛCM, defined in various works with growing
generality and eventually by Paul-Tian in its current form,
gives a candidate of an ample bundle, because over the lo-
cus parametrizing smooth Kähler-Einstein Fanomanifolds
the positivity of ΛCM can be seen analytically via a metric
on ΛCM, whose curvature form is the Weil-Petersson met-
ric. However, as usual there is essential difficulty to extend
the analytic argument to the locus parametrizing singular
Fano varieties. Later [CP21] initiated an algebraic way to
attack the positive problem, and their method was com-
pleted by [XZ20].
Explicit 𝐾-stable Fano varieties. With the vast progress
on 𝐾-stability theory, it is natural to study explicit exam-
ples.

The valuative criterion provides a way to verify 𝐾-
stability of a Fano variety 𝑋 by estimating 𝛿(𝑋). Using
𝛿(𝑋) = lim𝑚 𝛿𝑚(𝑋), Abban-Zhuang invent an approach
of applying inversion of adjunction to reduce the estimate
of the log canonical thresholds 𝛿𝑚(𝑋) to low dimensional

1134 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 7



varieties. As a result, they prove any degree 𝑑 smooth hy-
persurface 𝑋 in ℙ𝑛+1 is K-stable if 𝑛 + 2 − 𝑛1/3 ≤ 𝑑 ≤ 𝑛+ 1.

Following Tian’s work in dimension 2 which completes
the Kähler-Einstein Problem for smooth Fano surfaces,
in a recent joint work of Araujo-Castravet-Cheltsov-Fujita-
Kaloghiros-Martinez-Garcia-Shramov-Suss-Viswanathan,
they go through the list of 105 families in Iskovskikh-Mori-
Mukai classification of smooth Fano threefolds, and de-
termine in each family whether a general member is K-
(semi,poly)stable. The arguments involve many different
techniques.

K-moduli spaces provides many explicit examples of
moduli spaces. Mabuchi-Mukai and Spotti-Odaka-Sun
gave explicit descriptions of the K-moduli spaces which
compactify the moduli spaces parametrizing smooth K-
stable Fano surfaces. In higher dimensions, there is only
a small number of cases for which we have a complete ex-
plicit description of the K-moduli space. We have seen in
(5) for cubic hypersurfaces of dimension at most 4, the K-
moduli spaces are identical to the GIT moduli spaces. The
same statement is expected to hold for cubic hypersurfaces
in any dimension. However, for hypersurfaces of a degree
larger than 3, the K-moduli usually is not the same as the
GIT moduli. While we expect all smooth Fano hypersur-
faces are K-(poly)stable, there is not even a conjectural pic-
ture on what should appear as their limits.

It is also interesting to consider the case of log pairs,
for which all the previous main theorems still hold. A
research project, led by Ascher-DeVleming-Liu, studies
moduli spaces whose general members parametrize K-
semistable log Fano pairs (𝑋, 𝑡𝐷) for a Fano variety 𝑋 ,
𝐷 ∈ | − 𝑟𝐾𝑋 | and a constant 0 ≤ 𝑡 < 1

𝑟
. When one varies 𝑡,

the K-moduli spaces are connected by wall-crossings. This
framework is applied to (𝑋, 𝐷) = (ℙ3,quartic K3). The
𝐾-stability moduli theory provides interpolating moduli
spaces between the Satake compactification of the moduli
of quartic K3 surfaces which corresponds to 𝑡 → 1 and the
GIT moduli space which corresponds to 𝑡 → 0. As a con-
sequence, they confirm a conjecture of Laza-O’Grady, who
study these moduli spaces from a different perspective.
Analogous problems. Given the fundamental impor-
tance of Kähler-Einstein metrics, it is probably not surpris-
ing that people try to develop similar studies in other geo-
metric settings. Many parts of our discussion above can be
extended accordingly.

For any Fano variety 𝑋 , we know it does not necessarily
have a Kähler-Einstein metric. As a replacement, people
study whether it admits a more general kind of canonical
metrics, namely Kähler-Ricci soliton. Combining the works
of Han-Li and Blum-Liu-Xu-Zhuang, any klt Fano variety
𝑋 is known to admit a unique two-step degeneration pro-
cess to a Kähler-Ricci soliton. More precisely, 𝑋 first de-
generates to (𝑋0, 𝜉0) where 𝜉0 is a vector field on 𝑋0, such

that (𝑋0, 𝜉0) is K-semistable (in the sense of a Fano vari-
ety with a vector field). Moreover, (𝑋0, 𝜉0) has a unique
K-polystable degeneration (𝑌, 𝜉𝑌 ), which admits a Kähler-
Ricci soliton metric. When 𝑋 is smooth, this degeneration
of 𝑋 to 𝑌 is also given by the Gromov-Hausdoff limit of
the Kähler-Ricci flow, upon the Hamilton-Tian Conjecture
solved by Tian-Zhang in dimension three, Chen-Wang and
Bamler in a general dimension.

One can also consider the local setting. There has been
a well-studied local analogue of Kähler geometry, namely
the Sasaki geometry, which corresponds to the link of a cone
singularity. The corresponding Yau-Tian-Donaldson Con-
jecture, which claims the existence of a Sasaki-Einstein met-
ric on a Fano cone singularity (𝑥 ∈ 𝑋, 𝜉) is equivalent to
the K-polystability of (𝑥 ∈ 𝑋, 𝜉), was proved by Collins-
Székelyhidi when the singularity is isolated, and by Li and
Huang in the general case.

A more challenging local question is to consider an ar-
bitrary klt singularity 𝑥 ∈ 𝑋 . As the combination of a num-
ber of conjectural statements, made by Li and Li-Xu, the
Stable Degeneration Conjecture predicts that any klt singular-
ity 𝑥 ∈ 𝑋 has a degeneration to a K-semistable Fano cone
singularity (𝑥0 ∈ 𝑋0, 𝜉) and such a degeneration comes
from the unique (up to rescaling) minimizer of the nor-
malized volume function. We recall that the normalized
function v̂ol, invented by Li, is defined on the space of val-
uations Val𝑋,𝑥 which consists of all valuations on 𝐾(𝑋)
centered on 𝑥. There are many works, by Blum, Li, Liu,
Xu, and Zhuang, which solved various parts of the Stable
Degeneration Conjecture. As of the writing of this article,
there is only one part remaining open. That is the claim
that any minimizing valuation 𝑣 of v̂ol, which is shown
by Xu to be quasi-monomial, has a finitely generated asso-
ciated graded ring. In other words, as the writing of this
article, the local higher rank finite generation is still un-
known!
What’s next? I wish by now, with the complete solution
of the Yau-Tian-Donaldson Conjecture for all Fano vari-
eties, as well as the construction of the K-moduli spaces
and many other results, it becomes clear that the interac-
tion between the Kähler-Einstein Problem and the Mini-
mal Model Program provides an exceptionally beautiful
example to mathematician’s dream of viewing mathemat-
ics as one unified discipline.

As an important chapter is about to be closed, there
are good reasons to be optimistic about the future of the
field. Many exciting directions remain unexplored. For
instance, we lack a good understanding of the algebraic
properties of polarized manifolds with a constant scalar
curvature metric, whereas in differential geometry many
deep results have been obtained for it as a natural exten-
sion of the Kähler-Einstein Problem. It is also tempting to
find out whether the new 𝐾-stability perspective of higher
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dimensional geometry can shed light on the longstanding
questions in the Minimal Model Program, e.g., termina-
tion of flips and the Abundance Conjecture. Nevertheless,
as always, only time can tell how far the interaction will
take us.
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