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Introduction
This Memorial Collection, which will appear in two con-
secutive issues of the Notices of the AMS, celebrates the
life and work of Isadore Singer, one of the most influential
mathematicians of the past 75 years. Singer was born on
May 3, 1924 and died on February 11, 2021. Various eas-
ily accessible sources recount in depth the rich story of his
life.1 We have decided not to duplicate them here. The cor-
respondingMemorial Collection for Atiyah covers (among
other things) the most famous work of both Atiyah and
Singer, the Index Theorem.2 In this first issue of the present
collection, we have sought to emphasize those aspects of
Singer’s work which were not joint with Atiyah. The sec-
ond issue consists of reminisces of colleagues and family
members.
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.simonsfoundation.org/2009/08/25/isadore-singer/; the interview
on the occasion of the 150th anniversary of MIT, https://www.youtube
.com/watch?v=5FoaMcCJnmQ; the shelf on https://celebratio.org
/Singer_IM/article/652/; the Abel Prize Interview with Atiyah https://
www.youtube.com/watch?v=UOv9wJyPGUQ.
2https://www.ams.org/journals/notices/201910/rnoti-p1660
.pdf; https://www.ams.org/journals/notices/201911/rnoti
-p1834.pdf.

Figure 1. Singer in Oberwolfach, 1977.

Jean-Michel Bismut
In 1963, in the Bulletin of the AMS, Atiyah and Singer an-
nounced the proof of their index theorem. In 1967, in a
landmark paper, McKean and Singer [14] suggested that
the heat equation could be used to prove the index theo-
rem, at least for the de Rham complex and the associated
Euler characteristic. They discuss the Minakshisundaram
small time expansion of the heat kernel of the Laplacian
on the diagonal, whose coefficients depend only locally
on the metric. They apply the method to the Hodge Lapla-
cian acting on differential forms. They discover the simple
fact that the alternating sum of the traces of the time de-
pendent heat kernel on the forms of various degrees is just
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the time independent Euler characteristic. Therefore the
singular terms in the small time expansion of the alternat-
ing sum of the traces of the heat kernel on the diagonal
(which can be computed locally in terms of the metric) in-
tegrate out to 0, and the integral of the constant term is just
the Euler characteristic. And here is a prophetic statement:
“It is natural to hope that some fantastic cancellation will
also take place in the small,” i.e., locally, and that the local
constant term in the expansion will coincide with Chern’s
explicit formula for Chern–Gauss–Bonnet in terms of the
curvature of the Levi-Civita connection. Here cancellation
refers to the fact that even though the local traces in vari-
ous degrees are known to be singular when time tends to
zero, it is expected that the alternating sum will cancel the
singularities. And they continue: “The even dimensional
proof eludes us,” except in dimension 2, and they leave the
question as an open problem.

At the same time [3], Atiyah and Singer had discov-
ered the Dirac operator in the context of index theory.
This is a first-order differential elliptic operator that exists
on any compact Riemannian oriented spin manifold,3 of
which the de Rham–Hodge operator for the de Rham com-
plex, the Dolbeault–Hodge operator for complex mani-
folds, and the signature operator were already known spe-
cial cases. The Levi-Civita connection appears explicitly
in the construction of the Dirac operator. The square of
the Dirac operator is a generalized Laplacian given by Lich-
nerowicz’s formula, andMcKean–Singer heat equation for-
mula extends to a formula for the index of the Dirac oper-
ator.

Several major steps were made to establish that fan-
tastic cancellations also occur for Dirac operators on even-
dimensional oriented spin manifolds, in which the lo-
cal constant term in the asymptotic expansion in the
difference of the traces of the heat kernel on even and
odd spinors is obtained using the explicit local Chern–
Weil natural representative in the corresponding index for-
mula. First came the proofs by Patodi that such cancella-
tions occur for the de Rham–Hodge operator, and for the
Dolbeault–Hodge operator for Kähler manifolds, then the
proof by Gilkey for the signature operator. Subsequently,
Atiyah, Bott, and Patodi established this result for an ar-
bitrary Dirac operator, and showed that proving the index
theorem for the Dirac operator is enough to establish the
index theorem for arbitrary elliptic operators. The proofs
of the local cancellations are based on the fact that the co-
efficients of the local expansion of the difference of the
traces of the heat kernel are universal polynomials of the
curvatures and their covariant derivatives for the consid-
ered vector bundles.

3The spin condition is a global topological condition.

In 1975, Atiyah–Patodi–Singer [2] established an index
theorem for even-dimensional oriented spin manifolds
with boundary.4 The Dirac operator and the above lo-
cal cancellations play a key role in the proofs of this re-
sult. Of necessity, global boundary conditions appear, so
that the domain of the considered Dirac operator consists
of sections whose restrictions to the boundary lie in the
direct sum of eigenspaces associated with the nonnega-
tive (resp. negative) eigenvalues of the Dirac operator on
the boundary. Progress made by Atiyah–Patodi–Singer
in their choice of global boundary conditions was crucial
in their treatment of the signature formula for manifolds
with boundary. When the metric is a product near the
boundary, there are two distinct contributions to the in-
dex. One is local in the interior, and is just the usual
Chern–Weil differential form that appears in the case of
closed manifolds. The other is a global spectral invariant
of the Dirac operator of the boundary, the 𝜂-invariant. The
𝜂-invariant is the value at 0 of a function 𝜂 (𝑠) that is well-
defined for Re 𝑠 >> 0. The fact that it extends by analytic
continuation to 𝑠 = 0 is one main result proved by Atiyah–
Patodi–Singer. The 𝜂-invariant should be thought of as a
renormalized version of the difference between the num-
bers of positive eigenvalues and negative eigenvalues of the
Dirac operator on the boundary, and is in general not an
integer. The variation of 𝜂 (0) in 𝐑/𝐙 with respect to met-
rics and connections can be computed by an explicit local
formula.

The above result was used by Atiyah, Donnelly, and
Singer to give a proof of the Hirzebuch conjecture express-
ing the signature defect of Hilbert modular varieties in
terms of the value at 0 of Shimizu’s 𝐿-function. Müller
gave an independent proof based on an 𝐿2 index theorem
and on Selberg’s trace formula.

In his work on 𝐿2 cohomology [10], Cheeger discussed
the signature on manifolds with isolated conical singular-
ities and also obtained a formula for the signature of such
manifolds, in which the contribution of the cone tip is
given by the 𝜂-invariant of the cross section. While im-
plicitly, Atiyah–Patodi–Singer’s analysis takes place on the
infinite cylinder attached to the boundary, Cheeger’s analy-
sis is made instead on an attached cone. It is interesting to
note that the cone structure encodes the global boundary
conditions of Atiyah–Patodi–Singer in implicit form.

While Singer was working with Atiyah on all aspects of
index theory, Ray and Singer made two striking contribu-
tions that, at the time, seemed to have no relation to index
theory andwere concerned with the whole spectrum of the
Hodge Laplacians.

4Their index theorem is valid for more general operators. Here, we only review
the case of Dirac operators.
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In 1971, Ray and Singer [17] consider the Reidemeister
torsion of a compact odd-dimensionalmanifold equipped
with a unitarily flat vector bundle, a combinatorial invari-
ant. On the other hand, given a Riemannian metric, they
introduce the analytic torsion, a spectral invariant of the
Hodge Laplacian, given by a suitable linear combination
of the derivative at 0 of the zeta function of the Hodge
Laplacian in various degrees, which they prove does not
depend on the choice of metrics. The proof uses the fact
that the small time asymptotic expansion of the trace of
the heat kernel does not contain a constant term. They
verify that these two invariants behave in the same way un-
der natural operations on the manifolds. Because of this
similarity of behavior, they made the stunning conjecture
that the two torsions should be equal.

When properly rephrased, the Ray–Singer conjecture as-
serts that two natural metrics on the determinant of the
cohomology of the flat vector bundle, one combinatorial,
and the other analytic, should be equal.

The conjecture was first proved independently by
Cheeger [9] and Müller [15]. The history of the proof is
discussed further in this collection.

In 1973, in a subsequent paper [18], Ray and Singer con-
sidered the case of compact complex Kähler manifolds, re-
placing the de Rham complex by the Dolbeault complex
twisted by unitarily flat vector bundles, and they define
the corresponding holomorphic torsion. Because the real
dimension is even, holomorphic torsion now depends lo-
cally on the metric. Still, they verify that, given two uni-
tary representations, the ratios of the holomorphic tor-
sions remain constant. They specialize the construction
to Riemann surfaces. In the case of one-dimensional com-
plex tori with a flat metric, using Poisson’s summation for-
mula, they express the holomorphic torsion in terms of 𝜗-
functions and of the Dedekind 𝜂-function. For Riemann
surfaces of higher genus, they use instead Selberg’s trace
formula to evaluate the ratio of the torsions in terms of
the value at 1 of the Selberg zeta function.

It is impossible to overestimate the value of these two
papers for future developments. In the case of de Rham
torsion, Ray and Singer formulated a simple and power-
ful conjecture. In the case of holomorphic torsion, they
uncovered the tip of the iceberg, its relation to complex
algebraic geometry.

But even more was to come: the fact that these two the-
ories have deep relations to the index theorem.

The index theorem was proved just before the revo-
lution introduced in mathematics by modern quantum
physics. The fact that index theory could be relevant to
questions of modern physics was deeply tantalizing to
both Atiyah and Singer. They both embraced the new ideas
coming from physics enthusiastically.

The importance of connections to physics already ap-
peared at the very birth of Chern–Weil theory, part of
which already emerged inside Yang–Mills theory. That
physicists were working with explicit models insured that
secondary objects in mathematical index theory, which
did not have a name in mathematics, appeared naturally
inside the physical model, as in questions related to anom-
alies. What follows is a brief review of some developments
in mathematical index theory with connections to physics,
but with limited reference to the important physics litera-
ture.

In 1982, in a paper in the Journal of Differential Geom-
etry, Witten gave an analytic proof of the Morse inequali-
ties that used a deformation of the de Rham operator as-
sociated with a Morse function, and he conjectured that
instanton effects could ultimately be responsible for the
computation of the Betti numbers from the critical points.
This was later proved by Helffer and Sjöstrand. Witten’s ar-
guments were further elaborated by Zhang and myself to
give another proof of the Ray–Singer conjecture.

Álvarez-Gaumé introduced a new approach to the index
theorem of Dirac operators that was based on supersym-
metry. This is best understood in the Lagrangian formal-
ism, in which the trace of the heat kernel is evaluated in
terms of a path integral on the loop space of the manifold.
The path integral for the heat supertrace of the Dirac op-
erator involves a supersymmetric Lagrangian that, beyond
the Bosonic classical energy, also contains Fermionic su-
persymmetric variables. This idea was reformulated in the
case of Dirac operators acting on spinors by Atiyah and
Witten, who viewed the Lagrangian as a differential form
on the loop space that is closed with respect to an equi-
variant de Rham operator. They obtain the index formula
as a consequence of a formal equivariant cohomology lo-
calization of the integral on the manifold itself. This is
best explained by referring to the localization formulas of
Duistermaat–Heckman and Berline–Vergne. These are for-
mulas expressing the integral of certain differential forms
on manifolds equipped with the action of a torus as an-
other integral evaluated on the zero set of the vector field
generating the torus action. The argument of Atiyah and
Witten consists in formally extending the argument to the
loop space of a manifold, using the natural action of the
circle on the loop space, while noting that the original
manifold is exactly the zero-set of the associated vector
field and, finally, in observing that the index formula ap-
pears to be a formal consequence of equivariant localiza-
tion.

The first most significant progress in rigorous mathe-
matics was Getzler’s approach which incorporates the Clif-
ford variables in a supersymmetric rescaling method, so
that the 𝐴-genus appears as the value on the diagonal of
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the heat kernel associated with a harmonic oscillator. Fur-
ther progress wasmade when we gave a probabilistic proof
of the index theorem andwhere contact wasmade between
the formal arguments of equivariant localization, and the
fantastic cancellations being viewed as a “consequence” of
equivariant localization for all the twisted Dirac operators.

In a 1985 paper published in Topology, Quillen invented
the concept of superconnection, an object that combines
connections and operators, that led eventually to the pos-
sibility of putting together Chern–Weil theory and index
theory.

Given a proper submersion of smooth manifolds, with
corresponding elliptic operators acting along the fiber, this
family defines a virtual vector bundle on the base of the fi-
bration. When the kernel and cokernel of the fiberwise
elliptic operators are smooth, the virtual vector bundle is
just the formal difference of the kernel and the cokernel.
The families index theorem of Atiyah–Singer consists in
the computation of the Chern character of this virtual vec-
tor bundle.

Using superconnections, I gave a heat equation
proof [5] of a version of the families index theorem for
families of Dirac operators. The proof is local on the base
and uses the formalism of superconnections of Quillen in
an infinite-dimensional context, with an associated Levi-
Civita superconnection. The proof can be viewed as an
adiabatic limit of the proof of the local index theorem for
a global Dirac operator, when the metric of the base is
blown up to infinity. Chern–Simons transgression is nat-
urally part of the superconnection formalism.

Other advances were made on holomorphic torsion.
Motivated by the work of Faltings on Mordell’s conjecture,
Quillen [16] introduced theQuillenmetric on the determi-
nant of the cohomology of a family of Riemann surfaces,
which is constructed using the Ray–Singer holomorphic
torsion of the fiber. In the case of a trivial family of Rie-
mann surfaces equipped with the family of complex struc-
ture on a given vector bundle, he proved a curvature theo-
rem for the first Chern formof the determinant line bundle
equipped with the Quillen metric.

This was the beginning of new developments that incor-
porated the 𝜂-invariant, holomorphic and real torsion as
part of more general globalinvariants naturally obtained
by transgression in the superconnection formalism. While
the index theorem expresses the index (associated with the
zero eigenvalue of the Dirac operator) as a local quantity,
these secondary invariants involve the full spectrum of the
Dirac operator or of its square and provide the connecting
machine between the index and its local expression.

Motivated by the work of Quillen on holomorphic tor-
sion, Freed and I proved a curvature theorem for a canoni-
cal unitary connection on the determinant line bundle of

a smooth family of Dirac operators in even dimension. A
conjecture of Witten expresses the holonomy of the deter-
minant line bundle of a family of Dirac operators along a
closed curve as the adiabatic limit of the 𝜂-invariant of the
associated cylinder when the metric of the base is blown
up, and was solved independently by Freed and me in a
1986 paper in Communications in Mathematical Physics and
also by Cheeger in a 1987 paper in the Journal of Differen-
tial Geometry. For families of odd-dimensional, oriented
spin manifolds, the 𝜂-invariant of the fibers appears as the
piece of degree 0 of a family of even forms, the ̃𝜂-forms,
obtained by transgression by Cheeger and me [6]. For
families of even-dimensional manifolds, the ̃𝜂-forms are
odd, the component of degree one being a connection
form on the corresponding determinant line bundle. With
Cheeger [6], we showed that the adiabatic limit5 of the 𝜂-
invariant of a fibered manifold can be expressed in terms
of such ̃𝜂-forms. With Cheeger, we also proved an index
theorem for a family of manifolds with isolated conical
singularities [7] that extends the earlier index theorem of
Cheeger, where the ̃𝜂-forms now appear as the contribu-
tion of the singular strata. This can also be viewed as a
families version of the APS theorem for manifolds with
boundary.

Quillen’s theory on holomorphic torsion was extended
in two directions. With Gillet and Soulé [8], we con-
sidered the Knudsen–Mumford holomorphic determinant
line bundle6 associated with a proper holomorphic pro-
jection of complex manifolds. The determinant line bun-
dle was equipped with the Quillen metric coming from
the Ray–Singer holomorphic torsion. We proved that the
Quillen metric is smooth. In the case of locally Kähler fi-
brations,7a curvature theorem was established, stating that
the curvature of the determinant line bundle equipped
with the Quillen metric is given by the integral along the
fiber of the Riemann–Roch–Grothendieck natural charac-
teristic forms in Chern–Weil theory. This result is related
to my previous result with Freed, but does not follow from
it. It puts the families index theorem of Atiyah–Singer and
the holomorphic torsion of Ray–Singer in the same bas-
ket: Holomorphic torsion is part of a secondary theory
that refines the families index theorem of Atiyah–Singer at
the level of differential forms. In particular, the Polyakov
anomaly formulas for the determinant of the Laplacian on
Riemann surfaces were shown to be part of the Riemann–
Roch–Grothendieck formula for the curvature of an

5Given a metric on the manifold, we add a large multiple of the pull-back of a
metric on the base.
6This is the line bundle constructed by Knudsen–Mumford that is associated
with a coherent sheaf.
7A fibration is said to be locally Kähler if for any small open set in the base, its
pull-back can be equipped with a Kähler metric.
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associated determinant bundle and extended to arbitrary
dimension. Higher versions of the holomorphic torsion
were also defined. The functorial behavior of Quillen met-
rics and their higher analogues was studied by various au-
thors including Berthomieu, Kähler, Lebeau, Ma, and my-
self in the case of embeddings and projections. Related
work on forms and currents was done by Gillet–Soulé and
me. These joint efforts culminated in the Riemann–Roch–
Grothendieck theorem in Arakelov geometry of Gillet and
Soulé that reassembles the distinct strands coming from
algebraic geometry, number theory, and index theory in a
single machine.

A significant extension on Singer’s ideas on analytic tor-
sion also came from the work of Kontsevich and Vishik,
in which determinants of elliptic pseudo-differential oper-
ators appeared, and they studied the defect to multiplica-
tivity of such determinants.

In the spirit of the explicit computations of holomor-
phic torsion of flat tori by Ray and Singer, Yoshikawa con-
sidered the equivariant holomorphic torsion of a family
of 𝐾3-surfaces with involution, and he showed that it co-
incides with an associated Borcherds modular form on the
corresponding moduli space. Holomorphic torsion has
found many other applications in the context of mirror
symmetry, as in Bershadsky, Cecotti, Ooguri, and Vafa. An-
alytic and real torsion also appears repeatedly in a consid-
erable body of physics-oriented literature, to which Singer
himself contributed in a major way. One reason is that
when localizing infinite-dimensional functional integrals
at critical points of the action, infinite-dimensional deter-
minants appear, which can be interpreted as being related
to analytic torsion. We refer to Witten, where the volumes
of the moduli spaces of flat connections on a Riemann sur-
face are computed in that spirit.

Progress was also made on real torsion. With Lott, we
established a version of the families index theorem for the
direct images of flat vector bundles, with values in the real
odd cohomology of the base. Real analytic torsion appears
as a natural transgression of a corresponding equality of
cohomology classes. Higher-dimensional analytic real tor-
sion forms were also defined. The proof of their relation
to Igusa’s higher torsion is in progress.

New developments also happened in local index the-
ory. Dirac operators associated with metric connections
with nonzero torsion 𝑇 appear naturally, for instance on
non-Kählermanifolds. If ⟨𝑇 ∧ 𝜃⟩ denotes the 3-form that is
obtained by antisymmetrization, I showed that if this form
is closed, a version of the local index theorem still holds.
This sufficient condition is also essentially necessary. For
complex manifolds, this just means that if 𝜔 denotes the
canonical 2-form form, then 𝜕𝜕𝜔 = 0.

Jeff Cheeger
I was fortunate to have met Isadore Singer (Is) at the end
of my last year as a graduate student. He had just given a
lecture on analytic torsion. Though it was very inspiring,
I hadn’t understood much. We were introduced by Jim
Simons, who was my teacher and to whom Is had been
a mentor. Though we were a generation apart, through
common mathematical interests and our mutual connec-
tion with Jim, we became friends. Is was one of the most
influential mathematicians of the second half of the 20th
century. Here, I want to describe how so much of my own
work was rooted in his.

The first instance was indirect. About year after I had
gotten my degree, Jim mentioned to me the problem of
finding a lower bound for the smallest eigenvalue of the
Laplacian. It was Singer who had called it to his attention.
I was led to the inequality, 𝜆1 ≥ 1

4
ℎ2, where ℎ is a cer-

tain isoperimetric constant. Eventually, this inequality ac-
quired an extensive and varied collection of descendants.

In a visionary paper, “Curvature and the Eigenvalues of
the Laplacian,” [14], Singer and Henry McKean proposed
the possibility of a heat equation proof of the Atiyah–
Singer index theorem. Specifically, they discussed in de-
tail the case of the Euler characteristic. Let 𝑒−𝑡∆𝑖 denote
the fundamental solution of the heat equation for the
Hodge Laplacian on 𝑖-forms. It was known that as 𝑡 → 0,
there is an asymptotic expansion for the pointwise trace,
𝑒−𝑡∆𝑖 (𝑥, 𝑥) ∼ ∑𝑗 𝑎𝑖,𝑗(𝑥, 𝑥)𝑡−(𝑛/2)+𝑗, where the 𝑎𝑖,𝑗(𝑥, 𝑥) are
given by polynomial expressions in the curvature tensor
and its higher covariant derivatives. The orders of the co-
variant derivatives increase with 𝑗. A simple cancellation
argument shows that the alternating sum of global traces
∑𝑖(−1)𝑖trace(𝑒−𝑡∆𝑖 ) is actually independent of 𝑡. As 𝑡 → ∞,
it converges to the alternating sum of the dimensions of
the spaces of harmonic 𝑖-forms and hence, to the Euler
characteristic 𝜒(𝑀𝑛). As 𝑡 → 0, it follows that the al-
ternating sum of the coefficients of the negative powers
of 𝑡 must cancel, leading to the McKean–Singer formula
𝜒(𝑀2𝑛) = ∑𝑖(−1)𝑖𝑎𝑖,𝑛/2. They conjectured that the alter-
nating sum of pointwise traces ∑𝑖(−1)𝑖𝑎𝑖,𝑛/2(𝑥, 𝑥) is in fact
equal to the Chern–Gauss–Bonnet form 𝑃𝜒(Ω), a certain
invariant polynomial in the curvature tensor Ω (specifi-
cally a multiple of the Pfaffian). If true, this would give a
new proof and a new understanding of the Chern–Gauss–
Bonnet theorem 𝜒(𝑀2𝑛) = ∫𝑀2𝑛 𝑃𝜒(Ω). In dimension
2, they were able to verify it by direct computation. In
higher dimensions, though their computations rapidly be-
came unmanageable, they noted that were the conjecture
to hold, “fantastic cancellations” of the local terms involv-
ing higher covariant derivatives of curvature would have to
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take place. By the early 1970s, primarily through indepen-
dent work of Patodi and Gilkey, the program was realized
for all operators of Dirac type.

The next logical step was to extend the heat equation
proof to manifolds with boundary. However, for the sig-
nature operator on oriented 4𝑘-manifolds (which depends
on a choice of orientation) it was known that no local elliptic
boundary condition has the right index. After some time,
Atiyah, Patodi and Singer (APS) found a global boundary
condition that would work. The APS condition is akin to
requiring the vanishing of the negative Fourier coefficients
of 𝑓 | 𝜕𝐷2, where 𝐷2 is the unit disc and 𝑓 ∶ 𝐷2 → 𝐂. (This
holds for holomorphic functions on the disc.) The crown-
ing achievement of their revolutionary series of three pa-
pers was the Atiyah–Patodi–Singer formula; see in particu-
lar [2].

Sig(𝑀4𝑘) = ∫
𝑀4𝑘

𝑃𝐿(Ω) + 𝜂(𝜕𝑀4𝑘) .

The differential form, 𝑃𝐿(Ω), is the invariant polynomial in
curvature (Chern–Weil form) corresponding to the Hirze-
bruch 𝐿-class. The invariant 𝜂(𝜕𝑀4𝑘) is a certain global
spectral invariant of the boundary with its induced metric.
There can be no canonical local formula for the 𝜂-invariant
since examples show that it can fail to behave multiplica-
tively when one passes from a space to a nontrivial cov-
ering space. By using the fact that the variation of the 𝜂-
invariant under change of metric is locally computable, APS
defined topological invariants called 𝜌-invariants which
measure the extent of the failure of the 𝜂-invariant to be-
have multiplicatively.

As was understood at the time, the term ∫𝑀4𝑘 𝑃𝐿(Ω)
could be viewed as an instance of a Chern–Simons invari-
ant, or more precisely, a differential character. Chern–
Simons invariants had been defined and their theory devel-
oped at the end of the 1960s. What is not so well known
is that the initial motivation for these now famous invari-
ants came from a failed attempt to find a local combina-
torial formula for the signature of a compact oriented 4-
manifold, a problem which was first posed in the 1940s.

Yet another revolutionary contribution to spectral the-
ory was made by Singer with his MIT colleague Dan Ray;
[17]. This concerned analytic torsion, a global spectral in-
variant whose definition involves a choice of Riemannian
metric. No choice of orientation is required. The defini-
tion imitates in a sophisticated manner, a reformulation
of that of Reidemeister torsion, a combinatorially defined
topological invariant, though not a homotopy invariant.
Among other fundamental properties, they showed that
the analytic torsion is indeed is independent of the choice
of Riemannian metric used to define it. The Ray–Singer
conjecture posited the equality of the two torsions.

In the early 1970s, I was trying to learn enough about
the heat equation to have a chance of participating in these
exciting developments. During that time, my work with
Simons on differential characters got stuck on a problem
which is still open. Namely, the conjecture that there ex-
ist simplices in 𝑆3 with totally geodesic faces and rational
dihedral angles, whose volumes are irrational multiples of
that of the sphere. Finally, I decided to give up and try my
luck on the Ray–Singer conjecture. After a few years, I suc-
ceeded in proving it; [9]. An independent proof was given
at the same time by Werner Muller; [15].

One step in my proof was the following: First, as in do-
ing a surgery, remove from a closed Riemannian manifold
𝑀𝑛, a tubular neighborhood 𝑇𝑟(𝑆𝑘) of radius 𝑟, of an em-
bedded sphere 𝑆𝑘 whose normal bundle is trivial. Then
understand the relation as 𝑟 → 0 of the heat kernels on
differential forms of 𝑀𝑛 ⧵ 𝑇𝑟(𝑆𝑘) with absolute and abso-
lute boundary conditions, and the corresponding heat ker-
nels on differential forms of 𝑀𝑛. In particular, describe
the eigenforms of the Laplacian for which the correspond-
ing eigenvalues either are zero, or approach zero as 𝑟 → 0.
Note in this connection that when 𝑟 = 0, the topology
changes. Note also the close analogy with the problem
which led to the lower bound 𝜆1 ≥ 1

4
ℎ2. A key techni-

cal issue was the need to control the relevant Green’s func-
tions as 𝑟 → 0. I had learned from Jackson’s well known
text “Classical Electrodynamics” that inℝ𝑛, the formula in
polar coordinates for the Green’s function, 𝐺(𝑟1, 𝑦1, 𝑟2, 𝑦2),
can be obtained by using separation of variables. The use
of polar coordinates amounts to viewing ℝ𝑛 as the met-
ric cone with cross-section the unit sphere 𝑆𝑛−1. However,
near points at which 𝑟1 = 𝑟2, the resulting series doesn’t
converge uniformly and for 𝑟1 = 𝑟2 it only converges in
a weak sense. I noticed that almost by definition, the
formula in Jackson’s book could be interpreted as a pa-
rameterized family of Poisson like kernels associated to
the relevant Laplacian on the cross-section 𝑆𝑛−1. For say
𝑟1 ≤ 𝑟2, the ratio 𝑟1/𝑟2 of the radial variables, plays the role
of 𝑒−𝑡 in the Poisson like kernels. As a consequence, these
kernels, and hence the Green’s functions, could be under-
stood by means of the known functional calculus for the rel-
evant Laplacians on 𝑆𝑛−1.

I realized that the same method, “the strong form of
the method of separation of variables,” could be used to
construct a functional calculus for Laplacians on differ-
ential forms, on metric cones with an arbitrary smooth
closed Riemannian manifold as cross-section. With this,
one could do spectral theory on manifolds with isolated
conical singularities; [10]. In particular, it gave a new
interpretation and a new proof of the APS theorem in
which the 𝜂-invariant of the cross-section of the cone arises
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intrinsically as a needed correction term to the asymp-
totic expansion of the heat kernel trace coming from the
singularity. Another consequence was my 1982 work with
Michael Taylor on diffraction of waves by cones of arbi-
trary cross-section, which appeared in Communications in
Pure and AppliedMathematics. A different continuation con-
cerned Poincaré duality for singular spaces (pseudomani-
folds) via 𝐿2-cohomology, [11], and index theory/spectral
theory on these spaces in a 1983 paper in the Journal of
Differential Geometry. The latter included a solution to the
original problem of finding a local combinatorial formula
for the signature. Recall that triangulated 4𝑘-manifold has
a canonical geometric realization. It is built from the combi-
natorial triangulation by using 𝑛-simplicies, all of whose
edge lengths are equal to 1. For this piecewise flat metric,
which is invariant under simplicial automorphisms, the
heat equation method can be used to express the signature
as the sum of the 𝜂-invariants of links of vertices, with their
canonical induced piecewise constant curvature 1 metrics.
This provides a (canonical) local combinatorial formula
for the signature. However, since 𝜂-invariants are global
spectral invariants, in most cases they are not explicitly
computable. On the other hand, by a simple cancelation
argument, given any local combinatorial formula for the
signature formula, one gets a new formula by subtracting
the boundary of any combinatorially defined 1-chain. In
recent work (in preparation) I use this freedom to replace
the global spectral aspect of the 𝜂-invariant by a global com-
binatorial construction. Finally, I should mention that my
friendship with Jean-Michel Bismut, and our work on adi-
abatic limits of 𝜂-invariants, ̃𝜂-forms and the local families
index theorem for manifolds with boundary, arose from
our common interest in the work of Is and his collabora-
tors; [6], [7].

Offshoots of Is’ work have consumedmuch ofmymath-
ematical thought processes over the past 50 years. He was
also a much admired friend. Not so long ago, I asked him
how, despite his advancing years, he was able to maintain
his obvious zest for math, tennis, and life. His answer:
“Every day I have a ball!”

Simon Donaldson
I only had a few opportunities to meet Is Singer—the first
in 1984 during his spell in Berkeley and the last at a cel-
ebration held for his birthday in Harvard in 2017—but I
learnt a lot from his work.

Singer was a pivotal figure in the mathematical devel-
opments around gauge theories, starting in the late 1970s.

Simon Donaldson is a permanent member of the Simons Center for Geometry
and Physics. His email address is sdonaldson@scgp.stonybrook.edu.

He and others have written about lectures he gave in
Oxford and elsewhere at the start of this development,
introducing the 1975 “Wu and Yang dictionary” to math-
ematicians [19]. This is a dictionary between physics and
mathematics terminology, starting with gauge type = prin-
cipal fibre bundle and moving on through electromagnetism
= connection in a U(1) bundle and and isotopic spin gauge
field = connection in an SU(2) bundle. Singer wrote in [19]
“It would be inaccurate to say that after 30 years studying
mathematics I felt ready to return to physics. Instead, el-
ementary particle physics turned to modern mathematics
and some of us found the interplay full of promise.”

One of the first fruits of this interplay was the calcu-
lation by Atiyah, Hitchin, and Singer of the dimensions
of the moduli spaces of Yang–Mills instantons over the 4-
sphere. The instanton equation is a nonlinear PDE for a
connection on a bundle and the relevant 𝑆𝑈(2) bundles
are classified by a Pontryagin number 𝑘 ≥ 1. Physicists
had found explicit constructions of solutions depending
on 5𝑘+4 parameters (for 𝑘 ≥ 3). Atiyah, Hitchin, and
Singer proved that thereweremore solutions: the fullmod-
uli space has dimension 8𝑘−3. The basis for their analysis
was the Atiyah, Hitchin, Singer deformation complex

Ω0(ad 𝑃) 𝑑𝐴⟶Ω1(ad 𝑃)
𝑑−𝐴⟶Ω2

−(ad 𝑃). (1)

Here𝐴 is an instanton connection and ad𝑃 is the bundle of
Lie algebras associated to the adjoint representation. The
middle term represents deformations 𝐴+ 𝑎 of the connec-
tion. The equation 𝑑−𝐴 𝑎 = 0 is the linearization of the
nonlinear instanton equation, for small 𝑎. The first term
Ω0(ad 𝑃) represents infinitesimal gauge transformations,
or automorphisms of the bundle 𝑃. An infinitesimal de-
formation 𝑎 = 𝑑𝐴𝑢 does not change the solution, up to
geometric equivalence. The tangent space of the moduli
space of solutions modulo equivalence is given by the co-
homology in the middle term of the complex (1). More
precisely, this depends on the fact that the other cohomol-
ogy groups vanish; the desired dimension is minus the Eu-
ler characteristic of the complex and this Euler character-
istic is computed by the Atiyah–Singer index theory. This
kind of analysis had precedents in the Kodaira–Spencer–
Kuranishi theory of deformations of complex structures
but was novel in this differential geometric context, and
the techniques have been applied to a host of other mod-
uli problems over the years since, becoming part of the
differential geometers tool kit.

The solution of the general deformation problem for
instantons appeared in [1] but that paper covered much
more. It is the foundational paper for contemporary four-
dimensional differential geometry, and the special features
in this dimension associated with “self-duality.”
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In the 1981 paper in Physics Scripta, Singer wrote “We
wonder whether the techniques and insights of mathemat-
ics can contribute directly to the solution of quantum field
theory problems. We believe that a careful study of the
space of orbits . . . of the group of gauge transformations
will be useful.” The infinite-dimensional geometry point
of view and its connection to quantum field theory runs
through much of Singer’s work and represents some of
his most distinctive contributions. The set-up is that we
have the space 𝐴 of connections on a principal 𝐺-bundle
𝑃 over a Riemannian manifold 𝑀, where 𝐺 is a compact
Lie group. This is an affine and hence contractible space
(corresponding to the deformations 𝑎 above). The interest
comes from the group 𝒢 = Aut 𝑃 of gauge transformations
which acts on𝒜 and the geometricallymeaningful infinite-
dimensional space is the quotient 𝒜/𝒢. There is an analo-
gous discussion in Riemannian geometry, also prominent
in Singer’s work, with the diffeomorphism group of aman-
ifold acting on the space of Riemannian metrics. While
the gauge theory case was less familiar to differential ge-
ometers at the time we are discussing, it is in fact much
simpler—”less nonlinear”—and that was an important fea-
ture of its role in developments in modern differential ge-
ometry.

To work on the quotient space 𝒜/𝒢, one can try to “fix
a gauge,” in other words find a slice in 𝒜 transverse to the
𝒢-orbits and containing exactly one representative of each
orbit. This can be done locally, for small variations of the
connection, but as Singer showed in a paper in Communi-
cations in Mathematical Physics in 1978, one of his first pa-
pers in the area, it is not possible globally. Ignoring some
important technicalities, the quotient map 𝜋 ∶ 𝒜 → 𝒜/𝒢
is the universal bundle 𝐸𝒢 → 𝐵𝒢 for the gauge group 𝒢.
Global gauge fixing corresponds to a section of this bun-
dle, and this can exist if and only if 𝒢 is contractible (which
would imply the same for𝒜/𝒢). But in fact, for base mani-
folds𝑀 of interest, 𝒢 and 𝒜/𝒢 have complicated topology.
For example when the base manifold𝑀 is the 2-sphere the
space 𝒜/𝒢 has the homotopy type of the loop space of the
group 𝐺.

The topology of the space 𝒜/𝒢 is bound up with in-
dex theory, but now for families of operators. If 𝑀 is a
spin manifold, a connection 𝐴 and a representation of the
group 𝐺 define a coupled Dirac operator 𝐷𝐴, and the in-
dex construction for families yields an element ind𝐷𝐴 of
the 𝐾-theory of 𝒜/𝒢. These ideas are important in connec-
tion with anomalies in quantum field theory. For example,
the determinant of the family of Dirac operators is intrin-
sically a section of a line bundle over det ind𝐷𝐴 over 𝒜/𝒢
and the first Chern class of this line bundle is a topologi-
cal obstruction to defining the determinant as a function.
The paper [4] of Atiyah and Singer was one of the first

mathematical treatments of these ideas and the founda-
tion for many further developments through the work of
Quillen and others.

In another direction, Singer studied the differential ge-
ometry of the infinite-dimensional space 𝒜/𝒢. This has a
natural Riemannian metric, induced by the 𝐿2 metric on
the bundle-valued 1-forms 𝑎, which represent tangent vec-
tors in 𝒜/𝒢. Singer obtained a formula for the sectional
curvature corresponding to a pair 𝑎, 𝑏 of tangent vectors:
𝐾(𝑎, 𝑏) = 3⟨Δ−1

𝐴 (𝑎 ∗ 𝑏), 𝑎 ∗ 𝑏⟩. Here 𝑎 ∗ 𝑏 denotes the
pointwise bilinear algebraic operation combining the in-
ner product on 1-forms and Lie bracket on the bundle
ad 𝑃 and Δ𝐴 is the coupled Laplace operator. Going fur-
ther, Singer discussed the Ricci curvature of 𝒜/𝒢. This is
given formally by summing an infinite collection of sec-
tional curvatures which corresponds to the trace of a cer-
tain operator 𝑇. The problem is that 𝑇 is not of trace class,
and, to get around this, Singer introduces the regulariza-
tion Tr 𝑇Δ−𝑠

𝐴 which is defined for large enough 𝑠. The
meromorphic continuation has in general a pole at 𝑠 = 0,
but Singer found that the residue there has an expression
given by an integral over 𝑀 involving the scalar curvature.
Thus he obtained the striking result that the Ricci tensor of
𝒜/𝒢 can be defined when working over a base manifold𝑀
of zero scalar curvature.

Nigel Hitchin
As a student, postdoc and collaborator of Michael Atiyah,
I inevitably encountered Isadore Singer many times. Since
they first met at the Institute in Princeton in 1955, Atiyah
and Singer were part of the postwar group of mathemati-
cians who were redefining the interactions between alge-
braic geometry, topology, differential geometry, and anal-
ysis. A sabbatical in Oxford in 1962 started their most no-
table collaboration, which of course resulted in the Atiyah–
Singer index theorem, but it was another visit in 1977 that
led to an important development in which I was fortunate
to take part.

Atiyah often crossed the Atlantic to see Singer, or Raoul
Bott, bringing home news about current directions in ge-
ometry. When he invited them back to Oxford, his Mon-
day seminar was the forum for us all to learn about these
issues. In early 1977, Singer visited and spoke about the
self-dual Yang–Mills equations. As I recall, he also gave
lectures about the geometry behind Bäcklund transforma-
tions, but it was the Yang–Mills problemwhich gained trac-
tion.

Nigel Hitchin is Savilian Professor of Geometry Emeritus at the University of
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Singer had a long-held interest in physics and the prob-
lem he presented to us was a differential geometric inter-
pretation of the question of “instantons,” in the language
of physicists. The scenario consists of Euclidean 4-space
ℝ4 and a connection. This is a covariant derivative opera-
tor defined by ∇𝑖 = 𝜕/𝜕𝑥𝑖 +𝐴𝑖 where 𝐴𝑖 is a function with
values in (for this problem) 2 × 2 skew-Hermitian matri-
ces of trace zero, the Lie algebra of SU(2). The curvature
[∇𝑖, ∇𝑗] = 𝐹𝑖𝑗 is a differential 2-form with values in the
Lie algebra and the Yang–Mills functional is the integral of
|𝐹|2. The problem is to characterize all absolute minima
of this integral.

The functional is conformally invariant, and, in the
course of the weekly seminar, Singer showed how, with
suitable decay assumptions on the curvature (later verified
by Karen Uhlenbeck) ℝ4 could be replaced by the sphere
𝑆4 by adding a point at infinity. In this setting the physi-
cist’s instanton charge 𝑘 becomes the second Chern class
of a vector bundle 𝐸. Moreover the integral expression for
the Chern class provides a lower bound for ‖𝐹‖2, achieved
when the connection is self-dual.

Self-duality is a special property of four-dimensional
Riemannian geometry: the exterior 2-forms decompose
into ±1 eigenspaces of the Hodge star operator and 𝐹 is
self-dual if it lies in the +1 eigenspace at each point. In
the context of the curvature of a 4-manifold, this feature
was implicit in a earlier paper of Singer’s [20], which I
knew as a student. (In fact, that paper implies that the
spinor bundle on 𝑆4 with its constant curvature metric is
an instanton of charge 1.) In Oxford, Singer introduced a
whole family of solutions of different charges produced
by the physicists. The obvious question was: Are there
any more? Conjugation of ∇ by an automorphism of the
bundle (a gauge transformation) clearly gives an infinite-
dimensional space of such but one needed to know all so-
lutions modulo this equivalence.

The self-duality equations are nonlinear in the connec-
tion coefficients 𝐴𝑖 and one can study the linearization.
For self-duality, a first order deformation ̇𝐴 satisfies a lin-
ear equation 𝐷− ̇𝐴 = 0 as a section of the vector bun-
dle End𝐸 ⊗ Λ2−. A first order gauge transformation gives
̇𝐴 = ∇𝜓 for 𝜓 a section of End𝐸, so the linearization, as

far as equivalence is concerned, is the kernel of a differen-
tial operator 𝐷− modulo the image of ∇. This is the first
cohomology group of an elliptic complex

End𝐸 ∇⟶End𝐸 ⊗ Λ1 𝐷−⟶End𝐸 ⊗ Λ2− .
Elliptic complexes are precisely the context of the Atiyah–
Singer index theorem, and, together with vanishing theo-
rems given the positive curvature of the sphere the theorem
gives the number (8𝑘−3) for the solution of the lineariza-
tion problem. This led to a short announcement followed

by an expanded paper [1], which incorporated the other
input from the Oxford seminars, from Penrose’s group,
and in particular his student Ward. It placed the instanton
problem in awider context, where the sphere is replaced by
a 4-manifold with a self-dual conformal structure—a con-
dition on theWeyl tensor of ametric. Penrose’s twistor the-
ory added a new dimension to the original problem, link-
ing it directly with algebraic geometry and quite quickly
it yielded a concrete construction for the whole (8𝑘−3)-
dimensional family.

Perhaps the most important aspect in all of this
was Singer’s observation, a postscript in the announce-
ment [20], that one could use the methodology of Kuran-
ishi (for the moduli space of complex structures on a com-
pact complex manifold) to construct from the lineariza-
tion of the self-duality equations an actual moduli space
of instantons. This was probably the first time that the no-
tion ofmoduli space escaped from algebraic geometry into
the wider mathematical world. It provided the framework
for Simon Donaldson’s famous later work replacing the
sphere by a more general 4-manifold with no differential
geometric assumptions.

At a personal level, Is Singer always took an interest in
what I was doing. I remember in particular when I was a
postdoc in New York in 1973 and Michael Atiyah was vis-
iting MIT. I went up one cold December day to give a sem-
inar. Maybe it was the semester break or the bad weather
but the audience was Singer, Atiyah, Kostant, Irving Se-
gal, and no more! I spoke about the Dirac operator on
bounded domains in ℝ𝑛 and conformal invariance (con-
formally invariant operators were the centre of my inter-
est at the time, including the complex above, but without
the connection). Afterwards I was unsure of the reception,
but a week later I received from Is several pages of care-
fully written notes pointing out a more sophisticated way
of doing things. He is greatly missed.

H. Blaine Lawson and Mikhail Gromov
We have been asked to present our perspective on the in-
dex theorem, which puts us in the position of a blind per-
son describing what he/she perceives of an elephant upon
touching the elephant’s tail. Index theory is a world of
its own, as the reader can begin to see from the article of
Connes and Kouneiher in the November, 2019 issue of the
AMS Notices. As geometers we are well aware only of what
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is directly related to our field. With that understood, we
can begin.

Over his long career Is Singer made many revolutionary
contributions to mathematics. Of all his work, perhaps
the most far-reaching were his results with Atiyah on the
index theorem. It was not just that they established a for-
mula which generalized the Riemann–Roch–Hirzebruch
theorem. What was even more important was their dis-
covery of a fundamental elliptic operator, which certainly
paved the way to the index theorem, but which also engen-
dered profound applications, which to date can be proved
in no other way.

For background, recall that a manifold of dimension 𝑛
is orientable, if its structure group (where the jacobians of
coordinate changes live) can be reduced from GL𝑛 to GL+𝑛 ,
the connected component of the identity. The manifold is
spin (with 𝑛 ≥ 3) if the structure group GL+𝑛 can be lifted

to the universal covering group G̃L
+
𝑛 . At first this seems

unimportant since G̃L
+
𝑛 has no finite-dimensional repre-

sentations that are not pulled back from GL+𝑛 . However, if
one restricts to maximal compact subgroups SO𝑛 ⊂ GL+𝑛
and Spin𝑛 ⊂ G̃L

+
𝑛 (these inclusions are homotopy equiva-

lences), then Spin𝑛 does have representations that are not
pulled back from SO𝑛.

In the 1960s, many decades had passed since the fun-
damental work of É. Cartan and P.A.M. Dirac, but the fun-
damental operator on a spin manifold with a Riemann-
ian metric was still unknown. Borel and Hirzebruch had
proved that on a spin manifold 𝑀 of dimension 4𝑘 a cer-
tain topological invariant 𝐴(𝑀) is always an integer, and
this is not always true for 𝑀 that are not spin. Atiyah had
conjectured that perhaps this was because 𝐴(𝑀) was the
index of an operator that only existed on spin manifolds.
It was Singer who found that operator, and they were on
their way. They showed in fact that, in the spin case, ev-
ery elliptic operator was equivalent to this fundamental
operator 𝐷/, twisted by a coefficient bundle, and the index
formula is a natural generalization of Hirzebruch’s. With
this insight they were able, with more work, to also treat
the non-spin case.

It is important to understand that to define the oper-
ator 𝐷/ it is necessary to have a metric on the spin mani-
fold. Given this metric, the operator satisfies a Bochner-
type identity, found by E. Schrödinger and A. Lichnerow-
icz:

𝐷/2 = ∇∗∇ + 1
4
𝜅,

where ∇∗∇ ≥ 0 with kernel consisting of parallel sections,
and 𝜅 is the scalar curvature (the average of all the sectional
curvatures), which is a very weak invariant. However, from
this formula one sees that on a spin 4𝑘-manifold with 𝐴 ≠
0, there does not exist a Riemannian metric with 𝜅 > 0.

If one considers the general case of 𝐷/𝐸 (i.e., 𝐷/ ten-
sored with a vector bundle with connection 𝐸), there is the
formula

𝐷/2𝐸 = ∇∗∇ + 1
4
𝜅 + 𝐑𝐸 ,

where 𝐑𝐸 is explicitly defined in terms of the curvatures
of 𝐸. This allows for interesting generalizations of the
scalar curvature result above.

Atiyah and Singer went on to give a different proof of
the index theorem, which was based on topological K-
theory (= the Grothendieck group of isomorphism classes
of complex vector bundles on a given space—work of
Atiyah and Hirzebruch). They also found many important
generalizations.When the operator is equivariant with re-
spect to a compact Lie group 𝐺, the index lies in the repre-
sentation ring of 𝐺, and this result has many applications,
including new results in number theory. In a different di-
rection, suppose we have a family of elliptic operators over
a parameter space 𝑋 , then there is a theorem where the in-
dex of the family is an element of the 𝐾-theory of 𝑋 . Per-
haps one of the most profound of these generalizations
was the index theorem for Cl𝑘(ℝ)-linear operators, where
Cl𝑘(ℝ) is the Clifford algebra on ℝ𝑘 with its standard posi-
tive definite metric. Here the index is an element in the
quotient of the Grothendieck group of Cl𝑘(ℝ)-modules
which can be identified with KO−𝑘(pt), the real K-theory
group for a point. Interestingly, these groups are torsion in
certain dimensions. Now every spin 𝑛-manifold has a fun-
damental Cl𝑛(ℝ)-linear Atiyah–Singer operator with index
in the group KO−𝑛(pt). This gives a ring homomorphism
𝒜 ∶ ΩSpin

∗ → KO−∗(pt) from the spin cobordism ring, that
must vanish on every cobordism class that contains a man-
ifold that admits a metric with 𝜅 > 0. In particular, by a
result of N. Hitchin, for all 𝑛 ≡ 1 or 2 (mod 8), (𝑛 ≥ 8),
half of the exotic spheres do not carry a metric of positive scalar
curvature! From the classical geometer’s point of view this
was pure magic.

Somewhat later, Stephan Stolz showed that, in the
world of simply-connected spin manifolds of dimension
> 4, the index 𝒜 is the only invariant obstructing positive
scalar curvature. For manifolds with nontrivial fundamen-
tal group, there is an analogous, yet more wide-ranging
and still unfinished, story.

Wewant to say that Is Singer broughtmore than great in-
sights tomathematics. His talks weremagical. His enthusi-
asm was totally contagious. He spent many years bringing
together the worlds of mathematics and physics, and this
transformed both fields. Is Singer not only opened peo-
ple to wonders in mathematics, but he made them excited
to be part of the wonderment. He was always inclusive,
and he and Rosemarie were very warm and outreaching.
Is Singer made mathematics a better place.
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Werner Müller
Anothermilestone in the work of Singer is the invention of
the analytic torsion [17] which he, together with Ray, intro-
duced in 1971 as an analytic counterpart of the Reidemeis-
ter torsion. The Reidemeister torsion (or the Reidemeister–
Franz torsion) is a topological invariant of a compact man-
ifold 𝑀 and a representation of its fundamental group
𝜋1(𝑀) that was introduced by Reidemeister in 1935 for 3-
manifolds and generalized to higher dimensions by Franz
and de Rham. In fact, the Reidemeister torsion is defined
for every finite CW complex 𝐾 and a unitary representa-
tion 𝜌 of 𝜋1 ≔ 𝜋1(𝐾) on a finite-dimensional vector space
𝑉𝜌. Let ̃𝐾 be the simply connected covering space of 𝐾 with
𝜋1 acting on ̃𝐾 as group of deck transformations. Consider
𝐾 as being embedded as a fundamental domain in ̃𝐾, so
that ̃𝐾 is the set of translates of 𝐾 under 𝜋1. In this way,
the real co-chain complex becomes an ℝ(𝜋1)-module. Let
𝐶∗(𝐾; 𝜌) ≔ 𝐶∗( ̃𝐾) ⊗ℝ(𝜋1) 𝑉𝜌 be the twisted co-chain com-
plex. In the real vector space 𝐶𝑞(𝐾; 𝜌) one can choose a
preferred base (𝑥𝑖 ⊗ 𝑣𝑗), where 𝑥𝑖 runs through the pre-
ferred base of the ℝ(𝜋1)-module 𝐶𝑞( ̃𝐾) given by the cells
of 𝐾 and 𝑣𝑗 through an orthonormal base of 𝑉𝜌. A pre-
ferred base gives rise to an inner product in 𝐶∗(𝐾; 𝜌). Let
𝛿∶ 𝐶𝑞(𝐾; 𝜌) → 𝐶𝑞+1(𝐾; 𝜌) denote the co-boundary opera-
tor and 𝛿∗ the adjoint operator with respect to the inner
product in 𝐶∗(𝐾; 𝜌). Define the combinatorial Laplacian
Δ(𝑐) by Δ(𝑐) = 𝛿𝛿∗ + 𝛿∗𝛿. Assume that the cohomology
𝐻∗(𝐾; 𝜌) of the complex 𝐶∗(𝐾; 𝜌) vanishes. Then Δ(𝑐) is in-
vertible, and, as shown by Ray and Singer, the Reidemeister
torsion 𝜏(𝐾, 𝜌) ∈ ℝ+ of 𝐾 and 𝜌 is given by

log 𝜏(𝐾, 𝜌) = 1
2

𝑛
∑
𝑞=0

(−1)𝑞+1𝑞 log det(Δ(𝑐)𝑞 ), (2)

where 𝑛 is the dimension of the top-dimensional cells of𝐾.
This is not quite the original definition of the Reidemeister
torsion, but, as shown by Ray and Singer, it is equivalent
to the original one. If 𝐻∗(𝐾; 𝜌) ≠ 0, one has to choose a
volume form 𝜇 ∈ det𝐻∗(𝐾; 𝜌). For any choice of 𝜇, one
can define the Reidemeister torsion 𝜏𝑀(𝜌; 𝜇) ∈ ℝ+, which
depends on 𝜇.

Let 𝑀 be a closed Riemannian manifold and 𝜌 an or-
thogonal representation of 𝜋1(𝑀). Let 𝐸𝜌 → 𝑀 be the
flat orthogonal vector bundle associated to 𝜌. Then by
the Hodge–de Rham theorem, 𝐻∗(𝐾; 𝜌) is identified with
the space of harmonic forms with values in 𝐸𝜌. Using
the global inner product on harmonic forms, we get a vol-
ume form 𝜇. It turns out that 𝜏𝐾(𝜌; 𝜇) is invariant under
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subdivisions. Furthermore, any two smooth triangula-
tions of 𝑀 admit a common subdivision. Thus 𝜏𝐾(𝜌; 𝜇)
is independent of the choice of 𝐾 and we write 𝜏𝑀(𝜌) ≔
𝜏𝐾(𝜌; 𝜇). This is the Reidemeister torsion of𝑀 with respect
to 𝜌 and 𝜇 ∈ det𝐻∗(𝑀; 𝐸𝜌).

The original interest in Reidemeister torsion came from
the fact that it is not a homotopy invariant and so can
distinguish spaces which are homotopy invariant but are
not homeomorphic. Especially, Reidemeister used Reide-
meister torsion to classify three-dimensional lens spaces
up to homeomorphism and this was generalized by Franz
to higher dimensions. The classification includes exam-
ples of homotopy equivalent three-dimensional mani-
folds which are not homeomorphic. Reidemeister torsion
is closely related to Whitehead torsion, which is a more
sophisticated invariant of chain complexes. It is related to
the concept of simple homotopy equivalence.

Following a suggestion of Arnold Shapiro, Ray and
Singer were looking for an analytic description of the Rei-
demeister torsion of a closed Riemannian manifold. The
inspiration for the definition came from formula (2). Let
(Λ∗(𝑀; 𝐸𝜌), 𝑑) be the de Rham complex of 𝐸𝜌-valued differ-
ential forms on 𝑀 and let Δ ≔ 𝑑𝑑∗ + 𝑑∗𝑑 be the Laplace
operator acting in Λ∗(𝑀; 𝐸𝜌), where 𝑑∗ is the formal ad-
joint of 𝑑 with respect to the inner product induced by
the Riemmanian metric 𝑔 and the fibre metric in 𝐸𝜌. Then
the idea is to replace 𝐶∗(𝐾; 𝜌) by Λ∗(𝑀; 𝐸𝜌) and the combi-

natorial Laplacian Δ(𝑐)𝑞 by the Hodge Laplacian Δ𝑞. The
problem is that Δ𝑞 is acting in an infinite-dimensional
space and the determinant is not well defined. To over-
come this problem, one uses the zeta function regulariza-
tion. Regarded as an unbounded operator in the Hilbert
space of 𝐿2-forms of degree 𝑞with values in 𝐸𝜌, Δ𝑞 is essen-
tially self-adjoint and nonnegative. Since 𝑀 is compact,
it follows that Δ𝑞 has a pure point spectrum consisting
of eigenvalues 𝜆𝑗 ≥ 0, 𝑗 ∈ ℕ, of finite multiplicity 𝑚(𝜆𝑗).
Let 𝜁𝑞(𝑠; 𝜌) ≔ ∑𝜆𝑗>0𝑚(𝜆𝑗)𝜆

−𝑠
𝑗 , 𝑠 ∈ ℂ, be the spectral zeta

function. As shown by Seeley, the series converges abso-
lutely and uniformly on compact subsets of the half plane
ℜ(𝑠) > 𝑛/2, admits a meromorphic extension to ℂ and is
holomorphic at 𝑠 = 0. Then the regularized determinant

of Δ𝑞 is defined by det(Δ𝑞) ≔ exp(− 𝑑
𝑑𝑠
𝜁𝑞(𝑠; 𝜌)||𝑠=0). Replac-

ing formally det(Δ(𝑐)𝑞 ) in (2) by the regularized determinant
of Δ𝑞 has led Ray and Singer to the following definition of
the analytic torsion 𝑇𝑀(𝜌) ∈ ℝ+

log 𝑇𝑀(𝜌) ≔
1
2

𝑛
∑
𝑞=0

(−1)𝑞𝑞 𝑑𝑑𝑠𝜁𝑞(𝑠; 𝜌)||𝑠=0. (3)

By its definition, 𝑇𝑀(𝜌) depends on the whole spectrum
of the Laplace operators Δ𝑞, 𝑞 = 0, … , 𝑛, and is therefore
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a more sophisticated spectral invariant. Ray and Singer
proved that the analytic torsion satisfies the same formal
properties as the Reidemeister torsion, which supported
their conjecture that

𝑇𝑀(𝜌) = 𝜏𝑀(𝜌) (4)

for any orthogonal representation 𝜌. The Ray–Singer con-
jecture was eventually proved independently by Cheeger
[9] and Müller [15] (and is now often referred to as the
Cheeger–Müller theorem). The proofs of Cheeger and
Müller are different, but similar in spirit. The strategy of
both proofs is to show that 𝑇𝑀(𝜌) − 𝜏𝑀(𝜌) remains invari-
ant under surgery which reduces the problem to the case of
the sphere for which the equality can be verified explicitly.
The proof of Cheeger is based on analytic surgery meth-
ods. Müller uses the Whitney approximation of the de
Rham complex by the co-chain complex and the finite el-
ement approximation of eigenvalues, which goes back to
the work of Dodziuk and Patodi.

The equality of analytic torsion and Reidemeister tor-
sion has been extended in various ways. Müller has shown
that (4) holds for unimodular representations 𝜌 of 𝜋1(𝑀)
( | det 𝜌(𝛾)| = 1 for all 𝛾 ∈ 𝜋1(𝑀)). Recently, this result has
found some interesting applications to the study of the co-
homology of arithmetic groups (see below).

Finally, Bismut and Zhang treated the general case of an
arbitrary finite-dimensional representation 𝜌. The frame-
work is slightly different. They work with the metrics
on det𝐻∗(𝑀, 𝐸𝜌) induced by the analytic torsion and the
Thom–Smale complex associated to a Morse function on
𝑀. In general, an equality does not hold anymore. There
appears a defect term, which, however, can be described
explicitly. The defect is a kind of obstruction for 𝜌 being
unimodular. Bismut and Zhang gave a completely new
proof, which uses the Witten deformation of the de Rham
complex associated to the Morse function.

The equivariant case was first studied by Lott and
Rothenberg and then by Lück. Also Bismut and Zhang ex-
tended their result to the equivariant case, using again the
Witten deformation of the de Rham complex.

It is natural to try to generalize (4) to other classes
of manifolds. The first obvious case is compact mani-
folds with a nonempty boundary. A corresponding result
was announced by Cheeger in his paper proving the Ray–
Singer conjecture. Then Lück has derived a formula using
the double of a compact Riemannian manifold 𝑀 with
boundary which reduces the problem to the equivariant
case. This approach requires that the metric of𝑀 is a prod-
uct near the boundary. On the analytic side one has to
impose absolute or relative boundary conditions for the
Laplacians. The resulting formula comparing analytic and
Reidemeister torsion involves a correction term which is

given by the Euler characteristic 𝜒(𝜕𝑀) of the boundary.
The general case, i.e., without any assumption on the be-
havior of the metric near the boundary, was treated by Ma
and Brüning. The boundary contribution, which is called
anomaly, is in general more complicated.

There were various attempts to generalize (4) to singu-
lar spaces. The first case is manifolds with conical sin-
gularities. The study of analytic and topological torsion
on singular spaces with conical singularities started with
work of A. Dar. She proved that on singular spaces with
isolated conical singularities, the analytic torsion is well-
defined. On the combinatorial side she used the middle
intersection complex to define the intersection Reidemeis-
ter torsion, which one expected to be equal to the ana-
lytic torsion. This turned out not to be true. There are
recent results by Albin–Rochon–Sher, Hartman–Spreafico,
and Ludwig that establish a formula relating analytic tor-
sion and intersection torsion. This is not an equality, but
the defect term can be described explicitly.

Guided by the definition of the real analytic torsion, Ray
and Singer introduced an analog of the analytic torsion
for complex manifolds. The role of the flat vector bundle
is played by a holomorphic vector bundle 𝐸 → 𝑋 over a
compact complex manifold and the de Rham complex is
replaced by the ̄𝜕-complex of (0, 𝑞)-forms with values in
𝐸. The complex analytic torsion has found important ap-
plications in arithmetic-algebraic geometry and theoretical
physics. This will be discussed in a separate section.

The equality of analytic torsion and Reidemeister tor-
sion has recently found interesting application in the study
of the growth of torsion in the cohomology of arithmetic
groups. This idea goes back to Bergeron and Venkatesh.
The origin of this kind of application is the following ob-
servation. Let 𝑋 be a compact Riemannian manifold and
let 𝜌 be a representation of 𝜋1(𝑋) on a finite-dimensional
real vector space 𝑉 . Suppose that there exists a lattice
𝑀 ⊂ 𝑉 which is invariant under 𝜋1(𝑋). Let ℳ be the
associated local system of finite rank free ℤ-modules over
𝑋 . Note that ℳ ⊗ℤ ℝ = 𝐸𝜌. The cohomology 𝐻∗(𝑋;ℳ)
of 𝑋 with coefficients in ℳ is a finitely generated abelian
group. Suppose that 𝜌 is acyclic, i.e., 𝐻∗(𝑋, 𝐸𝜌) = 0. Then
𝐻∗(𝑋;ℳ) is a finite abelian group. Denote by |𝐻𝑞(𝑋;ℳ)|
the order of 𝐻𝑞(𝑋;ℳ). Then, as observed by Cheeger, the
Reidemeister torsion satisfies

𝜏𝑋(𝜌) =
𝑛
∏
𝑞=0

|𝐻𝑞(𝑋;ℳ)|(−1)𝑞+1 . (5)

Using the equality of 𝑇𝑋(𝜌) = 𝜏𝑋(𝜌), (5) provides an an-
alytic tool to study the torsion subgroups in the coho-
mology. This has been used by Bergeron and Venkatesh
in the following way: Let 𝐆 be a connected semi-simple
algebraic group over ℚ and Γ ⊂ 𝐆(ℚ) an arithmetic
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subgroup. Let 𝐺 = 𝐆(ℝ). Then Γ is a lattice in 𝐺. An
example is 𝐺 = SL(𝑛, ℝ) and Γ = SL(𝑛, ℤ). We assume that
Γ is co-compact and torsion free. Let 𝐾 ⊂ 𝐺 be a maximal
compact subgroup and 𝑋 ≔ 𝐺/𝐾 the associated Riemann-
ian symmetric space of nonpositive curvature. Then Γ acts
freely on 𝑋 and 𝑋 ≔ Γ\𝑋 is a compact locally symmet-
ric manifold. Consider a decreasing sequence of congru-
ence subgroups ⋯ ⊂ Γ𝑗+1 ⊂ Γ𝑗 ⊂ ⋯ ⊂ Γ with ∩𝑗Γ𝑗 = {1}.
Put 𝑋𝑗 ≔ Γ\𝑋 , 𝑗 ∈ ℕ. Then 𝑋𝑗 → 𝑋 is a finite covering.
Let 𝜚 be a rational irreducible representation of 𝐆 on a
finite-dimensional ℚ-vector space 𝑉ℚ. Then there is a lat-
tice 𝑀 ⊂ 𝑉ℚ that is invariant under 𝜚(Γ). Let 𝑉 = 𝑉ℚ ⊗ ℝ
and 𝜌 ≔ 𝜚|Γ. Then 𝑀 ⊂ 𝑉 is a Γ-invariant lattice. Let
𝑇𝑋𝑗 (𝜌) be the analytic torsion of the covering 𝑋𝑗 of 𝑋 with
respect to 𝜌|Γ𝑗 . By an appropriate assumption on the high-
est weight of 𝜚, there is a uniform spectral gap at the origin
for all Laplacians on 𝑋𝑗, uniformly in 𝑗 ∈ ℕ. In this case,
it follows that the limit log 𝑇𝑋𝑗 (𝜌)/ vol(𝑋𝑗) as 𝑗 → ∞ exists

and equals a constant 𝑡(2)𝑋 (𝜌) that depends only on 𝑋 and 𝜌.
In fact, vol(𝑋) ⋅ 𝑡(2)𝑋 (𝜌) is the 𝐿2-torsion of 𝑋 . Let 𝐻𝑞(Γ𝑗 ;𝑀)
be the cohomology of Γ𝑗 with coefficients in the Γ𝑗-module
𝑀. Note that 𝐻𝑞(Γ𝑗 ;𝑀) ≅ 𝐻𝑞(𝑋𝑗 ;ℳ), where ℳ is the local
system associated to 𝑀. Then, as shown by Bergeron and
Venkatesh, it follows from (5) combined with (4)

lim inf
𝑗→∞

∑
𝑞

log |𝐻𝑞(Γ𝑗 ;𝑀)|
[Γ∶ Γ𝑗]

≥ 𝐶𝐺,𝑀 , (6)

where the sum runs over the integers 𝑞 such that 𝑞 +
dim(𝑋)−1

2
is odd and 𝐶𝐺,𝐿 ≥ 0. Moreover, if the fundamen-

tal rank rankℂ(𝐺) − rankℂ(𝐾) is 1, then 𝐶𝐺,𝑀 > 0. The
latter condition is satisfied, for example, for hyperbolic
manifolds and 𝑋 = Γ\SL(𝑛, ℝ)/SO(𝑛) with 𝑛 = 3, 4. For
these cases it follows from (6) that the order of the tor-
sion of the cohomology grows exponentially. There is a
conjecture with a more precise statement saying that the
exponential growth happens exactly in the middle degree.
Müller and Rochon extended this result to the case of finite
volume hyperbolic manifolds. This includes Bianchi sub-
groups Γ𝐷 = SL(2, 𝒪𝐷) of SL(2, ℂ), where 𝒪𝐷 is the ring of
integers of the imaginary quadratic field ℚ(√−𝐷), 𝐷 > 0,
square free. The complementary case is if the lattice is fixed
and the rank of the module 𝑀 increases. This case has
been studied by Müller, Pfaff, and Rochon with analogous
results on the growth of torsion.

There are other interesting developments related to real
analytic torsion which, due to the limited space, could not
be discussed here.

Adam Marcus, Daniel Spielman,
and Nikhil Srivastava
When Dan Spielman and Is Singer were colleagues at MIT,
they discussed Singer’s tennis game and his observations
on the winding of the stairways in Building 2, but their
mathematical interests seemed completely unrelated. It is
a testament to the breadth of Singer’s impact that, many
years later, Spielman was led by Graph Theory and Com-
puter Science to the Kadison–Singer Problem. We now ex-
plain the path from the original statement of the Kadison–
Singer Problem in terms of operator algebras to the prob-
lem in Graph Theory that motivated its solution.

Operator algebras were originally introduced by von
Neumann as a rigorousmathematical framework for quan-
tum mechanics, in which bounded self-adjoint operators
in the 𝐶∗-algebra 𝐵(𝐻) play the role of physical observ-
ables, for 𝐻 a complex separable Hilbert space. Abelian
subalgebras of 𝐵(𝐻) play a special role in that they are
generated by observables that commute, implying that
they can be measured simultaneously without being con-
strained by an uncertainty principle. Kadison and Singer
were motivated by the following question of Dirac (which
he believed had an affirmative answer):

Given a quantum system (such as an electron in
a hydrogen atom) does knowing the outcomes
of all measurements with respect to a maximal
set of commuting observables (such as the quan-
tum numbers 𝑛, ℓ,𝑚, 𝑠) uniquely determine the
outcomes of all possible measurements of all pos-
sible observables?

To turn this into a mathematical question, recall that a
state on a 𝐶∗ algebra 𝒜 is a normalized positive continu-
ous linear functional 𝜙 ∶ 𝒜 → ℂ. States correspond to
physical states of a quantum system, and a state which is
not a convex combination of other states is called a pure
state. Dirac’s question asks whether every pure state on a
maximal abelian subalgebra 𝒜 of 𝐵(𝐻) has a unique ex-
tension to a state on 𝐵(𝐻). By a classification theorem,
it is sufficient to study 𝒜 isomorphic to either the “con-
tinuous” algebra 𝒜𝑐, the algebra of essentially bounded
multiplication operators on 𝐿2(0, 1), or the “discrete” age-
bra 𝒜𝑑 = 𝐷(ℓ2(ℕ))), the algebra of bounded infinite di-
agonal matrices. In their 1959 paper, Kadison and Singer

AdamMarcus is Chair of Combinatorial Analysis at Ècole Polytechnique Fèdèral
de Lausanne. His email address is adam.marcus@epfl.ch.
Daniel Spielman is a professor of computer science, statistics, and mathematics
at Yale University. His email address is spielman@cs.yale.edu.
Nikhil Srivastava is an associate professor of mathematics at the University of
California, Berkeley. His email address is nikhil@math.berkeley.edu.

OCTOBER 2022 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1559



[12] showed that the unique extension property fails for𝒜𝑐.
They were unable to settle the case of 𝒜𝑑, which became
known as the Kadison–Singer Problem:

Does every pure state on 𝐷(ℓ2(ℕ)) have a unique
extension to a state on 𝐵(ℓ2(ℕ))?

It is easy to see that this problem is equivalent to show-
ing that 𝜌(𝑀) = 0 for every pure state 𝜌 on 𝐷(ℓ2(ℕ)) and
every 𝑀 ∈ 𝐵(ℓ2(ℕ)) with zero diagonal. The difficulty is
that the set of pure states on𝐷(ℓ2(ℕ)) is quite complicated,
containing points corresponding to nonprincipal ultrafil-
ters, and thus rather inaccessible in concrete terms. Kadi-
son and Singer outlined an elegant approach to solving
their problem without having to say too much about these
states directly. The key observation is that if 𝑃 ∈ 𝐷(ℓ2(ℕ))
is a diagonal projection and 𝜌 is a pure state on 𝐷(ℓ2(ℕ))
then 𝜌(𝑃) = 0 or 𝜌(𝑃) = 1. This leads to the associated
notion of a paving of an operator.

Definition 0.1. An 𝜖-paving of an operator 𝑀 ∈ 𝐵(ℓ2(ℕ))
is a finite collection of diagonal projections 𝑃1, … , 𝑃𝑘 satis-
fying 𝑃1 + … + 𝑃𝑘 = 𝐼 and

‖𝑃𝑖𝑀𝑃𝑖‖ ≤ 𝜖‖𝑀‖,
for every 𝑖 = 1, … , 𝑘.

Kadison and Singer showed via a simple Cauchy–
Schwartz type argument that if 𝑀 ∈ 𝐵(ℓ2(ℕ)) has an 𝜖-
paving, then |𝜌(𝑀)| ≤ 𝜖, reducing the KSP to the infinite
paving conjecture: For every 𝜖 > 0, every zero diagonal
𝑀 ∈ 𝐵(ℓ2(ℕ)) has an 𝜖−paving. The pleasing feature of
this conjecture is that it makes no mention of pure states.

The next simplification was achieved by Anderson in
1979, who showed via a compactness argument that the
infinite paving conjecture is implied by a simply stated com-
binatorial conjecture about finite matrices.

Conjecture 0.2 (Finite Paving Conjecture). For every 𝜖 > 0
there is a 𝑘 = 𝑘(𝜖) such that for every 𝑛, every zero diagonal
complex 𝑛 × 𝑛 matrix 𝑀 can be 𝜖−paved with 𝑘 projections.

Themost important feature of this conjecture is that the
number of projections 𝑘 is allowed to depend only on 𝜖
and not on the dimension 𝑛, and this is because any depen-
dence on 𝑛 precludes a limit.

In the decades since Anderson’s result, the paving con-
jecture was shown (using various finite-dimensional lin-
ear algebra arguments) to be equivalent to several other
statements about partitioning matrices or sets of vectors
into submatrices or subsets which are “smaller” in some
appropriate sense. In particular, the work of Casazza et
al. shows that it is equivalent to a number of other con-
jectures in various fields of pure and applied mathematics.
A very tangible, combinatorial such statement is the fol-
lowing conjecture of Weaver, which is actually a family of

statements indexed by 𝑟 ∈ ℕ. The validity of the conjecture
for any 𝑟 implies the paving conjecture.

Conjecture 0.3 (Weaver 𝐾𝑆𝑟). There are universal constants
𝜖, 𝛿 > 0 such that the following holds. Suppose 𝑣1, … , 𝑣𝑚 ∈ ℂ𝑛

are vectors satisfying ∑𝑚
𝑖=1 𝑣𝑖𝑣∗𝑖 = 𝐼 and ‖𝑣𝑖‖ ≤ 𝛿. Then there

is a partition of {1, … ,𝑚} into 𝑇1 ∪𝑇2 …∪𝑇𝑟 such that for every
𝑗 ∈ {1, … , 𝑟}:

‖
‖‖‖
∑
𝑖∈𝑇𝑗

𝑣𝑖𝑣∗𝑖
‖
‖‖‖
≤ 1 − 𝜖. (7)

We now describe how a problem in Graph Theory leads
to the same core problem 𝐾𝑆2, and which is in fact how
the present authors were introduced to this problem. The
question we consider is:

Can every finite undirected graph be approxi-
mated by a graph with very few edges?

The answer to this question depends on the notion of
approximation, and this is where the Laplacian operator
comes in. Recall that the discrete Laplacian of a weighted
graph 𝐺 = (𝑉, 𝐸, 𝑤) may be defined as the following sum
of rank one matrices over the edges:

𝐿𝐺 = ∑
(𝑎,𝑏)∈𝐸

𝑤(𝑎,𝑏)(𝑒𝑎 − 𝑒𝑏)(𝑒𝑎 − 𝑒𝑏)𝑇 ,

where 𝑒𝑎 is the elementary unit vector in direction 𝑎.
Two graphs 𝐺 and 𝐻 on the same vertex set 𝑉 are spec-

tral approximations of each other if their Laplacian quadratic
forms multiplicatively approximate each other:

𝜅1 ⋅ 𝐿𝐻 ≼ 𝐿𝐺 ≼ 𝜅2 ⋅ 𝐿𝐻 ,
for some approximation factors 𝜅1, 𝜅2 > 0, where 𝐴 ≼ 𝐵
means that 𝐵 − 𝐴 is positive semidefinite. An important
example is given by a 𝑑−regular Ramanujan graph on 𝑛
vertices, 𝐺𝑛, and the complete graph on 𝑛 vertices, 𝐾𝑛:
(1 − 2√𝑑 − 1/𝑑)𝐿𝐾𝑛 ≼ (𝑛/𝑑)𝐿𝐺𝑛 ≼ (1 + 2√𝑑 − 1/𝑑)𝐿𝐾𝑛 .

So, (𝑛/𝑑)𝐺 (i.e., 𝐺 with edge weights scaled up by 𝑛/𝑑) is a
good sparse approximation of 𝐾𝑛.

In 2012, Batson, Spielman, and Srivastava proved that
every weighted graph 𝐺 has an approximation that is al-
most this good, namely a weighted graph 𝐻 with aver-
age degree at most 2𝑑 which approximates 𝐺 with 𝜅1 =
(1 − 1

√𝑑
)
2
and 𝜅2 = (1 + 1

√𝑑
)
2
. Their proof had very little

to do with graphs. In fact, they derived their result from
the following theorem about sparse weighted approxima-
tions of sums of rank one matrices.

Theorem 0.4. Let 𝑣1, 𝑣2, … , 𝑣𝑚 be vectors in ℝ𝑛 with
∑𝑖 𝑣𝑖𝑣𝑇𝑖 = 𝑉. For every 𝜖 ∈ (0, 1), there exist nonnegative
real numbers 𝑠𝑖 with |{𝑖 ∶ 𝑠𝑖 ≠ 0}| ≤ ⌈𝑛/𝜖2⌉ so that

(1 − 𝜖)2𝑉 ≼ ∑
𝑖
𝑠𝑖𝑣𝑖𝑣𝑇𝑖 ≼ (1 + 𝜖)2𝑉. (8)
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Taking 𝑉 to be a Laplacian matrix written as a sum of
outer products and setting 𝜖 = 1/√𝑑 immediately yields
the theorem about approximating graphs.

Theorem 0.4 is very general and turned out to be use-
ful in a variety of areas including graph theory, numeri-
cal linear algebra, and metric geometry (see for instance
Naor’s 2011 Bourbaki talk). One of its limitations is that it
provides no guarantees on the weights 𝑠𝑖 that it produces,
which can vary wildly. So it is natural to ask:

Is there a version of Theorem 0.4 in which all the
nonzero weights 𝑠𝑖 are the same?

In the case 𝑉 = 𝐼, it is easy to see that equal weights are
impossible whenever there is a vector 𝑣𝑖 with large norm.
The punch line is that Weaver’s conjecture 𝐾𝑆2 is equivalent
to the refined assertion that for𝑉 = 𝐼, equal weights can be
attained in Theorem 0.4 whenever all vectors have small
norm—the desired partition is obtained by taking 𝑇1 =
{𝑖 ≤ 𝑚 ∶ 𝑠𝑖 ≠ 0} and 𝑇2 = [𝑚] ⧵ 𝑇1. This similarity was
originally pointed out to us by Gil Kalai.

The main result of [13] is that 𝐾𝑆2 is true, settling the
Kadison–Singer problem as well as the speculation about
unweighted graph sparisfication. The key idea of the proof
is to study the expected characteristic polynomial of the ran-
dom matrix

⨁
𝑗=1,2

(∑
𝑖∈𝑇𝑗

𝑣𝑖𝑣∗𝑖 )

in the setting of Conjecture 0.3, where the partition is
chosen uniformly at random. Miraculously, it turns out
that the polynomials corresponding to bad partitions of
large operator norm “cancel each other out” in this aver-
age, and the expectation has real roots which are bounded
away from 1 by an absolute constant. The proof of the
real-rootedness utilizes tools from the geometry of polyno-
mials, a classical subject studying among other things the
dynamics of complex roots of univariate and multivariate
polynomials under differential operators. Originally moti-
vated by considerations in PDEs andmathematical physics
(specifically, the Lee–Yang theorem) in the 1950s, this area
saw several breakthroughs in the 2000s, in particular the
work of Gurvits on the van der Waerden conjecture and
of Brandën and Borcea, whose ideas played a crucial role
in our proof. The remaining ingredient, necessary for prov-
ing the quantitative bound on the largest root, was to adapt
the argument used to prove Theorem 0.4 (especially the
inductive use of the Stieltjes transform to control eigenval-
ues) from the setting of matrices to the new setting of ex-
pected characteristic polynomials.

Edward Witten
I first met Is Singer in 1979, while visiting the University of
California at Berkeley, where he was a professor at the time.
Singer was then running a very active seminar on quantum
field theory and differential geometry. He had been one
of the first mathematicians or physicists to appreciate the
new opportunities for interaction ofmath and physics that
were opened up by the emergence of the modern Standard
Model of particle physics, which is based on nonabelian
gauge theory.

Through his vision and his contributions, Is Singer
played a major role in the emerging interaction of math-
ematics and quantum field theory. One of the early land-
marks was the role in physics of the Atiyah–Singer index
theorem. A puzzle in strong interaction physics was a
missing symmetry—a symmetry of the classical action of
the Standard Model that was not visible in experiment. It
turned out that the solution to this puzzle revolves around
“instantons” of four-dimensional gauge theory, and the
Atiyah–Singer index theorem. This had become clear in
1976, through the work of Gerard ’t Hooft as interpreted
by Albert Schwarz. As a result, instantons and the index
theorem were prominent at the interface of physics and
differential geometry in the late 1970s, when I first met
Singer. By this time, Singer, with Michael Atiyah and Nigel
Hitchin, had developed the mathematical foundations of
the study of instantons on a general four-manifold. All
this was one of the topics in his seminar.

Within a few years, the many sides of the index theo-
rem became familiar to physicists. For example, in 1982
it turned out that the mod 2 index theorem of Atiyah and
Singer governs an obstruction to a certain generalization of
the Standard Model. In 1984, Atiyah and Singer—in what
proved to be their last joint paper—interpreted the “anom-
alies” of Steve Adler, John Bell, and Roman Jackiw in terms
of the families index theorem (the index theorem for a fam-
ily of elliptic differential operators). These anomalies are
an important constraint on the consistency of the Standard
Model and its possible extensions. With Henry McKean,
Singer had initiated the heat kernel approach to the index
theorem. This approach became familiar to physicists as
it is natural in quantum field theory and is closely related
to the supersymmetric proof of the index theorem. Over
time, the influence of the index theorem in physics spread
beyond elementary particle physics and relativistic quan-
tum field theory, where it started. By now, the index the-
orem is also a familiar and important tool in condensed
matter physics as well.

Edward Witten is Charles Simonyi Professor at the School of Natural Sciences,
Institute for Advanced Study, Princeton. His email address is witten@ias
.edu.
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Another aspect of Singer’s work that has been important
in physics involves the 𝜂-invariant that was introduced by
Atiyah and Singer with Vijay Patodi. The Gauss–Bonnet
formula for the Euler characteristic of a manifold with
boundary has a boundary contribution that involves the
integral of a local invariant involving the extrinsic curva-
ture of the boundary. Atiyah, Patodi, and Singer showed
that for a Dirac-like operator on a boundary, in general
there is no local elliptic boundary and no local invariant
analogous to the extrinsic curvature. Instead they intro-
duced a “global” boundary condition and proved an in-
dex theorem in which a spectral invariant that they called
𝜂 appears as a boundary contribution. All this is relevant
in quantum field theory at multiple levels. The most ba-
sic is that the global APS boundary condition encodes the
ground state of a quantum field theory; in fermion quan-
tum field theory, the APS index theorem has a direct phys-
ical interpretation. The APS 𝜂-invariant has several other
manifestations in quantum field theory that are loosely re-
lated to this. It controls “charge fractionalization,” an im-
portant phenomenon, first explored in the early 1970s by
Jackiw and Claudio Rebbi (without knowing the relation
to index theory and the 𝜂-invariant), in which the ground
state of a quantum field carries fractional quantum num-
bers. The 𝜂-invariant is also important in a refined under-
standing of the Adler–Bell–Jackiw anomaly and its gener-
alizations. All these facets of the 𝜂-invariant have manifes-
tations in condensed matter physics as well as relativistic
field theory.

Finally, I should mention the role in physics of Ray–
Singer analytic torsion. In 1971, Daniel Ray and Singer
discovered an invariant of a flat bundle on a compact man-
ifold𝑀 that is expressed in terms of a regularized determi-
nant of the Laplace operator acting on differential forms
on 𝑀. Ray and Singer conjectured that their “analytic tor-
sion” is equivalent to the “combinatorial torsion” of Rei-
demeister, and this was later proved by Jeff Cheeger and
Werner Müller. Two years later, Ray and Singer formulated
a version of analytic torsion for holomorphic vector bun-
dles over over a complex manifold. Here, there is no com-
binatorial counterpart of the analytic torsion. Analytic tor-
sion for complexmanifolds is important in string theory in
multiple ways. The complex manifold is usually either the
worldsheet of a string, or a factor in spacetime. Analytic
torsion for real manifolds appears in physics primarily in
topological field theory and in simple models of quantum
gravity. When one expands the three-dimensional Chern–
Simons topological field theory in perturbation theory, the
leading approximation can be expressed in terms of the
analytic torsion and the 𝜂-invariant. In higher orders, one
runs into more subtle invariants, which were studied by

Singer and Scott Axelrod in two relatively well-known pa-
pers in the early 1990s. The most interesting application
of analytic torsion to gravity involves the relation of a sim-
ple model of gravity in two dimensions that is known as
Jackiw–Teitelboim or JT gravity to the volumes of mod-
uli spaces of Riemann surfaces; the celebrated results of
Maryam Mirzakhani on those volumes are also part of this
story. The relation of JT gravity to the volumes is a special
case of a more general statement about analytic torsion.

Apart from specific applications of analytic torsion in
physics, there was a technical step in the work of Ray and
Singer that has also been important. To define a regular-
ized determinant of a nonnegative self-adjoint differential
operator, they first defined the 𝜁 function 𝜁(𝑠) = ∑𝑖 𝜆−𝑠𝑖 ,
where 𝜆𝑖 are the eigenvalues of the operator, and then, as-
suming 𝜁(𝑠) has an analytic continuation that is holomor-
phic at 𝑠 = 0, they define the determinant as exp(−𝜁′(0)).
The analytic continuation to 𝑠 = 0 can be made in fairly
wide circumstances, using the ideas of McKean and Singer
concerning the heat kernel. Determinants of differential
operators were known to be important in physics, but the
methods that physicists were using to define these deter-
minant were less incisive than the 𝜁-function regulariza-
tion of Ray and Singer. 𝜁-function regularizationwas taken
into physics in the 1970s by Stuart Dowker and Raymond
Critchley, followed by Stephen Hawking. I know from
multiple discussions that Singer was particularly proud of
this application of his work to physics.

Is developed many active collaborations with physicists
—his collaborators included Orlando Alvarez, Laurent
Baulieu, and Axelrod, among others. Is’ interest in high
energy physics was not limited to theory. He became very
interested in what was going on in experiments where fun-
damental ideas of physics are tested. My wife and I were
on sabbatical in the spring of 2009 at the European par-
ticle physics laboratory CERN when Is visited. We toured
the ATLAS detector at CERN, one of the two detectors that
discovered the Higgs particle three years later.

One thing that Is and I had in common, apart from an
interest inmath and physics, is that we both took up tennis
relatively late in life (in our forties) and became passion-
ate about the game. It ended up that we never got to play;
the one time that this almost happened, Is ended up bow-
ing out and leaving me on the court with Cumrun Vafa
and his sons. But I am pretty sure that Is’ tennis was on a
different level from mine. He had been an athlete in his
youth—a minor league baseball player for a time, in fact. I
can remember many discussions about tennis. Perhaps 15
years ago, he toldme that he had finally developed a strong
serve. On another occasion, he expressed the ambition of
eventually becoming the United States Tennis Association
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champion in the oldest age group. Yet another time, he ex-
plained that he had assured the dean at MIT that he would
retire once the dean could beat him in tennis.

It was a pleasure to know Is and to learn from him over
the years.

References
[1] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality

in four-dimensional Riemannian geometry, Proc. Roy. Soc.
London Ser. A 362 (1978), no. 1711, 425–461, DOI
10.1098/rspa.1978.0143. MR506229

[2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spec-
tral asymmetry and Riemannian geometry. I, Math.
Proc. Cambridge Philos. Soc. 77 (1975), 43–69, DOI
10.1017/S0305004100049410. MR397797

[3] M. F. Atiyah and I. M. Singer, The index of elliptic oper-
ators. III, Ann. of Math. (2) 87 (1968), 546–604, DOI
10.2307/1970717. MR236952

[4] M. F. Atiyah and I. M. Singer, Dirac operators coupled to
vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984),
no. 8, Phys. Sci., 2597–2600, DOI 10.1073/pnas.81.8.2597.
MR742394

[5] Jean-Michel Bismut, The Atiyah-Singer index theo-
rem for families of Dirac operators: two heat equation
proofs, Invent. Math. 83 (1986), no. 1, 91–151, DOI
10.1007/BF01388755. MR813584

[6] Jean-Michel Bismut and Jeff Cheeger, 𝜂-invariants and their
adiabatic limits, J. Amer. Math. Soc. 2 (1989), no. 1, 33–70,
DOI 10.2307/1990912. MR966608

[7] Jean-Michel Bismut and Jeff Cheeger, Families index for
manifolds with boundary, superconnections, and cones. I. Fam-
ilies of manifolds with boundary and Dirac operators, J. Funct.
Anal. 89 (1990), no. 2, 313–363, DOI 10.1016/0022-
1236(90)90098-6. MR1042214

[8] Jean-Michel Bismut, Henri Gillet, and Christophe Soulé,
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