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Graphical designs are quadrature rules for graphs 𝐺 =
(𝑉, 𝐸). Broadly speaking, a graphical design is a relatively
small subset of vertices that captures the global behavior of
functions 𝑓 ∶ 𝑉 → ℝ. We motivate the precise definition
through numerical integration on the sphere.

The regular icosahedron (Figure 1) inscribed in the unit
sphere 𝕊2 ⊂ ℝ3 has the following amazing property: for
any polynomial 𝑝(𝑥, 𝑦, 𝑧) of degree at most 5, the average
of 𝑝 on the vertices of the icosahedron is equal to the aver-
age of 𝑝 over 𝕊2. By exploiting symmetry, these 12 points
exactly average the 36-dimensional vector space of poly-
nomials with degree at most 5. More generally, a spherical
𝑡-design [3] is a finite subset of points 𝑋 ⊂ 𝕊2 chosen so
that for any polynomial 𝑝(𝑥, 𝑦, 𝑧) of degree at most 𝑡,

1
|𝑋| ∑

(𝑥,𝑦,𝑧)∈𝑋
𝑝(𝑥, 𝑦, 𝑧) = 1

4𝜋 ∫
𝕊2
𝑝(𝑥, 𝑦, 𝑧) 𝑑𝜎.
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Figure 1. The regular icosahe-
dron is a spherical 5-design.

The space of polynomials restricted to the
sphere is spanned by the eigenfunctions of the
spherical Laplacian , known as spherical har-
monics. What is a natural analogue of spherical
harmonics for a graph? We start by defining an
operator analogous to for a finite, undirected
graph . Let be the adja-
cency matrix of defined as if
and 0 otherwise, and let be the di-
agonal matrix with , the number of
edges adjacent to . Then behaves
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3). The spectrum of is a rich object of study in
its own right in spectral graph theory. Through-
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Figure 2. An 11-graphical design on
the truncated icosahedral graph.

Definition 1 ([1, 7]). A subset averages
an eigenspace of if for all ,

(1)

To mimic the qualities of a spherical -design,
we seek vertex subsets that exactly average the
low frequency eigenspaces of .

Definition 2. A -graphical design on is
that averages .

1
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The space of polynomials restricted to the sphere is
spanned by the eigenfunctions of the spherical Laplacian
Δ, known as spherical harmonics. What is a natural ana-
logue of spherical harmonics for a graph? We start by
defining an operator analogous toΔ for a finite, undirected
graph 𝐺 = (𝑉, 𝐸). Let 𝐴 ∈ ℝ𝑉×𝑉 be the adjacency matrix
of 𝐺 defined as 𝐴ᵆ𝑣 = 1 if 𝑢𝑣 ∈ 𝐸 and 0 otherwise, and let
𝐷 ∈ ℝ𝑉×𝑉 be the diagonal matrix with 𝐷𝑣𝑣 = deg(𝑣), the
number of edges adjacent to 𝑣. Then 𝐿 = 𝐴𝐷−1 behaves
similarly to Δ in that for a function 𝑓 ∶ 𝑉 → ℝ,

(𝐿𝑓)(𝑣) = ∑
ᵆ∶ᵆ𝑣∈𝐸

𝑓(𝑢)
deg(𝑢) ,

averages 𝑓 in the neighborhood of 𝑣.

Figure 2. An 11-graphical design on the truncated icosahedral
graph.

Spherical harmonics are ordered by their degree as poly-
nomials, also called frequency. Similarly, the eigenvalues 𝜆𝑗
of 𝐿 can be ordered as

1 = |𝜆1| ≥ |𝜆2| ≥ … ≥ |𝜆𝑛| ≥ 0.
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Figure 3. The contiguous United States graph. Vertices are states, and edges connect adjacent states. Each eigenvector 𝜑𝑖 was
affinely transformed so that min𝑗 𝜑𝑖(𝑗) = 0 and max𝑗 𝜑𝑖(𝑗) = 1. The interval [0, 1] was assigned a smooth gradient. With respect to
the graph geometry, 𝜑2 and 𝜑3 are smooth, but 𝜑18 is not so smooth.

Here |𝜆𝑖| > |𝜆𝑗| means 𝜆𝑖 is lower frequency than 𝜆𝑗. This
also orders the eigenspaces of 𝐿; if the eigenspace Λ𝑖 has
eigenvalue 𝜆𝑖, we write Λ𝑖 ≤ Λ𝑗 if |𝜆𝑖| ≥ |𝜆𝑗|. With this
ordering, low-frequency eigenvectors respect the structure
of 𝐺 (see Figure 3). The spectrum of 𝐿 is a rich object of
study in its own right in spectral graph theory. Throughout
this paper, let 𝐺 = (𝑉, 𝐸) be a graph for which 𝐿 has 𝑚
distinct eigenspaces ordered from low to high frequency
as Λ1 ≤ ⋯ ≤ Λ𝑚.

Definition 1 ([1, 7]). A subset 𝑊 ⊂ 𝑉 averages an
eigenspace Λ of 𝐿 if for all 𝜑 ∈ Λ,

1
|𝑊| ∑

𝑤∈𝑊
𝜑(𝑤) = 1

|𝑉| ∑𝑣∈𝑉
𝜑(𝑣). (1)

To mimic the qualities of a spherical 𝑡-design, we
seek vertex subsets that exactly average the low frequency
eigenspaces of 𝐿.

Definition 2. A 𝑘-graphical design on 𝐺 is 𝑊 ⊂ 𝑉 that av-
erages Λ1, … , Λ𝑘.

Figure 2 shows an 11-graphical design on the tru-
cated icosahedral graph. These 30 vertices average a 49-
dimensional subspace of the 60-dimensional space of
functions {𝑓 ∶ 𝑉 → ℝ}. We call a subset that averages
as many eigenspaces as possible for the graph a maximal
design. Figure 4 shows a maximal design; no proper subset
can average 14 or more of the 16 eigenspaces.

Graphical designs have strong connections to the
combinatorics of a graph, especially in the presence
of structure and symmetry. A gallery of designs can
be found at: https://sites.math.washington.edu
/~GraphicalDesigns/.

We can generalize Definition 1 by allowing weighted
sums on the left of (1) and call these subsets weighted de-
signs (Figure 5). Weighted designs are connected to oriented
matroid duality and the rich literature of eigenpolytopes [2].
The neighborhood of a graphical design. Graphical de-
signs were introduced by Steinerberger in [7]. The 𝑗-
neighborhood of a subset 𝑊 ⊂ 𝑉 is the set of vertices that
are at most 𝑗 edges away from𝑊 . Steinerberger shows that
if𝑊 ⊂ 𝑉 is a graphical design, either the 𝑗-neighborhoods

Figure 4. A 13-graphical design on the J7 Flower Snark.

of 𝑊 grow exponentially, or |𝑊| is large. Indeed, in Fig-
ures 2, 4, and 5, the 1-neighborhood of 𝑊 is 𝑉 . In Figure
6, the 1-neighborhood of 𝑊 is 2072 of 2277 vertices, and
the 2-neighborhood of 𝑊 is 𝑉 .
Extremal graphical designs. In [4], Golubev considered
extremal designs, which are subsets𝑊 ⊂ 𝑉 that integrate all
but one eigenspace of 𝐿, though this eigenspace may come
anywhere in our frequency ordering. As an example, the

Figure 5. A weighted 8-graphical design on the Szekeres
Snark. Pink indicates a smaller weight – all weights are
positive.
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Kneser graph 𝐾𝐺(𝑛, 𝑘) has vertices corresponding to the
𝑘-element subsets of {1, … , 𝑛}. Two vertices are adjacent
if their subsets are disjoint. Golubev shows that extremal
configurations from the Erdős-Ko-Rado theorem, namely
a subset of vertices corresponding to all the 𝑘-element sub-
sets of [𝑛] containing a fixed element, are extremal designs
on 𝐾𝐺(𝑛, 𝑘).
Graphical designs in Cayley graphs. Cayley graphs are
created from an underlying group, and this additional
structure can provide enough information for explicit con-
structions.

Denote the 𝑑-dimensional cube graph by 𝑄𝑑 =
𝐺({0, 1}𝑑, 𝐸), where 𝑢𝑣 ∈ 𝐸 if 𝑢, 𝑣 ∈ {0, 1}𝑑 differ on ex-
actly one coordinate. Graphical designs on this family
of Cayley graphs connect to error correcting codes. We
can interpret the vertices of 𝑄𝑑 as bit strings, and subsets
𝑊 ⊂ 𝑉 = {0, 1}𝑑 as codes. The (7, 4) Hamming code is the
“best” 𝑘-graphical design on 𝑄7 in several senses; it is max-
imal, it is extremal, and it optimizes the ratio between |𝑊|
and dim(Λ1)+…+dim(Λ𝑘). All minimal extremal designs
of cycles and cocktail party graphs, two other families of
Cayley graphs, are described in [2].
Applications and connections. Graphical designs lie at
an exciting intersection between contemporary applica-
tions and mathematical theory. The appearance of the
graph Laplacian suggests further ties to spectral graph the-
ory, [1] connects to coding theory, and extremal com-
binatorics appears in [4]. Graphical designs in Cayley
graphs are rooted in group representations, and probabilis-
tic tools were used in [7].

Modern data, such as social networks, ad preferences,
movie recommendations, and traffic updates, is often
modeled through graphs, driving a need for new data pro-
cessing methods. The relatively new field of graph signal
processing [5] seeks to extend classical signal processing
techniques to the domain of graphs. Graphical designs
provide a framework for graph sampling and numerical
integration on graphs. For instance, Figure 6 shows a
weighted graphical design with all positive weights on a
highly nonlinear graph from real world data. In applica-
tions, it may suffice to look for approximate designs where
the equality in (1) is relaxed. This can be modeled via op-
timization.

Figure 6. The 228 red vertices are a weighted 229-graphical
design on this network of 2277 English-language Wikipedia
pages related to chameleons [6]. Vertices represent pages,
and edges join pages that are mutually connected by
hyperlinks.

References
[1] C. Babecki, Codes, cubes, and graphical designs, J. Fourier

Anal. Appl. 27 (2021), no. 5, Paper No. 81, 34, DOI
10.1007/s00041-021-09852-z. MR4309817

[2] C. Babecki and R. R. Thomas,Graphical designs and gale du-
ality, Mathematical Programming (2022, accepted), avail-
able at 2204.01873.

[3] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes
and designs, Geometriae Dedicata 6 (1977), no. 3, 363–
388, DOI 10.1007/bf03187604. MR485471

[4] K. Golubev, Graphical designs and extremal combina-
torics, Linear Algebra Appl. 604 (2020), 490–506, DOI
10.1016/j.laa.2020.07.012. MR4123763

[5] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P.
Vandergheynst, Graph signal processing: Overview, challenges,
and applications, Proceedings of the IEEE 106 (2018), no. 5,
808–828.

[6] B. Rozemberczki, C. Allen, and R. Sarkar, Multi-scale at-
tributed node embedding, J. Complex Netw. 9 (2021), no. 2,
Paper No. cnab014, 22, DOI 10.1093/comnet/cnab014.
MR4256683

[7] S. Steinerberger, Generalized designs on graphs: sampling,
spectra, symmetries, J. Graph Theory 93 (2020), no. 2, 253–
267, DOI 10.1002/jgt.22485. MR4043757

Catherine Babecki

Credits

Figures 1–6 are courtesy of Catherine Babecki.
Photo of Catherine Babecki is courtesy of Kyle Naylor.

OCTOBER 2022 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1573

http://dx.doi.org/10.1002/jgt.22485
http://dx.doi.org/10.1093/comnet/cnab014
http://dx.doi.org/10.1007/bf03187604
http://dx.doi.org/10.1016/j.laa.2020.07.012
http://dx.doi.org/10.1007/s00041-021-09852-z
http://www.ams.org/mathscinet-getitem?mr=4043757
http://www.ams.org/mathscinet-getitem?mr=4256683
http://www.ams.org/mathscinet-getitem?mr=4123763
http://www.ams.org/mathscinet-getitem?mr=485471
http://www.ams.org/mathscinet-getitem?mr=4309817
http://www.arxiv.org/abs/2204.01873

