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1. Introduction
The aim of this paper is to build a simple model of prob-
lem solving, both by single agents and by teams. We real-
ize that our model is crude and of course far from univer-
sal. Yet the results we get seem to us quite illuminating,
and show the importance of both ability and diversity of
skills.

The question of how to measure effectiveness of prob-
lem solving by individuals and (even more importantly)
by teams, and how to choose the best individual/team, has
been a subject of a lot of research. We can give as examples
papers [GJIB, HP2, KI, KR], and the literature cited there.
We do not address explicitly the problem of choosing a
team, but our findings may serve as the basis for further
research in that direction (in cases where it seems that our
model may be applicable).

For a single agent, or a team of agents, we try tomeasure
the probability of success as a function of the difficulty of a
problem (or rather the easiness of the problem, measured
by a variable 𝑝; the larger 𝑝, the easier the problem). In
Section 3we show that the probability of success is concave
as a function of 𝑝.

In Section 4 we show that in our model for a single
agent specialization is better than versatility.1 We also
show that comparing agents is difficult. In most cases, for
a given agent and chosen values of 𝑝, there can be another
agent, who is better at solving problems with easiness 𝑝 for
those chosen values, but worse at solving problems with
all other values of 𝑝.

In Section 5 we consider teams of agents. We get what
can be considered the main result of the paper: whenever
our model can be applied, both abilities of the teammem-
bers and the diversity of skills in the team matter. If any
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of those increases, so does the probability of success. For
simplicity, we consider teams with two members, but it is
clear that similar results should hold for larger teams. In-
terestingly, there is an example where for easier problems
ability is more important, but for more difficult problems
diversity is more important.

In Section 6 we show how our model can be applied to
a situation where the agents are trying to defend an orga-
nization against an attack. In this application, diversity is
even more important than for general problem solving.

Some of our ideas came from studying the model of
L. Hong and S.E. Page [HP1]. Our model is much simpler,
and can be easily investigated both by pure mathematical
means and by computational means. Moreover, we avoid
the main deficiency of the Hong–Page model, where high-
ability teams consist basically of clones of the same agent
(and as a result, ability excludes diversity).2

2. Preliminary Model
If an agent will be trying to solve problems that are not
known in advance, her expected performance can be mea-
sured by an average over various possible problems.

Our first, preliminary model is as follows. An agent has
some set of skills. This set is a subset 𝑆 of 𝑁 = {1, 2, … , 𝑛}.
An immediate problem is represented by a subset 𝑃 of 𝑁
of cardinality 𝑝. An agent can make progress if the inter-
section 𝑆 ∩ 𝑃 is nonempty. Clearly, the difficulty of the
problem is measured by 𝑝; problems with smaller 𝑝 are
more difficult.

When we want to measure the ability of an agent, we
average performance of an agent over all problems of a
given difficulty (that is, with a given cardinality 𝑝). The
result clearly does not depend on a concrete set 𝑆 of skills,
but only on its cardinality 𝑠 (the skillfulness of the agent).

For given 𝑛, 𝑠, 𝑝 it is easy to compute the probability of
making progress. If 𝑝 + 𝑠 > 𝑛, this probability is 1. If

𝑝 + 𝑠 ≤ 𝑛, out of all (𝑛
𝑝
) possible sets 𝑃 only (𝑛−𝑠

𝑝
) re-

sult in failure. Therefore the probability of success (that is,

2A reader interested in the discussion about that model may want to look
at [T1,P,T2].
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making progress) is

1 −
(𝑛−𝑠

𝑝
)

(𝑛
𝑝
)

= 1 − (𝑛 − 𝑠)! (𝑛 − 𝑝)!
𝑛! (𝑛 − 𝑝 − 𝑠)!

= 1 − 𝑛 − 𝑝
𝑛 ⋅ 𝑛 − 𝑝 − 1

𝑛 − 1 ⋅ … ⋅ 𝑛 − 𝑝 − 𝑠 + 1
𝑛 − 𝑠 + 1 .

In Figure 1, we can see how the probability of success
varies with the difficulty of the problem, for agents with
various numbers of skills. If the problem is easy, the skill-
fulness of an agent does not matter much (provided the
agent has some minimal number of skills). However, for
difficult problems it matters a lot.

Figure 1. For 𝑛 = 20, graphs of the probabilities of success as
functions of the difficulty of the problem for various numbers
of skills of the agent. As we move to the right, the difficulty of
the problem decreases (that is, 𝑝 increases).

3. Main Model
The preliminary model is very crude, because for each skill
an agent either has it or does not. However, one should
allow an agent to have partial skills. Then 𝑆 becomes a
strength function 𝑆 ∶ 𝑁 → [0, 1]. If 𝑘 ∈ 𝑃, then the proba-
bility that the agent can make progress using skill number
𝑘 is 𝑆(𝑘). We assume that those probabilities for different
𝑘 are independent. This means that it is easier to use in
computations the weakness function 𝑅 = 𝟙 − 𝑆, where 𝟙 is
the constant function 1. Then the probability 𝐹(𝑅, 𝑃) of
failure for a given agent and given problem is equal to the
product of the numbers 𝑅(𝑘) over 𝑘 ∈ 𝑃.

Often instead of speaking of the strength and weakness
functions we will speak of the strength and weakness vectors
(𝑆(1), 𝑆(2), … , 𝑆(𝑛)) and (𝑅(1), 𝑅(2), … , 𝑅(𝑛)).

For a given 𝑅, the sum of 𝐹(𝑅, 𝑃) over all sets 𝑃 ⊂ 𝑁 of
cardinality 𝑝 is equal to

∑
|𝑃|=𝑝

∏
𝑖∈𝑃

𝑅(𝑖),

where |𝑃| denotes the cardinality of 𝑃. Observe that this

number is equal to the coefficient for the polynomial

𝑄𝑅(𝑥) =
𝑛
∏
𝑖=1

(𝑥 + 𝑅(𝑖))

of 𝑥𝑛−𝑝. Thus, the average probability 𝐹𝑅(𝑝) of failure over
all sets 𝑃 of cardinality 𝑝 is equal to this coefficient divided

by (𝑛
𝑝
). Note that (𝑛

𝑝
) is the coefficient of 𝑥𝑛−𝑝 for the

polynomial 𝑄𝟙. This in particular means that if an agent
has no skills (so 𝑅 = 𝟙), her probability of failure is 1 no
matter what.

Clearly, if 𝜎 is a permutation of the set 𝑁 then 𝐹𝑅(𝑝) =
𝐹𝑅∘𝜍(𝑝). Therefore we may assume that 𝑅(1) ≤ 𝑅(2) ≤
… ≤ 𝑅(𝑛). Sometimes, if we do not want to make this
assumption, we will say that 𝑆 ∘ 𝜎 is a permutation of 𝑆.

Of course, if 𝑅 takes only values 0 and 1, we get the
previous model.

Let us investigate some basic properties of the function
𝐹𝑅.

Proposition 1. We have 𝐹𝑅(𝑝 + 1) ≤ 𝐹𝑅(𝑝), and equality
holds only if either both numbers are equal to 0 or 𝑅 = 𝟙.

Proof. Replace each subset 𝑃 ⊂ 𝑁 of cardinality 𝑝+1 by 𝑝+
1 pairs (𝑃, 𝑗), where 𝑗 ∈ 𝑃. Then the average of ∏𝑖∈𝑃 𝑅(𝑖)
over all such pairs will be equal to 𝐹𝑅(𝑝 + 1). Similarly,
when we replace each subset 𝑃 ⊂ 𝑁 of cardinality 𝑝 by
𝑛−𝑝 pairs (𝑃, 𝑗), where 𝑗 ∈ 𝑁 ⧵𝑃, the average of∏𝑖∈𝑃 𝑅(𝑖)
over all such pairs will be equal to 𝐹𝑅(𝑝). However, there
is a natural one-to-one correspondence between the pairs
of the first and of the second type. Namely, if |𝑃| = 𝑝 and
𝑗 ∈ 𝑁⧵𝑃, then |𝑃∪{𝑗}| = 𝑝+1 and 𝑗 ∈ 𝑃∪{𝑗}. Since always
∏𝑖∈𝑃∪{𝑗} 𝑅(𝑖) ≤ ∏𝑖∈𝑃 𝑅(𝑖), we get 𝐹𝑅(𝑝 + 1) ≤ 𝐹𝑅(𝑝).

Suppose that we have the equality. Then for every
𝑃 ⊂ 𝑁 of cardinality 𝑝 and every 𝑗 ∈ 𝑁 ⧵ 𝑃 we have either
∏𝑖∈𝑃 𝑅(𝑖) = 0 or 𝑅(𝑗) = 1. If for every 𝑃 ⊂ 𝑁 of cardinality
𝑝we have∏𝑖∈𝑃 𝑅(𝑖) = 0, then 𝐹𝑅(𝑝+1) = 𝐹𝑅(𝑝) = 0. Oth-
erwise, there exists 𝑃 ⊂ 𝑁 of cardinality 𝑝with∏𝑖∈𝑃 𝑅(𝑖) >
0, so we have 𝑅(𝑗) = 1 for every 𝑗 ∈ 𝑁 ⧵ 𝑃. Unless 𝑅 = 𝟙,
there is 𝑘 ∈ 𝑃 for which 𝑅(𝑘) < 1. Choose one 𝑗 ∈ 𝑁 ⧵ 𝑃
and consider the set 𝑉 = 𝑃 ∪ {𝑗} ⧵ {𝑘}. Then

∏
𝑖∈𝑉∪{𝑘}

𝑅(𝑖) = 𝑅(𝑘)∏
𝑖∈𝑉

𝑅(𝑖) <∏
𝑖∈𝑉

𝑅(𝑖),

a contradiction. This proves the second part of the propo-
sition. □

Proposition 2. We have

𝐹𝑅(𝑝 + 2) + 𝐹𝑅(𝑝)
2 ≥ 𝐹𝑅(𝑝 + 1), (1)

so the function 𝐹𝑅 is convex (and the success function, 𝟙 − 𝐹𝑅,
is concave). Equality holds if and only if either 𝐹𝑅(𝑝) = 0 or
there is at most one 𝑖 ∈ 𝑁 such that 𝑅(𝑖) ≠ 1.
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Proof. In a similar way as in the proof of Proposition 1, we
get the following four equalities (in the first one, we have
to look at the set 𝑁 ⧵ {𝑗} instead of 𝑁):

∀
𝑗∈𝑁

(𝑝 + 1) ∑
|𝑉 |=𝑝+1
𝑗∉𝑉

∏
𝑖∈𝑉

𝑅(𝑖) =
𝑛
∑
𝑘=1
𝑘≠𝑗

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

𝑅(𝑗)∏
𝑖∈𝑊

𝑅(𝑖),

(2)

(𝑛 − 𝑝 − 1) ∑
|𝑉 |=𝑝+1

∏
𝑖∈𝑉

𝑅(𝑖) =
𝑛
∑
𝑗=1

∑
|𝑉 |=𝑝+1
𝑗∉𝑉

∏
𝑖∈𝑉

𝑅(𝑖), (3)

(𝑛 − 𝑝)(𝑛 − 𝑝 − 1) ∑
|𝑊|=𝑝

∏
𝑖∈𝑊

𝑅(𝑖) =
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

∏
𝑖∈𝑊

𝑅(𝑖),

(4)

(𝑝 + 2)(𝑝 + 1) ∑
|𝑃|=𝑝+2

∏
𝑖∈𝑃

𝑅(𝑖)

=
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

𝑅(𝑗)𝑅(𝑘)∏
𝑖∈𝑊

𝑅(𝑖). (5)

Since (1 − 𝑅(𝑗))(1 − 𝑅(𝑘)) ≥ 0, we have
1 + 𝑅(𝑗)𝑅(𝑘) ≥ 𝑅(𝑗) + 𝑅(𝑘). (6)

Now, from (5), (4), and (6), we get

(𝑝 + 2)(𝑝 + 1) ∑
|𝑃|=𝑝+2

∏
𝑖∈𝑃

𝑅(𝑖)

+ (𝑛 − 𝑝)(𝑛 − 𝑝 − 1) ∑
|𝑊|=𝑝

∏
𝑖∈𝑊

𝑅(𝑖)

=
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

(1 + 𝑅(𝑗)𝑅(𝑘))∏
𝑖∈𝑊

𝑅(𝑖)

≥
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

(𝑅(𝑗) + 𝑅(𝑘))∏
𝑖∈𝑊

𝑅(𝑖).

(7)

From (2) and (3), we get
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

𝑅(𝑗)∏
𝑖∈𝑊

𝑅(𝑖) =
𝑛
∑
𝑘=1

(𝑝 + 1) ∑
|𝑉 |=𝑝+1
𝑘∉𝑉

∏
𝑖∈𝑉

𝑅(𝑖)

= (𝑝 + 1)(𝑛 − 𝑝 − 1) ∑
|𝑉 |=𝑝+1

∏
𝑖∈𝑉

𝑅(𝑖).

(8)

From (7) and (8) (note that (8) holds also with 𝑗 and
𝑘 switched) we get

(𝑝+2)(𝑝+1) ∑
|𝑃|=𝑝+2

∏
𝑖∈𝑃

𝑅(𝑖)+(𝑛−𝑝)(𝑛−𝑝−1) ∑
|𝑊|=𝑝

∏
𝑖∈𝑊

𝑅(𝑖)

≥ 2(𝑝 + 1)(𝑛 − 𝑝 − 1) ∑
|𝑉 |=𝑝+1

∏
𝑖∈𝑉

𝑅(𝑖),

that is,

(𝑝+2)(𝑝+1)( 𝑛
𝑝 + 2)𝐹𝑅(𝑝+2)+(𝑛−𝑝)(𝑛−𝑝−1)(

𝑛
𝑝)𝐹𝑅(𝑝)

≥ 2(𝑝 + 1)(𝑛 − 𝑝 − 1)( 𝑛
𝑝 + 1)𝐹𝑅(𝑝 + 1).

Since

(𝑝 + 2)(𝑝 + 1)( 𝑛
𝑝 + 2) = (𝑛 − 𝑝)(𝑛 − 𝑝 − 1)(𝑛𝑝)

= (𝑝 + 1)(𝑛 − 𝑝 − 1)( 𝑛
𝑝 + 1),

we get

𝐹𝑅(𝑝 + 2) + 𝐹𝑅(𝑝) ≥ 2𝐹𝑅(𝑝 + 1).
This proves the first part of the proposition.

To prove the second part, notice that by (7), equality
in (1) holds if and only if for every 𝑊 ⊂ 𝑁 of cardinality
𝑝 and every 𝑗, 𝑘 ∈ 𝑁 ⧵ 𝑊 such that 𝑗 ≠ 𝑘, either 𝑅(𝑗) = 1,
or 𝑅(𝑘) = 1, or∏𝑖∈𝑊 𝑅(𝑖) = 0.

If 𝐹𝑅(𝑝) = 0, then for every 𝑊 ⊂ 𝑁 of cardinality 𝑝 we
have ∏𝑖∈𝑊 𝑅(𝑖) = 0. If there is at most one 𝑖 ∈ 𝑁 such
that 𝑅(𝑖) ≠ 1, then 𝑗 ≠ 𝑘 implies 𝑅(𝑗) = 1 or 𝑅(𝑘) = 1. In
all those cases we get equality in (1).

Now assume that 𝐹𝑅(𝑝) ≠ 0 and 𝑅(𝑖) ≠ 1 for at least two
indices 𝑖 ∈ 𝑁. Then there are two possible cases. Either
there are two or more zeros among 𝑅(𝑖), 𝑖 ∈ 𝑁, or there
is at most one zero there. In the first case, we can choose
𝑗, 𝑘 ∈ 𝑁 such that 𝑗 ≠ 𝑘 and 𝑅(𝑗) = 𝑅(𝑘) = 0. Then,
since 𝐹𝑅(𝑝) ≠ 0, there is 𝑊 ⊂ 𝑁 ⧵ {𝑗, 𝑘} of cardinality 𝑝,
such that ∏𝑖∈𝑊 𝑅(𝑖) > 0. In the second case, we choose
𝑗, 𝑘 ∈ 𝑁 with 𝑗 ≠ 𝑘 and 𝑅(𝑗), 𝑅(𝑘) as small as possible,
and again there is 𝑊 ⊂ 𝑁 ⧵ {𝑗, 𝑘} of cardinality 𝑝, such
that ∏𝑖∈𝑊 𝑅(𝑖) > 0. In both cases, there is no equality
in (1). □

4. Specialization and Versatility
We would like to be able to measure the skillfulness of an
agent in our model. There may be various ways of doing
this, and as we will see in Theorem 5, we cannot expect to
find a perfect one. We will settle on what seems the most
natural way of doing it, by defining it to be 𝑆(1) + 𝑆(2) +
⋯+ 𝑆(𝑛), where 𝑆 is the strength function of the agent.

Within our model, one of the first questions that comes
to mind is what is the best distribution of strengths given
the skillfulness of an agent. The agent can be more spe-
cialized or more versatile. We will show that in our model
specialization is better than versatility.

The simplest case is when we have two agents, one with
𝑆1(1) = 𝑆1(2) = 1/2 and 𝑆1(𝑘) = 0 for 𝑘 > 2, and the other
one with 𝑆2(1) = 1 and 𝑆2(𝑘) = 0 for 𝑘 > 1. The first agent
is more versatile and the second one more specialized. We
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have

𝑄𝑅1 = (𝑥 + 1/2)2(𝑥 + 1)𝑛−2 = (𝑥2 + 𝑥 + 1/4)(𝑥 + 1)𝑛−2

= 𝑄𝑅2 +
1
4(𝑥 + 1)𝑛−2

and
𝑄𝑅2 = 𝑥(𝑥 + 1)𝑛−1.

Thus, 𝐹𝑅1(𝑝) = 𝐹𝑅2(𝑝) for 𝑝 < 2, and 𝐹𝑅1(𝑝) > 𝐹𝑅2(𝑝) for
𝑝 ≥ 2. Let us make exact computations.

The coefficient of 𝑥𝑛−𝑝 for the polynomial 𝑥(𝑥 + 1)𝑛−1
is the same as the coefficient of 𝑥𝑛−𝑝−1 for the polynomial

(𝑥 + 1)𝑛−1, that is, ( 𝑛−1
𝑛−𝑝−1

). Thus,

𝐹𝑅2(𝑝) =
(𝑛 − 1)!

(𝑛 − 𝑝 − 1)! 𝑝! ⋅
(𝑛 − 𝑝)! 𝑝!

𝑛! = 𝑛 − 𝑝
𝑛 = 1 − 𝑝

𝑛 .

To get the coefficient of 𝑥𝑛−𝑝 for the polynomial (𝑥 +
1/2)2(𝑥+1)𝑛−2, we have additionally to add the coefficient
of 𝑥𝑛−𝑝 for the polynomial

1
4
(𝑥 + 1)𝑛−2, so

𝐹𝑅1(𝑝) = 1 − 𝑝
𝑛 + 1

4 ⋅
(𝑛 − 2)!

(𝑛 − 𝑝)! (𝑝 − 2)! ⋅
(𝑛 − 𝑝)! 𝑝!

𝑛!

= 1 − 𝑝
𝑛 + 1

4 ⋅
𝑝(𝑝 − 1)
𝑛(𝑛 − 1) .

This means that while the graph of the probability of suc-
cess as a function of 𝑝 lies on the straight line from (0, 0)
to (𝑛, 1) for 𝑅2, it lies on a parabola from (0, 0) to (𝑛, 3/4)
for 𝑅1 (see Figure 2).

In this example specialization is better than versatility
(see Figures 3 and 4 for other examples).

Figure 2. The same picture as in Figure 1, with additional red
graphs showing probabilities of success with skillfulness an
integer, from 1 to 10, but 𝑆 taking only values 0 and 1/2. Black
graphs represent more specialization and red ones more
versatility.

We considered only a simple example, but it turns out
that in more complicated situations the result is the same.

Lemma 3. Let 𝑎, 𝑏 ∈ (0, 1), 𝑛 ≥ 2. Let a strength function
𝑆1 be such that 𝑆1(1) = 𝑎 and 𝑆1(2) = 𝑏. If 𝑎 + 𝑏 ≤ 1, set

Figure 3. The same picture as in Figure 2, but the red graphs
showing probabilities of success with skillfulness an integer,
from 1 to 20, spread evenly (that is, 𝑆(𝑖) is the same for all 𝑖).
This represents even more versatility than in the preceding
figure.

Figure 4. Here skillfulness is 1, but it is spread equally into 𝑘
skills, and 𝑘 varies from 1 (the highest graph) to 20 (the lowest
graph).

𝑆2(1) = 𝑎 + 𝑏, 𝑆2(2) = 0 and 𝑆2(𝑘) = 𝑆1(𝑘) for 𝑘 > 2. If
𝑎+𝑏 > 1, set 𝑆2(1) = 1, 𝑆2(2) = 𝑎+𝑏−1, and 𝑆2(𝑘) = 𝑆1(𝑘)
for 𝑘 > 2. Then, in both cases, 𝐹𝑅1(𝑝) ≥ 𝐹𝑅2(𝑝) for all 𝑝 and
𝐹𝑅1(𝑝) > 𝐹𝑅2(𝑝) for at least one 𝑝.

Proof. Assume first that 𝑎 + 𝑏 ≤ 1. Then for some poly-
nomial 𝑇 of degree 𝑛− 2 with nonnegative coefficients we
have

𝑄𝑅1 = (𝑥 + 1 − 𝑎)(𝑥 + 1 − 𝑏)𝑇(𝑥)
= (𝑥2 + (2 − 𝑎 − 𝑏)𝑥 + (1 − 𝑎 − 𝑏 + 𝑎𝑏))𝑇(𝑥)

and

𝑄𝑅2 = (𝑥 + 1 − 𝑎 − 𝑏)(𝑥 + 1)𝑇(𝑥)
= (𝑥2 + (2 − 𝑎 − 𝑏)𝑥 + (1 − 𝑎 − 𝑏))𝑇(𝑥).

Thus, 𝐹𝑅1(𝑝) ≥ 𝐹𝑅2(𝑝) for all 𝑝, and 𝐹𝑅1(𝑝) > 𝐹𝑅2(𝑝) for at
least one 𝑝.
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Assume now that 𝑎 + 𝑏 > 1. Then the formula for 𝑄𝑅1
stays the same, and we have

𝑄𝑅2 = 𝑥(𝑥 + 2 − 𝑎 − 𝑏)𝑇(𝑥) = (𝑥2 + (2 − 𝑎 − 𝑏)𝑥)𝑇(𝑥).
We have 0 < 1 − 𝑎 − 𝑏 + 𝑎𝑏, so the result is the same as in
the first case. □

The way we can restate this lemma is that if an agent
has at least two strengths other than 0 and 1, then we can
change her strength function, keeping the same skillful-
ness, in such a way that none of the probabilities of failure
𝐹(𝑝) increases, and at least one of them strictly decreases.
This change of the strength function is in the direction of
specialization.

Observe that given a skillfulness 𝜉, there is a unique (up
to permutations) strength function with at most one value
in (0, 1) giving this skillfulness. Let us denote this function
by 𝑆𝜉. This is the strength function of the most specialized
possible agent of skillfulness 𝜉.
Theorem 4. Given a strength function 𝑆 with skillfulness 𝜉 and
probabilities of failure 𝐹(𝑝), and the function 𝑆𝜉 with probabil-
ities of failure 𝐹𝜉(𝑝), we have 𝐹𝜉(𝑝) ≤ 𝐹(𝑝) for every 𝑝, and
unless 𝑆 is a permutation of 𝑆𝜉, there is at least one 𝑝 for which
𝐹𝜉(𝑝) < 𝐹(𝑝).
Proof. Use Lemma 3 inductively. □

We can interpret this result as saying that for an individ-
ual problem solver in our model, specialization is better
than versatility.

In Figures 2 and 3 we see pairs of graphs of the proba-
bility of success (extended piecewise linearly to functions
on [0, 𝑛]) that have intersections not only at 0 (more such
graphs can be seen in Figures 6 and 8). For each such pair
there is only one intersection apart from 0. Thus, a ques-
tion arises whether this is a general phenomenon. We now
show that this is very far from being true.

Theorem 5. Let 𝑅 ∶ 𝑁 → (0, 1) be an injection, and let 𝜏
be a function from 𝑁 to {−1, +1}. Then there exists a function
𝑅 ∶ 𝑁 → (0, 1) such that 𝐹𝑅(𝑝) > 𝐹𝑅(𝑝) if 𝜏(𝑝) = −1 and
𝐹𝑅(𝑝) < 𝐹𝑅(𝑝) if 𝜏(𝑝) = +1.
Proof. We may assume that 𝑅 is a strictly increasing func-

tion. We have 𝐹𝑅(𝑝) = 𝑎𝑝/ (𝑛𝑝 ), where

𝑥𝑛 +
𝑛
∑
𝑝=1

𝑎𝑝𝑥𝑛−𝑝 = 𝑄𝑅(𝑥) =
𝑛
∏
𝑖=1

(𝑥 + 𝑅(𝑖)).

If 𝜀 > 0 is sufficiently small, then the zeros of the poly-
nomial 𝑥𝑛 + ∑𝑛

𝑝=1(𝑎𝑝 + 𝜀𝜏(𝑝))𝑥𝑛−𝑝 are all real and con-
tained in the interval (−1, 0). Thus, there is a function
𝑅 ∶ 𝑁 → (0, 1) such that this polynomial is equal to 𝑄𝑅(𝑥).
We have 𝐹𝑅(𝑝) = (𝑎𝑝 + 𝜀𝜏(𝑝))/ (𝑛

𝑝
), so 𝐹𝑅(𝑝) > 𝐹𝑅(𝑝) if

𝜏(𝑝) = −1 and 𝐹𝑅(𝑝) < 𝐹𝑅(𝑝) if 𝜏(𝑝) = +1. □

This theorem illustrates the difficulty of measuring the
ability of agents (see also, for example, [HP2, KR]). Theo-
rem 5 shows that given a typical agent and a specified set
of problem difficulties, there can be another agent who is
better at solving problems with those difficulties but worse
at solving problems with all other difficulties.

One can ask whether we can remove the assumptions
that 𝑅 maps 𝑁 to the open interval (0, 1) and that it is an
injection. The answer is “no,” as the following simple ex-
amples show.

Let 𝑛 = 2 and consider two weakness vectors, 𝑅 =
(1/2, 1) and 𝑅 = (𝑎, 𝑏). We have 𝑄𝑅(𝑥) = 𝑥2 + (3/2)𝑥 + 1/2
and 𝑄𝑅(𝑥) = 𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑎𝑏. If 𝑎 + 𝑏 ≥ 3/2 then
1/2 ≤ 𝑎 ≤ 1, so

𝑎𝑏 ≥ −𝑎2 + 3
2𝑎 ≥ min (− (12)

2
+ 3
2 ⋅

1
2 , −1

2 + 3
2 ⋅ 1)

= min (12 ,
1
2) =

1
2 .

Thus, we cannot have 𝐹𝑅(1) < 𝐹𝑅(1) and 𝐹𝑅(2) > 𝐹𝑅(2).
Similarly, if 𝑅 = (1/2, 1/2) and 𝑅 = (𝑎, 𝑏), then 𝑄𝑅(𝑥) =

𝑥2 + 𝑥 + 1/4 and 𝑄𝑅(𝑥) = 𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑎𝑏. If 𝑎 + 𝑏 ≤ 1
then by the inequality between the geometric and arith-
metic means, √𝑎𝑏 ≤ (𝑎 + 𝑏)/2 ≤ 1/2, so 𝑎𝑏 ≤ 1/4. Thus,
we cannot have 𝐹𝑅(1) > 𝐹𝑅(1) and 𝐹𝑅(2) < 𝐹𝑅(2).

5. Teams
Let us consider now what our model tells us about teams
of agents. Suppose we have a team of two agents,3 and for
skill 𝑖, their weakness is 𝑅1(𝑖) and 𝑅2(𝑖), respectively. We
assume independence (in the sense of probability theory),
so the probability of not making progress on a problem
using skill 𝑖 is the product 𝑅1(𝑖)⋅𝑅2(𝑖). As for a single agent,
we will speak of the strength and weakness vectors of a
team.

We can take the diversity of a team to be the lack of over-
lap of their strengths. While this is not a formal definition,
we can often say which of two teams has larger diversity.
Similarly, we can speak of the ability of the team. Here
we can use the skillfulness as the measure, although The-
orem 5 suggests that it is not an ideal measure. However,
again we can often say which of two teams (or members
of the team) has larger ability.

Let us consider the simple example where there are
two agents in the team, and each of them has two skills
of strength 1/2. There are three possibilities: two, one,
or none of the skills coincide. Then we get for the
team three possible strength vectors: (3/4, 3/4, 0, … , 0),
(3/4, 1/2, 1/2, 0, … , 0), and (1/2, 1/2, 1/2, 1/2, 0, … , 0). Fig-
ure 5 illustrates the results. We see that with the same levels
of abilities of the members of the team, more diversity in

3The situation should be similar for larger teams.
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Figure 5. Team of two agents, each with two skills of strength
1/2. The black graph corresponds to a team whose skills
coincide, the red graph to a team sharing one skill, and the
green one to a team with no skills in common.
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Figure 6. Like Figure 5, but with two additional graphs. The
dark blue graph corresponds to the team strength vector
(0.91, 0.91, 0, … , 0) (that is, strength of skills 0.7, but no
diversity), the orange graph to (0.4, 0.4, 0.4, 0.4, 0, … , 0) (that is,
strength of skills 0.4 and maximal diversity).

their skills gives better results, except for the easiest prob-
lems.

This phenomenon is easy to explain. Consider two vec-
tors 𝑅1 and 𝑅2, the same except the values at some 𝑖, 𝑗.
They come from a team of agents with prescribed skills,
slightly differently placed. For 𝑅1 we have more diversity,
so 𝑅1(𝑖) = 𝑎 ∈ (0, 1) comes from one agent, and 𝑅1(𝑗) =
𝑏 ∈ (0, 1) from another agent. For 𝑅2, diversity is smaller,
so 𝑅2(𝑖) = 𝑎𝑏 and 𝑅2(𝑗) = 1. Then there is a polyno-
mial T, with nonnegative coefficients, such that 𝑄𝑅1(𝑥) =
𝑇(𝑥)(𝑥 + 𝑎)(𝑥 + 𝑏) and 𝑄𝑅2(𝑥) = 𝑇(𝑥)(𝑥 + 𝑎𝑏)(𝑥 + 1). We
have (𝑥+𝑎)(𝑥+𝑏) = 𝑥2+(𝑎+𝑏)𝑥+𝑎𝑏 and (𝑥+𝑎𝑏)(𝑥+1) =
𝑥2+(𝑎𝑏+1)𝑥+𝑎𝑏 and (𝑎𝑏+1)−(𝑎+𝑏) = (1−𝑎)(1−𝑏) > 0,
the coefficients of the polynomial 𝑄𝑅2 are strictly larger
than the coefficients of the polynomial𝑄𝑅1 (except the first
and last coefficients, for which we have the equality). This

Figure 7. Team of two agents for the security problem. The
black graph corresponds to the strength vector consisting of
ten strengths 0.91 and ten 0; the red graph to the vector
consisting of five strengths 0.91, ten 0.7, and five 0; and the
green one to the vector consisting of twenty strengths 0.7.

means that if ability is kept constant, by increasing diver-
sity of skills we get better chances for success.

This result differs from what we saw about specializa-
tion and versatility. This is because the skillfulness of a
team is usually smaller than the sum of each member’s
skillfulness.

We can ask what happens if we change the abilities of
themembers of the team. In Figure 6 we added two graphs.
One of them corresponds to larger abilities but no diver-
sity; the other one corresponds to smaller abilities but
larger diversity. By comparing the two lowest graphs with
each other, and two highest graphs with each other, we
see that to some degree ability and diversity of skills are ex-
changeable. However, in this example, for easier problems
ability is more important, while for more difficult ones di-
versity is more important. Of course, we do not know how
this applies to real life situations, since our model may or
may not fit them (cf. Theorem 5).

However, if the ability of one or more team members
increases (and no other changes aremade), the coefficients
of the polynomial𝑄 for the team decrease, so we get better
chances for success for problems of all difficulties.

6. Security
Let us look at a possible adaptation of our model to a se-
curity problem. Here the agents are trying to defend an
organization against an attack (for instance, by hackers).

The attacker has𝑝 possible lines of attack (out of 𝑛 possi-
ble), and for each of them the skillfulness of the agent gives
us the probability of stopping this line of attack. Thus, the
average probability of stopping an attack of strength 𝑝 is
𝐹𝑆(𝑝). Note that for problem solving large 𝑝meant an easy
problem; here large 𝑝means a strong attack.

In earlier sections we wanted to minimize our probabil-
ity of failure 𝐹𝑅(𝑝). In contrast, we want now to maximize
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Figure 8. Team of two agents for the security problem. The
red graph corresponds to the vector consisting of twenty
strengths 0.7; and the blue one to the vector consisting of four
strengths 0.97, twelve strengths 0.9, and four strengths 0.

the attacker’s chance of failure 𝐹𝑆(𝑝). Therefore, by the re-
sults for problem solving, for security purposes versatility
is better than specialization.

This also means that in this application diversity of
skills in a team plays an even larger role than for problem
solving. Diversity corresponds to more uniform spread of
strengths, which for the security problem is useful even for
one agent. An example similar to the one from Figure 5 is
illustrated in Figure 7. We consider a team consisting of
two agents, each of them having 10 strengths 0.7. Then
we compare three possibilities: all, half, or none of the
strengths coincide. We get for the team three strength vec-
tors. The first one consists of ten strengths 0.91 and ten 0;
the second one of five strengths 0.91, ten 0.7, and five 0;
and the third one of twenty strengths 0.7.

Here also diversity and ability are to some degree inter-
changeable. For example, if we have two agents, one with
sixteen strengths 0.7, and the other one with four strengths
0.7, then in themost diverse casewe get for the team twenty
strengths 0.7. If the first agent’s strengths are 0.9 instead
of 0.7 and we consider the least diverse case, we get for
the team four strengths 0.97, twelve strengths 0.9, and four
strengths 0. The first team will be better for strong attacks,
but the second one will be better for weak attacks (see Fig-
ure 8).
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