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Mathematicians love dualities. The dual of a vector space
𝑉 is the vector space 𝑉∗ of linear maps from 𝑉 to the
ground field. Any linear map 𝑓∶ 𝑉 → 𝑊 between vec-
tor spaces gives a linear map going the other way between
their duals, 𝑓∗ ∶ 𝑊 ∗ → 𝑉∗, given by

𝑓∗(ℓ)(𝑣) = ℓ(𝑓(𝑣)), ∀𝑣 ∈ 𝑉, ℓ ∈ 𝑊 ∗.
Composition gets turned around:

(𝑓𝑔)∗ = 𝑔∗𝑓∗.
Furthermore, there is always a linear map

𝑖 ∶ 𝑉 → 𝑉∗∗

given by

𝑖(𝑣)(ℓ) = ℓ(𝑣) ∀𝑣 ∈ 𝑉, ℓ ∈ 𝑉∗,
and when 𝑉 is finite-dimensional this is an isomorphism.
So, for finite-dimensional vector spaces, duality is like flip-
ping a coin upside down: when you do it twice, you get
back where you started—at least up to isomorphism.

Dualities are useful because they let you view the same
situation in two different ways. Often dualities give an in-
teresting description of the opposite of a familiar category
𝖢. This is the category 𝖢op with the same objects as 𝖢, but
where a morphism 𝑓∶ 𝑋 → 𝑌 is defined to be amorphism
𝑓∶ 𝑌 → 𝑋 in 𝖢, and the order of composition is reversed.
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Some dualities show a category is equivalent to its own
opposite. For example, duality for vector spaces can be
used to show the category of finite-dimensional vector
spaces over any field is equivalent to its opposite. We’re
secretly using this whenever we take the transpose of a ma-
trix. Similarly, Pontryagin duality says the category of lo-
cally compact abelian groups is equivalent to its own oppo-
site. This duality sends each locally compact group 𝐺 to its
“Pontryagin dual” 𝐺, and the Fourier transform of a func-
tion on 𝐺 is a function on 𝐺. For example, the Poincaré
dual of the real line is the real line, while the Pontryagin
dual of the circle is the integers.

More commonly, however, a category of mathematical
objects is not equivalent to its opposite, and a duality re-
lates two different categories. The opposite of a category of
spaces is typically a category of commutative rings or alge-
bras. For example, Gelfand–Naimark duality says the op-
posite of the category of compact Hausdorff spaces is the
category of commutative 𝐶∗-algebras. In fact, to make the
duality between spaces and commutative rings as nice as
possible, Grothendieck defined a category of spaces called
“affine schemes” to be the opposite of a category of com-
mutative rings.

There are also dualities within category theory itself.
The opposite of a category is itself a kind of a dual, and
taking the opposite twice gives you back the category you
started with:

(𝖢op)op = 𝖢.

But there is a subtler and very beautiful duality in category
theory called “Isbell duality.”
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First, there is a map from any category 𝖢 to the category
[𝖢op, 𝖲𝖾𝗍], where objects are functors from 𝖢op to the cat-
egory of sets and morphisms are natural transformations.
This map takes any object 𝑋 ∈ 𝖢 to the functor

hom(−, 𝑋)∶ 𝖢op → 𝖲𝖾𝗍,
which sends any object 𝐴 ∈ 𝖢 to the set hom(𝐴, 𝑋) of all
morphisms from 𝐴 to 𝑋 . This map is called the Yoneda
embedding, and is itself a functor:

𝑦∶ 𝖢 → [𝖢op, 𝖲𝖾𝗍]
𝑋 ↦ hom(−, 𝑋).

The Yoneda embedding is fundamental in category the-
ory. Philosophically it says that an object can be known
by the behavior of the morphisms into it. It takes time
to learn how to use it as a practical tool, but this is nicely
explained in modern textbooks [3, 4]. One insight is this:
just as we often take a set and form the vector space with
that set as basis, it is often useful to treat a category 𝖢 as
sitting inside the larger category [𝖢op, 𝖲𝖾𝗍]. The reason is
that [𝖢op, 𝖲𝖾𝗍] has “colimits,” which are analogous to lin-
ear combinations in a vector space. For example, we can
sum 𝐹,𝐺 ∈ [𝖢op, 𝖲𝖾𝗍] as follows:

(𝐹 + 𝐺)(𝑋) = 𝐹(𝑋) + 𝐺(𝑋) ∀𝑋 ∈ 𝖢op

where the sum at right is the usual disjoint union of sets.
In fact [𝖢op, 𝖲𝖾𝗍] is the free category with colimits on the
category 𝖢.

But this whole story has a dual version! An object can
also be known by the behavior ofmorphisms out of it. This
fact is captured by the co-Yoneda embedding:

𝑧∶ 𝖢 → [𝖢, 𝖲𝖾𝗍]op
𝑋 ↦ hom(𝑋,−).

The concept dual to colimit is “limit”: just as colimits gen-
eralize sums, limits generalize products. Unsurprisingly, it
turns out that [𝖢, 𝖲𝖾𝗍]op is the free category with limits on
the category 𝖢.

In 1960, Isbell [2] noticed a wonderful link between
the Yoneda and co-Yoneda embeddings, which has sub-
sequently been clarified by many authors, as reviewed in
[1]. Any functor 𝐹 ∶ 𝖢op → 𝖲𝖾𝗍 has an Isbell conjugate
𝐹∗ ∶ 𝖢 → 𝖲𝖾𝗍, given by

𝐹∗(𝑋) = hom(𝐹, 𝑦(𝑋)).
Similarly, any functor 𝐺∶ 𝖢 → 𝖲𝖾𝗍 has an Isbell conjugate
𝐺∗ ∶ 𝖢op → 𝖲𝖾𝗍 given by

𝐺∗(𝑋) = hom(𝑧(𝑋), 𝐺).
These two versions of Isbell conjugate give functors going
back and forth like this:

[𝖢op, 𝖲𝖾𝗍] [𝖢, 𝖲𝖾𝗍]op
∗

∗

But these two functors are typically not inverses, not
even up to natural isomorphism! Instead, Isbell dual-
ity says they are adjoints, meaning that hom(𝐹∗, 𝐺) and
hom(𝐹, 𝐺∗) are naturally isomorphic for all 𝐹 ∈ [𝖢op, 𝖲𝖾𝗍]
and 𝐺 ∈ [𝖢, 𝖲𝖾𝗍]op. This is analogous to the situation for
vector spaces that are not necessarily finite-dimensional:
taking the dual defines adjoint functors going back and
forth between 𝖵𝖾𝖼𝗍 and 𝖵𝖾𝖼𝗍op, where 𝖵𝖾𝖼𝗍 is the category
of all vector spaces over a given field.

Isbell duality sets the stage for a panoply of further de-
velopments [1]. For example, just as the vector spaces
where 𝑖 ∶ 𝑉 → 𝑉∗∗ is an isomorphism are precisely the
finite-dimensional ones, it is very interesting to study func-
tors 𝐹 ∈ [𝖢op, 𝖲𝖾𝗍] such that the canonicalmap 𝑖 ∶ 𝐹 → 𝐹∗∗
is an isomorphism.

So far most applications of Isbell duality involve its gen-
eralization to enriched categories [5]. For example, this
generalization gives a way to find, for any compact metric
space 𝑋 , the smallest compact metric space 𝑌 containing a
copy of 𝑋 with the property that for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌
there is a point 𝑥′ ∈ 𝑋 such that

𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑥′) = 𝑑(𝑥, 𝑥′).
However, it seems that Isbell duality still remains largely
unexploited. Perhaps one problem is simply that this
jewel of mathematics is not yet widely known.
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