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1. Introduction
Some thirty-five years ago, Andreas Floer introduced a new
tool into geometry: an infinite-dimensional version of
Morse theory that is now referred to as Floer homology.
The original version of Morse theory computes the homol-
ogy of a finite-dimensional manifold in terms of critical
points of a smooth function and the flow of its gradient
vector field. Floer theory does something similar in in-
finite dimensions, where the critical points and gradient
flow equations are now differential geometric objects.
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The setting for the initial version of Floer homology was
in symplectic geometry,1 but Floer soon understood (fol-
lowing on work of Casson and suggestions of Atiyah and
Taubes) that the analytical and geometric tools he had de-
veloped were similar to those appearing in gauge theory,
and could be used to study 3-dimensional manifolds. The
resulting theory is broadly known as Instanton Floer ho-
mology. We will not discuss the symplectic version or the
closely related Heegaard Floer theory (or the ‘monopole
Floer homology,’ a version that comes from Seiberg-Witten
theory), so we will mostly drop the word ‘instanton’ and
refer only to Floer theory.

In this article, we describe a number of applications
of this remarkable theory, focusing on two particular ar-
eas that have seen much recent activity. The first is the
existence of irreducible representations of the fundamen-
tal group of 3-manifolds into the simplest non-abelian Lie
groups, SU(2) and SO(3). Finding such a representation is
an excellent way to show that Dehn surgery on a knot does

1A historical overview by Helmut Hofer of the early days of Floer theory, focus-
ing on its symplectic version, may be found at https://www.youtube.com
/watch?v=kSNyU71MpgQ.
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not yield a simple manifold such as a sphere or lens space.
The second is the use of Floer theory in combination with
Yang-Mills gauge theory to study the homology cobordism
group of 3-manifolds with the same homology as 𝑆3. The
structure of this group is important in low-dimensional
topology in the study of the relationship between smooth
4-manifolds and their 3-dimensional boundaries and also
in the study of triangulations of high-dimensional mani-
folds. There are many further applications that we do not
have space to mention, including the characterization of
the unknot (and other simple knots) via the combinatori-
ally defined Khovanov homology.

2. Morse Theory and Floer Homology
In its most fundamental version, Morse theory gives a
recipe for computing the homology groups of a finite-
dimensional closedmanifold𝑀 in terms of some auxiliary
data: a real-valued function 𝑓 ∶ 𝑀 → ℝ and a Riemann-
ian metric 𝑔 on𝑀. In brief, one assumes that 𝑓 is a Morse
function, meaning that the Hessian matrix of second par-
tial derivatives is non-singular at each critical point. Such
critical points are called non-degenerate. Each critical point
𝑝 ∈ Crit(𝑓) is assigned an index ind𝑝: the number of neg-
ative eigenvalues of the Hessian matrix. The metric turns
the differential 𝑑𝑓 into the gradient vector field∇𝑓, and un-
der some additional transversality assumptions, one can
count (with signs) the number of flow lines between criti-
cal points with indices differing by one.

There is already a lot to say about the classical theory, so
we content ourselves with a brief summary. A downward
flow line on a (possibly infinite) interval 𝐽 is a solution to
the ordinary differential equation

̇𝛾(𝑡) = −∇𝛾(𝑡)𝑓. (1)

It is worth keeping in mind that while the set of critical
points is determined by 𝑓, the gradient flow equation de-
pends on the choice of Riemannian metric.

The counting process already reveals some subtleties.
First, a flow line doesn’t really ‘go from’ a critical point 𝑥
to a critical point 𝑦: since ∇𝑥𝑓 = 0, the only flow line that
passes through 𝑥 is the constant solution to (1) given by
𝛾(𝑡) = 𝑥. Rather, we declare a flow line to have (positive
and negative) limits 𝑦 and 𝑥 if

lim
𝑡→∞

𝛾(𝑡) = 𝑦 and lim
𝑡→−∞

𝛾(𝑡) = 𝑥.

In addition, note that for any solution 𝛾(𝑡) to (1) and any
𝑐 ∈ ℝ, we get a new solution 𝛾(𝑡 + 𝑐) to (1) with the ex-
act same limiting behavior! Let us define an equivalence
relation between flow lines 𝛾1 and 𝛾2 by saying 𝛾1 ∼ 𝛾2 if
𝛾2(𝑡) = 𝛾1(𝑡 + 𝑐) for some 𝑐 ∈ ℝ. For any critical points 𝑥
and 𝑦, we therefore define

ℳ̃(𝑥, 𝑦) = {flow lines with limits at 𝑥 and 𝑦}
ℳ(𝑥, 𝑦) = ℳ̃(𝑥, 𝑦)/ ∼ .

In other words, we have an ℝ-action on ℳ̃(𝑥, 𝑦), and
ℳ(𝑥, 𝑦) is the quotient.

This moduli space has a second interpretation, which
leads to a natural topology on ℳ(𝑥, 𝑦). If 𝑥 is a critical
point of index 𝑘, then the set of points 𝑧 such that there is
a flow line with limit equal to 𝑥 as 𝑡 → −∞ and passing
through 𝑧 is called the descending manifold of 𝑥, and is de-
noted 𝐷𝑥. As the name suggests, 𝐷𝑥 is in fact a manifold
of dimension 𝑘. Similarly, we have the ascending manifold
𝐴𝑦 consisting of points 𝑧 with flow lines passing through
𝑧 and limiting to 𝑦 as 𝑡 → ∞.

Using this terminology, we can keep track of flow lines
with limits at 𝑥 and 𝑦 in the following way. The chain rule,
coupled with (1) says

𝑑
𝑑𝑡 (𝑓(𝛾(𝑡))) = 𝑑𝑓( ̇𝛾(𝑡)) = ⟨∇(𝑓), ̇𝛾⟩

= −|∇(𝑓)|2 < 0.
This is a familiar fact that we teach in calculus classes: the
function 𝑓 decreases in the direction of the (negative) gra-
dient flow. It follows that if there is a flow line with limits
𝑦 and 𝑥, then 𝑓(𝑥) > 𝑓(𝑦). Sard’s theorem says that there is
a regular value 𝑐 ∈ (𝑓(𝑦), 𝑓(𝑥)) for 𝑓, which means that the
level set 𝑀𝑐 = 𝑓−1(𝑐) is an (𝑛 − 1)-dimensional manifold.
Now any flow line from 𝑥 to 𝑦must pass through this level
set, exactly once (by the decreasing condition). It follows
that

ℳ(𝑥, 𝑦) ≅ 𝐷𝑥 ∩𝑀𝑐 ∩ 𝐴𝑦 ≅ (𝐷𝑥 ∩ 𝐴𝑦)/ℝ, (2)

which provides our interpretation of ℳ(𝑥, 𝑦). The struc-
ture ofℳ(𝑥, 𝑦) is simplest if we make the assumption that
the intersection in (2) is transverse: the sum of the tangent
spaces to 𝐷𝑥 and 𝐴𝑦 spans the tangent space to 𝑀𝑐. This
transversality property, highlighted by Smale, is called the
Morse-Smale condition.

The Morse-Smale condition is remarkably powerful:
combined with (2) it implies that ℳ(𝑥, 𝑦) is a smooth
manifold of dimension ind𝑥 − ind𝑦 −1.

With some additional data, one can consistently assign
an orientation to ℳ(𝑥, 𝑦). If ind𝑥 = ind𝑦 +1, then ℳ(𝑥, 𝑦)
is a finite set of points. Let us write #ℳ(𝑥, 𝑦) for the alge-
braic count: each point in ℳ(𝑥, 𝑦) counted as ±1 depend-
ing on its sign.

All of this counting creates the Morse-Witten chain com-
plex (𝐶∗(𝑀, 𝑓), 𝜕) where 𝐶𝑘(𝑀, 𝑓) is the free abelian group
with basis {𝑥} corresponding to the critical points of index
𝑘. The boundary operator 𝜕 ∶ 𝐶𝑘(𝑀, 𝑓) → 𝐶𝑘−1(𝑀, 𝑓)
is the linear map whose matrix with respect to the crit-
ical points 𝑥 and 𝑦 of indices 𝑘 and 𝑘 − 1 has (𝑦, 𝑥) en-
try #ℳ(𝑥, 𝑦). There are several remarkable aspects of the
Morse complex: it is indeed a chain complex, or in sym-
bols 𝜕2 = 0. Moreover, 𝜕 is the differential of the chain
complex associated to a cell decomposition of 𝑀, and so
its homology is exactly the usual singular homology of 𝑀.
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It follows from this last statement that the homology of
(𝐶∗(𝑀, 𝑓), 𝜕) is independent of the Morse function 𝑓 and
the Riemannian metric used in its definition; it is impor-
tant for later developments that this can be proven directly
by analytical means.

It can certainly happen that a given function has degen-
erate critical points or that the flow associated to a metric
is not Morse-Smale. Fortunately, one can perturb the func-
tion and/or the metric to achieve these conditions. The
subject of perturbations is a bit technical, and it is best
on a first reading to pretend that our fairy godmother has
waved a magic wand to make all such issues go away. An

Figure 1. The magic of perturbations.

interesting byproduct of this discussion is a proof of the
Poincaré-Hopf formula. This formula states that the Eu-

ler characteristic 𝜒(𝑀) = ∑dim𝑀
𝑘=0 (−1)𝑘 dim𝐻𝑘(𝑀;ℝ) may

be calculated in terms of the indices of the zeros of ∇𝑓 as
follows:

𝜒(𝑀) = ∑
𝑝∈Crit(𝑓)

(−1)ind𝑝 . (3)

In a historical parallel with the ordinary Euler charac-
teristic (whose definition preceded the introduction of ho-
mology by more than a hundred years!) our path to Floer
homology starts with its Euler characteristic, introduced
by Casson in a series of MSRI lectures in 1985. Casson
worked with an oriented homology sphere 𝑌 , and studied
the set of representations

𝛼 ∶ 𝜋1(𝑌) → SU(2)
up to the equivalence relation of conjugacy. This means
that representations 𝛼′ and 𝛼 are equivalent if there is
ℎ ∈ SU(2) with 𝛼′(𝑔) = ℎ−1𝛼(𝑔)ℎ for all 𝑔 ∈ 𝜋1(𝑌). The
set of SU(2) representations of a finitely presented group
is a real algebraic variety. Something similar is true for the
set of conjugacy classes of representations, referred to as
the character variety and denoted ℛ(𝑌). The biggest caveat
is that the trivial representation, while an isolated point

in the character variety, is a singular point. The initial
workaround is to simply discard this point and look only
at non-trivial representations; for homology spheres this is
the same as irreducible. But there is a great deal of informa-
tion in the trivial connection, as we will see in Section 4.

A familiar idea in 3-manifold theory and knot theory is
to simply count the number of conjugacy classes of irre-
ducible representations. However, Casson did something
deeper by counting them with signs defined in terms of a
Heegaard splitting of 𝑌 so that the count appears as an in-
tersection number. He defined an invariant, which in the
non-degenerate case reads

𝜆(𝑌) = 1
2#({irreducible 𝛼 ∶ 𝜋1(𝑌) → SU(2) }/conj).

The sign of 𝜆(𝑌) changes when the orientation of 𝑌 is re-
versed.

Almost immediately2 Taubes realized that a more ana-
lytic interpretation of representations as ‘flat connections’
(see below) exhibits them as zeros of a vector field: the
gradient of the Chern-Simons function. With this interpre-
tation, Taubes [Tau90] was able to write down an expres-
sion analogous to (3) and prove that it is equal to Cas-
son’s invariant. There are some major challenges stem-
ming from the fact that the vector field whose zeros we
want to count is on an infinite-dimensional manifold. In
particular, the local index ind𝛼 would seem to be the di-
mension of an infinite-dimensional space! The issue of
perturbations in the infinite-dimensional setting is even
trickier, and our fairy godmother will need a better wand.
Floer took these ideas even further and defined a homol-
ogy theory formally similar to Morse theory, whose Euler
characteristic is (twice) Casson’s invariant. In the next sec-
tion, we will give some background for the transition from
finite-dimensional Morse theory into Floer homology.
2.1. Some basic gauge theory. The analytical setup we
need goes under the name of gauge theory. To mathemati-
cians, gauge theory means the study of connections on a
vector bundle, up to a natural action of the group of au-
tomorphisms of the bundle. This is a highly developed
and complicated subject, but we will try to keep it reason-
able by focusing on a particularly simple bundle: the triv-

ial bundle 𝐸 = 𝑌 ×ℂ2 𝑝→ 𝑌 over a 3-manifold 𝑌 where 𝑝 is
projection onto the first factor. Many of the applications
discussed below make use of a similar theory associated
to a non-trivial ℝ3 bundle with structure group SO(3); the
notation is a bit more complicated in that case.

Recall that the Lie group SU(2) is the set of 2 × 2 uni-
tary matrices with determinant 1. The unitary condition
𝐴𝐴∗ = 𝐼 means that multiplication by 𝐴 is an isometry of
the standard Hermitianmetric onℂ2. The tangent space to

2Taubes told the authors that this realization came to him while listening to Cas-
son’s MSRI lectures.
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SU(2) at the identity matrix is called 𝔰𝔲(2) and is identified
with the 2 × 2 skew-Hermitian matrices with trace 0.

A connection on a vector bundle is a way to differentiate
sections of the bundle; we will be interested in those that
are compatible with the action of the group SU(2) on the
ℂ2 fibers of 𝐸. In the case 𝐸 = 𝑌 × ℂ2, this notion can be
expressed as follows. A section of𝐸 is a function 𝜎 ∶ 𝑌 → 𝐸
with 𝑝(𝜎(𝑦)) = 𝑦; it may be written in the form 𝜎(𝑦) =
(𝑦, 𝑠(𝑦)) for a smooth function 𝑠 ∶ 𝑌 → ℂ2. Write Γ(𝐸) for
the set of sections of 𝐸. Now we can certainly differentiate
the function 𝑠 using the usual exterior derivative 𝑑 to get
a 1-form 𝑑𝑠, which in turn can be paired with a tangent
vector field to get a new section of 𝐸.

However, there are many other ways of differentiating
sections, all of which can be expressed in the following
way. Write Ω𝑘(𝑌; 𝔰𝔲(2)) for the 𝔰𝔲(2)-valued 𝑘-forms. A
nice concrete way to think of this is as 2×2matrices with 𝑘-
form entries. For any 𝛼 ∈ Ω1(𝑌; 𝔰𝔲(2)) we get the operator
∇𝛼 ∶ Γ(𝐸) → Γ(𝐸) defined by

∇𝛼𝜎(𝑦) = (𝑦, 𝑑𝑠 + 𝛼(𝑠)).

In short, ∇𝛼 = 𝑑 + 𝛼. In this way, the space 𝒜 of all SU(2)
connections is identified with Ω1(𝑌; 𝔰𝔲(2)). Note for fu-
ture reference that this identification depends on a choice
of trivialization of the bundle 𝐸.

The basic geometric invariant of a connection is its cur-
vature, which is the 𝔰𝔲(2)-valued 2-form

𝐹𝛼 = 𝑑𝛼 + 𝛼 ∧ 𝛼.

Note that the wedge product here is defined using matrix
multiplication and so is not antisymmetric. A connection
with curvature 𝐹𝛼 = 0 is said to be flat. Flat connections
will be to Floer homology what critical points of a func-
tion were to Morse homology, namely, the generators of
the chain complex.

To understand the meaning of flatness, let us introduce
the idea of parallel transport with respect to a connection 𝛼.
For a smooth curve 𝛾 ∶ 𝐼 → 𝑌 , a section 𝜎(𝑡) = (𝛾(𝑡), 𝑠(𝑡))
is parallel if (∇𝛼)𝛾′(𝑡)(𝜎(𝑡)) = 0. From the point of view of
the connection, 𝜎 acts as if it is constant. This equation
is a linear ODE, to which the usual sort of existence and
uniqueness theorems apply. In particular, given 𝜎(0) ∈
𝐸𝛾(0), there is a unique parallel section 𝜎(𝑡) along 𝛾 with
the given initial condition. The assignment 𝜎(0) → 𝜎(1)
is the parallel transport of 𝜎(0) along 𝛾; it is an invertible
linear map 𝑃𝛾𝛼 ∶ 𝐸𝛾(0) → 𝐸𝛾(1).

Unlike the situation in Euclidean space, parallel trans-
port may depend on the path 𝛾. This is the phenome-
non of holonomy. In particular, if 𝛾 is a loop, then 𝑃𝛾𝛼
might not be the identity. Indeed, the curvature at a point
𝑦 measures the failure of 𝑃𝛾𝛼 to be the identity for small
loops based at 𝑦. Fixing a base point 𝑦 ∈ 𝑌 , the set of
holonomies of loops based at 𝑎 is a closed Lie subgroup of

SU(2). If the centralizer of the holonomy subgroup associ-
ated to 𝛼 is {±𝐼}, thenwe say that 𝛼 is irreducible; otherwise
it is reducible.

What is special about a flat connection is that its ho-
lonomy is locally trivial. Globalizing this gives us a link
between differential geometry and topology.

Proposition 2.1. Suppose that 𝛼 is a flat connection, and that
𝛾 and ̃𝛾 are (piecewise) smooth curves between points 𝑎 and 𝑏.
If 𝛾 is homotopic to ̃𝛾 relative to their endpoints, then 𝑃𝛾𝛼 = 𝑃𝛾̃𝛼 .
Applied to loops based at 𝑎, this means that holonomy gives a
well-defined representation ℎ𝛼 ∶ 𝜋1(𝑌, 𝑎) → SU(2).

Conversely, any given SU(2) representation of 𝜋1(𝑌)
is the holonomy representation of some flat connection.
However, the ‘holonomy correspondence’ 𝛼 → ℎ𝛼 is far
from perfect: there are many flat connections with the
same holonomy. This stems from an all-important prop-
erty of the curvature equation 𝐹𝛼 = 0, called its gauge sym-
metry. Let us define the gauge group 𝒢 to be the group
of SU(2) automorphisms of the bundle 𝐸. By looking at
what an automorphism does to each fiber, we can identify
𝒢 withMap(𝑌, SU(2)). An element 𝑔 ∈ 𝒢 acts on the space
of connections by the rule

𝑔∗𝛼 = 𝑔−1𝛼𝑔 + 𝑔−1𝑑𝑔.

One says that 𝛼 and 𝑔∗𝛼 are gauge equivalent.
A direct calculation shows that 𝐹𝑔∗𝛼 = 𝑔−1𝐹𝛼𝑔 so that

𝐹𝑔∗𝛼 = 0 if and only if 𝐹𝛼 = 0. In other words, the equation
𝐹𝛼 = 0 is equivariant with respect to the action of the gauge
group.

In order to fit this discussion into the framework of
Morse theory, as outlined above, we need a manifold and
a function. The action of the gauge group 𝒢 on𝒜 (almost)
provides themanifold: we defineℬ to be the quotient𝒜/𝒢.
This would be an infinite-dimensional manifold (this is a
bit technical) except that it fails to have the correct struc-
ture at some special points–the orbits of reducible connec-
tions, at which 𝒢 fails to act freely. For 𝑌 a homology
sphere, the only flat reducible connection is the trivial con-
nection 𝜃.

In the original literature, there are two ways to deal with
the singularity arising from 𝜃. One, adopted by Floer (fol-
lowing Casson), is to simply delete the orbit of 𝜃 and work
on ℬ∗ = 𝒜∗/𝒢, where 𝒜∗ denotes the space of irreducible
connections. A second is to replace 𝒢 by the based gauge
group 𝒢𝑜 consisting of gauge transformations that are the
identity at a fixed base point in 𝑌 . The quotientℬ𝑜 = 𝒜/𝒢𝑜
and ℬ∗ are both manifolds. The trivial connection turns
out not to be so trivial, and an important part of the cur-
rent research highlighted in Section 4 is concerned with
topological information coming from 𝜃.

Taking account of the gauge group action, we refine
Proposition 2.1 to say that holonomy defines a bijection
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between gauge equivalence classes of flat connections and
conjugacy classes of representations. One can go further,
and show that the holonomy map is in fact a homeomor-
phism with respect to the natural topologies carried by
each of those sets. The space Hom(𝜋1(𝑌), SU(2)) of SU(2)
representations of a groupwith 𝑛 generators is a closed sub-
set of the compact space SU(2)𝑛. Hence it is compact, as
is its quotient by conjugation, the character variety ℛ(𝑌).
It follows that the space of flat connections up to gauge
equivalence is therefore compact, a surprising and impor-
tant fact. From now on, we will identify the space of flat
connections mod 𝒢 with ℛ(𝑌).

The relation between flat connections and representa-
tions was well-understood for years before the introduc-
tion of Floer homology. The new insight was the realiza-
tion that the flat connections can be seen as the critical
points of a gradient vector field on the manifold ℬ∗. The
function in question is the Chern-Simons function, intro-
duced by Chern and Simons as an odd-dimensional refine-
ment of the Chern-Weil definition of characteristic classes
in terms of connections and curvature. To a connection 𝛼,
they associate the real number

CS(𝛼) = 1
8𝜋2 ∫𝑌

tr(𝛼 ∧ 𝑑𝛼 + 2
3𝛼 ∧ 𝛼 ∧ 𝛼). (4)

How would one calculate the gradient of CS? Since 𝒜∗

is locally an affine space, its tangent space at 𝛼 is identified
with the vector space Ω1(𝑌; 𝔰𝔲(2)). We compute the dif-
ferential (or directional derivative) of CS in the direction
of 𝛽 ∈ Ω1(𝑌; 𝔰𝔲(2)) as the derivative of CS(𝛼 + 𝑡𝛽) with
respect to 𝑡 evaluated at 𝑡 = 0; the result is

𝑑 CS𝛼(𝛽) =
1
4𝜋2 ∫𝑌

tr(𝐹𝛼 ∧ 𝛽). (5)

The vanishing of this integral for all 𝛽 is equivalent to the
condition that 𝐹𝛼 = 0. In other words, the critical points
of CS are exactly the flat connections!

To continue with the analogy with finite-dimensional
Morse theory, we ought to have isolated critical points, and
this means that we should pass to the quotient of 𝒜∗ by
the gauge group. Doing so brings out an important twist:
CS is not invariant under gauge transformations, and so
does not induce a real-valued function on ℬ∗. A gauge
transformation 𝑔 ∶ 𝑌 → SU(2) is a map between oriented
3-manifolds, and so it has a degree deg(𝑔). One then com-
putes

CS(𝑔∗𝛼) = CS(𝛼) + deg(𝑔). (6)

Equation (6) says that CS defines a function from ℬ∗ to
the circle ℝ/ℤ, rather than to the real numbers.

Following this outline of ordinary Morse theory, we
need to understand more about gradient flow lines be-
tween critical points of CS. To pass from 𝑑 CS to the gra-
dient ∇CS requires a metric on ℬ∗. The choice of a Rie-
mannian metric ℎ on 𝑌 determines a natural metric onℬ∗

(called the 𝐿2 metric) for which the gradient of CS is given
by

∇𝐴(CS) = − 1
4𝜋2 ∗ 𝐹𝐴. (7)

The notation ∗ indicates the Hodge star operator deter-
mined by ℎ, which for an oriented 𝑛-manifold inter-
changes 𝑘 and 𝑛 − 𝑘 forms. It is defined by 𝜂 ∧ ∗𝜔 =
⟨𝜂, 𝜔⟩ volℎ. Hence, the (downward) gradient flow equation
for CS is given by

𝑑𝐴𝑡
𝑑𝑡 − 1

4𝜋2 ∗ 𝐹𝐴𝑡 = 0. (8)

The gradient flow equation can be written in a differ-
ent way that is crucial to the interaction between Floer the-
ory and gauge theory on 4-manifolds. On an oriented Rie-
mannian 4-manifold 𝑋 , the ∗ operator is an involution on
2-forms and so the 2-forms split into the±1 eigenspaces of
∗, which are known as self-dual and anti-self-dual 2-forms.
The dimension of the space of ordinary closed self-dual 2-
forms is a topological invariant, written as 𝑏+2 (𝑋). In par-
ticular, the curvature form 𝐹𝐵 of a connection 𝐵 on a bun-
dle 𝐸 over a 4-manifold splits as 𝐹𝐵 = 𝐹+𝐵 + 𝐹−𝐵 . The self-
dual part is given by 𝐹+𝐵 = 1

2
(𝐹𝐵 +∗𝐹𝐵); a connection with

𝐹+𝐵 = 0 is anti-self-dual (ASD), and is called an instanton.
The ASD equation is preserved by gauge transformations,
and one can study the moduli space of instantons modulo
gauge transformations, which we write as ℳ(𝐸, ℎ).

This moduli space depends on the metric, and one
shows that for a generic choice of ℎ, it is a finite-
dimensional oriented manifold. In the nicest situation
when dim(ℳ(𝐸, ℎ)) = 0 and 𝑏+2 (𝑋) > 1, then the moduli
space is compact and following Donaldson [DK90], one
can count the points with sign to get the Donaldson in-
variant 𝐷𝑋(𝐸) = #ℳ(𝐸, ℎ). Donaldson’s construction is
considerably more general and provides an invariant pow-
erful enough to distinguish infinitely many smooth struc-
tures on 4-manifolds.

Now suppose we have a path 𝐴𝑡 of connections on 𝑌 .
These can be assembled into a connection 𝐵 on the trivial
bundle over 𝑋 = ℝ × 𝑌 : at the point (𝑡, 𝑦) it is given by
𝑑4 + 𝐴𝑡. Here we are distinguishing the exterior derivative
𝑑4 on 𝑋 from 𝑑, the analogous operator on 𝑌 . Now the
curvature of 𝐵 is given by

𝐹𝐵 =
𝑑𝐴𝑡
𝑑𝑡 𝑑𝑡 + 𝐹𝐴𝑡

and we learn that, up to gauge equivalence, flow lines for
the Chern-Simons function correspond to the ASD connec-
tions on ℝ×𝑌 . This formula also gives rise to an alternate
expression for CS that works for SO(3) connections and
is well-suited to 4-dimensional applications. Any SO(3)
bundle over 𝑌 extends to a bundle over some oriented 4-
manifold 𝑋 . A connection 𝛼 will likewise extend to a con-
nection 𝐵 having the form 𝑑4+𝛼 on a collar neighborhood
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of the boundary. Then

CS(𝛼) = 1
8𝜋2 ∫𝑋

tr(𝐹𝐵 ∧ 𝐹𝐵). (9)

The connection between dimensions 3 and 4 gave a strong
early clue that Floer theory would be intimately tied to
the study of Donaldson’s invariants and hence the smooth
classification of 4-manifolds. For future reference we note
that if 𝑋 is closed, then the integral (9) is an integer and is
called the Chern number 𝑐2(𝐸). For SO(3) bundles, this is
−1/4 times the Pontryagin number 𝑝1(𝐸).
2.2. Floer homology. Treating CS as a Morse function,
we want to define a chain complex similar to the Morse
complex. We are really reasoning by analogy here; the
resulting homology groups are not really computing the
homology of a manifold. But surprisingly, those homol-
ogy groups tell us a lot about the underlying 3-manifold
𝑌 . Let us assume that the irreducible flat connections are
all non-degenerate and define the instanton chain groups
to be the free abelian group generated by the finitely many
gauge equivalence classes of irreducible flat connections.
The grading presents a challenge: the Hessian at a critical
point 𝛼 is a self-adjoint differential operator that has infin-
itely many negative (and positive, for that matter) eigen-
values. Hence the definition of index in finite dimensions
does not make sense. Floer’s resolution of this dilemma is
remarkable: the important thing is the difference between
the indices of two critical points, and this has a sensible
definition. Well, almost sensible, as we shall see.

The Morse theory analogy suggests that the boundary
operator should be defined by counting points in the space
of flow lines (for ∇CS) between two critical points 𝛼 and
𝛽 whose indices differ by one. In contrast to the finite-
dimensional case, flow lines do not automatically con-
verge to critical points. To ensure this we assume the ‘finite
energy’ condition

ℰ(𝐵) = ‖𝐹𝐵‖𝐿𝑓2 = (−12 ∫ℝ×𝑌
tr(𝐹𝐵 ∧ ∗𝐹𝐵))

1
2
< ∞.

This space is denoted ℳ̃(𝛼, 𝛽), and is more formally de-
fined by

ℳ̃(𝛼, 𝛽) = {𝐵 = 𝑑4 + 𝐴𝑡 |||
𝑑𝐴𝑡
𝑑𝑡 − ∗𝐹𝐴𝑡 = 0,

ℰ(𝐵) < ∞, lim
𝑡→−∞

𝐴𝑡 = 𝛼, lim
𝑡→∞

𝐴𝑡 = 𝛽} /𝒢
(10)

where 𝒢 is the gauge group.
As is the case for moduli spaces on closed manifolds,

ℳ̃(𝛼, 𝛽) is finite-dimensional, and its expected dimension
𝑖(𝛼, 𝛽) can be computed by the Atiyah-Patodi-Singer in-
dex theorem. If 𝛼 and 𝛽 are non-degenerate, then we
may assume after perturbation that ℳ̃(𝛼, 𝛽) is a smooth
manifold of dimension 𝑖(𝛼, 𝛽). As we did in discussing

ordinary Morse theory, we note that ℳ̃(𝛼, 𝛽) has a free ac-
tion of ℝ given by reparameterization 𝑡 → 𝑡 + 𝑐, so that
the moduli space of unparameterized flow lines is given
by ℳ(𝛼, 𝛽) = ℳ̃(𝛼, 𝛽)/ℝ.

Once again, gauge invariance complicates our analogy:
if one changes (say) 𝛼 by a gauge transformation, then
𝑖(𝛼, 𝛽) changes by a multiple of 8. In other words, we con-
sider the relative index 𝑖([𝛼], [𝛽]) as being well-defined mod
8. To lift this to an absolute ℤ/8 grading we make use of the
trivial connection 𝜃 and set 𝑖([𝛼]) = dimℳ(𝛼, 𝜃).

Floer defined the instanton chain complex (𝐼𝐶∗(𝑌), 𝜕) to
be the ℤ/8-graded group generated by the irreducible flat
connections. The boundary operator is defined for [𝛼] ∈
ℛ(𝑌) with 𝑖([𝛼]) = 𝑘

𝜕[𝛼] = ∑
[𝛽] with 𝑖([𝛽])=𝑘−1

#ℳ([𝛼], [𝛽]) ⋅ [𝛽]. (11)

On a formal level, this is the same definition as the bound-
ary operator for the ordinary Morse complex, and one
must establish several important facts.

• There is a perturbation of CS whose critical points are
all non-degenerate.

• The 0-dimensional moduli space ℳ(𝛼, 𝛽) is compact
and oriented.

• (𝐼𝐶∗(𝑌), 𝜕) is a complex, i.e., 𝜕2 = 0.
• The resulting homology groups 𝐼∗(𝑌) = 𝐻(𝐶∗(𝑌), 𝜕)
are independent of the choices of metric and pertur-
bation.

Finding a perturbation of CS is a delicate matter; the
idea is to use a gauge invariant function on the space of
connections defined by a loop in 𝛾 in 𝑌 . Roughly speak-
ing, for each connection 𝛼, one takes the trace of the holo-
nomy of 𝛼 around 𝛾, and adding a linear combination of
such functions (a holonomy perturbation) to CS will make it
behave like a Morse function.

The proof of independence from all choices involves a
fundamental construction that connects Floer theory with
4-dimensional topology, and underlies many of the appli-
cations discussed below. Suppose that 𝑌0 and 𝑌1 are ori-
ented homology spheres, and that 𝑊 is an oriented man-
ifold with 𝜕𝑊 = −𝑌0 ∪ 𝑌1. We say that 𝑊 is a cobordism
from 𝑌0 to 𝑌1, and for technical reasons introduce a non-
compact manifold 𝑊 = 𝑊 ∪𝜕𝑊 𝜕𝑊 × [0,∞). With some
assumptions on the topology of 𝑊 , there is an induced
map Φ𝑊 ∶ 𝐼∗(𝑌0) → 𝐼∗(𝑌1) given, roughly speaking, by
counting finite energy instantons on 𝑊 with specified flat
limits on 𝑌0 and 𝑌1.

The whole construction is functorial in the sense that if
𝑊 = 𝑊0 ∪𝑌1 𝑊1, then Φ𝑊 = Φ𝑊1 ∘ Φ𝑊0 . The composition
law is an instance of a gluing theorem for instantons.

After considerable work the gluing theorem yields the
following relation between instanton Floer homology and
the Donaldson invariants of closed 4-manifolds.
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Theorem 2.2. If 𝑋 = 𝑋1∪𝑌𝑋2 where 𝑏+2 (𝑋𝑖) > 0 and𝐷𝑋 ≠ 0,
then 𝐼∗(𝑌) ≠ 0.

There is a largely parallel theory involving the Seiberg-
Witten equations in place of the ASD equations that pro-
duces an invariant SW𝑋 , and a Floer-type monopole Floer
homology theory HM(𝑌), with a similar non-vanishing re-
sult.

3. Instantons and 𝑆𝑈(2) Representations
3.1. Surgery and the pillowcase. A key tool in Floer ho-
mology is the relationship between flat connections on a
3-manifold 𝑌 and connections on a manifold constructed
by surgery on a knot 𝐾 in 𝑌 . A tubular neighborhood 𝜈(𝐾)
is of the form 𝑆1 × 𝐷2, and we choose a non-separating
simple closed curve 𝑐 on 𝜕𝜈(𝐾), called the surgery slope.
Gluing 𝐷2 × 𝑆1 to 𝑌 − 𝜈(𝐾) in such a way that 𝜕𝐷2 is iden-
tified with 𝑐 yields a manifold 𝑌𝑐(𝐾). In the special case
that 𝑌 is 𝑆3, the slope is often denoted by 𝑝/𝑞 whenever
𝑐 = 𝑝𝜇 + 𝑞𝜆, with 𝜇 and 𝜆 the meridian and longitude of
𝐾.

The Seifert-van Kampen theorem says that flat connec-
tions on 𝑌𝑐(𝐾) are given by the SU(2) representations of
𝜋1(𝑌 − 𝜈(𝐾)) that extend over 𝐷2 × 𝑆1. The extension con-
dition is precisely that the holonomy around 𝑐 is trivial,
and the dependence of this condition on the slope 𝑐 can be
visualized via the following picture, affectionately known
in the trade as the pillowcase. The pillowcase itself param-
eterizes SU(2) representations of 𝜋1(𝜕𝜈(𝐾)), which are de-
termined by the holonomies of the meridian and longi-
tude. The red curve in Figure 2 indicates the holonomies
for the irreducible representations of 𝜋1(𝑌 − 𝜈(𝐾)), where
𝐾 in this case is the left-handed trefoil knot and the surgery
slope is −1. The 3-manifold 𝑆3−1(𝐾) is the Poincaré homol-
ogy sphere ℙ, which can also be described as the quotient
𝑆3/𝐼∗ where 𝐼∗ is the binary icosahedral group.

The blue curve in Figure 2 shows the representations
that extend over 𝐷2 and is therefore determined by 𝑐. In
this case, we see that there are two such representations,
say 𝜌1 and 𝜌2, corresponding to the intersection of the red
and blue curves. The Floer grading of these representations
can be computed using a formula described by Fintushel

ρ1

ρ2

Figure 2. The pillowcase for the left-handed trefoil.

and Stern and we get grad(𝜌1) = 1, grad(𝜌2) = 5. Since the
difference of these gradings is not 1, the differentials of the
instanton complex are 0, proving that

𝐼∗(ℙ) = ℤ for ∗ = 1, 5 and 0 otherwise. (12)

A powerful tool closely related to this picture is Floer’s
surgery exact triangle [BD95], an exact sequence of Floer
homology groups associated to threemanifolds realized as
surgery along a knot 𝐾 in a homology sphere 𝑌 as follows:

// 𝐼𝑘+1(𝑌0(𝐾)) // 𝐼𝑘(𝑌) // 𝐼𝑘(𝑌1(𝐾)) //

A point to note is that 𝐻1(𝑌0(𝐾)) = ℤ and so 𝑌0(𝐾) is not
a homology sphere. Its instanton homology is defined
as above, but now using flat connections on a non-trivial
SO(3) bundle. There is an analogous surgery triangle asso-
ciated to surgery curves thatmeet in a similar configuration
on the boundary torus of the knot as in Figure 3. Casson’s
surgery formula for his invariant, which was surely an in-
spiration for this exact sequence, can be derived from it in
retrospect.

The grey triangle in Figure 3 is the key to Floer’s proof
(beautifully exposed in [BD95]) of exactness of the surgery
triangle. The curves in the pillowcase corresponding to the
surgery curves also meet in a triangle, and Floer’s idea was
to use holonomy perturbations to deform one side of this
triangle to the other two, in order to “simulate the effect
of surgery.”

Figure 3. Surgery slopes in the torus and pillowcase.

3.2. Casson’s invariant and Floer homology. From the
beginning of topology in the early 20𝑡ℎ century, it was un-
derstood that a fruitful way to study a 3-manifold was to
investigate the representations of its fundamental group
into a non-abelian group, often a group of matrices. For
instance, one can readily show that the trefoil is knotted
by finding a homomorphism from its fundamental group
into SO(3) with non-abelian image. Let us restrict our at-
tention to homology spheres, and pose a basic question:

For a homology sphere 𝑌 , is there a non-abelian
(and hence irreducible) representation 𝜋1(𝑌) →
SU(2)?

Kronheimer and Mrowka [KM04b] proved that this
holds when 𝑌 is surgery on a non-trivial knot in 𝑆3,
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establishing the famous Property P conjecture (that such
a 𝑌 is not simply connected).

The very definitions of the Casson invariant and Floer
homology yield the following observation.

Proposition 3.1. If 𝜆(𝑌) ≠ 0, or if 𝐼∗(𝑌) is not zero, then
there must be irreducible SU(2) representations of 𝜋1(𝑌).

When 𝑌 is given by Dehn surgery on a knot 𝐾, Casson
gave a formula for computing 𝜆(𝑌) in terms of the Alexan-
der polynomial of 𝐾. If we normalize that polynomial
so that Δ𝐾(𝑡) = Δ𝐾(𝑡−1), then Casson’s result says that if
Δ″𝐾(1) ≠ 0, then 𝜆(𝑆31/𝑛(𝐾)) ≠ 0, and hence there are irre-
ducible SU(2) representations. For example, for ℙ realized
as −1 surgery on the left-handed trefoil knot this formula
predicts at least two non-conjugate representations. As we
saw in Figure 2, this is in fact the case.

For many homology spheres 𝜆 vanishes, and hence is of
no use in finding representations. A salutary calculation is
𝜆(𝑌#−𝑌) = 𝜆(𝑌)+𝜆(−𝑌) = 𝜆(𝑌)−𝜆(𝑌) = 0. But if 𝜋1(𝑌)
has SU(2) representations, then so does 𝜋1(𝑌# − 𝑌) even
though this is invisible to Casson’s invariant. Nevertheless,
the existence of SU(2) representations can sometimes be
detected by 𝐼∗ as we will see in the following subsection.
3.3. Existence of SU(2)-representations. For some man-
ifolds, such as Seifert fibered homology spheres, one can
directly find all of the SU(2) representations and compute
𝐼∗ from its definition. For our purposes, a 3-manifold 𝑌
is Seifert fibered if it admits a circle action where some
circle orbits have finite (cyclic) isotropy. If 𝑌 is a homol-
ogy sphere, it is determined by the orders of the isotropy
groups, and 𝑌 is denoted Σ(𝑎1, … , 𝑎𝑛). The Poincaré ho-
mology sphere ℙ is the Seifert fibered manifold Σ(2, 3, 5),
whose instanton homology is described in Equation (12).

In general, to make use of Proposition 3.1 we need tech-
niques to calculate 𝐼∗ without first counting all of the rep-
resentations. The first proof of Property P by Kronheimer
and Mrowka [KM04b] showed that 𝐼∗(𝑆30(𝐾)) is non-zero
if 𝐾 is non-trivial, and then applied the Floer exact triangle.
The non-vanishing of 𝐼∗(𝑆30(𝐾)) is proved using a dizzying
array of important results from the last 35 years of low-
dimensional topology, in conjunction with the gluing the-
ory presented as Theorem 2.2. Leaving out many details,
the argument is summarized in this diagram.

𝐾 ≠ Unknot 𝑆30(𝐾) has a taut
foliation

𝑆30(𝐾) has a tight
contact structure

𝑆30(𝐾) ⊂ 𝑋 , a sym-
plectic manifold

SW𝑋 ≠ 0 𝐷𝑋 ≠ 0

A second proof appears in [KM04a] showing that Dehn
surgery on a knot with slope in the interval [−2, 2] (in-
cluding those which are rational homology spheres) has
irreducible SU(2) representations. A third argument for

the non-vanishing of Floer homology, avoiding the con-
nection between the Seiberg-Witten andDonaldson invari-
ants, was given by Kronheimer and Mrowka in [KM10].
This version uses the Chern-Simons functional for 𝑆𝑂(3)-
connections on a non-trivial bundle to define invariants
𝐼(𝑌|𝑅)𝑤 as subspaces of 𝐼(𝑌) that depend on a surface 𝑅
and a class 𝑤 ∈ 𝐻2(𝑌; ℤ). A special case of this con-
struction is framed instanton homology 𝐼#(𝑌), a certain sub-
space of 𝐼(𝑌#𝑇3). This theory was used by Baldwin-Sivek
[BS18] to provide a criterion for the existence of 𝑆𝑈(2)-
representations for integer homology spheres much in
the spirit of Proposition 3.1. Namely, they show that if
𝑟𝑘(𝐼#(𝑌)) > 1, then irreducible SU(2) representations of
𝜋1(𝑌) exist. With this in place, Baldwin-Sivek prove that
being the boundary of a Stein 4-manifold (a complex sur-
face with a convexity condition at the boundary) with non-
trivial reduced homology guarantees the existence of irre-
ducible representations.

Recent work of Zentner [Zen18] shows that the fun-
damental group of any homology sphere (well, except
𝑆3) admits an irreducible SL(2, ℂ) representation. A key
step in his proof uses holonomy perturbations directly
(rather than via the Floer triangle) to show that the
splicing of two non-trivial knot complements (the com-
plements glued along their boundary tori, with meridi-
ans glued to longitudes) in fact has an irreducible SU(2)
representation. Combining arguments about holonomy
perturbations with the Floer triangle, Lidman–Pinzón-
Caicedo–Zentner [LPZ21] show the same for any homol-
ogy sphere that contains an incompressible torus. This fact
is now a corollary of a much stronger result of Baldwin-
Sivek [BS21] establishing the non-triviality of 𝐼# for any
homology sphere obtained by gluing the complements
of two nontrivial knots in homology spheres 𝑌1, 𝑌2 that
are instanton L-spaces (i.e., satisfy the technical condition
dim(𝐼#(𝑌 𝑖)) = 1 for 𝑖 = 1, 2).

The results covered by [KM04a] about the existence of
irreducible representations for surgery 𝑆3𝑟 (𝐾) along a non-
trivial knot 𝐾 have been extended to include the following
cases:

(i) either 𝑟 = 𝑝/𝑞 or 𝑟 = −𝑝/𝑞 [Lin16],
(ii) |𝑟| sufficiently large [SZ17], and
(iii) 𝑆3𝑟 (𝐾) for infinitely many values of 𝑟 in [3, 5), always

including 𝑆33(𝐾) and 𝑆34(𝐾) [BLSY21].

4. Chern-Simons and Homology Cobordism
Our second suite of applications is concerned with the in-
teraction between Floer theory and 4-manifolds. A com-
mon theme will be the use of the Floer chain complex and
filtrations that are defined on it via the Chern-Simons func-
tion. We start by recalling a fundamental question in low-
dimensional topology:
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Which unimodular symmetric bilinear forms over
the integers arise as the intersection form of a
closed (smooth) 4-manifold 𝑋? Equivalently,
what are the possible homotopy types of simply
connected closed smooth 4-manifolds?

In 1952, Rokhlin showed that if 𝑋 is spin (so all self-
intersections of embedded surfaces are even) then the sig-
nature of 𝑋 is divisible by 16. This was the first indication
that something special is going on in dimension 4.

One can show that any unimodular form is the inter-
section form of a smooth 4-manifold with boundary a ho-
mology sphere 𝑌 ; the problem above then comes down to
understanding which homology 3-spheres are the bound-
ary of a homology 4-ball. Thus we are led to study ori-
ented homology spheres, modulo the relation of homol-
ogy cobordism: 𝑌0 and 𝑌1 are homology cobordant if there
is a manifold 𝑊 with the homology of 𝐼 × 𝑆3 and with
𝜕𝑊 = −𝑌0 ∪ 𝑌1. The set of equivalence classes form the
homology cobordism group Θ3

ℤ. Rokhlin’s theorem gives
rise to a surjective homomorphism 𝜇 ∶ Θ3

ℤ → ℤ/2 given
by 𝜇(𝑌) = 1

8
sign(𝑊) (mod 2) where 𝑊 is a spin mani-

fold with 𝜕𝑊 = 𝑌 ; for instance ℙ bounds a manifold
with intersection form the definite form 𝐸8 with signature
−8, so 𝜇(ℙ) = 1 and ℙ ≠ 0 ∈ Θ3

ℤ. Using a version of
Seiberg-Witten Floer homology, Manolescu showed that
the map 𝜇 does not split. Combined with deep work of
Galewski-Stern and Matsumoto, this proves that there are
non-triangulable topological manifolds in dimensions at
least 5 that are not homeomorphic to a simplicial com-
plex! Casson previously showed this in dimension 4, us-
ing the fact that 𝜇(𝑌) ≡ 𝜆(𝑌) (mod 2).

Thirty years after Rokhlin, Donaldson brought gauge
theory into topology by showing that any definite form
that is realized is diagonalizable. Donaldson’s proof is
based on an analysis of a particular 5-dimensional mod-
uli space ℳ over a smooth 4-manifold 𝑋 , including its
reducible points and its compactness properties. Don-
aldson’s theorem immediately implies something stronger
about ℙ: it is of infinite order in Θ3

ℤ, since the multiple di-
rect sum of 𝐸8 with itself is not diagonalizable.

A key aspect of Donaldson’s argument is to determine
precisely how this moduli spaceℳ over 𝑋 fails to be com-
pact: for any point 𝑝 in themanifold, there is a sequence of
ASD connections whose curvature 2-forms concentrate at
𝑝. This phenomenon, called ‘bubbling’, was understood
first in fundamental work of Uhlenbeck and Taubes. In
particular, such concentration at points requires a mini-
mum ‘quantum’ of energy given by the Chern number of
the simplest non-trivial bundle 𝑃 over 𝑆4, so that 𝑐2(𝑃) ≠ 0.
Donaldson refined this and showed how to compactifyℳ
by adjoining a copy of 𝑋 corresponding to the bubbling
points. Another crucial aspect of the moduli space for def-
inite manifolds is that there are reducible connections, so

that ℳ has singularities each modeled on a cone on ℂℙ2.
Cutting out a neighborhood of these cones gives a compact
5-manifold that can’t exist for homological reasons unless
the original intersection form was diagonalizable. A few
years later, Fintushel and Stern gave a version of this argu-
ment for certain intersection forms that used SO(3) con-
nections to avoid Donaldson’s compactification theorem.
Using SO(3) connections allowed them toworkwith a bun-
dle 𝐸 with 𝑝1(𝐸) < 4, which is not enough energy to allow
bubbling.

The proof thatΘ3
ℤ is infinite can be greatly strengthened

by combining Donaldson’s analysis with an understand-
ing of the the Chern-Simons functional. We will describe
this, and then sketch how one gets much stronger results
using ideas from Floer theory.
4.1. Definite manifolds with boundary. Furuta and
Fintushel–Stern generalized Donaldson’s argument about
definite closed manifolds to the setting of certain mani-
folds with boundary, proving the remarkable result that
Θ3
ℤ is infinitely generated. (Recent work of Dai, Hom, Stof-

fregen, and Truong, using Heegaard Floer theory, sharpens
this to provide a ℤ∞ summand of Θ3

ℤ.) We will briefly ex-
plain the ideas and some of their descendants, and then
discuss how these interact with Floer theory in some very
recent work of Daemi and Nozaki-Sato-Taniguchi.

The setting is a bundle 𝐸 over a manifold 𝑋 with cylin-
drical ends [0,∞) × 𝑌 𝑖 𝑖 = 1, … ,𝑚, where one has speci-
fied limiting flat connections 𝛼𝑖 in each end. We will refer
to the data (𝐸, 𝛼 = {𝛼𝑖}) as an adapted bundle. Crucially,
a non-empty boundary introduces a new source of poten-
tial non-compactness called breaking. Instead of curvature
accumulating near a point, one can have on a given end
[0,∞) × 𝑌 , a sequence {𝐴𝑛}𝑛 of ASD connections whose
restrictions to that end satisfy

(i) the curvature 𝐹𝐴𝑛 concentrates on a tubular portion
(𝐿𝑛,∞) × 𝑌 where 𝐿𝑛 →∞ as 𝑛 → ∞, and

(ii) {𝐴𝑛|{𝑡}×𝑌 } is close to a flat connection 𝛽 for 𝑡 near 𝐿𝑛
and as 𝑡 → ∞ approaches the fixed connection 𝛼.

X
αβ

|FAn|2 ∞

Ln→ ∞
Figure 4. Breaking on an end of 𝑋.
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To have breaking again requires a quantum of energy that
may bemuch less than the amount required to concentrate
at a point.

A key observation is that the Chern-Simons function
gives a lower bound for the energy that could allow for
breaking. In the setting of SO(3) connections where the CS
function is well-defined mod 4, its minimum value on the
set of flat connections defines an invariant 𝜏(𝑌) ∈ [0, 4). If
one works on an adapted bundle with trivial connections
𝛼𝑖 at each end and 𝑝1 less than the minimum of all of the
𝜏(𝑌 𝑖), then one gets a compact moduli space.

Finding such an adapted bundle is not easy–here is a
situation where one can do so. Suppose that Σ is a Seifert
fibered homology sphere Σ(𝑎1, 𝑎2, … , 𝑎𝑚). This means that
Σ supports a circle action where the cyclic subgroups ℤ/𝑎𝑖
have fixed points. The quotient Σ/𝑆1 is topologically a 2-
sphere, and the mapping cone 𝐶 of the projection Σ → 𝑆2
is an orbifold: a space with some singularities modeled on
a cone over a lens space. Fintushel–Stern showed how to
do gauge theory on such orbifolds, and applied their re-
sults to study homology cobordism. An important part of
their work was an index calculation that gives the dimen-
sion of a moduli space over such an orbifold in terms of
an invariant 𝑅(𝑎1, 𝑎2, … , 𝑎𝑚).

Furuta [Fur90] used this method to great advantage,
showing that Θ3

ℤ contains a ℤ∞ subgroup. Combining Fu-
ruta’s results with work of Fintushel–Stern, and Hedden–
Kirk [HK11] yields the following.

Theorem 4.1. Let Σ = Σ(𝑎1, 𝑎2, … , 𝑎𝑚) be a Seifert fibered
homology sphere. If 𝑅(𝑎1, 𝑎2, … , 𝑎𝑚) > 0 and

|𝐻1(Σ; ℤ)|
𝑎1 ⋅ 𝑎2 ⋅ … ⋅ 𝑎𝑚

< min { 1
|𝐻1(Σ;ℤ)|

, 1
𝑎1
, … , 1

𝑎𝑚
,

𝜏(±𝑌1), … , 𝜏(±𝑌 𝑁)} ,

then the class of Σ in Θ3
ℤ/2 does not contain any linear combi-

nation of elements of {𝑌 𝑖}
𝑁
𝑖=1.

The conditions in the theorem are used as follows: A
relation in ℤ/2 homology cobordism is the same as a 4-
manifold 𝑋 with 𝐻1(𝑋; ℤ/2) = 𝐻2(𝑋; ℤ/2) = 0 and with
boundary Σ plus some number of copies of the 𝑌 𝑖. The
orbifold obtained by gluing 𝐶 and 𝑋 along Σ then admits
an adapted bundle (𝐸, 𝜽)with trivial connections over each
end corresponding to a 𝑌 𝑖. The associated moduli space
ℳ =ℳ(𝐸, 𝜽) can be shown to be compact using the given
bounds on the 𝜏(𝑌 𝑖). As in Donaldson’s work, this moduli
space will have a number of singular points corresponding
to reducible connections; removing these singular points
gives rise to a compact manifold with boundary a union
of complex projective spaces ℂℙ𝑛 that cannot exist by a
homological argument.

Theorem 4.1 obstructs not just the existence of ℤ/2-
homology cobordisms, but rather the more general class

of 4-manifolds 𝑋 with 𝐻1(𝑋; ℤ/2) = 0 and 𝑏+2 (𝑋) = 0. This
is a really useful extension; a typical application is to knot
concordance. Two knots 𝐾0 and 𝐾1 are concordant if they
cobound a cylinder in 𝐼 × 𝑆3, and the set of concordance
classes form the much-studied concordance group 𝒞. The
double branched cover of 𝐼 × 𝑆3 branched along a concor-
dance is a ℤ/2-homology cobordism between ℤ/2 homol-
ogy spheres. This passage to the double cover gives a ho-
momorphism from the concordance group to Θ3

ℤ/2. Hed-
den and Pinzón-Caicedo [HPC21] used this result on ℤ/2
homology cobordism to provide a criterion for a satellite
operation to have infinite rank as a function on smooth
concordance.
4.2. The non-trivial trivial connection. The results above
use the generators of the instanton chain complex and
some facts about ASD moduli spaces, but largely ignore
the differentials. The remaining two homology cobordism
invariants 𝑟𝑌 and Γ𝑌 featured in the rest of our story use
similar compactness arguments, but incorporate the dif-
ferentials in their definition. In fact they go considerably
further by also considering the trivial connection.

Many of the ideas originate in work of Frøyshov [Frø02],
who used the interaction with the trivial connection to de-
fine a surjective homomorphism ℎ ∶ Θ3

ℤ → ℤ. This map
is defined in terms of two homomorphisms at the chain
level. The first of these is 𝑢 ∶ 𝐶𝑖 → 𝐶𝑖−4 and is defined
as the count of elements in a codimension-4 submanifold
𝒩(𝛼, 𝛽) of ℳ(𝛼, 𝛽). To define the second one, recall first
that the Floer chain differential 𝜕 ∶ 𝐶𝑖 → 𝐶𝑖−1 is defined by
counting instantons over the tube ℝ × 𝑌 that limit asymp-
totically to flat irreducible connections. Even though the
trivial connection 𝜃 is reducible, it is still possible to apply
the same idea to define a homomorphism

𝐷1 ∶ 𝐶1 → ℤ
that counts instantons over the tube ℝ × 𝑌 that limit to
𝜃 in the outgoing end. Frøyshov’s homomorphism can be
interpreted in terms of the setℒ4𝑘−3 consisting of elements
𝑎 ∈ 𝐶4𝑘−3(𝑌) that are cycles, and such that

• 𝐷1𝑢𝑘−1𝑎 ≠ 0
• 𝐷1𝑢𝑗𝑎 = 0 for any 0 ≤ 𝑗 < 𝑘 − 1

In words, 𝑎 ∈ ℒ4𝑘−3 means that it can be joined to 𝜃 by
a ‘broken flow line’ consisting of exactly (𝑘 − 1) 𝑢-flows
and one linear combination of honest flow lines. A re-
sult of Frøyshov states that ℎ(𝑌) > 𝑘 if and only if the
set ℒ4𝑘−3 is non-empty. We now describe two homology
cobordism invariants that generalize ℎ, obtained using the
homomorphism 𝐷1. The underlying idea is that in addi-
tion to gradings, Morse homology groups admit a filtra-
tion induced by theMorse function itself. One can then ex-
tract useful invariants from the first filtration level at which
some cycle representing a homology class appears. In or-
der to do that here, we must revisit certain technicalities
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of CS. Recall that the Chern-Simons function is ℝ-valued
over 𝒜, but only ℝ/ℤ-valued after considering the action
of the gauge group since CS(𝑔∗𝛼) = CS(𝛼) + deg(𝑔) as in
Equation (6). To produce a function that is both ℝ-valued
and takes into consideration the action of the gauge group
(at least partially), let 𝒢0 be the subgroup of 𝒢 consist-
ing of the gauge transformations that have degree 0 (not
to be confused with 𝒢0 from Section 2.1). Then, setting
ℬ∞ = 𝒜/𝒢0 results in anℝ-valued Chern-Simons function
C̃S ∶ ℬ∞ → ℝ.

First we describe an invariant defined by Nozaki-Sato-
Taniguchi [NST19] that comes in the shape of a function
𝑟(𝑌) ∶ [−∞, 0] → [0,∞] associated to a ℤ-homology
sphere 𝑌 . Both the argument and the output of the func-
tion depend on a filtration of instanton homology defined
by restricting the image of C̃S to intervals [𝑠, 𝑟] ⊂ ℝ that
contain 0. The filtered instanton groups are obtained by
restricting the image of the latter function to intervals of
ℝ as in [FS92]. More precisely, for 𝑟, 𝑠 real numbers with
𝑠 ≤ 0 ≤ 𝑟 neither of which is a critical value of C̃S, the
chain group 𝐶[𝑠,𝑟]

𝑘 is the ℤ-module generated by the set of
flat irreducible elements 𝑎 of ℬ∞ such that C̃S(𝑎) ∈ (𝑠, 𝑟)
and dimℳ(𝑎, 𝜃0) = 𝑘, where 𝜃0 denotes the lift of [𝜃] to
ℬ∞ satisfying C̃S(𝜃0) = 0. If 𝑠 is a critical value, we con-
sider values of C̃S that are an 𝜖 smaller than 𝑠, with 𝜖 > 0
small enough so that 𝑠 − 𝜖 is bigger than the next critical
value of C̃S. The differential 𝜕[𝑠,𝑟] is simply the restriction
of 𝜕 to the filtered chain groups 𝐶[𝑠,𝑟]

𝑘 .

Definition 4.2 ([NST19]). For 𝑠 ∈ [−∞, 0], the value 𝑟𝑠(𝑌)
is defined as

inf{𝑟 ∈ [0,∞] ∣∃ 𝑎 ∈ 𝐶[𝑠,𝑟]
∗ such that

𝜕[𝑠,𝑟]𝑎 = 0, but 𝐷1(𝑎) ≠ 0}.

That is, 𝑟𝑠(𝑌) is the smallest positive real number for
which the count of flow lines from some cycle to the trivial
connection is non-trivial.

A related invariant was defined by Daemi [Dae20], as-
sociating a function Γ𝑌 ∶ ℤ → ℝ to a ℤ-homology sphere
𝑌 . The output of the function again depends on values
of C̃S at irreducible flat connections, and the input is the
absolute ℤ-grading of the critical points of C̃S.

Definition 4.3 ([Dae20]). For a positive integer 𝑘, the
value of Γ𝑌 (𝑘) is defined as

inf{val(𝑎) ∣ 𝑎 ∈ ℒ4𝑘−3}.

The real number val(𝑎) is the minimum value that C̃S
takes on the set of flat connections that appear in an ex-
pression for 𝑎 as a linear combination.

A first comparison of the two invariants is given by the
equality

𝑟−∞(𝑌) = Γ−𝑌 (1).

This relation follows almost immediately from the defini-
tions of the invariants after noticing that 𝜕[−∞,𝑟]𝑎 = 𝜕𝑎
whenever C̃S(𝑎) < 𝑟. The change in orientation is due to
differing conventions used by each set of authors. And, to
reiterate, if 𝑟𝑠(𝑌) < ∞ or if Γ𝑌 (𝑘) ≠ 0,∞, the function takes
values in the image under C̃S of flat connections.

To illustrate the behavior of the invariants, we present
computations for the Poincaré homology sphere with
both of its orientations. The diagrams in Table 1 represent
the portion of theℤ-graded instanton complex for±ℙwith
filtrations in the interval [0, 1]. The downward pointing ar-
rows represent the maps 𝑢 and 𝐷1, and the horizontal and
dashed arrows represent the values of the C̃S function at
the flat connections from Figure 2. The absence of an ar-
row or a label means that the maps are zero. The values of
Γ±ℙ and 𝑟𝑠(∓ℙ) can then be computed directly from Defi-
nitions 4.2 and 4.3.

𝜌2
CS //

ᵆ
��

49
120

𝜌1 //

𝐷1 ��

1
120

𝜃 // 0

𝜃 // 0

𝜌∗1 //
ᵆ

��

− 1
120

𝜌∗2
CS // − 49

120

grad(𝜌1) = 1
grad(𝜌2) = 5

grad(𝜌∗1) = 4
grad(𝜌∗2) = 0

𝐷1(𝜌2) = 0
𝐷1𝑢𝜌2 = 𝐷1𝜌1 ≠ 0
𝐷[𝑠,𝑟]
1 ≡ 0, 𝑟 < 1

120

𝐷1 ≡ 0

Γℙ(𝑘) =
⎧⎪
⎨⎪
⎩

∞ 𝑘 > 2
49
120

𝑘 = 2
1
120

𝑘 = 1
Γ−ℙ(𝑘) = ∞ for 𝑘 > 0

𝑟𝑠(−ℙ) =
1
120

𝑟𝑠(ℙ) = ∞

Table 1. Computations of the invariants Γ and 𝑟𝑠 for the
Poincaré homology sphere with both orientations.

Here are some sample applications of Γ and 𝑟𝑠 to both
the existence of irreducible representations, and to homol-
ogy cobordism.

Theorem 4.4 ([NST19]). Linear Independence: If 𝑌𝑛 is a
sequence of integer homology spheres such that 𝑟0(𝑌𝑛+1) <
𝑟0(𝑌𝑛) < ∞ and 𝑟0(−𝑌𝑛+1) = 𝑟0(−𝑌𝑛) = ∞, then the 𝑌𝑛
are linearly independent in Θ3

ℤ.
Special family: for any 𝑘 > 0, the homology cobordism class

of 2ℙ# − Σ(2, 3, 6𝑘 + 5) does not bound any definite smooth
4-manifold. Moreover, it has no Seifert fibered representative
nor a representative that is surgery on a knot in 𝑆3.

In discussing homology cobordisms in section 3, we
did not mention much about their fundamental groups. A
striking observation of Akbulut (based on work of Taubes)
is that for any homology cobordism 𝑊 from ℙ there is an
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Γ𝑌 ∶ ℤ → ℝ 𝑟(𝑌) ∶ [−∞, 0] → [0,∞]

Monotonicity

Γ𝑌 (𝑘) ≤ Γ𝑌 (𝑘 + 1) 𝑠1 ≤ 𝑠2 ≤ 0, then
𝑟𝑠1(𝑌) ≥ 𝑟𝑠2(𝑌)

Behaviour under cobordisms

𝑊 ∶ 𝑌0 → 𝑌1, 𝑏+2 (𝑊) = 0, 𝐻1(𝑊;ℝ) = 0
Γ𝑌0(𝑘) ≥ Γ𝑌1(𝑘) for ev-
ery 𝑘 ∈ ℤ>0

𝑟𝑠(𝑌0) ≤ 𝑟𝑠(𝑌1) for every
𝑠 ∈ [−∞, 0]

Relationship with minimum CS

Γ𝑌 (1) ≥ 𝜏(𝑌) 𝑟0(𝑌) ≥ 𝜏(𝑌)

Summands of Θ3
ℤ

𝚪 ∶ Θ3
ℤ → ⊕𝑘∈ℤℝ 𝐫 ∶ Θ3

ℤ → ⊕𝑠∈ℝ≤0ℝ
𝑌 → (Γ𝑌 (𝑘))𝑘≥0 𝑌 → (𝑟𝑠(𝑌))𝑠∈ℝ≤0

Table 2. Properties of the invariants Γ and 𝑟𝑠.

irreducible SU(2) representation of𝜋1(𝑊). The Γ-invariant
extends results like this much further.

Theorem 4.5 ([Dae20]). For a negative definite cobordism
𝑊 ∶ 𝑌0 → 𝑌1, there exists a constant 𝜂(𝑊) ≥ 0 such that

• Γ𝑌1(𝑘) ≤ Γ𝑌0(𝑘) − 𝜂(𝑊) for 𝑘 > 0.
• 𝜂(𝑊) = 0 if and only if there exists a representation
𝜌 ∶ 𝜋1(𝑊) → 𝑆𝑈(2) that restricts to irreducible repre-
sentations for both 𝑌0 and 𝑌1.

5. Closing Remarks
There is much more to the story of Instanton Floer homol-
ogy! There are important variations of the theory, such as
a relative version for knots in a homology sphere [KM10]
and even a version for trivalent graphs introduced by
Kronheimer-Mrowka. This latter suggests a surprising ap-
proach to the 4-color theorem using methods of Floer the-
ory.

Counting flow lines to the trivial connection as dis-
cussed in Section 4.2 can be viewed as part of a construc-
tion of Floer theory as an SO(3)-equivariant Morse theory.
A construction of such an equivariant theory was given by
Miller Eismeier and was recently proved to be an invari-
ant by Daemi-Miller Eismeier; a version for knot Floer ho-
mology was given by Daemi-Scaduto. The resulting the-
ories have the same involved algebraic structures found
in the parallel Heegaard Floer and Monopole Floer the-
ories, and computational evidence suggests that they are
closely related. Even so, these theories have different fea-
tures: instanton homology has the filtration coming from
the C̃S invariant, while the Heegaard Floer and monopole

theories are more directly connected to symplectic and
contact geometry.

Finally, we mention an intriguing question stemming
from an old proposal of Cohen-Jones-Segal: is there a
space or other homotopy-theoretic object whose homol-
ogy groups yield Floer homology (ideally displaying the
full algebraic structure mentioned above)? Such spaces
have recently been constructed in the monopole setting
and for the more combinatorial Khovanov homology, and
one would like to see this same enrichment for the instan-
ton theory.
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