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1. Introduction
Neurons in the brain are constantly flickering with activ-
ity, which can be spontaneous or in response to stimuli
[LBH09]. Because of positive feedback loops and the po-
tential for runaway excitation, real neural networks often
possess an abundance of inhibition that serves to shape
and stabilize the dynamics [YMSL05, KAY14]. The exci-
tatory neurons in such networks exhibit intricate patterns
of connectivity, whose structure controls the allowed pat-
terns of activity. A central question in neuroscience is thus:
how does network connectivity shape dynamics?

For a given model, this question becomes a mathemat-
ical challenge. The goal is to develop a theory that di-
rectly relates properties of a nonlinear dynamical system
to its underlying graph. Such a theory can provide in-
sights and hypotheses about how network connectivity
constrains activity in real brains. It also opens up new pos-
sibilities for modeling neural phenomena in a mathemat-
ically tractable way.
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Herewe describe a class of inhibition-dominated neural
networks corresponding to directed graphs, and introduce
some of the theory that has been developed to study them.
The heart of the theory is a set of parameter-independent
graph rules that enables us to directly predict features of
the dynamics from combinatorial properties of the graph.
Specifically, graph rules allow us to constrain, and in some
cases fully determine, the collection of stable and unstable
fixed points of a network based solely on graph structure.

Stable fixed points are themselves static attractors of
the network, and have long been used as a model of
stored memory patterns [Hop82]. In contrast, unstable
fixed points have been shown to play an important role
in shaping dynamic (nonstatic) attractors, such as limit
cycles [PMMC22]. By understanding the fixed points of
simple networks, and how they relate to the underlying
architecture, we can gain valuable insight into the high-
dimensional nonlinear dynamics of neurons in the brain.

For more complex architectures, built from smaller
component subgraphs, we present a series of gluing rules
that allow us to determine all fixed points of the network
by gluing together those of the components. These gluing
rules are reminiscent of sheaf-theoretic constructions, with
fixed points playing the role of sections over subnetworks.

First, we review some basics of recurrent neural net-
works and a bit of historical context.
Basic network setup. A recurrent neural network is a di-
rected graph 𝐺 together with a prescription for the dy-
namics on the vertices, which represent neurons (see Fig-
ure 1A). To each vertex 𝑖 we associate a function 𝑥𝑖(𝑡) that
tracks the activity level of neuron 𝑖 as it evolves in time. To
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each ordered pair of vertices (𝑖, 𝑗) we assign a weight, 𝑊𝑖𝑗,
governing the strength of the influence of neuron 𝑗 on neu-
ron 𝑖. In principle, there can be a nonzero weight between
any two nodes, with the graph 𝐺 providing constraints on
the allowed values 𝑊𝑖𝑗, depending on the specifics of the
model.

A B

Figure 1. (A) Recurrent network setup. (B) A Ramón y Cajal
drawing of real cortical neurons.

The dynamics often take the form of a system of ODEs,
called a firing rate model [DA01]:

𝜏𝑖
𝑑𝑥𝑖
𝑑𝑡 = −𝑥𝑖 + 𝜑(

𝑛
∑
𝑗=1

𝑊𝑖𝑗𝑥𝑗 + 𝑏𝑖) , (1)

= −𝑥𝑖 + 𝜑(𝑦𝑖), (2)

for 𝑖 = 1, . . . , 𝑛. The various terms in the equation are
illustrated in Figure 1, and can be thought of as follows:

• 𝑥𝑖 = 𝑥𝑖(𝑡) is the firing rate of a single neuron 𝑖 (or the
average activity of a subpopulation of neurons);

• 𝜏𝑖 is the “leak” timescale, governing howquickly a neu-
ron’s activity exponentially decays to zero in the ab-
sence of external or recurrent input;

• 𝑊 is a real-valued matrix of synaptic interaction
strengths, with 𝑊𝑖𝑗 representing the strength of the
connection from neuron 𝑗 to neuron 𝑖;

• 𝑏𝑖 = 𝑏𝑖(𝑡) is a real-valued external input to neuron 𝑖
that may or may not vary with time;

• 𝑦𝑖 = 𝑦𝑖(𝑡) = ∑𝑛
𝑗=1𝑊𝑖𝑗𝑥𝑗(𝑡) + 𝑏𝑖(𝑡) is the total input to

neuron 𝑖 as a function of time; and
• 𝜑 ∶ ℝ → ℝ is a nonlinear, but typically monotone

increasing function.

Of particular importance for this article is the family of
threshold-linear networks (TLNs). In this case, the nonlinear-
ity is chosen to be the popular threshold-linear (or ReLU)
function,

𝜑(𝑦) = [𝑦]+ = max{0, 𝑦}.
TLNs are common firing rate models that have been
used in computational neuroscience for decades [SY12,
TSSM97, HSM+00, BF22]. The use of threshold-linear
units in neural modeling dates back at least to 1958
[HR58]. In the last 20 years, TLNs have also been shown to
be surprisingly tractable mathematically [HSS03, CDI13],

[CM16, MDIC16, CGM19, PLACM22], though much of
the theory remains underdeveloped. We are especially in-
terested in competitive or inhibition-dominated TLNs, where
the𝑊 matrix is nonpositive so the effective interaction be-
tween any pair of neurons is inhibitory. In this case, the
activity remains bounded despite the lack of saturation in
the nonlinearity [MDIC16]. These networks produce com-
plex nonlinear dynamics and can possess a remarkable va-
riety of attractors [MDIC16,PLACM22,PMMC22].

Firing rate models of the form (1) are examples of recur-
rent networks because the𝑊 matrix allows for all pairwise
interactions, and there is no constraint that the architec-
ture (i.e., the underlying graph 𝐺) be feedforward. Unlike
deep neural networks, which can be thought of as clas-
sifiers implementing a clustering function, recurrent net-
works are primarily thought of as dynamical systems. And
themain purpose of these networks is tomodel the dynam-
ics of neural activity in the brain. The central question is
thus:

Question 1. Given a firing rate model defined by (1) with
network parameters (𝑊, 𝑏) and underlying graph 𝐺, what
are the emergent network dynamics? What can we say
about the dynamics from knowledge of 𝐺 alone?

We are particularly interested in understanding the at-
tractors of such a network, including both stable fixed
points and dynamic attractors such as limit cycles. The
attractors are important because they comprise the set of
possible asymptotic behaviors of the network in response
to different inputs or initial conditions (see Figure 2).

Note that Question 1 is posed for a fixed connectivity
matrix 𝑊 , but of course 𝑊 can change over time (e.g.,
as a result of learning or training of the network). Here
we restrict ourselves to considering constant 𝑊 matrices;
this allows us to focus on understanding network dynam-
ics on a fast timescale, assuming slowly varying synaptic
weights. Understanding the dynamics associated to chang-
ing𝑊 is an important topic, currently beyond the scope of
this work.
Historical interlude: memories as attractors. Attractor
neural networks became popular in the 1980s as mod-
els of associative memory encoding and retrieval. The
best-known example from that era is the Hopfield model
[Hop82], originally conceived as a variant on the Ising
model from statistical mechanics. In the Hopfield model,
the neurons can be in one of two states, 𝑠𝑖 ∈ {±1}, and the
activity evolves according to the discrete time update rule:

𝑠𝑖(𝑡 + 1) = sgn (
𝑛
∑
𝑗=1

𝑊𝑖𝑗𝑠𝑗(𝑡) − 𝜃𝑖) .

Hopfield’s famous 1982 result is that the dynamics are
guaranteed to converge to a stable fixed point, provided
the interaction matrix 𝑊 is symmetric: that is, 𝑊𝑖𝑗 = 𝑊𝑗𝑖
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for every 𝑖, 𝑗 ∈ {1, … , 𝑛}. Specifically, he showed that the
“energy” function,

𝐸 = −12 ∑𝑖,𝑗
𝑊𝑖𝑗𝑠𝑖𝑠𝑗 +∑

𝑖
𝜃𝑖𝑠𝑖,

decreases along trajectories of the dynamics, and thus acts
as a Lyapunov function [Hop82]. The stable fixed points
are local minima of the energy landscape (Figure 2A). A
stronger, more general convergence result for competitive
neural networks was shown in [CG83].

Figure 2. Attractor neural networks. (A) For symmetric Hopfield
networks and symmetric inhibitory TLNs, trajectories are
guaranteed to converge to stable fixed point attractors.
Sample trajectories are shown, with the basin of attraction for
the blue stable fixed point outlined in blue. (B) For
asymmetric TLNs, dynamic attractors can coexist with (static)
stable fixed point attractors.

These fixed points are the only attractors of the network,
and they represent the set of memories encoded in the net-
work. Hopfield networks perform a kind of pattern com-
pletion: given an initial condition 𝑠(0), the activity evolves
until it converges to one of multiple stored patterns in
the network. If, for example, the individual neurons store
black and white pixel values, this process could input a
corrupted image and recover the original image, provided
it has previously been stored as a stable fixed point in the
network by appropriately selecting the weights of the 𝑊
matrix. The novelty at the timewas the nonlinear phenom-
enon of multistability: namely, that the network could en-
code many such stable equilibria and thus maintain an en-
tire catalogue of stored memory patterns. The key to Hop-
field’s convergence result was the requirement that 𝑊 be
a symmetric interaction matrix. Although this was known
to be an unrealistic assumption for real (biological) neu-
ral networks, it was considered a tolerable price to pay
for guaranteed convergence. One did not want an asso-
ciative memory network that wandered the state space in-
definitely without ever recalling a definite pattern.

Twenty years later, Hahnloser, Seung, and others fol-
lowed up and proved a similar convergence result in
the case of symmetric threshold-linear networks [HSS03].
More results on the collections of stable fixed points that
can be simultaneously encoded in a symmetric TLN can
be found in [CDI13, CM16], including some unexpected

connections to Cayley–Menger determinants and classical
distance geometry.

In all of this work, stable fixed points have served as
the model for encoded memories. Indeed, these are the
only types of attractors that arise for symmetric Hopfield
networks or symmetric TLNs. Whether or not guaranteed
convergence to stable fixed points is desirable, however, is
a matter of perspective. For a network whose job it is to
perform pattern completion or classification for static im-
ages (or codewords), as in the classical Hopfield model,
this is exactly what one wants. But it is also important
to consider memories that are temporal in nature, such
as sequences and other dynamic patterns of activity. Se-
quential activity, as observed in central pattern generator
circuits (CPGs) and spontaneous activity in hippocampus
and cortex, is more naturally modeled by dynamic attrac-
tors such as limit cycles. This requires shifting attention to
the asymmetric case, in order to be able to encode attractors
that are not stable fixed points (Figure 2B).
Beyond stable fixed points. When the symmetry assump-
tion is removed, TLNs can support a rich variety of dy-
namic attractors such as limit cycles, quasiperiodic attrac-
tors, and even strange (chaotic) attractors. Indeed, this
richness can already be observed in a special class of TLNs
called combinatorial threshold-linear networks (CTLNs),
introduced in Section 3. These networks are defined from
directed graphs, and the dynamics are almost entirely de-
termined by the graph structure. A striking feature of
CTLNs is that the dynamics are shaped not only by the
stable fixed points, but also the unstable fixed points. In
particular, we have observed a direct correspondence be-
tween certain types of unstable fixed points and dynamic
attractors (see Figure 3). This is reviewed in Section 4.

stable fixed point
attractor

unstable fixed point
“eye of an attractor”

unstable fixed point
“tipping point”

A B C

Figure 3. Stable and unstable fixed points. (A) Stable fixed
points are attractors of the network. (B-C) Unstable fixed
points are not themselves attractors, but certain unstable
fixed points seem to correspond to dynamic attractors (B),
while others function solely as tipping points between
multiple attractors (C).

Despite exhibiting complex, high-dimensional, nonlin-
ear dynamics, recent work has shown that TLNs—and
especially CTLNs—are surprisingly tractable mathemati-
cally. Motivated by the relationship between fixed points
and attractors, a great deal of progress has been made on
the problem of relating fixed point structure to network
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architecture. In the case of CTLNs, this has resulted in a
series of graph rules: theorems that allow us to rule in and
rule out potential fixed points based purely on the struc-
ture of the underlying graph [CGM19,PLACM22]. In Sec-
tion 5, we give a novel exposition of graph rules, and intro-
duce several elementary graph rules from which the others
can be derived.

Inhibition-dominated TLNs and CTLNs also display a
remarkable degree of modularity. Namely, attractors as-
sociated to smaller networks can be embedded in larger
ones with minimal distortion [PMMC22]. This is likely a
consequence of the high levels of background inhibition:
it serves to stabilize and preserve local properties of the
dynamics. These networks also exhibit a kind of compo-
sitionality, wherein fixed points and attractors of subnet-
works can be effectively “glued” together into fixed points
and attractors of a larger network. These local-to-global re-
lationships are given by a series of theorems we call gluing
rules, given in Section 6.

2. TLNs and Hyperplane Arrangements
For firing rate models with threshold-nonlinearity 𝜑(𝑦) =
[𝑦]+ = max{0, 𝑦}, the network equations (1) become

𝑑𝑥𝑖
𝑑𝑡 = −𝑥𝑖 + [

𝑛
∑
𝑗=1

𝑊𝑖𝑗𝑥𝑗 + 𝑏𝑖]
+

= −𝑥𝑖 + [𝑦𝑖]+, (3)

for 𝑖 = 1, . . . , 𝑛. We also assume 𝑊𝑖𝑖 = 0 for each 𝑖. Note
that the leak timescales have been set to 𝜏𝑖 = 1 for all 𝑖. We
thus measure time in units of this timescale.

For constant𝑊 matrix and input vector 𝑏, the equations

𝑦𝑖 =
𝑛
∑
𝑗=1

𝑊𝑖𝑗𝑥𝑗 + 𝑏𝑖 = 0,

define a hyperplane arrangement ℋ = ℋ(𝑊, 𝑏) =
{𝐻1, … , 𝐻𝑛} in ℝ𝑛. The 𝑖-th hyperplane 𝐻𝑖 is defined by
𝑦𝑖 = ⃗𝑛𝑖 ⋅ 𝑥 + 𝑏𝑖 = 0, with normal vector ⃗𝑛𝑖 = (𝑊𝑖1, … ,𝑊𝑖𝑛),
population activity vector 𝑥 = (𝑥1, … , 𝑥𝑛), and affine shift
𝑏𝑖. If𝑊𝑖𝑗 ≠ 0, then 𝐻𝑖 intersects the 𝑗-th coordinate axis at
the point 𝑥𝑗 = −𝑏𝑖/𝑊𝑖𝑗. 𝐻𝑖 is parallel to the 𝑖-th axis.

The hyperplanes ℋ partition the positive orthant ℝ𝑛
≥0

into chambers. Within the interior of each chamber, each
point 𝑥 is on the plus or minus side of each hyperplane
𝐻𝑖. The equations thus reduce to a linear system of ODEs,
with either 𝑑𝑥𝑖/𝑑𝑡 = −𝑥𝑖 or 𝑑𝑥𝑖/𝑑𝑡 = −𝑥𝑖 + 𝑦𝑖 = −𝑥𝑖 +
∑𝑛

𝑗=1𝑊𝑖𝑗𝑥𝑗+𝑏𝑖 for each 𝑖. In particular, TLNs are piecewise-
linear dynamical systemswith a different linear system gov-
erning the dynamics in each chamber.

A fixed point of a TLN (3) is a point 𝑥∗ ∈ ℝ𝑛 that satisfies
𝑑𝑥𝑖/𝑑𝑡|𝑥=𝑥∗ = 0 for each 𝑖 ∈ {1, … , 𝑛}. In particular, we
must have

𝑥∗𝑖 = [𝑦∗𝑖 ]+ for all 𝑖 = 1, … , 𝑛, (4)

Figure 4. TLNs as a patchwork of linear systems. (A) The
connectivity matrix 𝑊 , input 𝑏, and differential equations for a
TLN with 𝑛 = 2 neurons. (B) The state space is divided into
chambers (regions) 𝑅𝜍, each having dynamics governed by a
different linear system 𝐿𝜍. The chambers are defined by the
hyperplanes {𝐻𝑖}𝑖=1,2, with 𝐻𝑖 defined by 𝑦𝑖 = 0 (gray lines).

where 𝑦∗𝑖 is 𝑦𝑖 evaluated at the fixed point. We typically
assume a nondegeneracy condition on (𝑊, 𝑏) [CGM19],
which guarantees that each linear system is nondegenerate
and has a single fixed point. This fixed point may or may
not lie within the chamber where its corresponding linear
system applies. The fixed points of the TLN are precisely
the fixed points of the linear systems that lie within their
respective chambers.

Figure 4 illustrates the hyperplanes and chambers for a
TLN with 𝑛 = 2. Each chamber, denoted as a region 𝑅𝜍,
has its own linear system of ODEs, 𝐿𝜍, for 𝜎 = ∅, {1}, {2},
or {1, 2}. The fixed points corresponding to each linear sys-
tem are denoted by 𝑥∗, in matching color. Note that only
chamber 𝑅{2} contains its own fixed point (in red). This
fixed point, 𝑥∗ = [0, 𝑏2]𝑇 , is thus the only fixed point of
the TLN.

Figure 5 shows an example of a TLN on 𝑛 = 3 neu-
rons. The 𝑊 matrix is constructed from a 3-cycle graph
and 𝑏𝑖 = 𝜃 = 1 for each 𝑖. The dynamics fall into a limit cy-
cle where the neurons fire in a repeating sequence that fol-
lows the arrows of the graph. This time, the TLN equations
define a hyperplane arrangement in ℝ3, again with each
hyperplane 𝐻𝑖 defined by 𝑦𝑖 = 0 (Figure 5C). An initial
condition near the unstable fixed point in the all + cham-
ber (where 𝑦𝑖 > 0 for each 𝑖) spirals out and converges
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Figure 5. A network on 𝑛 = 3 neurons, its hyperplane arrangement, and limit cycle. (A) A TLN whose connectivity matrix 𝑊 is
dictated by a 3-cycle graph, together with the TLN equations. (B) The TLN from A produces firing rate activity in a periodic
sequence. (C) (Left) The hyperplane arrangement defined by the equations 𝑦𝑖 = 0, with a trajectory initialized near the fixed
point shown in black. (Right) A close-up of the trajectory, spiraling out from the unstable fixed point and falling into a limit
cycle. Different colors correspond to different chambers of the hyperplane arrangement through which the trajectory passes.

to a limit cycle that passes through four distinct cham-
bers. Note that the threshold nonlinearity is critical for the
model to produce nonlinear behavior such as limit cycles;
without it, the system would be linear. It is, nonetheless,
nontrivial to prove that the limit cycle shown in Figure 5
exists. A recent proof was given for a special family of TLNs
constructed from any 𝑘-cycle graph [BCRR21].
The set of all fixed points FP(𝑊, 𝑏). A central object that
is useful for understanding the dynamics of TLNs is the
collection of all fixed points of the network, both stable
and unstable. The support of a fixed point 𝑥∗ ∈ ℝ𝑛 is the
subset of active neurons,

supp 𝑥∗ def= {𝑖 ∣ 𝑥∗𝑖 > 0}.
Our nondegeneracy condition (that is generically satisfied)
guarantees we can have at most one fixed point per cham-
ber of the hyperplane arrangement ℋ(𝑊, 𝑏), and thus at
most one fixed point per support. We can thus label all
the fixed points of a given network by their supports:

FP(𝑊, 𝑏) def= {𝜎 ⊆ [𝑛] ∣ 𝜎 = supp 𝑥∗, for some

fixed pt 𝑥∗ of the associated TLN},

where [𝑛] def= {1, … , 𝑛}. For each support 𝜎 ∈ FP(𝑊, 𝑏), the
fixed point itself is easily recovered. Outside the support,
𝑥∗𝑖 = 0 for all 𝑖 ∉ 𝜎. Within the support, 𝑥∗ is given by:

𝑥∗𝜍 = (𝐼 −𝑊𝜍)−1𝑏𝜍.
Here 𝑥∗𝜍 and 𝑏𝜍 are the column vectors obtained by restrict-
ing 𝑥∗ and 𝑏 to the indices in 𝜎, and𝑊𝜍 is the induced prin-
cipal submatrix obtained by restricting rows and columns
of 𝑊 to 𝜎.

From (4), we see that a fixed point with supp 𝑥∗ = 𝜎
must satisfy the “on-neuron” conditions, 𝑦∗𝑖 > 0 for all
𝑖 ∈ 𝜎, as well as the “off-neuron” conditions, 𝑦∗𝑘 ≤ 0 for all
𝑘 ∉ 𝜎, to ensure that 𝑥∗𝑖 > 0 for each 𝑖 ∈ 𝜎 and 𝑥∗𝑘 = 0 for

each 𝑘 ∉ 𝜎. Equivalently, these conditions guarantee that
the fixed point 𝑥∗ of 𝐿𝜍 lies inside its corresponding cham-
ber, 𝑅𝜍. Note that for such a fixed point, the values 𝑥∗𝑖 for
𝑖 ∈ 𝜎 depend only on the restricted subnetwork (𝑊𝜍, 𝑏𝜍).
Therefore, the on-neuron conditions for 𝑥∗ in (𝑊, 𝑏) are
satisfied if and only if they hold in (𝑊𝜍, 𝑏𝜍). Since the
off-neuron conditions are trivially satisfied in (𝑊𝜍, 𝑏𝜍), it
follows that 𝜎 ∈ FP(𝑊𝜍, 𝑏𝜍) is a necessary condition for
𝜎 ∈ FP(𝑊, 𝑏). It is not, however, sufficient, as the off-
neuron conditions may fail in the larger network.

Conveniently, the off-neuron conditions are indepen-
dent and can be checked one neuron at a time. Thus,

𝜎 ∈ FP(𝑊, 𝑏) ⇔ 𝜎 ∈ FP(𝑊𝜍∪𝑘, 𝑏𝜍∪𝑘) for all 𝑘 ∉ 𝜎.
When 𝜎 ∈ FP(𝑊𝜍, 𝑏𝜍) satisfies all the off-neuron condi-
tions, so that 𝜎 ∈ FP(𝑊, 𝑏), we say that 𝜎 survives to the
larger network; otherwise, we say 𝜎 dies.

The fixed point corresponding to 𝜎 ∈ FP(𝑊, 𝑏) is sta-
ble if and only if all eigenvalues of −𝐼 + 𝑊𝜍 have negative
real part. For competitive (or inhibition-dominated) TLNs,
all fixed points—whether stable or unstable—have a stable
manifold. This is because competitive TLNs have 𝑊𝑖𝑗 ≤ 0
for all 𝑖, 𝑗 ∈ [𝑛]. Applying the Perron–Frobenius theorem
to −𝐼 + 𝑊𝜍, we see that the largest magnitude eigenvalue
is guaranteed to be real and negative. The corresponding
eigenvector provides an attracting direction into the fixed
point. Combining this observation with the nondegener-
acy condition reveals that the unstable fixed points are all
hyperbolic (i.e., saddle points).

3. Combinatorial Threshold-Linear Networks
Combinatorial threshold-linear networks (CTLNs) are a spe-
cial case of competitive (or inhibition-dominated) TLNs,
with the same threshold nonlinearity, that were first intro-
duced in [MDIC16]. What makes CTLNs special is that
we restrict to having only two values for the connection
strengths𝑊𝑖𝑗, for 𝑖 ≠ 𝑗. These are obtained as follows from
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a directed graph 𝐺, where 𝑗 → 𝑖 indicates that there is an
edge from 𝑗 to 𝑖 and 𝑗 ↛ 𝑖 indicates that there is no such
edge:

𝑊𝑖𝑗 =
⎧
⎨
⎩

0 if 𝑖 = 𝑗,
−1 + 𝜀 if 𝑗 → 𝑖 in 𝐺,
−1 − 𝛿 if 𝑗 ↛ 𝑖 in 𝐺.

(5)

Additionally, CTLNs typically have a constant external in-
put 𝑏𝑖 = 𝜃 for all 𝑖 in order to ensure the dynamics are in-
ternally generated rather than inherited from a changing
or spatially heterogeneous input.

A CTLN is thus completely specified by the choice of
a graph 𝐺, together with three real parameters: 𝜀, 𝛿, and
𝜃. We additionally require that 𝛿 > 0, 𝜃 > 0, and 0 <
𝜀 < 𝛿

𝛿 + 1 . When these conditions are met, we say the

parameters are within the legal range. Note that the upper
bound on 𝜀 implies 𝜀 < 1, and so the 𝑊 matrix is always
effectively inhibitory. For fixed parameters, only the graph
𝐺 varies between networks. The network in Figure 5 is a
CTLN with the standard parameters 𝜀 = 0.25, 𝛿 = 0.5, and
𝜃 = 1.

We interpret a CTLN as modeling a network of 𝑛 ex-
citatory neurons, whose net interactions are effectively
inhibitory due to a strong global inhibition (Figure 6).
When 𝑗 ↛ 𝑖, we say 𝑗 strongly inhibits 𝑖; when 𝑗 → 𝑖, we
say 𝑗 weakly inhibits 𝑖. The weak inhibition is thought of as
the sum of an excitatory synaptic connection and the back-
ground inhibition. Note that because−1−𝛿 < −1 < −1+𝜀,
when 𝑗 ↛ 𝑖, neuron 𝑗 inhibits 𝑖 more than it inhibits itself
via its leak term; when 𝑗 → 𝑖, neuron 𝑗 inhibits 𝑖 less than
it inhibits itself. These differences in inhibition strength
cause the activity to follow the arrows of the graph.

graphneural network

Figure 6. CTLNs. A neural network with excitatory pyramidal
neurons (triangles) and a background network of inhibitory
interneurons (gray circles) that produces a global inhibition.
The corresponding graph (right) retains only the excitatory
neurons and their connections.

The set of fixed point supports of a CTLN with graph 𝐺
is denoted as:

FP(𝐺, 𝜀, 𝛿) def= {𝜎 ⊆ [𝑛] ∣ 𝜎 = supp 𝑥∗ for some

fixed pt 𝑥∗ of the associated CTLN}.
FP(𝐺, 𝜀, 𝛿) is precisely FP(𝑊, 𝑏), where 𝑊 and 𝑏 are speci-
fied by a CTLN with graph 𝐺 and parameters 𝜀 and 𝛿. Note

that FP(𝐺, 𝜀, 𝛿) is independent of 𝜃, provided 𝜃 is constant
across neurons as in a CTLN. It is also frequently indepen-
dent of 𝜀 and 𝛿. For this reasonwe often refer to it as FP(𝐺),
especially when a fixed choice of 𝜀 and 𝛿 is understood.

The legal range condition, 𝜀 < 𝛿
𝛿 + 1 , is motivated by

a theorem in [MDIC16]. It ensures that single directed
edges 𝑖 → 𝑗 are not allowed to support stable fixed points
{𝑖, 𝑗} ∈ FP(𝐺, 𝜀, 𝛿). This allows us to prove the following
theorem connecting a certain graph structure to the ab-
sence of stable fixed points. Note that a graph is oriented if
for any pair of nodes, 𝑖 → 𝑗 implies 𝑗 ↛ 𝑖 (i.e., there are
no bidirectional edges). A sink is a node with no outgoing
edges.

Theorem 3.1 ([MDIC16, Theorem 2.4]). Let 𝐺 be an ori-
ented graph with no sinks. Then for any parameters 𝜀, 𝛿, 𝜃 in
the legal range, the associated CTLN has no stable fixed points.
Moreover, the activity is bounded.

The graph in Figure 5A is an oriented graph with no
sinks. It has a single fixed point, FP(𝐺) = {123}, irrespec-
tive of the parameters (note that we use “123” as shorthand
for the set {1, 2, 3}). This fixed point is unstable and the dy-
namics converge to a limit cycle (Figure 5C).

Even when there are no stable fixed points, the dynam-
ics of a CTLN are always bounded [MDIC16]. In the limit
as 𝑡 → ∞, we can bound the total population activity as a
function of the parameters 𝜀, 𝛿, and 𝜃:

𝜃
1 + 𝛿 ≤

𝑛
∑
𝑖=1

𝑥𝑖 ≤
𝜃

1 − 𝜀 . (6)

In simulations, we observe a rapid convergence to this
regime.

Figure 7 depicts four solutions for the same CTLN on
𝑛 = 100 neurons. The graph 𝐺 was generated as a directed
Erdos–Renyi random graph with edge probability 𝑝 = 0.2;
note that it is not an oriented graph. Since the network
is deterministic, the only difference between simulations
is the initial conditions. While panel A appears to show
chaotic activity, the solutions in panels B, C, and D all
settle into a fixed point or a limit cycle within the allot-
ted time frame. The long transient of panel B is especially
striking: around 𝑡 = 200, the activity appears as though it
will fall into the same limit cycle from panel D, but then
escapes into another period of chaotic-looking dynamics
before abruptly converging to a stable fixed point. In all
cases, the total population activity rapidly converges to lie
within the bounds given in (6), depicted in gray.
Fun examples. Despite their simplicity, CTLNs display a
rich variety of nonlinear dynamics. Even very small net-
works can exhibit interesting attractors with unexpected
properties. Theorem 3.1 tells us that one way to guaran-
tee that a network will produce dynamic—as opposed to
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Figure 7. Dynamics of a CTLN network on 𝑛 = 100 neurons. The graph 𝐺 is a directed Erdos–Renyi random graph with edge
probability 𝑝 = 0.2 and no self loops. The CTLN parameters are 𝜀 = 0.25, 𝛿 = 0.5, and 𝜃 = 1. Initial conditions for each neuron,
𝑥𝑖(0), are randomly and independently chosen from the uniform distribution on [0, 0.1]. (A-D) Four solutions from the same
deterministic network, differing only in the choice of initial conditions. In each panel, the top plot shows the firing rate as a
function of time for each neuron in grayscale. The middle plot shows the summed total population activity, ∑𝑛

𝑖=1 𝑥𝑖, which
quickly becomes trapped between the horizontal gray lines—the bounds in equation (6). The bottom plot shows individual rate
curves for all 100 neurons, in different colors. (A) The network appears chaotic, with some recurring patterns of activity. (B) The
solution initially appears to be chaotic, like the one in A, but eventually converges to a stable fixed point supported on a 3-clique.
(C) The solution converges to a limit cycle after 𝑡 = 300. (D) The solution converges to a different limit cycle after 𝑡 = 200. Note
that one can observe brief “echoes” of this limit cycle in the transient activity of panel B.

static—attractors is to choose 𝐺 to be an oriented graph
with no sinks. The following examples are of this type.

The Gaudi attractor. Figure 8 shows two solutions to
a CTLN for a cyclically symmetric tournament1 graph on
𝑛 = 5 nodes. For some initial conditions, the solutions
converge to a somewhat boring limit cycle with the firing
rates 𝑥1(𝑡), . . . , 𝑥5(𝑡) all peaking in the expected sequence,
12345 (bottom middle). For a different set of initial con-
ditions, however, the solution converges to the beautiful
and unusual attractor displayed at the top.

Symmetry and synchrony. Because the pattern of weights
in a CTLN is completely determined by the graph 𝐺, any
symmetry of the graph necessarily translates to a symmetry
of the differential equations, and hence of the vector field.
It follows that the automorphism group of 𝐺 also acts on
the set of all attractors, which must respect the symmetry.
For example, in the cyclically symmetric tournament of

1A tournament is a directed graph in which every pair of nodes has exactly one
(directed) edge between them.

Figure 8, both the Gaudi attractor and the “boring” limit
cycle below it are invariant under the cyclic permutation
(12345): the solution is preserved up to a time translation.

Another way for symmetry to manifest itself in an at-
tractor is via synchrony. The network in Figure 9A depicts a
CTLNwith a graph on 𝑛 = 5 nodes that has a nontrivial au-
tomorphism group 𝐶3, cyclically permuting the nodes 2, 3,
and 4. In the corresponding attractor, the neurons 2, 3, 4
perfectly synchronize as the solution settles into the limit
cycle. Notice, however, what happens for the network in
Figure 9B. In this case, the limit cycle looks very similar to
the one in A, with the same synchrony among neurons 2, 3,
and 4. However, the graph is missing the 4 → 5 edge, and
so the graph has no nontrivial automorphisms. We refer
to this phenomenon as surprise symmetry.

On the flip side, a network with graph symmetry may
have multiple attractors that are exchanged by the group
action, but do not individually respect the symmetry. This
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Figure 8. Gaudi attractor. A CTLN for a cyclically symmetric tournament on 𝑛 = 5 nodes produces two distinct attractors,
depending on initial conditions. We call the top one the Gaudi attractor because the undulating curves are reminiscent of work
by the architect from Barcelona.
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Figure 9. Symmetry and synchrony. (A) A graph with
automorphism group 𝐶3 has an attractor where nodes 2, 3,
and 4 fire synchronously. (B) The symmetry is broken due to
the dropped 4 → 5 edge. Nevertheless, the attractor still
respects the (234) symmetry with nodes 2, 3, and 4 firing
synchronously. Note that both attractors are very similar limit
cycles, but the one in B has longer period. (Standard
parameters: 𝜀 = 0.25, 𝛿 = 0.5, 𝜃 = 1.)

is the more familiar scenario of spontaneous symmetry
breaking.

Emergent sequences. One of the most reliable properties
of CTLNs is the tendency of neurons to fire in sequence.
Although we have seen examples of synchrony, the global
inhibition promotes competitive dynamics wherein only
one or a few neurons reach their peak firing rates at the
same time. The sequences may be intuitive, as in the net-
works of Figures 8 and 9, following obvious cycles in the
graph. However, even for small networks the emergent se-
quences may be difficult to predict.

The network in Figure 10A has 𝑛 = 7 neurons, and the
graph is a tournament with no nontrivial automorphisms.
The corresponding CTLN appears to have a single, global
attractor, shown in Figure 10B. The neurons in this limit cy-
cle fire in a repeating sequence, 634517, with 5 being the
lowest-firing node. This sequence is highlighted in black
in the graph, and corresponds to a cycle in the graph. How-
ever, it is only one of many cycles in the graph. Why do
the dynamics select this sequence and not the others? And
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Figure 10. Emergent sequences can be difficult to predict. (A)
(Left) The graph of a CTLN that is a tournament on seven
nodes. (Right) The same graph, but with the cycle
corresponding to the sequential activity highlighted in black.
(B) A solution to the CTLN that converges to a limit cycle. This
appears to be the only attractor of the network for the
standard parameters.

why does neuron 2 drop out, while all others persist? This
is particularly puzzling given that node 2 has in-degree
three, while nodes 3 and 5 have in-degree two.

Indeed, local properties of a network, such as the in-
and out-degrees of individual nodes, are insufficient for
predicting the participation and ordering of neurons in
emergent sequences. Nevertheless, the sequence is fully
determined by the structure of 𝐺. We just have a limited
understanding of how. Recent progress in understanding
sequential attractors has relied on special network architec-
tures that are cyclic like the ones in Figure 9 [PLACM22].
Interestingly, although the graph in Figure 10 does not
have such an architecture, the induced subgraph generated
by the high-firing nodes 1, 3, 4, 6, and 7 is isomorphic to
the graph in Figure 8. This graph, as well as the two graphs
in Figure 9, have corresponding networks that are in some
sense irreducible in their dynamics. These are examples of
graphs that we refer to as core motifs [PMMC22].
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Figure 11. An example CTLN and its attractors. (A) The graph of a CTLN. The fixed point supports are given by FP(𝐺) = {4, 123, 1234},
irrespective of parameters 𝜀, 𝛿, 𝜃. (B) Solutions to the CTLN in A using the standard parameters 𝜃 = 1, 𝜀 = 0.25, and 𝛿 = 0.5. (Top)
The initial condition was chosen as a small perturbation of the fixed point supported on 123. The activity quickly converges to a
limit cycle where the high-firing neurons are the ones in the fixed point support. (Bottom) A different initial condition yields a
solution that converges to the static attractor corresponding to the stable fixed point on node 4. (C) The three fixed points are
depicted in a three-dimensional projection of the four-dimensional state space. Perturbations of the fixed point supported on
1234 produce solutions that either converge to the limit cycle or to the stable fixed point from B.

4. Minimal Fixed Points, Core Motifs,
and Attractors

Stable fixed points of a network are of obvious interest be-
cause they correspond to static attractors [HSS03,CDI13].
One of the most striking features of CTLNs, however, is
the strong connection between unstable fixed points and
dynamic attractors [PMMC22,PLACM22].

Question 2. For a given CTLN, can we predict the dy-
namic attractors of the network from its unstable fixed
points? Can the unstable fixed points be determined from
the structure of the underlying graph 𝐺?

Throughout this section, 𝐺 is a directed graph on 𝑛
nodes. Subsets 𝜎 ⊆ [𝑛] are often used to denote both the
collection of vertices indexed by 𝜎 and the induced sub-
graph 𝐺|𝜍. The corresponding network is assumed to be a
CTLN with fixed parameters 𝜀, 𝛿, and 𝜃.

Figure 11 provides an example to illustrate the relation-
ship between unstable fixed points and dynamic attractors.
Any CTLN with the graph in panel A has three fixed points,
with supports FP(𝐺) = {4, 123, 1234}. The collection of
fixed point supports can be thought of as a partially or-
dered set, ordered by inclusion. In our example, 4 and
123 are thus minimal fixed point supports, because they
are minimal under inclusion. It turns out that the cor-
responding fixed points each have an associated attractor
(Figure 11B). The one supported on 4, a sink in the graph,
yields a stable fixed point, while the 123 (unstable) fixed
point, whose induced subgraph 𝐺|123 is a 3-cycle, yields a
limit cycle attractor with high-firing neurons 1, 2, and 3.
Figure 11C depicts all three fixed points in the state space.
Here we can see that the third one, supported on 1234, acts
as a “tipping point” on the boundary of two basins of at-
traction. Initial conditions near this fixed point can yield

solutions that converge either to the stable fixed point or
the limit cycle.

Not all minimal fixed points have corresponding attrac-
tors. In [PMMC22] we saw that the key property of such
a 𝜎 ∈ FP(𝐺) is that it be minimal not only in FP(𝐺) but
also in FP(𝐺|𝜍), corresponding to the induced subnetwork
restricted to the nodes in 𝜎. In other words, 𝜎 is the only
fixed point in FP(𝐺|𝜍). This motivates the definition of
core motifs.

Definition 4.1. Let 𝐺 be the graph of a CTLN on 𝑛 nodes.
An induced subgraph 𝐺|𝜍 is a core motif of the network if
FP(𝐺|𝜍) = {𝜎}.

When the graph 𝐺 is understood, we sometimes refer
to 𝜎 itself as a core motif if 𝐺|𝜍 is one. The associated
fixed point is called a core fixed point. Core motifs can
be thought of as “irreducible” networks because they have
a single fixed point of full support. Since the activity is
bounded and must converge to an attractor, the attractor
can be said to correspond to this fixed point. A larger net-
work that contains𝐺|𝜍 as an induced subgraphmay ormay
not have 𝜎 ∈ FP(𝐺). When the core fixed point does sur-
vive, we refer to the embedded 𝐺|𝜍 as a surviving core mo-
tif, and we expect the associated attractor to survive. In
Figure 11, the surviving core motifs are 𝐺|4 and 𝐺|123, and
they precisely predict the attractors of the network.

The simplest core motifs are cliques. When these sur-
vive inside a network 𝐺, the corresponding attractor is al-
ways a stable fixed point supported on all nodes of the
clique. In fact, we conjectured that any stable fixed point
for a CTLN must correspond to a maximal clique of 𝐺—
specifically, a target-free clique [CGM19].

Up to size 4, all core motifs are parameter-independent.
For size 5, 37 of 45 core motifs are parameter-independent.
Figure 12 shows the complete list of all core motifs of
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Figure 12. Small core motifs. For each of these graphs, FP(𝐺) = {[𝑛]}, where 𝑛 is the number of nodes. Attractors are shown for
CTLNs with the standard parameters 𝜀 = 0.25, 𝛿 = 0.5, and 𝜃 = 1.

size 𝑛 ≤ 4, together with some associated attractors. The
cliques all correspond to stable fixed points, the simplest
type of attractor. The 3-cycle yields the limit cycle attrac-
tor in Figure 5, which may be distorted when embedded
in a larger network (see Figure 11B). The other core motifs
whose fixed points are unstable have dynamic attractors.
Note that the 4-cycu graph has a (23) symmetry, and the
rate curves for these two neurons are synchronous in the
attractor. This synchrony is also evident in the 4-ufd attrac-
tor, despite the fact that this graph does not have the (23)
symmetry. Perhaps the most interesting attractor, however,
is the one for the fusion 3-cycle graph. Here the 123 3-cycle
attractor, which does not survive the embedding to the
larger graph, appears to “fuse” with the stable fixed point
associated to 4 (which also does not survive). The result-
ing attractor can be thought of as binding together a pair
of smaller attractors.

We have performed extensive tests on whether or not
core motifs predict attractors in small networks. Specifi-
cally, we decomposed all 9608 directed graphs on 𝑛 = 5
nodes into core motif components, and used this to pre-
dict the attractors. We found that 1053 of the graphs have
surviving core motifs that are not cliques; these graphs
were thus expected to support dynamic attractors. The
remaining 8555 graphs contain only cliques as surviving
core motifs, and were thus expected to have only stable
fixed point attractors. Overall, we found that core motifs
correctly predicted the set of attractors in 9586 of the 9608
graphs. Of the 22 graphs with mistakes, 19 graphs have a
core motif with no corresponding attractor, and 3 graphs
have no core motifs for the chosen parameters.2

5. Graph Rules
We have seen that CTLNs exhibit a rich variety of nonlin-
ear dynamics, and that the attractors are closely related to
the fixed points. This opens up a strategy for linking attrac-
tors to the underlying network architecture 𝐺 via the fixed

2Classification of CTLNs on n=5 nodes available at https://github.com
/ccurto/n5-graphs-package.

point supports FP(𝐺). Our main tools for doing this are
graph rules.

Throughout this section, we will use greek letters 𝜎, 𝜏, 𝜔
to denote subsets of [𝑛] = {1, … , 𝑛} corresponding to fixed
point supports (or potential supports), while latin letters
𝑖, 𝑗, 𝑘, ℓ denote individual nodes/neurons. As before, 𝐺|𝜍
denotes the induced subgraph obtained from 𝐺 by restrict-
ing to 𝜎 and keeping only edges between vertices of 𝜎. The
fixed point supports are:

FP(𝐺) def= {𝜎 ⊆ [𝑛] ∣ 𝜎 = supp 𝑥∗ for some

fixed pt 𝑥∗ of the associated CTLN}.
The main question addressed by graph rules is:

Question 3. What can we say about FP(𝐺) from knowl-
edge of 𝐺 alone?

For example, consider the graphs in Figure 13. Can we
determine from the graph alone which subgraphs will sup-
port fixed points? Moreover, can we determine which of
those subgraphs are core motifs that will give rise to attrac-
tors of the network? We saw in Section 4 (Figure 12) that
cycles and cliques are among the small core motifs; can
cycles and cliques produce core motifs of any size? Can
we identify other graph structures that are relevant for ei-
ther ruling in or ruling out certain subgraphs as fixed point
supports? The rest of Section 5 focuses on addressing these
questions.

1
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34

2 1

34

2
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Figure 13. Graphs for which FP(𝐺) is completely determined
by graph rules.

Note that implicit in the above questions is the idea that
graph rules are parameter-independent: that is, they directly
relate the structure of 𝐺 to FP(𝐺) via results that are valid

APRIL 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 545

https://github.com/ccurto/n5-graphs-package
https://github.com/ccurto/n5-graphs-package


for all choices of 𝜀, 𝛿, and 𝜃 (provided they lie within the
legal range). In order to obtain the most powerful results,
we also require that our CTLNs be nondegenerate. As has
already been noted, nondegeneracy is generically satisfied
for TLNs [CGM19]. For CTLNs, it is satisfied irrespective of
𝜃 and for almost all legal range choices of 𝜀 and 𝛿 (i.e., up
to a set of measure zero in the two-dimensional parameter
space for 𝜀 and 𝛿).
5.1. Examples of graph rules. We’ve already seen some
graph rules. For example, Theorem 3.1 told us that if 𝐺 is
an oriented graph with no sinks, the associated CTLN has
no stable fixed points. Such CTLNs are thus guaranteed
to only exhibit dynamic attractors. Here we present a set
of eight simple graph rules, all proven in [CGM19], that
are easy to understand and give a flavor of the kinds of
theorems we have found.

We will use the following graph theoretic terminology.
A source is a node with no incoming edges, while a sink is
a node with no outgoing edges. Note that a node can be a
source or sink in an induced subgraph𝐺|𝜍, while not being
one in 𝐺. An independent set is a collection of nodes with
no edges between them, while a clique is a set of nodes that
is all-to-all bidirectionally connected. A cycle is a graph (or
an induced subgraph) where each node has exactly one in-
coming and one outgoing edge, and they are all connected
in a single directed cycle. A directed acyclic graph (DAG) is
a graph with a topological ordering of vertices such that
𝑖 ↛ 𝑗 whenever 𝑖 > 𝑗; such a graph does not contain any
directed cycles. Finally, a target of a graph 𝐺|𝜍 is a node 𝑘
such that 𝑖 → 𝑘 for all 𝑖 ∈ 𝜎 ⧵ {𝑘}. Note that a target may
be inside or outside 𝐺|𝜍.

Examples of graph rules:

Rule 1 (independent sets): If 𝐺|𝜍 is an independent set,
then 𝜎 ∈ FP(𝐺) if and only if each 𝑖 ∈ 𝜎 is a sink in 𝐺.

Rule 2 (cliques): If 𝐺|𝜍 is a clique, then 𝜎 ∈ FP(𝐺) if and
only if there is no node 𝑘 of 𝐺, 𝑘 ∉ 𝜎, such that 𝑖 → 𝑘 for
all 𝑖 ∈ 𝜎. In other words, 𝜎 ∈ FP(𝐺) if and only if 𝐺|𝜍 is
a target-free clique. If 𝜎 ∈ FP(𝐺), the corresponding fixed
point is stable.

Rule 3 (cycles): If𝐺|𝜍 is a cycle, then 𝜎 ∈ FP(𝐺) if and only
if there is no node 𝑘 of𝐺, 𝑘 ∉ 𝜎, such that 𝑘 receives two or
more edges from 𝜎. If 𝜎 ∈ FP(𝐺), the corresponding fixed
point is unstable.

Rule 4 (sources): (i) If 𝐺|𝜍 contains a source 𝑗 ∈ 𝜎, with
𝑗 → 𝑘 for some 𝑘 ∈ [𝑛], then 𝜎 ∉ FP(𝐺). (ii) Suppose
𝑗 ∉ 𝜎, but 𝑗 is a source in 𝐺. Then 𝜎 ∈ FP(𝐺|𝜍∪𝑗) ⇔ 𝜎 ∈
FP(𝐺|𝜍).
Rule 5 (targets): (i) If 𝜎 has target 𝑘, with 𝑘 ∈ 𝜎 and 𝑘 ↛
𝑗 for some 𝑗 ∈ 𝜎 (𝑗 ≠ 𝑘), then 𝜎 ∉ FP(𝐺|𝜍) and thus
𝜎 ∉ FP(𝐺). (ii) If 𝜎 has target 𝑘 ∉ 𝜎, then 𝜎 ∉ FP(𝐺|𝜍∪𝑘)
and thus 𝜎 ∉ FP(𝐺).

Rule 6 (sinks): If𝐺 has a sink 𝑠 ∉ 𝜎, then 𝜎∪{𝑠} ∈ FP(𝐺) ⇔
𝜎 ∈ FP(𝐺).
Rule 7 (DAGs): If 𝐺 is a directed acyclic graph with sinks
𝑠1, . . . , 𝑠ℓ, then FP(𝐺) = {∪𝑠𝑖 ∣ 𝑠𝑖 is a sink in 𝐺}, the set of
all 2ℓ − 1 unions of sinks.

Rule 8 (parity): For any 𝐺, | FP(𝐺)| is odd.

In many cases, particularly for small graphs, our graph
rules are complete enough that they can be used to fully
work out FP(𝐺). In such cases, FP(𝐺) is guaranteed to be
parameter-independent (since the graph rules do not de-
pend on 𝜀 and 𝛿). As an example, consider the graph on
𝑛 = 5 nodes in Figure 13A; we will show that FP(𝐺) is
completely determined by graph rules. Going through the
possible subsets 𝜎 of different sizes, we find that for |𝜎| = 1
only 3, 4 ∈ FP(𝐺) (as those are the sinks). Using Rules 1,
2, and 4, we see that the only |𝜎| = 2 elements in FP(𝐺) are
the clique 15 and the independent set 34. A crucial ingredi-
ent for determining the fixed point supports of sizes 3 and
4 is the sinks rule, which guarantees that 135, 145, and 1345
are the only supports of these sizes. Finally, notice that the
total number of fixed points up through size |𝜎| = 4 is odd.
Using Rule 8 (parity), we can thus conclude that there is no
fixed point of full support—that is, with |𝜎| = 5. It follows
that FP(𝐺) = {3, 4, 15, 34, 135, 145, 1345}; moreover, this re-
sult is parameter-independent because it was determined
purely from graph rules.

We leave it as an exercise to use graph rules to show that
FP(𝐺) = {134} for the graph in Figure 13B, and FP(𝐺) =
{4, 12, 124} for the graph in Figure 13C. For the graph in C,
it is necessary to appeal to a more general rule for uniform
in-degree subgraphs, which we review next.

Rules 1–7, and many more, all emerge as corollaries of
more general rules. In the next few subsections, we will
introduce the uniform in-degree rule, graphical domina-
tion, and simply-embedded subgraphs. These results form
part of a collection of elementary graph rules, fromwhich all
other known graph rules can be derived. A complete list
of elementary graph rules can be found in [CM23].
5.2. Uniform in-degree rule. It turns out that Rules 1, 2,
and 3 (for independent sets, cliques, and cycles) are all
corollaries of a single rule for graphs of uniform in-degree.

Definition 5.1. We say that 𝐺|𝜍 has uniform in-degree 𝑑 if
every node 𝑖 ∈ 𝜎 has 𝑑 incoming edges from within 𝐺|𝜍.

Note that an independent set has uniform in-degree 𝑑 =
0, a cycle has uniform in-degree 𝑑 = 1, and an 𝑛-clique is
uniform in-degree with 𝑑 = 𝑛−1. But, in general, uniform
in-degree graphs need not be symmetric. For example, the
induced subgraph𝐺|145 in Figure 13A is uniform in-degree,
with 𝑑 = 1.
Theorem 5.2 ([CGM19]). Let 𝐺|𝜍 be an induced subgraph
of 𝐺 with uniform in-degree 𝑑. For 𝑘 ∉ 𝜎, let 𝑑𝑘 denote the
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number of edges 𝑖 → 𝑘 for 𝑖 ∈ 𝜎. Then 𝜎 ∈ FP(𝐺|𝜍), and
𝜎 ∈ FP(𝐺|𝜍∪𝑘) ⇔ 𝑑𝑘 ≤ 𝑑.

In particular, 𝜎 ∈ FP(𝐺) if and only if there does not exist
𝑘 ∉ 𝜎 such that 𝑑𝑘 > 𝑑.

Uniform in-degree fixed points are also uniform in
value. If 𝐺|𝜍 is uniform in-degree 𝑑, then the fixed point
𝑥∗ supported on 𝜎 has the same value for all entries in 𝜎
[CGM19, Lemma 18]:

𝑥∗𝑖 =
𝜃

|𝜎| + 𝛿(|𝜎| − 𝑑 − 1) − 𝜀𝑑 for each 𝑖 ∈ 𝜎.

Interestingly, 𝑥∗𝑖 = 𝑥∗𝑗 for all 𝑖, 𝑗 ∈ [𝑛], even for uniform
in-degree graphs that are not symmetric.
5.3. Graphical domination. More generally, fixed points
can have very different values across neurons. However,
there is some level of “graphical balance” that is required
of 𝐺|𝜍 for any fixed point support 𝜎. For example, if 𝜎
contains a pair of neurons 𝑗, 𝑘 that have the property that
all neurons sending edges to 𝑗 also send edges to 𝑘, and
𝑗 → 𝑘 but 𝑘 ↛ 𝑗, then 𝜎 cannot be a fixed point support.
This is because 𝑘 is receiving a strict superset of the inputs
to 𝑗, and this imbalance rules out their ability to coexist in
the same fixed point support. This motivates the following
definition.

Definition 5.3. We say that 𝑘 graphically dominates 𝑗 with
respect to 𝜎 in 𝐺 if the following three conditions all hold:

1. For each 𝑖 ∈ 𝜎 ⧵ {𝑗, 𝑘}, if 𝑖 → 𝑗 then 𝑖 → 𝑘.
2. If 𝑗 ∈ 𝜎, then 𝑗 → 𝑘.
3. If 𝑘 ∈ 𝜎, then 𝑘 ↛ 𝑗.
We refer to this as “inside-in” domination if 𝑗, 𝑘 ∈ 𝜎

(see Figure 14A). In this case, we must have 𝑗 → 𝑘 and
𝑘 ↛ 𝑗. Remaining cases are shown in Figure 14B-D.

What graph rules does domination give us? Intuitively,
when inside-in domination is present, the “graphical bal-
ance” necessary to support a fixed point is violated, and
so 𝜎 ∉ FP(𝐺). When 𝑘 outside-in dominates 𝑗 for 𝑗 ∈ 𝜎,
again there is an imbalance, and this time it guarantees
that neuron 𝑘 turns on, since it received all the inputs that
were sufficient to turn on neuron 𝑗. Thus, there cannot be
a fixed point with support 𝜎 since node 𝑘 will violate the
off-neuron conditions. We can draw similar conclusions
in the other cases of graphical domination as well, as The-
orem 5.4 shows. This theorem was originally proven in
[CGM19], but a more elementary proof of this result is
given in [CM23].

Theorem 5.4 ([CGM19]). Suppose 𝑘 graphically dominates
𝑗 with respect to 𝜎 in 𝐺. Then the following all hold:
1. (inside-in) If 𝑗, 𝑘 ∈ 𝜎, then 𝜎 ∉ FP(𝐺|𝜍) and thus 𝜎 ∉

FP(𝐺).
2. (outside-in) If 𝑗 ∈ 𝜎, 𝑘 ∉ 𝜎, then 𝜎 ∉ FP(𝐺|𝜍∪𝑘) and

thus 𝜎 ∉ FP(𝐺).

inside-in domination
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j

outside-in dominationA B

k

j

k

j
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Figure 14. Graphical domination: four cases. In all cases, 𝑘
graphically dominates 𝑗 with respect to 𝜎. In particular, the set
of vertices of 𝜎 ⧵ {𝑗, 𝑘} sending edges to 𝑘 (red ovals) always
contains the set of vertices sending edges to 𝑗 (blue ovals).

3. (inside-out) If 𝑘 ∈ 𝜎, 𝑗 ∉ 𝜎, then 𝜎 ∈ FP(𝐺|𝜍) ⇒ 𝜎 ∈
FP(𝐺|𝜍∪𝑗).

4. (outside-out) If 𝑗, 𝑘 ∉ 𝜎, then 𝜎 ∈ FP(𝐺|𝜍∪𝑘) ⇒ 𝜎 ∈
FP(𝐺|𝜍∪𝑗).

To see how this theorem can be used to prove simpler
graph rules, consider a graph with a source 𝑗 ∈ 𝜎 that has
an edge 𝑗 → 𝑘 for some 𝑘 ∈ [𝑛]. Since 𝑗 is a source, it
has no incoming edges from within 𝜎. If 𝑘 ∈ 𝜎, then 𝑘
inside-in dominates 𝑗 and so 𝜎 ∉ FP(𝐺). If 𝑘 ∉ 𝜎, then
𝑘 outside-in dominates 𝑗 and again 𝜎 ∉ FP(𝐺). Rule 4(i)
immediately follows. We leave it as an exercise to prove
Rules 4(ii), 5(i), 5(ii), and 7.
5.4. Simply-embedded subgraphs and covers. Finally,
we introduce the concept of simply-embedded subgraphs.

Definition 5.5 (simply-embedded). We say that a sub-
graph 𝐺|𝜏 is simply-embedded in 𝐺 if for each 𝑘 ∉ 𝜏, either
(i) 𝑘 → 𝑖 for all 𝑖 ∈ 𝜏, or
(ii) 𝑘 ↛ 𝑖 for all 𝑖 ∈ 𝜏.

In other words, while 𝐺|𝜏 can have any internal struc-
ture, the rest of the network treats all nodes in 𝜏 equally
(see Figure 15A). By abuse of notation, we sometimes say
that the corresponding subset of vertices 𝜏 ⊆ [𝑛] is simply-
embedded in 𝐺.

We have the following key lemma (see Figure 15B):

Lemma 5.6. Let 𝐺|𝜏 be simply-embedded in 𝐺. Then for any
𝜎 ⊆ [𝑛],

𝜎 ∈ FP(𝐺) ⇒ 𝜎 ∩ 𝜏 ∈ FP(𝐺|𝜏) ∪ {∅}.
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Figure 15. Simply-embedded subgraphs.

What happens if we consider more than one simply-
embedded subgraph? It is not difficult to see that inter-
sections of simply-embedded subgraphs are also simply-
embedded. However, the union of two simply-embedded
subgraphs is only guaranteed to be simply-embedded if
the intersection is nonempty. If we have two or more
simply-embedded subgraphs, 𝐺|𝜏𝑖 and 𝐺|𝜏𝑗 , we know that
for any 𝜎 ∈ FP(𝐺), 𝜎must restrict to a fixed point 𝜎𝑖 = 𝜎∩𝜏𝑖
and 𝜎𝑗 = 𝜎 ∩ 𝜏𝑗 in each of those subgraphs. But when can
we glue together such a 𝜎𝑖 ∈ FP(𝐺|𝜏𝑖 ) and 𝜎𝑗 ∈ FP(𝐺|𝜏𝑗 ) to
produce a larger fixed point support 𝜎𝑖 ∪𝜎𝑗 in FP(𝐺|𝜏𝑖∪𝜏𝑗 )?

Lemma 5.7 precisely answers this question. It uses the

following notation: F̂P(𝐺) def= FP(𝐺) ∪ {∅}.

Lemma 5.7 (pairwise gluing). Suppose 𝐺|𝜏𝑖 , 𝐺|𝜏𝑗 are simply-
embedded in 𝐺, and consider 𝜎𝑖 ∈ F̂P(𝐺|𝜏𝑖 ) and 𝜎𝑗 ∈
F̂P(𝐺|𝜏𝑗 ) that satisfy 𝜎𝑖 ∩ 𝜏𝑗 = 𝜎𝑗 ∩ 𝜏𝑖 (so that 𝜎𝑖, 𝜎𝑗 agree
on the overlap 𝜏𝑖 ∩ 𝜏𝑗). Then

𝜎𝑖 ∪ 𝜎𝑗 ∈ F̂P(𝐺|𝜏𝑖∪𝜏𝑗 )

if and only if one of the following holds:

(i) 𝜏𝑖 ∩ 𝜏𝑗 = ∅ and 𝜎𝑖, 𝜎𝑗 ∈ F̂P(𝐺|𝜏𝑖∪𝜏𝑗 ), or
(ii) 𝜏𝑖 ∩ 𝜏𝑗 = ∅ and 𝜎𝑖, 𝜎𝑗 ∉ F̂P(𝐺|𝜏𝑖∪𝜏𝑗 ), or
(iii) 𝜏𝑖 ∩ 𝜏𝑗 ≠ ∅.

6. Gluing Rules
So far we have seen a variety of graph rules and the ele-
mentary graph rules from which they are derived. These
rules allow us to rule in and rule out potential fixed points
in FP(𝐺) from purely graph-theoretic considerations. In
this section, we consider networks whose graph 𝐺 is com-
posed of smaller induced subgraphs, 𝐺|𝜏𝑖 , for 𝑖 ∈ [𝑁] =
{1, … , 𝑁}. What is the relationship between FP(𝐺) and the
fixed points of the components, FP(𝐺|𝜏𝑖 )?

It turns out we can obtain nice results if the induced
subgraphs 𝐺|𝜏𝑖 are all simply-embedded in 𝐺. In this case,
we say that 𝐺 has a simply-embedded cover.

Definition 6.1 (simply-embedded covers). We say that
𝒰 = {𝜏1, … , 𝜏𝑁 } is a simply-embedded cover of 𝐺 if each 𝜏𝑖 is
simply-embedded in 𝐺, and for every vertex 𝑗 ∈ [𝑛], there
exists an 𝑖 ∈ [𝑁] such that 𝑗 ∈ 𝜏𝑖. In other words, the 𝜏𝑖’s
are a vertex cover of 𝐺. If the 𝜏𝑖’s are all disjoint, we say
that 𝒰 is a simply-embedded partition of 𝐺.

In the case that 𝐺 has a simply-embedded cover,
Lemma 5.6 tells us that all “global” fixed point supports
in FP(𝐺) must be unions of “local” fixed point supports
in the FP(𝐺|𝜏𝑖 ), since every 𝜎 ∈ FP(𝐺) restricts to 𝜎 ∩ 𝜏𝑖 ∈
FP(𝐺|𝜏𝑖 ) ∪ {∅}. But what about the other direction?

Question 4. When does a collection of local fixed point
supports {𝜎𝑖}, with each nonempty 𝜎𝑖 ∈ FP(𝐺|𝜏𝑖 ), glue to-
gether to form a global fixed point support 𝜎 = ∪𝜎𝑖 ∈
FP(𝐺)?

To answer this question, we develop some notions in-
spired by sheaf theory. For a graph 𝐺 on 𝑛 nodes, with
a simply-embedded cover 𝒰 = {𝜏1, … , 𝜏𝑁 }, we define the
gluing complex as:

ℱ𝐺(𝒰)
def= {𝜎 = ∪𝑖𝜎𝑖 ∣ 𝜎 ≠ ∅, 𝜎𝑖 ∈ FP(𝐺|𝜏𝑖 ) ∪ {∅},

and 𝜎𝑖 ∩ 𝜏𝑗 = 𝜎𝑗 ∩ 𝜏𝑖 for all 𝑖, 𝑗 ∈ [𝑁]}.

In other words, ℱ𝐺(𝒰) consists of all 𝜎 ⊆ [𝑛] that can
be obtained by gluing together local fixed point supports
𝜎𝑖 ∈ FP(𝐺|𝜏𝑖 ). Note that in order to guarantee that 𝜎𝑖 =
𝜎∩𝜏𝑖 for each 𝑖, it is necessary that the 𝜎𝑖’s agree on overlaps
𝜏𝑖∩𝜏𝑗 (hence the last requirement). This means thatℱ𝐺(𝒰)
is equivalent to:

ℱ𝐺(𝒰) = {𝜎 ≠ ∅ ∣ 𝜎 ∩ 𝜏𝑖 ∈ FP(𝐺|𝜏𝑖 ) ∪ {∅} ∀ 𝑖 ∈ [𝑁]}.

It will also be useful to consider the case where 𝜎∩𝜏𝑖 is not
allowed to be empty for any 𝑖. This is defined as

ℱ∗
𝐺(𝒰)

def= {𝜎 ⊆ [𝑛] ∣ 𝜎 ∩ 𝜏𝑖 ∈ FP(𝐺|𝜏𝑖 ) ∀ 𝜏𝑖 ∈ 𝒰}.

Translating Lemma 5.6 into the new notation yields the
following:

Lemma 6.2. A CTLN with graph 𝐺 and simply-embedded
cover 𝒰 satisfies

FP(𝐺) ⊆ ℱ𝐺(𝒰).

The central question addressed by gluing rules (Ques-
tion 4) thus translates to: What elements of ℱ𝐺(𝒰) are ac-
tually in FP(𝐺)?

Our strategy to address this question will be to iden-
tify architectures where we can iterate the pairwise glu-
ing rule, Lemma 5.7. Iteration is possible in a simply-
embedded cover𝒰 = {𝜏𝑖} provided the unions at each step,
𝜏1∪𝜏2∪⋯∪𝜏ℓ, are themselves simply-embedded (this may
depend on the order). Fortunately, this is the case for sev-
eral types of natural constructions, including disjoint unions
and clique unions, which we consider next. It also holds for
connected unions, which are introduced in [CM23]. Finally,
we will examine the case of cyclic unions, where pairwise
gluing rules cannot be iterated, but for which we find an
equally clean characterization of FP(𝐺).
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6.1. Disjoint, clique, and cyclic unions. The following
graph constructions all arise from simply-embedded parti-
tions.

Definition 6.3. Consider a graph 𝐺 with induced sub-
graphs {𝐺|𝜏𝑖 } corresponding to a vertex partition 𝒰 =
{𝜏1, … , 𝜏𝑁 }. Then

– 𝐺 is a disjoint union if there are no edges between 𝜏𝑖
and 𝜏𝑗 for 𝑖 ≠ 𝑗. (See Figure 16A.)

– 𝐺 is a clique union if it contains all possible edges be-
tween 𝜏𝑖 and 𝜏𝑗 for 𝑖 ≠ 𝑗. (See Figure 16B.)

– 𝐺 is a cyclic union if it contains all possible edges from
𝜏𝑖 to 𝜏𝑖+1, for 𝑖 = 1, . . . , 𝑁 − 1, as well as all possi-
ble edges from 𝜏𝑁 to 𝜏1, but no other edges between
distinct components 𝜏𝑖, 𝜏𝑗. (See Figure 16C.)

Note that in each of these cases, 𝒰 is a simply-embedded
partition of 𝐺.

disjoint union clique unionA B C cyclic union

Figure 16. Disjoint unions, clique unions, and cyclic unions. In
each architecture, the {𝜏𝑖} form a simply-embedded partition
of 𝐺. Thick edges between components indicate that there are
edges between every pair of nodes in the components.

Since the simply-embedded subgraphs in a partition
are all disjoint, Lemma 5.7(i-ii) applies. Consequently,
fixed point supports 𝜎𝑖 ∈ FP(𝐺|𝜏𝑖 ) and 𝜎𝑗 ∈ FP(𝐺|𝜏𝑗 )
will glue together if and only if either 𝜎𝑖 and 𝜎𝑗 both
survive to yield fixed points in FP(𝐺), or neither survives.
For both disjoint unions and clique unions, it is easy to
see that all larger unions of the form 𝜏1 ∪ 𝜏2 ∪ ⋯ ∪ 𝜏ℓ
are themselves simply-embedded. We can thus iteratively
use the pairwise gluing Lemma 5.7. For disjoint unions,
Lemma 5.7(i) applies, yielding our first gluing theorem.
Recall that F̂P(𝐺) = FP(𝐺) ∪ {∅}.

Theorem 6.4 ([CGM19, Theorem 11]). If 𝐺 is a disjoint
union of subgraphs {𝐺|𝜏𝑖 }𝑁𝑖=1, with 𝒰 = {𝜏𝑖}𝑁𝑖=1, then

FP(𝐺) = ℱ𝐺(𝒰)
= {∪𝑁𝑖=1𝜎𝑖 ∣ 𝜎𝑖 ∈ F̂P(𝐺|𝜏𝑖 ) ∀ 𝑖 ∈ [𝑁]} ⧵ {∅}.

On the other hand, for clique unions, we must apply
Lemma 5.7(ii), which shows that only gluings involving
a nonempty 𝜎𝑖 from each component are allowed. Hence
FP(𝐺) = ℱ∗

𝐺(𝒰). Interestingly, the same result holds for
cyclic unions, but the proof is different because the simply-
embedded structure does not get preserved under unions,

and hence Lemma 5.7 cannot be iterated. These results are
combined in the next theorem.

Theorem 6.5 ([CGM19, Theorems 12 and 13]). If 𝐺 is a
clique union or a cyclic union of subgraphs {𝐺|𝜏𝑖 }𝑁𝑖=1, with 𝒰 =
{𝜏𝑖}𝑁𝑖=1, then

FP(𝐺) = ℱ∗
𝐺(𝒰)

= {∪𝑁𝑖=1𝜎𝑖 ∣ 𝜎𝑖 ∈ FP(𝐺|𝜏𝑖 ) ∀ 𝑖 ∈ [𝑁]}.

We end this section by revisiting core motifs. Recall
that core motifs of CTLNs are subgraphs𝐺|𝜍 that support a
unique fixed point, which has full-support: FP(𝐺|𝜍) = {𝜎}.
We denote the set of core motifs by

FPcore(𝐺)
def= {𝜎 ∈ FP(𝐺) | 𝐺|𝜍 is a core motif of 𝐺}.

For small CTLNs, we have seen that core motifs are predic-
tive of a network’s attractors [PMMC22].

What can gluing rules tell us about core motifs? It
turns out that we can precisely characterize these motifs
for clique and cyclic unions.

Corollary 6.6. Let 𝐺 be a clique union or a cyclic union of
components 𝜏1, . . . , 𝜏𝑁 . Then

FPcore(𝐺) = {∪𝑁𝑖=1𝜎𝑖 | 𝜎𝑖 ∈ FPcore(𝐺|𝜏𝑖 )}.
In particular, 𝐺 is a core motif if and only if every 𝐺𝜏𝑖 is a core
motif.

6.2. Modeling with cyclic unions. The power of graph
rules is that they enable us to reasonmathematically about
the graph of a CTLN and make surprisingly accurate pre-
dictions about the dynamics. This is particularly true for
cyclic unions, where the dynamics consistently appear to
traverse the components in cyclic order. Consequently,
these architectures are useful for modeling a variety of phe-
nomena that involve sequential attractors. This includes
the storage and retrieval of sequential memories, as well
as CPGs responsible for rhythmic activity, such as locomo-
tion [YMSL05].

Recall that the attractors of a network tend to corre-
spond to core motifs in FPcore(𝐺). Using Corollary 6.6,
we can easily engineer cyclic unions that have multiple se-
quential attractors. For example, consider the cyclic union
in Figure 17A, with FPcore(𝐺) comprised of all cycles of
length 5 that contain exactly one node per component. For
parameters 𝜀 = 0.75, 𝛿 = 4, the CTLN yields a limit cycle
(Figure 17B), corresponding to one such core motif, with
sequential firing of a node from each component. By sym-
metry, there must be an equivalent limit cycle for every
choice of five nodes, one from each layer, and thus the
network is guaranteed to have 𝑚5 limit cycles. Note that
this network architecture, increased to seven layers, could
serve as a mechanism for storing phone numbers in work-
ing memory (𝑚 = 10 for digits 0–9).
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Figure 17. The phone number network. (A) A cyclic union with
𝑚 neurons per layer (component), and all 𝑚2 feedforward
connections from one layer to the next. (B) A limit cycle for
the corresponding CTLN (with parameters 𝜀 = 0.75, 𝛿 = 4).

As another application of cyclic unions, consider the
graph in Figure 18A which produces the quadruped gait
‘bound’ (similar to gallop), where we have associated each
of the four colored nodes with a leg of the animal. No-
tice that the clique between pairs of legs ensures that those
nodes co-fire, and the cyclic union structure guarantees
that the activity flows forward cyclically. A similar network
was created for the ‘trot’ gait, with appropriate pairs of legs
joined by cliques.

Figure 18B shows a network in which both the ‘bound’
and ‘trot’ gaits can coexist, with the network selecting one
pattern (limit cycle) over the other based solely on ini-
tial conditions. This network was produced by essentially
overlaying the two architectures that would produce the
desired gaits, identifying the two graphs along the nodes
corresponding to each leg. Notice that within this larger
network, the induced subgraphs for each gait are no longer
perfect cyclic unions (since they include additional edges
between pairs of legs), and are no longer core motifs.
And yet the combined network still produces limit cycles
that are qualitatively similar to those of the isolated cyclic
unions for each gait. It is an open question when this type
of merging procedure for cyclic unions (or other types of
subnetworks) will preserve the original limit cycles within
the larger network.

7. Conclusions
Recurrent network models such as TLNs have historically
played an important role in theoretical neuroscience; they
give mathematical grounding to key ideas about neural dy-
namics and connectivity, and provide concrete examples
of networks that encode multiple attractors. These attrac-
tors represent the possible responses, e.g., stored memory
patterns, of the network.
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Figure 18. A Central Pattern Generator circuit for quadruped
motion. (A) (Left) A cyclic union architecture on six nodes that
produces the ‘bound’ gait. (Right) The limit cycle
corresponding to the bound gait. (B) The graph on eight
nodes is formed from merging together architectures for the
individual gaits, ‘bound’ and ‘trot’. Note that the positions of
the two hind legs (LH, RH) are flipped for ease of drawing the
graph.

In the case of CTLNs, we have been able to prove a vari-
ety of results, such as graph rules, about the fixed point sup-
ports FP(𝐺)—yielding valuable insights into the attractor
dynamics. Many of these results can be extended beyond
CTLNs tomore general families of TLNs, and potentially to
other threshold nonlinearities. The reason lies in the com-
binatorial geometry of the hyperplane arrangements. In
addition to the arrangements discussed in Section 2, there
are closely related hyperplane arrangements given by the
nullclines of TLNs, defined by 𝑑𝑥𝑖/𝑑𝑡 = 0 for each 𝑖. It is
easy to see that fixed points correspond to intersections
of nullclines, and thus the elements of FP(𝑊, 𝑏) are com-
pletely determined by the combinatorial geometry of the
nullcline arrangement. Intuitively, the combinatorial ge-
ometry of such an arrangement is preserved under small
perturbations of 𝑊 and 𝑏. This allows us to extend CTLN
results and study how FP(𝑊, 𝑏) changes as we vary the TLN
parameters𝑊𝑖𝑗 and 𝑏𝑖. These ideas, including connections
to orientedmatroids, are further developed in [CM23] and
references therein. [CM23] also lays out a number of open
questions on graph rules, gluing rules, coremotifs, and the
relationship between fixed points and attractors.
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