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Matt Clay
Introduction
Groups and spaces go hand in hand. For a given space,
there are many groups associated to it. We can consider
the group of symmetries, that is, the group of structure pre-
serving bijections. Additionally, there is the fundamental
group and also the homology and cohomology groups to
name a few more. As pointed out by Hermann Weyl, these
groups can give “a deep insight” into a given space. An ex-
ample of this phenomenon is in the study of knots. Alge-
braic invariants in the form of groups show that the trefoil
knot cannot be unknotted for instance. See Figure 1.
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Introduction

Groups and spaces go hand in hand. For a given
space, there are many groups associated to it. We
can consider the group of symmetries, that is, the
group of structure preserving bijections. Addition-
ally, there is the fundamental group and also the ho-
mology and cohomology groups to name a few more.
As pointed out by Hermann Weyl, these groups can
give “a deep insight” into a given space. An example
of this phenomenon is in the study of knots. Alge-
braic invariants in the form of groups show that the
trefoil knot cannot be unknotted for instance. See
Figure 1.

Figure 1: Groups show that these knots are distinct.

Geometric group theory takes a different perspec-
tive on this relationship between groups and spaces.
Rather than using the algebraic structure and prop-
erties of groups to study spaces, the main philosophy
of geometric group theory is the following.

Study groups using the topology and geome-
try of the spaces they act on.

∗Matt Clay is a professor of mathematics at the University
of Arkansas. His email address is mattclay@uark.edu.

That is, groups are the central objects of study and
the techniques and tools used to investigate them are
dynamical, geometrical, and topological in nature.

In name, geometric group theory is quite new in
relation to other mathematical fields1. The founda-
tional essays by Gromov [Gro87, Gro93] introducing
the notion of hyperbolic groups and initiating the
study of finitely generated groups as metric spaces
sparked an enormous amount of research and estab-
lished lines of investigation that are still very active
today. Prior to the emergence of geometric group
theory, there were geometrical ideas present in group
theory in the works of Dehn, Whitehead, van Kam-
pen and others. Additionally, Thurston’s work on
3–manifolds showed how the geometry of a manifold
influences algebraic and algorithmic properties of its
fundamental group. It is Gromov’s essays though
that mark the beginning of the perspective where
these ideas are at the forefront.

This article is intended to give an idea about how
the topology and geometry of a space influences the
algebraic structure of groups that act on it and how
this can be used to investigate groups. As you will
see, I take the approach I learned from my advi-
sor Mladen Bestvina of favoring illustrative examples
over general theory. As is true of any survey of a
mathematical field, many aspects and areas of geo-
metric group theory are not mentioned at all. The
final section includes a short list of books on geomet-
ric group theory for further reading.

1The earliest use of the “geometric group theory” I could
find was in reference to a symposium at Sussex University in
the summer of 1991.

1

Figure 1. Groups show that these knots are distinct.

Geometric group theory takes a different perspective on
this relationship between groups and spaces. Rather than
using the algebraic structure and properties of groups to
study spaces, the main philosophy of geometric group the-
ory is the following.

Study groups using the topology and geometry of the
spaces they act on.

That is, groups are the central objects of study and the tech-
niques and tools used to investigate them are dynamical,
geometrical, and topological in nature.
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In name, geometric group theory is quite new in rela-
tion to other mathematical fields1. The foundational es-
says by Gromov [Gro87, Gro93] introducing the notion
of hyperbolic groups and initiating the study of finitely
generated groups as metric spaces sparked an enormous
amount of research and established lines of investigation
that are still very active today. Prior to the emergence
of geometric group theory, there were geometrical ideas
present in group theory in the works of Dehn, Whitehead,
van Kampen, and others. Additionally, Thurston’s work
on 3–manifolds showed how the geometry of a manifold
influences algebraic and algorithmic properties of its fun-
damental group. It is Gromov’s essays though that mark
the beginning of the perspective where these ideas are at
the forefront.

This article is intended to give an idea about how the
topology and geometry of a space influences the algebraic
structure of groups that act on it and how this can be used
to investigate groups. As you will see, I take the approach
I learned from my advisor Mladen Bestvina of favoring il-
lustrative examples over general theory. As is true of any
survey of a mathematical field, many aspects and areas of
geometric group theory are not mentioned at all. The final
section includes a short list of books on geometric group
theory for further reading.

Groups and Spaces
As mentioned above, geometric group theory uses group
actions on spaces to understand the group’s structure.
What type of information could one hope to glean from
an action? Are there always interesting actions to study?
We will take a look at both of these questions now.
An example: SL(2, ℤ). To give an illustration of how the
topology of a space that a group acts on influences the
group’s structure, let’s take a look at an example of a group
action that appears in many areas of mathematics. We will
consider the group of 2 × 2 matrices with integer entries
and determinant equal to 1. This group is called the special
linear group:

SL(2, ℤ) = {[ 𝑎 𝑏
𝑐 𝑑 ] ∣ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and 𝑎𝑑 − 𝑏𝑐 = 1} .

Is SL(2, ℤ) finitely generated? That is, are there finitely
manymatrices𝐴1, … , 𝐴𝑛 ∈ SL(2, ℤ) such that anymatrix𝑀
in SL(2, ℤ) can be expressed as a product 𝑀 = 𝐴±1

𝑗1 ⋯𝐴±1
𝑗𝑘 ?

(Note, each 𝐴𝑗 may appear multiple times.) The answer is
“yes” and there is an algebraic approach to this problem,
but let’s take a geometric perspective and consider an ac-
tion of SL(2, ℤ) on a metric space.

The space we will consider is the Farey complex which
is constructed as follows. First, we start with a graph

1The earliest use of the “geometric group theory” I could find was in reference to
a symposium at Sussex University in the summer of 1991.

whose vertex set is the set of rational numbers
𝑝
𝑞
—always

expressed in lowest terms—along with an additional point
we denote

1
0
. Edges join two vertices

𝑝
𝑞
and

𝑟
𝑠
if𝑝𝑠−𝑞𝑟 = ±1.

Figure 2 shows a portion of this graph, known as the Farey
graph.

Groups and spaces

As mentioned above, geometric group theory uses
group actions on spaces to understand the group’s
structure. What type of information could one hope
to glean from an action? Are there always interesting
actions to study? We will take a look at both of these
questions now.

An example: SL(2,Z)

To give an illustration of how the topology of a space
that a group acts on influences the group’s structure,
let’s take a look at an example of a group action that
appears in many areas of mathematics. We will con-
sider the group of 2× 2 matrices with integer entries
and determinant equal to 1. This group is called the
special linear group:

SL(2,Z) =
{[

a b
c d

]
| a, b, c, d ∈ Z and ad− bc = 1

}
.

Is SL(2,Z) finitely generated? That is, are there
finitely many matrices A1, . . . , An ∈ SL(2,Z) such
that any matrix M in SL(2,Z) can be expressed as a
product M = A±1j1

· · ·A±1jk
? (Note, each Aj may ap-

pear multiple times.) The answer is “yes” and there
is an algebraic approach to this problem, but let’s
take a geometric perspective and consider an action
of SL(2,Z) on a metric space.

The space we will consider is the Farey complex
which is constructed as follows. First, we start with a
graph whose vertex set is the set of rational numbers
p
q—always expressed in lowest terms—along with an

additional point we denote 1
0 . Edges join two vertices

p
q and r

s if ps− qr = ±1. Figure 2 shows a portion of
this graph, known as the Farey graph.

As seen in Figure 2, the edges in the Farey graph
naturally form triangles. In fact, the vertices of any
such triangle always have the form p

q , r
s and p+r

q+s . For

instance, 1
0 ,

0
1 and 1

1 , and also 1
0 ,

1
1 and 2

1 . There is
an action of SL(2,Z) on the Farey graph defined by
permuting the vertices using the rule:[

a b
c d

]
· p
q

=
ap+ bq

cp+ dq

It is easy to check that two vertices p
q and r

s are

connected by an edge only if their images
[
a b
c d

]
· pq
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Figure 2: The Farey graph and Farey complex.

and
[
a b
c d

]
· rs are. Hence, this defines an action on the

Farey graph and by extension on the Farey complex,
which is the space we get by filling in the triangles in
the Farey graph.

You have most likely seen this space and action
before but under a different guise. Indeed, the Farey
complex gives a tessellation of the hyperbolic plane
by ideal triangles whose vertices in the upper half
plane model are either rational or ∞. Moreover, the
action described above is none other than the usual
action of 2 × 2 matrices with real entries and posi-
tive determinant by fractional linear transformations
of the upper half plane, in particular, by conformal
maps. The conformal maps:

f(z) =
1− iz
z − i

and g(z) =
1 + iz

z + i

relate the two pictures. See Figure 3.

Now it is time to examine this action. Let ∆ denote
the triangle in the Farey complex with vertices 1

0 , 0
1

2

Figure 2. The Farey graph and Farey complex.

As seen in Figure 2, the edges in the Farey graph natu-
rally form triangles. In fact, the vertices of any such trian-
gle always have the form

𝑝
𝑞
,
𝑟
𝑠
and

𝑝+𝑟
𝑞+𝑠

. For instance,
1
0
, 0
1

and
1
1
, and also

1
0
, 1
1
and

2
1
. There is an action of SL(2, ℤ)

on the Farey graph defined by permuting the vertices using
the rule:

[𝑎 𝑏
𝑐 𝑑] ⋅

𝑝
𝑞 = 𝑎𝑝 + 𝑏𝑞

𝑐𝑝 + 𝑑𝑞 .

It is easy to check that two vertices
𝑝
𝑞
and

𝑟
𝑠
are connected

by an edge only if their images [ 𝑎 𝑏
𝑐 𝑑 ] ⋅

𝑝
𝑞

and [ 𝑎 𝑏
𝑐 𝑑 ] ⋅

𝑟
𝑠
are.

Hence, this defines an action on the Farey graph and by
extension on the Farey complex, which is the space we get
by filling in the triangles in the Farey graph.

You have most likely seen this space and action before
but under a different guise. Indeed, the Farey complex
gives a tessellation of the hyperbolic plane by ideal trian-
gles whose vertices in the upper half plane model are ei-
ther rational or ∞. Moreover, the action described above
is none other than the usual action of 2 × 2 matrices with
real entries and positive determinant by fractional linear
transformations of the upper half plane, in particular, by
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conformal maps. The conformal maps:

𝑓(𝑧) = 1 − 𝑖𝑧
𝑧 − 𝑖 and 𝑔(𝑧) = 1 + 𝑖𝑧

𝑧 + 𝑖
relate the two pictures. See Figure 3.

0
1

1
2

1
1

∞

0
1

1
1

1
0

g

f

Figure 3. The Farey tessellation of the upper half plane by
ideal triangles.

Now it is time to examine this action. Let Δ denote the
triangle in the Farey complex with vertices

1
0
,
0
1
, and

1
1
. We

record the key properties of the action in two claims.

Claim 1. For any triangle Δ′ in the Farey complex, there is
matrix 𝑀 ∈ SL(2, ℤ) such that 𝑀Δ = Δ′.

Indeed, suppose the vertices of Δ′ are
𝑝
𝑞
,
𝑟
𝑠
, and

𝑝+𝑟
𝑞+𝑠

where 𝑝𝑠 − 𝑞𝑟 = 1. Take 𝑀 = [ 𝑝 𝑟
𝑞 𝑠 ] and observe that

𝑀Δ = Δ′.
Let 𝐴 = [ 0 1

91 1 ]. Notice that 𝐴 ⋅ 0
1
= 1

1
, 𝐴 ⋅ 1

1
= 1

0
, and

𝐴 ⋅ 1
0
= 0

1
so that 𝐴Δ = Δ and 𝐴 acts on the triangle Δ by a

rotation.

Claim 2. If 𝑀Δ = Δ, then 𝑀 = 𝐴𝑘 for some integer 𝑘.
Indeed, if𝑀 fixes Δ, then it must cyclically permute the

vertices
0
1
,
1
1
, and

1
0
. Hence 𝐴𝑘𝑀 fixes the vertices

0
1
,
1
1
, and

1
0
for some 𝑘. As the only conformal map that fixes three

points is the identity, we see that 𝐴𝑘𝑀 = ±𝐼. (Note, −𝐼
acts as the identity map.) The claim follows once we check
that 𝐴3 = −𝐼.

Let 𝐵 = [ 0 91
1 0 ] and let Δ𝑝/𝑞 be the triangle that shares

an edge with Δ and has the vertex
𝑝
𝑞
∈ { 91

1
, 1
2
, 2
1
}. These

are labeled in Figure 2. We observe that 𝐵Δ = Δ91/1. As 𝐴
rotates Δ, we also find that 𝐴𝐵Δ = Δ1/2 and 𝐴2𝐵Δ = Δ2/1.

We are now in the position to show that SL(2, ℤ) is
finitely generated by the matrices 𝐴 and 𝐵. That is, any
matrix 𝑀 in SL(2, ℤ) can be expressed as a product of 𝐴’s
and 𝐵’s:

𝑀 = 𝐴𝑚1𝐵𝑛1 ⋯𝐴𝑚𝑘𝐵𝑛𝑘
for some integers 𝑚𝑗 , 𝑛𝑗. Given 𝑀 ∈ SL(2, ℤ) we want to
consider paths in the Farey complex from Δ to 𝑀Δ. What
do we mean by path? Specifically, we mean a sequence of
triangles Δ = Δ0, … , Δ𝑘 = 𝑀Δwhere the triangles Δ𝑗−1 and
Δ𝑗 share an edge.

Now we proceed via induction on the length of shortest
path to 𝑀Δ. Claim 2 handles the case that this length is
0. Next, using a path Δ = Δ0, … , Δ𝑘 = 𝑀Δ of minimal
length we observe by Claim 1 and induction that Δ𝑘−1 =
𝑀0Δ where 𝑀0 can be expressed as product of 𝐴’s and 𝐵’s.
Let’s hit the whole picture with 𝑀−1

0 : the triangle Δ𝑘−1 =
𝑀0Δ is sent to Δ and the triangle Δ𝑘 = 𝑀Δ is sent to an
adjacent triangle, i.e., one of Δ91/1, Δ1/2, or Δ2/1. Assuming
for simplicity that 𝑀−1

0 𝑀Δ = Δ91/1, which is equal to 𝐵Δ,
we find that 𝐵−1𝑀−1

0 𝑀Δ = Δ. Claim 2 now shows that
𝐵−1𝑀−1

0 𝑀 = 𝐴𝑘 and hence 𝑀 = 𝑀0𝐵𝐴𝑘. Since 𝑀0 can be
expressed as a product of 𝐴’s and 𝐵’s, so can 𝑀, showing
that SL(2, ℤ) is finitely generated.
A theorem: characterizing finite generation. What did
we actually use to prove finite generation? The important
topological property we used was the path-connectedness
of the Farey complex so that we had a path from Δ to 𝑀Δ
to apply induction on. The important dynamical property
we usedwas the existence of a transitive tiling for which the
stabilizer of a tile is finite and for which one tilemeets only
finitely many other tiles. These dynamical considerations
naturally lead to the following definition.

Definition 1. An action of a group 𝐺 on a metric space
(𝑋, 𝑑) by isometries is geometric if it satisfies the following
two conditions:

1. (cocompact) there exists a compact set 𝐾 ⊆ 𝑋 such
that ⋃𝑔∈𝐺 𝑔𝐾 = 𝑋 ; and

2. (properly discontinuous) for any compact set 𝑌 ⊆ 𝑋 ,
the set {𝑔 ∈ 𝐺 ∣ 𝑔𝑌 ∩ 𝑌 ≠ ∅} is finite.

The requirement of a transitive tiling is captured by the
cocompact condition. The properly discontinuous condi-
tion captures both requirements that the stabilizer of a tile
is finite and that a tile meets only finitely many tiles.

Technical Sidenote (i.e., feel free to ignore): The ac-
tions of SL(2, ℤ) on the Farey complex and on the upper
half plane are not geometric. For the Farey complex the
action is cocompact, but a triangle intersects infinitely
many other triangles at a vertex, so the action is not
properly discontinuous. We got around this problem
by only considering triangles thatmeet along an edge—
there are only finitely many such triangles. In the up-
per half plane the action is properly discontinuous, but
the action is not cocompact. We can get around this
by removing an equivariant collection of disjoint open
disks tangent to the rational points. In either setting,
the crucial point is that our notion of path ignores the
vertices/ideal points. There is a geometric action lurk-
ing in the background here on the Farey tree that will
be explored later.
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Here are some examples of geometric actions.

1. The group ℤ𝑛 acting by linearly independent transla-
tions on ℝ𝑛 equipped with the Euclidean metric.

2. More generally, any group of isometries of ℝ𝑛

equipped with the Euclidean metric that leaves a lat-
tice Λ ⊂ ℝ𝑛 invariant and whose action on the lattice
has finitely many orbits.

3. The fundamental group 𝜋1(𝑋) of a compact Rie-
mannian manifold 𝑋 , possibly with boundary, act-
ing by deck transformations on its universal cover 𝑋
equipped with the pull-back metric.

Arguing as we did for SL(2, ℤ), we can prove the “if” di-
rection of a geometric characterization of finite generation.

Theorem 1. A group is finitely generated if and only if it acts
geometrically on a path-connected metric space.

For the “only if” direction, we need to introduce an
important concept in geometric group theory: the Cayley
graph.
A space for every group. For a finitely generated group
𝐺 we need to produce a path-connected metric space that
admits a geometric action by 𝐺. This is similar to what
is required to prove Cayley’s theorem from classical group
theory: Every group is isomorphic to a permutation group. In
the classical setting, we need to produce a set that admits
a permutation action by our group. There is only one nat-
ural choice, the set is the group 𝐺 and the action is left
multiplication.

In our current setting, the idea is similar. The metric
space is built on top of the group, the extra parts of the
space come from a finite generating set. The result is called
a Cayley graph. Here are the details.

Definition 2. Let 𝐺 be a finitely generated group and let
𝑆 ⊆ 𝐺 be a finite generating set. The Cayley graph, denoted
Γ(𝐺, 𝑆), is the graph whose vertex set is 𝐺 and where there
is an edge joining vertices ℎ1, ℎ2 ∈ 𝐺 if ℎ−11 ℎ2 ∈ 𝑆, i.e., ℎ2 =
ℎ1𝑠 for some generator 𝑠 ∈ 𝑆.

The group 𝐺 acts on Γ(𝐺, 𝑆) by permuting the vertices
via left multiplication. Indeed, if the vertices ℎ1, ℎ2 ∈ 𝐺 are
adjacent, then so are the vertices 𝑔ℎ1, 𝑔ℎ2 as (𝑔ℎ1)−1(𝑔ℎ2) =
ℎ−11 ℎ2 and so the permutation action on the vertices ex-
tends to the entire graph.

As 𝑆 generates 𝐺, the Cayley graph Γ(𝐺, 𝑆) is path-
connected. Figure 4 illustrates the path connecting the
identity element of the group 1𝐺 to the element 𝑔 =
𝑠1𝑠2⋯𝑠𝑘 where each 𝑠𝑗 belongs to 𝑆 ∪ 𝑆−1. The key point
is that 𝑠1⋯𝑠𝑗 is adjacent to 𝑠1⋯𝑠𝑗+1.

Here are some examples of Cayley graphs.

1. ℤ and ℤ2: For ℤ, we can use 𝑆 = {1} and for ℤ2 we
can use 𝑆 = {[ 10 ] , [ 01 ]}. These graphs are pictured in
Figure 5. Other generating sets are possible too, try
drawing the graph Γ(ℤ, {2, 3}). You can find this graph

1𝐺

𝑠1

𝑠1𝑠2

𝑠1𝑠2⋯𝑠𝑘−1

𝑔 = 𝑠1𝑠2⋯𝑠𝑘
Figure 4. A path in the Cayley graph.

−1 0 1 2 [ 00 ] [ 10 ]

[ 01 ] [ 11 ]

Figure 5. Cayley graphs for ℤ and ℤ2.

in the essay by Margalit and Thomas [CM17, Office
Hour 7].

2. Sym(3): For the symmetric group on three elements,
we can use the generating sets 𝑆1 = {(1 2), (1 3)} or
𝑆2 = {(1 2), (1 2 3)}. These graphs are pictured in
Figure 6 where elements in Sym(3) are listed using cy-
cle notation and the composition is computed right
to left.

(1 3 2)(1 2)

( )

(1 3) (1 2 3)

(2 3)

(1 3 2)

(1 2)

( )

(2 3)

(1 2 3)

(1 3)

Figure 6. Cayley graphs for Sym(3).

3. 𝐹2: For the free group of rank two, we can use a
basis 𝑆 = {𝑎, 𝑏}. Recall that elements in 𝐹2 are in
one-to-one correspondence to words in the alphabet
{𝑎, 𝑎−1, 𝑏, 𝑏−1} that are reduced in the sense that they
do not contain 𝑎𝑎−1, 𝑎−1𝑎, 𝑏𝑏−1, or 𝑏−1𝑏. For exam-
ple, 𝑎2𝑏−1𝑎−1𝑏 and 𝑏2𝑎−2𝑏2 represent elements in 𝐹2.
The identity in 𝐹2 is represented by the empty word.
The group operation is concatenation followed by
deletion of forbidden terms. As the reduced word rep-
resenting an element is unique and as paths in the Cay-
ley graphs read out a word representing an element as
shown in Figure 4, there is a unique non-backtracking
path from 1𝐹2 to any given element. Hence, the Cay-
ley graph Γ(𝐹2, {𝑎, 𝑏}) is a tree. A portion of this graph
is pictured in Figure 7.
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1𝐹2𝑎−1 𝑎

𝑏−1

𝑏

𝑎2

𝑎𝑏−1

𝑎𝑏

𝑎−2

𝑎−1𝑏−1

𝑎−1𝑏

𝑏𝑎−1 𝑏𝑎

𝑏2

𝑏−1𝑎−1
𝑏−1𝑎

𝑏−2

Figure 7. A Cayley graph for 𝐹2.

There is a metric on the vertices of Γ(𝐺, 𝑆) defined as
the minimum number of edges in an edge-path between
a given pair of vertices. This metric can be extended to
the points lying in edges by identifying (in an equivariant
way) each edge with the unit interval [0, 1] ⊂ ℝ. However
for most applications in geometric group theory, having a
metric only on the vertices suffices. The action of 𝐺 on the
Cayley graph Γ(𝐺, 𝑆) with this metric is by isometries.

The only item left to verify in Theorem 1 is that the ac-
tion of𝐺 on Γ(𝐺, 𝑆) is geometric. We can easily check these
properties in turn.

1. (cocompact) Let 𝐾 ⊆ Γ(𝐺, 𝑆) be the union of the ver-
tices {1𝐺} ∪ 𝑆 together with the edges incident on 1𝐺
and 𝑠 for each 𝑠 ∈ 𝑆. As 𝑆 is finite, 𝐾 is compact and
clearly ⋃𝑔∈𝐺 𝑔𝐾 = Γ(𝐺, 𝑆).

2. (properly discontinuous) Suppose that 𝑌 ⊆ Γ(𝐺, 𝑆)
is a finite subgraph and let 𝑛 denote the number of
vertices in 𝑌 . If 𝑔𝑌 ∩ 𝑌 ≠ ∅ then 𝑔ℎ1 = ℎ2 for a pair
of vertices ℎ1, ℎ2 in 𝑌 and hence 𝑔 = ℎ2ℎ−11 . Thus the
cardinality of {𝑔 ∈ 𝐺 ∣ 𝑔𝑌 ∩ 𝑌 ≠ ∅} is at most 𝑛2.

Groups and Spaces with Negative Curvature
In the previous section, we used a path-connected space
and a geometric action to derive an algebraic consequence:
finite generation. Path-connectivity is a fairly weak topo-
logical property, however the notion of a geometric action
is quite restrictive. For instance, by proper discontinuity
the subgroup fixing a given point must be finite. What can
be gained from actions on spaces with more requirements
on the topology and geometry, but perhaps fewer require-
ments on the dynamics of the action?

One geometric property that is particularly useful is the
notion of negative curvature. We will look at two instances

of negative curvature in geometric group theory: trees and
𝛿–hyperbolic spaces.
Actions on trees. Negative curvature, say in the hyper-
bolic plane, influences the geometry in several ways:
uniqueness of geodesics, exponential growth in the vol-
ume of balls, and a uniform bound on the diameter of
an inscribed circle to a triangle to name a few. To discuss
the familiar notion of curvature from differential geome-
try, a space requires more structure than just an ordinary
metric, but several researchers have given notions of nega-
tive curvature expressed solely in terms of a distance func-
tion on an arbitrary set. Before discussing such a notion
of negative curvature, let’s consider a simple example of
a metric space that has the properties listed above for the
hyperbolic plane: a tree.

To see an example of the usefulness of group actions on
trees, let’s go back to the example of SL(2, ℤ) and think
about its finite-order elements, i.e., matrices for which
some positive power is equal to the identity. We can
quickly compute that 𝐴3 = −𝐼 = 𝐵2, thus 𝐴6 = 𝐼 and
𝐵4 = 𝐼 and so 𝐴 and 𝐵 have finite order. Are there any
others? There are obvious ones of course. Powers of 𝐴 and
powers of 𝐵 clearly have finite order, as do their conjugates,
𝐶𝐴𝑘𝐶−1 and 𝐶𝐵𝑘𝐶−1 for any 𝑘 ∈ ℤ and 𝐶 ∈ SL(2, ℤ). But
is that it? The answer to this last question is “yes” and we
will see why using the action of SL(2, ℤ) on the Farey tree,
which we now describe.

Divide each triangle in the Farey complex into three
quadrilaterals that meet pairwise along one leg of a tripod.
Taken collectively these tripods form a tree, which is called
the Farey tree. See Figure 8.

There are two types of vertices in the Farey tree: (red) de-
gree three coming from the center of a triangle, and (green)
degree two coming from an edge of a triangle. Let 𝑣 denote
the vertex that corresponds to the center of the triangle Δ
and let 𝑤 denote the vertex that corresponds to the edge in
the Farey complex between

0
1
and

1
0
. These are labeled in

Figure 8.
From our study of the action of SL(2, ℤ) on the Farey

complex, we conclude that every vertex in the Farey tree is
a translate of 𝑣 or 𝑤. This follows from Claim 1 and the
fact that 𝐴 cyclically permutes the edges of Δ and hence all
of the vertices adjacent to 𝑣. Additionally, we can conclude
from Claim 2 that the stabilizer of 𝑣 is the cyclic subgroup
of order 6 generated by 𝐴. In a similar manner, we can
conclude that the stabilizer of 𝑤 is the cyclic subgroup of
order 4 generated by 𝐵.

An important property of an action on a tree is the fol-
lowing claim.

Claim 3. Suppose that a group 𝐺 acts on a tree. If 𝑔 ∈ 𝐺 has
finite order, then 𝑔 has a fixed point.
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Figure 8. The Farey tree.

The key fact here is that a finite set of points 𝑥1, … , 𝑥𝑛 in
a tree has a unique center, i.e., a point 𝑐 that minimizes the
quantity

max{𝑑(𝑐, 𝑥𝑗) ∣ 𝑗 = 1, … , 𝑛}.
The center is easy to characterize. Suppose that 𝑥1 and 𝑥2
maximize 𝑑(𝑥𝑗 , 𝑥𝑗′) for 𝑗, 𝑗′ = 1, … , 𝑛. One can show that
the center is the unique point 𝑐 with 𝑑(𝑐, 𝑥1) = 𝑑(𝑐, 𝑥2) =
1
2
𝑑(𝑥1, 𝑥2). Now fix a point 𝑥 in the tree and let 𝑐 be the

center of the set 𝒪 = {𝑥, 𝑔𝑥, … , 𝑔𝑛−1𝑥} where 𝑛 is the order
of 𝑔. Since the action is by isometries, we must have that
𝑔𝑐 is the center of the set 𝑔𝒪. But 𝑔 permutes the points in
𝒪, i.e., 𝑔𝒪 = 𝒪, and so 𝑔𝑐 = 𝑐.

Applying Claim 3 to the action of SL(2, ℤ) on the Farey
tree, we see if 𝑀 ∈ SL(2, ℤ) has finite order, then 𝑀𝑥 =
𝑥 for some point 𝑥 in this tree. If 𝑀 fixes a point in the
interior of an edge, then it must fix one of the incident
vertices as well since these vertices have different degrees
and cannot be interchanged by𝑀. So we may assume that
𝑥 is a vertex of the Farey tree. As every vertex is a translate
of 𝑣 or 𝑤, we have that 𝑥 = 𝐶𝑣 or 𝑥 = 𝐶𝑤 for some matrix
𝐶 ∈ SL(2, ℤ). In the former, we observe that (𝐶−1𝑀𝐶)𝑣 =
𝐶−1𝑀𝑥 = 𝐶−1𝑥 = 𝑣 and so 𝑀 = 𝐶𝐴𝑘𝐶−1 for some 𝑘 ∈ ℤ.
Similarly, in the latter, we conclude that 𝑀 = 𝐶𝐵𝑘𝐶−1 for
some 𝑘 ∈ ℤ. Hence every finite-order element in SL(2, ℤ)
is conjugate to a power of 𝐴 or 𝐵. This is exactly what we
desired to show.

The action of SL(2, ℤ) on the Farey tree is geometric.
The argument we gave shows that if a group acts geometri-
cally on a tree, then there are only finitely many conjugacy

classes of finite-order elements. Indeed, by Claim 3 and
since the action is cocompact, any finite order element is
conjugate into one of finitely many stabilizer subgroups.
Since the action is properly discontinuous, each of these
subgroups is finite and so the result follows.

We can replace the assumption of proper discontinuity
of the action with the assumption that each point stabi-
lizer subgroup has finitelymany conjugacy classes of finite-
order elements and reach the same conclusion.

Theorem 2. Suppose 𝐺 acts cocompactly on a tree. If every
point stabilizer has finitely many conjugacy classes of finite-order
elements, then so does 𝐺.

Theorem 2 illustrates a common paradigm in geometric
group theory. If some property 𝖯 holds for groups acting
geometrically on a certain type of metric space, then the
same should be true for a group𝐺 acting on this same type
of metric space so long as certain subgroups (e.g., point
stabilizers) have property 𝖯. In other words, we should
be able to promote a property 𝖯 from a collection of sub-
groups to the whole group𝐺 if we can find the appropriate
space where these subgroups are the point stabilizers.

This idea suggests a useful strategy. Suppose you have
some family of groups that fit into a hierarchy: 𝒢0, 𝒢1, 𝒢2,
. . .where the groups in 𝒢0 act geometrically on a certain
type of metric space and the groups in 𝒢𝑘 also act on this
same type of metric space with point stabilizers belonging
to 𝒢𝑘−1. If we can verify the above paradigm for this type
of metric space, this gives an inductive way to show that all
the groups in this family have some particular property or
structure. In the next section, we will mention an instance
where this strategy has been particularly fruitful: the map-
ping class group of an orientable surface.
Actions on 𝛿–hyperbolic spaces. Actions on trees are nice
to work with, but they form a fairly restrictive class of
groups. There are many interesting and natural groups in
which every action on a tree has a global fixed point. For
example, this is true for SL(𝑛, ℤ) when 𝑛 ≥ 3. Surely, not
much can be gained in general from actions with a global
fixed point.

Gromov’s influential essay [Gro87] introduced a notion
of negative curvature that unifies essential properties of the
hyperbolic plane, trees, and small cancellation groups—a
thoroughly studied class of groups explored in the latter
half of the 20th century in which geometric notions and
techniques were starting to gain traction. The idea behind
Gromov’s definition of a 𝛿–hyperbolic space is to take one
of the useful consequences of negative curvature from the
hyperbolic plane and use it as a definition for a metric
space. Gromov gave such a definition solely using a met-
ric 𝑑 on an arbitrary set 𝑋 , but the most common formu-
lation used—and one that applies to almost all the spaces
one comes across in geometric group theory—requires a
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geodesic metric space, which is defined as follows. A geo-
desic in ametric space (𝑋, 𝑑) is a function 𝑝∶ 𝑌 → 𝑋 where
𝑌 is a connected subset ofℝ such that 𝑑(𝑝(𝑠), 𝑝(𝑡)) = |𝑡−𝑠|
for all 𝑠, 𝑡 ∈ 𝑌 . A geodesic metric space is ametric space (𝑋, 𝑑)
such that for all 𝑥, 𝑦 ∈ 𝑋 , there is a geodesic 𝑝∶ [0, 𝐿] → 𝑋
with 𝑝(0) = 𝑥 and 𝑝(𝐿) = 𝑦. A connected graph, in par-
ticular the Cayley graph of a finitely generated group, is a
geodesic metric space.

There are many equivalent formulations of a 𝛿–
hyperbolic metric space using geodesic triangles, di-
vergence of geodesics, or nearest point projections to
geodesics. We will state the most common formulation
using geodesic triangles, which Gromov attributed to Rips.
In the statement, [𝑎, 𝑏] represents the image of any geo-
desic in 𝑋 from 𝑎 to 𝑏.

Definition 3. Let (𝑋, 𝑑) be a geodesic metric space. A ge-
odesic triangle Δ(𝑎, 𝑏, 𝑐) is 𝛿–thin if the 𝛿–neighborhood
of any two of the edges contains the third. That is, for all
𝑥 ∈ [𝑎, 𝑐] there is an 𝑥′ ∈ [𝑎, 𝑏]∪[𝑏, 𝑐] such that 𝑑(𝑥, 𝑥′) ≤ 𝛿.
A 𝛿–hyperbolic space is a geodesic metric space where every
geodesic triangle is 𝛿–thin.

The key point in the definition is that the same 𝛿 works
for every geodesic triangle, no matter how long the sides
are. See Figure 9.

𝛿
𝑎

𝑏

𝑐

Figure 9. A 𝛿–thin triangle.

Here are some examples of 𝛿–hyperbolic spaces.

1. A tree is 0–hyperbolic since every geodesic triangle is
a tripod and so any side is contained in the union of
the other two. See Figure 10. We think of thinner
triangles indicating the space being more negatively
curved—this is true for scalar curvature in Riemannian
geometry—and so in this sense, trees are negatively
curved in the extreme.

2. The hyperbolic plane is log(1+√2)–hyperbolic. As ev-
ery geodesic triangle is contained in an ideal triangle,
we only have to compute 𝛿 for an ideal triangle, which
is a fun exercise. See Figure 11.

𝑎

𝑏

𝑐
Figure 10. A typical geodesic triangle in a tree.

𝛿

1+𝑖
2

𝑖
√2

0 1

Figure 11. Ideal triangles in the the hyperbolic plane are
log(1 + √2)–thin.

3. The Farey graph is 1–hyperbolic. Indeed, suppose that
1
0
lies on a geodesic between the vertices

𝑝
𝑞
and

𝑟
𝑠
. Let

𝑚
1

and
𝑛
1

be the vertices adjacent to
1
0

along this geo-
desic and assume that𝑚 < 𝑛. As we are dealing with a
geodesic, wemust have 𝑛−𝑚 > 1 since otherwise there
is an edge between

𝑚
1

and
𝑛
1
. Hence there is some

vertex
𝑐
1

adjacent to
1
0

such that 𝑚 < 𝑐 < 𝑛. As the

removal of the vertices
1
0
and

𝑐
1
and also the edge con-

necting these two vertices disconnects the Farey graph,
we see that any path from

𝑝
𝑞

to
𝑟
𝑠
must pass through

either
1
0
or

𝑐
1
.

For contrast, ℝ2 with the Euclidean metric is not 𝛿–
hyperbolic for any 𝛿. Indeed, the geodesic triangle with
vertices (0, 0), (𝑛, 0) and (0, 𝑛) is 𝛿–thin only for 𝛿 ≥ 𝑛/2.
To see this, consider the point (𝑛/2, 𝑛/2).

The typical questions one may try to answer using ac-
tions on 𝛿–hyperbolic spaces often fit into the following
categories.

1. Algorithmic: When do two words in a generating set
represent the same element or conjugate elements?

2. Local-to-global: Are paths in the Cayley graph that are
locally geodesics globally geodesics as well?

3. Rigidity: If two groups have geometrically similar
Cayley graphs, are the groups algebraically similar?
Canwe characterize homomorphisms to and from the
group?

We will discuss in turn geometric actions and other types
of actions on 𝛿–hyperbolic spaces.
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Geometric actions on 𝛿–hyperbolic spaces. A metric space is
proper if closed balls are compact. A group 𝐺 is hyperbolic if
it acts geometrically on a proper 𝛿–hyperbolic space2. Free
groups and fundamental groups of closed hyperbolic man-
ifolds are hyperbolic groups. It is fair to ask how common
hyperbolic groups are given that we started this section
noticing that useful tree actions do not always exist. Gro-
mov introduced a model of a “random finitely presented
group” that includes a parameter 0 < 𝑑 < 1 called the “den-
sity” that controls the number of relators in terms of the
number of generators [Gro93, Chapter 9]. When 𝑑 < 1/2,
Gromov showed that a random group is infinite and hyper-
bolic. (For those curious, when 𝑑 > 1/2 a random group
has at most two elements.) Thus, it is fair to say that hy-
perbolic groups are quite ubiquitous.

An equivalent definition of a hyperbolic group is that
𝐺 is finitely generated and the Cayley graph Γ(𝐺, 𝑆) is 𝛿–
hyperbolic for some finite generating set 𝑆 ⊆ 𝐺. Moreover,
“some” in the previous sentence can be replaced with “ev-
ery.” Hyperbolic groups satisfy a long list of useful prop-
erties and besides Gromov’s original essay, there are many
comprehensive works focused on these groups. See for in-
stance the notes edited by Short [ABC+91], the chapters
by Bridson and Haefliger [BH99, Chapters III.H and III.Γ],
and the references within these works.

As hyperbolic groups are defined by a geometric condi-
tion (in several equivalent ways), from their inception re-
searchers have wondered if there is an algebraic characteri-
zation. It is not too difficult to find algebraic obstructions.
One of the first usually encountered involves the central-
izer of an infinite-order element. If𝐺 is a hyperbolic group
and 𝑔 ∈ 𝐺 has infinite order, then ⟨𝑔⟩, the cyclic subgroup
generated by 𝑔, has finite index in 𝐶𝐺(𝑔), the centralizer of
𝑔. Recall, the centralizer of 𝑔 is the subgroup of 𝐺 consist-
ing of elements ℎ ∈ 𝐺 with ℎ𝑔 = 𝑔ℎ. The idea behind this
fact nicely illustrates a typical geometric argument using
the 𝛿–thin triangle condition.

Suppose that ℎ𝑔 = 𝑔ℎ and consider the four vertices 1𝐺,
𝑔𝑘, ℎ𝑔𝑘, and ℎ in the Cayley graph Γ(𝐺, 𝑆) for a large 𝑘. The
fact that ℎ𝑔𝑘 = 𝑔𝑘ℎ implies that these four points lie on a
rectangle. The horizontal sides are formed by a geodesic
[1𝐺 , 𝑔𝑘] and its translate by ℎ, the geodesic [ℎ, ℎ𝑔𝑘]. To get
the vertical sides, use a geodesic [1𝐺 , ℎ] and its translate by
𝑔𝑘. The translate by 𝑔𝑘 gives a geodesic from 𝑔𝑘 to 𝑔𝑘ℎ, but
this latter point is exactly ℎ𝑔𝑘 by the commutivity assump-
tion. See Figure 12.

Now an important property of hyperbolic groups is that
infinite cyclic subgroups are undistorted, that is, the dis-
tance from 1𝐺 to 𝑔𝑗 is approximately 𝑗. This fact, plus a sta-
bility result about paths that coarsely resemble geodesics,
imply that there is a constant 𝐿 so that any point on the

2In the literature, these groups are sometimes referred to as negatively curved,
word hyperbolic, or Gromov hyperbolic.

1𝐺 𝑔𝑘

ℎ ℎ𝑔𝑘

𝑔𝑚

ℎ𝑔𝑛

𝑥

𝑦

≤ 𝛿

≤ 𝛿

≤ 𝐿

≤ 𝐿

Figure 12. A commuting rectangle in Γ(𝐺, 𝑆).

geodesic [1𝐺 , 𝑔𝑘] is within 𝐿 of 𝑔𝑗 for some 𝑗 = 0, … , 𝑘. Like-
wise, any point on the geodesic [ℎ, ℎ𝑔𝑘] is within 𝐿 of ℎ𝑔𝑗
for some 𝑗 = 0, … , 𝑘. Now let 𝑥 be the midpoint of the ge-
odesic [1𝐺 , 𝑔𝑘]. By considering the two geodesic triangles
Δ(1𝐺 , 𝑔𝑘, ℎ𝑔𝑘) and Δ(1𝐺 , ℎ𝑔𝑘, ℎ) pictured in Figure 12, we
see that 𝑥 is within 2𝛿 of a point 𝑦 that lies on one of other
three sides of the rectangle. By choosing 𝑘 large enough,
we can ensure that 𝑦 lies on the geodesic [ℎ, ℎ𝑔𝑘] as shown
in Figure 12. We have 𝑑(𝑥, 𝑔𝑚) ≤ 𝐿 and 𝑑(𝑦, ℎ𝑔𝑛) ≤ 𝐿 for
some 0 ≤ 𝑚, 𝑛 ≤ 𝑘 which gives

𝑑(1𝐺 , ℎ𝑔𝑛−𝑚) = 𝑑(𝑔𝑚, ℎ𝑔𝑛)
≤ 𝑑(𝑔𝑚, 𝑥) + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, ℎ𝑔𝑛)
≤ 2𝐿 + 2𝛿.

Hence the coset ℎ⟨𝑔⟩ ⊆ 𝐶𝐺(𝑔) has an element whose dis-
tance from 1𝐺 is at most 2𝐿+ 2𝛿. As there are only finitely
many such elements and as distinct cosets are always dis-
joint, there are only finitely many cosets.

As a consequence, no subgroup of a hyperbolic group
can be isomorphic toℤ2. In several classes of geometrically
defined groups, this turns out to be the only obstruction to
hyperbolicity. For instance, this is true for the class of fun-
damental groups of closed 3–manifolds. In general, there
are other algebraic obstructions to consider. Hyperbolic
groups cannot contain a subgroup isomorphic to one of
the Baumslag–Solitar groups:

𝐵𝑆(𝑚, 𝑛) = ⟨𝑎, 𝑡 ∣ 𝑡𝑎𝑚𝑡−1 = 𝑎𝑛⟩.
The notation here means that 𝐵𝑆(𝑚, 𝑛) is generated by two
elements 𝑎 and 𝑡 and the only relation they satisfy is that
𝑡 conjugates 𝑎𝑚 to 𝑎𝑛. This is a very interesting class of
groups that includes ℤ2, which is 𝐵𝑆(1, 1), and the funda-
mental group of the Klein bottle, which is 𝐵𝑆(1, −1).

The reason hyperbolic groups cannot contain sub-
groups isomorphic to a Baumslag–Solitar group relies on
the two facts that (1) for 𝑘 ≥ 1 the subgroup ⟨𝑎𝑘, 𝑡𝑘⟩ ⊆
𝐵𝑆(𝑚, 𝑛) is never free as 𝑡𝑘𝑎𝑘𝑚𝑘𝑡−𝑘 = 𝑎𝑘𝑛𝑘 , whereas (2)
for infinite-order elements 𝑔, ℎ ∈ 𝐺 in a hyperbolic group,
the subgroup ⟨𝑔𝑘, ℎ𝑘⟩ is free for some large 𝑘. Alternatively,
one can appeal to the previously mentioned fact that infi-
nite cyclic subgroups are undistorted in hyperbolic groups.
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It was an open question until recently if this is essen-
tially the only obstruction. Specifically, is a group 𝐺
for which there exists a finite Eilenberg–MacLane space
𝐾(𝐺, 1) and that does not contain a subgroup isomorphic
to 𝐵𝑆(𝑚, 𝑛) necessarily hyperbolic? Brady gave counterex-
amples without the finiteness assumption [Bra99]. These
examples were difficult to construct. They arise as sub-
groups of hyperbolic groups and hence do not have sub-
groups isomorphic to Baumslag–Solitar groups. The dif-
ficult part in the construction is showing these subgroups
are not hyperbolic. Brady does so by showing they do not
satisfy an algebraic finiteness condition, called F2, known
to be satisfied by hyperbolic groups. As the existence of a
finite 𝐾(𝐺, 1) implies F2 and also implies additional alge-
braic finiteness conditions satisfied by hyperbolic groups,
a positive answer to the above question seemed plausible.
Recently, Italiano, Martelli, and Migliorini constructed a
subgroup of a hyperbolic group that is not hyperbolic but
does have a finite 𝐾(𝐺, 1), answering the above question in
the negative [IMM]. The hyperbolic group they construct
is a quotient of the fundamental group of a finite volume
cusped hyperbolic 5–manifold.
Other actions on 𝛿–hyperbolic spaces. There are many natu-
ral groups that contain subgroups isomorphic to ℤ2 and
hence cannot be hyperbolic. Can we still use negative cur-
vature to investigate these groups? Let’s relax the condi-
tions of a geometric action and the requirement of a proper
metric space, and consider an example of an important
group in low-dimensional topology.

The mapping class group MCG(Σ) of an orientable sur-
face Σ, possibly with boundary, is the the group of orien-
tation preserving homeomorphisms of Σ modulo isotopy.
That is, two homeomorphisms of Σ determine the same
mapping class if one can be continuously deformed to the
other so that every intermediate map along the way is also
a homeomorphism. When Σ has non-empty boundary,
the homeomorphisms and the isotopies need to be the
identity on each boundary component. To simplify the
discussion, we will assume that Σ is compact. This group
appears in the study of 3–manifolds, algebraic geometry,
cryptography, symplectic geometry, dynamics, and config-
uration spaces. Using homeomorphisms supported on
disjoint subsurfaces in Σ, it is easy to find subgroups iso-
morphic to ℤ2 in all mapping class groups with a few ex-
ceptions. Thus MCG(Σ) is not hyperbolic in general.

The mapping class group acts on the curve graph 𝒞(Σ),
which we now describe. A simple closed curve is an embed-
ding of the circle 𝑆1 → Σ that does not bound a disk nor
an annulus in Σ (the latter only occurs when Σ has bound-
ary). The curve graph is the graph whose vertex set is the
set of isotopy classes of simple closed curves and two such
[𝑐0], [𝑐1] are joined by an edge if they have disjoint repre-
sentatives. In Figure 13 some curves on Σ are shown along

with the corresponding subgraph of 𝒞(Σ). Amapping class
[𝑓] acts on a vertex [𝑐] in the curve graph by sending the
simple closed curve to its image: [𝑓] ⋅ [𝑐] = [𝑓(𝑐)]. Home-
omorphisms take disjoint curves to disjoint curves so this
extends to an action on 𝒞(Σ) as well.

𝑐0
𝑐1

𝑐2

𝑐3 𝑐4

𝑐0

𝑐1

𝑐2

𝑐4

𝑐3
Figure 13. A portion of the curve graph for a genus 2 surface.

When the genus of Σ is equal to 1, i.e., when Σ is a torus
𝑆1 × 𝑆1, any two non-isotopic simple closed curves nec-
essarily intersect and so the above definition results in a
graph with no edges. In this case the definition is altered
slightly, [𝑐0], [𝑐1] are joined by an edge if they have rep-
resentatives that intersect once. Let’s take a closer look at
this curve graph. Any simple closed curve on the torus is
isotopic to one that winds 𝑝 times around the first 𝑆1 fac-
tor and 𝑞 times around the second 𝑆1 factor where 𝑝 and
𝑞 are relatively prime. As the orientation does not matter,
we can assume that 𝑞 is positive. That is, isotopy classes
of simple closed curves on the torus are parameterized by
the set of rational numbers

𝑝
𝑞
along with an additional ele-

ment
1
0
. Moreover, the number of times the simple closed

curves
𝑝
𝑞
and

𝑟
𝑠
intersect is |𝑝𝑠 − 𝑞𝑟|.

Sound familiar? That’s right, the curve graph of the
torus is the Farey graph! In fact, the mapping class group
of the torus is isomorphic to SL(2, ℤ) and the two actions
are the same. The action of SL(2, ℤ) on the Farey graph il-
lustrates some of the essential properties of 𝒞(Σ) and the
action of MCG(Σ) on 𝒞(Σ).

First, as we observed for the Farey graph, the curve graph
is 𝛿–hyperbolic. This amazing fact was proved by Masur
and Minsky [MM99] and has been reproved a number of
times since. (The best estimate on 𝛿 was given by Hensel,
Przytycki, and Webb who found an explicit value for 𝛿 in-
dependent of Σ [HPW15].) It is impossible to overstate the
influence of this result on the study of the mapping class
group, the geometry of 3–manifolds and geometric group
theory in general.
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Second, the action is not properly discontinuous. In-
deed, the vertex stabilizers are infinite. This is not a bug
though, but a feature! Homeomorphisms that fix a simple
closed curve 𝑐 are actually homeomorphisms of the surface
obtained by cutting open along 𝑐. Thus the stabilizer of a
vertex in 𝒞(Σ) is the mapping class group of a surface Σ′,
possibly disconnected, whose components are simpler in
the sense that the genus or the number of boundary com-
ponents is fewer than that of Σ.

Taken together, this setting fits into the hierarchy strat-
egy mentioned after Theorem 2 and there are numerous
applications. I will mention one here that ties back to
the beginning of the article: finite generation. Using the
facts that the curve graphs are path-connected and that the
stabilizers of vertices in the curve graph are, by induction,
finitely generated, it can be shown that the mapping class
group of any orientable surface is also finitely generated.
That is, we promote finite generation from the stabiliz-
ers to whole group using the fact that the space is path-
connected. The base case for the induction is when the sur-
face has genus 1. The mapping class group of this surface
is SL(2, ℤ)—the group we started our journey with! This
strategy was originally employed by Dehn and he found
a specific generating set for the mapping class group anal-
ogous to elementary matrices. For complete details, and
much more on mapping class groups, see the text by Farb
and Margalit [FM12].

Other useful properties and features of the mapping
class group acting on the curve graph have been identi-
fied, isolated, and applied to the study of other groups.
These include the notion of a WPD element by Bestvina
and Fujiwara [BF02]; the notion of a projection complex by
Bestvina, Bromberg, and Fujiwara [BBF15]; the notion of
an acylindrical action by Bowditch [Bow08], which was fur-
ther developed by Osin [Osi16]; and the notion of a hier-
archically hyperbolic group/space by Behrstock, Hagen, and
Sisto [BHS17]. The common element of each of these new
tools is to exploit negative curvature in certain directions of
the group. As in the case of themapping class group acting
on the curve graph, the applications have been abundant.

Conclusion and Further Reading
I hope that this article has given you an idea of how the
topology and geometry of a space that a group acts on can
influence its algebraic properties and structure. Geometric
group theory is a growing field. This is in part due to the
large number of questions the field generates regarding the
geometry of finitely generated groups, but the field has also
seen an increase in interest as a result of its applications to
other areas of mathematics. A striking example of this is
the recent resolution of the Virtual Haken Conjecture in 3–
manifold topology. This was proved by Agol [Ago13] using
tools from geometric group theory created by Scott, Sageev,

Wise, and others. See the survey article by Bestvina [Bes14]
for an excellent overview of this connection.

The concept of 𝛿–hyperbolicity is but one aspect of
geometric group theory. There are areas of geometric
group theory invoking tools from algebra (algebraic ge-
ometry, homological algebra) analysis (𝐿𝑝–spaces, 𝐶∗ and
von Neumann algebras), dynamics (entropy, topological
Markov chains), geometry (isoperimetric functions, Lie
theory) and topology (dimension, fractals). Below is a se-
lection of books on geometric group theory for those curi-
ous to learn more, listed by publication date.

1. Metric Spaces of Non-positive Curvature by Martin Brid-
son and André Haefliger [BH99]: A comprehensive
reference text focusing on various notions of non-
positive curvature in metric spaces and groups.

2. Topics in Geometric Group Theory by Pierre de la
Harpe [dlH00]: An introduction to groups as geo-
metric objects including a multitude of examples and
a broad investigation on the notion of growth in
groups.

3. A Course in Geometric Group Theory by Brian Bowditch
[Bow06]: An introductory text based on a course
taught by the author with an in-depth treatment of
hyperbolic groups. The audience is advanced under-
graduates and beginning graduate students.

4. Office Hours with a Geometric Group Theorist edited by
Matt Clay and Dan Margalit [CM17]: A collection of
essays written by researchers on select topics in geo-
metric group theory and central examples such as Cox-
eter groups and braid groups targeted to advanced un-
dergraduates and beginning graduate students.

5. Geometric Group Theory by Clara Löh [Löh17]: An in-
troductory text on geometric group theory targeted
to advanced undergraduates and beginning graduate
students. Fundamental topics such as quasi-isometry,
boundaries and amenable groups are discussed.

6. Geometric Group Theory byCornelia Drutu andMichael
Kapovich [DK18]: A comprehensive text containing
proofs of several fundamental results in geometric
group theory including the Tits alternative and Gro-
mov’s theorem on polynomial growth. The audience
is advanced graduate students and researchers in the
field.
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