
Could ∞-Category Theory Be
Taught to Undergraduates?

Emily Riehl
1. The Algebra of Paths
It is natural to probe a suitably nice topological space 𝑋 by
means of its paths, the continuous functions from the stan-
dard unit interval 𝐼 ≔ [0, 1] ⊂ R to 𝑋 . But what structure
do the paths in 𝑋 form?

To start, the paths form the edges of a directed graph
whose vertices are the points of𝑋 : a path 𝑝∶ 𝐼 → 𝑋 defines
an arrow from the point 𝑝(0) to the point 𝑝(1). Moreover,
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this graph is reflexive, with the constant path refl𝑥 at each
point 𝑥 ∈ 𝑋 defining a distinguished endoarrow.

Can this reflexive directed graph be given the structure
of a category? To do so, it is natural to define the com-
posite of a path 𝑝 from 𝑥 to 𝑦 and a path 𝑞 from 𝑦 to 𝑧
by gluing together these continuous maps—i.e., by con-
catenating the paths—and then by reparametrizing via the
homeomorphism 𝐼 ≅ 𝐼 ∪1=0 𝐼 that traverses each path at
double speed:

𝐼 𝐼 ∪1=0 𝐼 𝑋≅

𝑝∗𝑞

𝑝∪𝑞
(1.1)

But the composition operation ∗ fails to be associative
or unital. In general, given a path 𝑟 from 𝑧 to 𝑤, the
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composites (𝑝 ∗ 𝑞) ∗ 𝑟 and 𝑝 ∗ (𝑞 ∗ 𝑟) are not equal: while
the have the same image in 𝑋 , their parametrizations dif-
fer. However, they are based homotopic, in the sense that
there exists a continuous function ℎ∶ 𝐼 × 𝐼 → 𝑋 so that

ℎ(−, 0) ≔ (𝑝 ∗ 𝑞) ∗ 𝑟, ℎ(−, 1) ≔ 𝑝 ∗ (𝑞 ∗ 𝑟),
ℎ(0, −) ≔ refl𝑥, and ℎ(1, −) ≔ refl𝑤,

a situation we summarize by writing (𝑝∗𝑞)∗ 𝑟 ≃ 𝑝∗ (𝑞∗ 𝑟).
Similarly, the paths 𝑝∗refl𝑦 ≃ refl𝑥∗𝑝 ≃ 𝑝 are all based ho-
motopic, though not equal (unless 𝑝 is the constant path).

Paths are also invertible up to based homotopy: for any
path 𝑝∶ 𝐼 → 𝑋 from 𝑥 to 𝑦, its reversal 𝑝−1 ∶ 𝐼 → 𝑋 , de-
fined by precomposing with the flipping automorphism
𝐼 ≅ 𝐼, defines an inverse up to based homotopy: 𝑝 ∗ 𝑝−1 ≃
refl𝑥 and 𝑝−1 ∗ 𝑝 ≃ refl𝑦. These observations motivate the
following definition:

Definition 1.2. For a space 𝑋 , the fundamental groupoid
𝜋1𝑋 is the category whose:

• objects are the points of 𝑋 and
• arrows are based homotopy classes of paths of 𝑋

with composition defined by concatenation, identity ar-
rows defined by the constant paths, and inverses defined
by reversing paths.

The fundamental groupoid of a space 𝑋 answers a
slightly different question than originally posed, describ-
ing the structure formed by the based homotopy classes of
paths in 𝑋 . The paths themselves form something like a
weak groupoidwhere composition is not uniquely defined.
Indeed, given paths 𝑝 from 𝑥 to 𝑦 and 𝑞 from 𝑦 to 𝑧, the
composite in 𝜋1𝑋 is represented by any path 𝑠 so that there
is a based homotopy ℎwitnessing𝑝∗𝑞 ≃ 𝑠. Here, the based
homotopy ℎ defines a continuous function from the solid
2-simplex into 𝑋 that restricts along the boundary triangle
to the map defined by gluing the three paths:

𝜕Δ2 𝑋

Δ2

(𝑝,𝑞,𝑠)

ℎ

While multivalued composition operations are not
well-behaved in general, this one has a certain homotopi-
cal uniqueness property: the witnessing homotopies for
two such composites can be glued together—by a higher-
dimensional analogue of the construction (1.1)—to de-
fine a homotopy 𝑠 ≃ 𝑝 ∗ 𝑞 ≃ 𝑡. This suggests that the wit-
nessing homotopies that fill the triangles formed by the
paths between 𝑥 and 𝑦 and 𝑧 might be productively re-
garded as part of the composition data. Thus, the moduli
space of composites of 𝑝 and 𝑞 is defined as follows:

Definition 1.3. Given composable paths 𝑝 and 𝑞 in a
space𝑋 , the space of composites of𝑝 and 𝑞 is the subspace

Comp(𝑝, 𝑞) ⊂ Map(Δ2, 𝑋) of continuous maps ℎ∶ Δ2 → 𝑋
that restrict on the boundary horn to 𝑝 ∪ 𝑞:

Comp(𝑝, 𝑞) Map(Δ2, 𝑋)

∗ Map(𝐼 ∪1=0 𝐼, 𝑋)

⌟
res

𝑝∪𝑞

(1.4)

The homotopical uniqueness of path composition can
be strengthened by the following observation:

Theorem 1.5. For any composable paths 𝑝 and 𝑞 in a space 𝑋,
the space of composites Comp(𝑝, 𝑞) is contractible.

So what do the paths in 𝑋 form? We have seen that
they form a weak groupoid with a multivalued but homo-
topically unique composition law. In fact, this weak cat-
egory is an infinite-dimensional category. The based ho-
motopies ℎ∶ 𝐼 × 𝐼 → 𝑋 between parallel paths 𝑠 and 𝑡
themselves might be regarded as paths ℎ∶ 𝐼 → Map(𝐼, 𝑋)
between points 𝑠 and 𝑡 in the space Map(𝐼, 𝑋) to which
Theorem 1.5 equally applies, and these observations ex-
tend iteratively to higher-dimensional homotopies. The
points, paths, and higher paths in a space 𝑋 assemble
into a weak infinite-dimensional category—with interact-
ing weak composition and identities for paths at all lev-
els1—in which all morphisms are weakly invertible. Such
a structure is known as an ∞-groupoid.
The homotopy hypothesis. The fundamental ∞-groupoid
𝜋∞𝑋 of paths in 𝑋 captures the data of all of the higher ho-
motopy groups of the space, information which is referred
to as the homotopy type of the space. In a famous letter to
Quillen [G], Grothendieck formulated his homotopy hypoth-
esis, positing that the fundamental ∞-groupoid construc-
tion defines an equivalence between homotopy types and
∞-groupoids. Grothendieck’s vision was that this result
should be provable for various models of ∞-groupoids
that were then under development, though some instead
use this thesis to define an ∞-groupoid to be a homotopy
type.

There is something unsatisfying, though, about the
naïve interpretation of the homotopy hypothesis as the
assertion of a bijection between the collection of ho-
motopy types and the collection of ∞-groupoids, or
even as an equivalence between the homotopy cate-
gory of spaces2 and the homotopy category of ∞-group-
oids. The disappointment lies in the fact that both
spaces and ∞-groupoids live most naturally as the ob-
jects in weak infinite-dimensional categories, with the

1Famously, the definition of a weak 3-dimensional category by Gordon, Power,
and Street takes six pages to state.
2Homotopy types can be understood as isomorphism classes of objects in the ho-
motopy category of spaces, the category obtained by localizing the category of
spaces and continuous functions by the weak homotopy equivalences, those
functions that induce isomorphisms on all homotopy groups.
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standard morphisms between them supplemented by
higher-dimensional weakly invertible morphisms. Thus,
a more robust expression of the homotopy hypothesis is
the assertion that the ∞-categories of spaces and of ∞-
groupoids are equivalent,3 so now we must explain what
∞-categories are.

2. ∞-Categories in Mathematics
Over the past few decades, ∞-categories—weak infinite-
dimensional categories with weakly invertible morphisms
above dimension one—have been invading certain ar-
eas of mathematics. In derived algebraic geometry, the
derived category of a ring is now understood as the 1-
categorical quotient of the∞-category of chain complexes,
and an ∞-categorical property called “stability” explains
the triangulated structure borne by the derived category. In
mathematical physics, Atiyah’s topological quantum field
theories have been “extended up” to define functors be-
tween∞-categories.4 ∞-categories have also made appear-
ances in the Langlands program in representation theory
and in symplectic geometry among other areas. Quillen’s
model categories [Q] from abstract homotopy theory are
now understood as presentations of ∞-categories.

Ordinary categories “frame a template for a mathemat-
ical theory,” with the objects providing the “nouns” and
the morphisms the “verbs,” in a metaphor suggested by
Mazur. As the objects mathematicians study increase in
complexity, a more robust linguistic template may be
required to adequately describe their natural habitats—
with adjectives, adverbs, pronouns, prepositions, con-
junctions, interjections, and so on—leading to the idea
of an ∞-category. Like an ordinary 1-category, an ∞-
category has objects and morphisms, now thought of
as “1-dimensional” transformations. The extra linguis-
tic color is provided by higher-dimensional invertible
morphisms between morphisms—such as chain homo-
topies or diffeomorphisms—and higher morphisms be-
tween these morphisms, continuing all the way up.

How might a researcher in one of these areas go about
learning this new technology of ∞-categories? And how
might∞-category theory ultimately be distilled down into
something that we could reasonably teach advanced un-
dergraduates of the future?
Curiosities from the literature. ∞-categories were first
introduced by Boardman and Vogt to describe the

3In fact, a version of this result had been proven already by Quillen for the Kan
complex model of∞-groupoids [Q], but this was not so clearly understood at the
time.
4Lurie’s “fully extended” topological quantum field theories are also “extended
down” so that they might be understood as functors between (∞, 𝑛)-categories,
with non-invertible morphisms up to and including the dimension 𝑛 of
the indexing cobordisms. Here we reserve the term “∞-categories” for
“(∞, 1)-categories,” which have non-invertible morphisms only in the bottom
dimension.

composition structure of homotopy coherent natural
transformations between homotopy coherent diagrams
[BV]. Joyal was the first to assert that “most concepts and re-
sults of category theory can be extended to [∞-categories]”
and pioneered the development of ∞-categorical ana-
logues of standard categorical notions [J]. Lurie then de-
veloped various aspects of ∞-category theory that were
needed for his thesis on derived algebraic geometry [L1].
His books [L2, L3] and the online textbook Kerodon are
primary references for uses of this technology, while texts
written by Cisinski, Groth, Hinich, Rezk, and others pro-
vide parallel introductions to the field.

If one delves further into the ∞-categories literature,
some curiosities soon become apparent:

(i) Particularly in talks or lecture series introducing the
subject, the definition of ∞-category is frequently de-
layed, and when definitions are given, they don’t al-
ways agree.

These competing definitions are referred to as models
of ∞-categories, which are Bourbaki-style mathematical
structures defined in terms of sets and functions that repre-
sent infinite-dimensional categories with a weak composi-
tion law in which all morphisms above dimension one are
weakly invertible. In order of appearance, these include
simplicial categories, quasi-categories, relative categories, Segal
categories, complete Segal spaces, and 1-complicial sets, each
of which comes with an associated array of naturally oc-
curring examples [Be].

(ii) Considerable work has gone into defining the key no-
tions for and proving the fundamental results about
∞-categories, but sometimes this work is later redevel-
oped starting from a different model.

For instance, [KV] begins:

In recent years ∞-categories or, more formally,
(∞,1)-categories appear in various areas of mathe-
matics. For example, they became a necessary in-
gredient in the geometric Langlands problem. In
his books [L2, L3] Lurie developed a theory of ∞-
categories in the language of quasi-categories and
extended many results of the ordinary category
theory to this setting.

In his work [R1] Rezk introduced another
model of ∞-categories, which he called complete
Segal spaces. This model has certain advantages.
For example, it has a generalization to (∞, 𝑛)-
categories (see [R2]).

It is natural to extend results of the ordinary
category theory to the setting of complete Segal
spaces. In this note we do this for the Yoneda
lemma.

(iii) Alternatively, authors decline to pick a model at all
and instead work “model-independently.”
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One instance of this appears in the precursor [L1] to [L2],
which avoids selecting a model of ∞-categories at all:

We will begin in §1 with an informal review of
the theory of ∞-categories. There are many ap-
proaches to the foundation of this subject, each
having its own particular merits and demerits.
Rather than single out one of those foundations
here, we shall attempt to explain the ideas in-
volved and how to work with them. The hope is
that this will render this paper readable to a wider
audience, while experts will be able to fill in the
details missing from our exposition in whatever
framework they happen to prefer.

The fundamental obstacle to giving a uniform defini-
tion of an∞-category is that our traditional set-based foun-
dations for mathematics are not really suitable for reason-
ing about∞-categories: sets do not feature prominently in
∞-categorical data, especially when ∞-categories are only
well-defined up to equivalence, as they must be when dif-
ferent models are involved. When considered up to equiv-
alence, ∞-categories, like ordinary categories, do not have
a well-defined set of objects. Essentially, ∞-categories are
1-categories in which all the sets have been replaced by
∞-groupoids. Where a category has a set of elements, an
∞-category has an ∞-groupoid of elements, and where a
category has hom-sets of morphisms, ∞-categories have
∞-groupoidal mapping spaces.5 The axioms that turn a di-
rected graph into a category are expressed in the language
of set theory: a category has a composition function sat-
isfying axioms expressed in first-order logic with equality.
By analogy, composition in an ∞-category can be under-
stood as amorphism between∞-groupoids, but suchmor-
phisms no longer define functions since homotopy types
do not have underlying sets of points.6 This is why there
is no canonical model of ∞-categories.
Reimagining the foundations of ∞-category theory. De-
spite these subtleties, it is possible to reason rigorously and
model-independently about ∞-categories without getting
bogged down in the combinatorial scaffolding of a partic-
ular model. The framework introduced in §3 considerably
streamlines the basic core theory of ∞-categories, though
its scope is currently more limited than the corpus of re-
sults that have been proven using a model.

However, this current state of the art employs proof
techniques that are unfamiliar to non-category theorists
and thus is not feasible to integrate into the undergradu-
ate curriculum. The concluding §4 describes a more spec-
ulative dream for the future where enhancements to the
foundations of mathematics would allow us to interpret

5“Large”∞-categories also exist and behave like large 1-categories.
6Similar considerations have motivated Scholze et al to use the term “anima”—
referring to the “soul” of a “space”—as a synonym for∞-groupoids.

uniqueness as contractibility and automatically ensure
that all constructions are invariant under equivalence.

3. The Formal Theory of ∞-Categories
In the paper “General theory of natural equivalences” that
marked the birth of category theory, Eilenberg and Mac
Lane observed that categories, functors, and natural trans-
formations assemble into a 2-category 𝖢𝖠𝖳. The essence of
this result is the observation that natural transformations
can be composed in 2-dimensions’ worth of ways: “verti-
cally” along a boundary functor or “horizontally” along a
boundary category.

More generally, Power proves that any pasting diagram of
compatibly oriented functors and natural transformations
has a unique composite.

𝐷

𝐴 𝐸

𝐶 𝐺

𝐵 𝐹

⇓𝛽

𝑝

𝑓

𝑔

ℎ

𝑟

𝑞 ⇓𝜖⇓𝛼

ℓ
𝑚

⇓𝛿

⇓𝛾

𝑗

𝑘
𝑠

The pasting composite, which in the example above de-
fines a natural transformation between the categories 𝐴
and 𝐺 from the functor 𝑟𝑝ℎ to the functor 𝑠𝑘𝑓, can be de-
composed as a vertical composite of whiskerings of the
atomic natural transformations 𝛼, 𝛽, 𝛾, 𝛿, 𝜖: for instance,
the composite factors as 𝑟𝑝𝛽 followed by 𝑟𝛾𝑔 followed by
𝜖𝑚𝑔 followed by 𝑠𝑞𝑚𝛼 followed by 𝑠𝛿𝑓, among eight total
possibilities. Power’s theorem is that pasting composition
is well-defined.

Similarly, in well-behaved models of ∞-categories:

Proposition 3.1 (Joyal, Riehl–Verity). ∞-categories, ∞-
functors, and∞-natural transformations assemble into a carte-
sian closed 2-category∞-𝖢𝖠𝖳.

This result was first observed in the quasi-category
model by Joyal [J]. Since the category of quasi-categories
is cartesian closed, it is enriched over itself, defining
an (∞, 2)-category of quasi-categories. The 2-category
of quasi-categories is obtained by a quotienting process,
that maps each hom-quasi-category to its homotopy cat-
egory, by applying the left adjoint to the (nerve) inclu-
sion of categories into quasi-categories. The other “well-
behaved” models—including complete Segal spaces, Se-
gal categories, and 1-complicial sets among others—are
also cartesian closed, so a similar construction defines a
2-category of complete Segal spaces, and so on.7 To adopt

7While the meaning of the terms “∞-categories” and “∞-functors” in a given
model is typically clear, the “∞-natural transformations,” which can be under-
stood as equivalence classes of 2-cells in the ambient (∞, 2)-category, are less
evident.
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a “model-independent” point of view, note that these 2-
categories are all biequivalent or “the same” in the sense
appropriate to 2-category theory [RV2, §E.2].

The good news, which is surprising to many experts,
is that a fair portion of the basic theory of ∞-categories
can be developed in the 2-category ∞-𝖢𝖠𝖳. These aspects
might be described as formal category theory, as they involve
definitions of categorical notions such as equivalence, ad-
junction, limit, and colimit that can be defined internally
to any 2-category. In the 2-category 𝖢𝖠𝖳, these recover the
classical notions from 1-category theory, while in the 2-
category ∞-𝖢𝖠𝖳 these specialize to the correct notions in
∞-category theory.8 Thus, for the core basic theory involv-
ing these notions, ordinary category theory extends to ∞-
categories simply by appending the prefix “∞−” [RV2, §2-
4].
Equivalences and adjunctions. The following definitions
make sense in an arbitrary cartesian closed 2-category, such
as ∞-𝖢𝖠𝖳.

Definition 3.2. An equivalence between ∞-categories is
given by:

• a pair of ∞-categories 𝐴 and 𝐵,
• a pair of ∞-functors 𝑔∶ 𝐴 → 𝐵 and ℎ∶ 𝐵 → 𝐴, and
• a pair of invertible ∞-natural transformations
𝛼∶ id𝐴 ≅ ℎ𝑔, and 𝛽∶ 𝑔ℎ ≅ id𝐵.

Definition 3.3. An adjunction between ∞-categories is
given by:

• a pair of ∞-categories 𝐴 and 𝐵,
• a pair of ∞-functors 𝑢∶ 𝐴 → 𝐵 and 𝑓∶ 𝐵 → 𝐴, and
• a pair of∞-natural transformations 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and
𝜖∶ 𝑓𝑢 ⇒ id𝐴

so that the following pasting identities hold:

𝐵 𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴
𝑓

⇓𝜂
𝑓

⇓𝜖 𝑓𝑓 = ⇓𝜖 𝑓 ⇓𝜂 =𝑢 = 𝑢
𝑢 𝑢 𝑢= .

One commonly writes 𝐴 𝐵
ᵆ
⊥
𝑓

to indicate that 𝑓 is

left adjoint to 𝑢, its right adjoint, with the data of the
unit 𝜂 and counit 𝜖 being left implicit.

Among the many advantages of using definitions that
are taken “off the shelf” from the 2-categories literature
is that the standard 2-categorical proofs then specialize to

8The technical part of this story involves proofs that the “synthetic” or “formal”
notions introduced here agree with the previously-defined “analytic” notions in
the quasi-categories model [RV2, §F]. But we encourage those not already ac-
quainted with the analytic theory of some model of∞-categories to learn these
definitions first.

prove the following facts about adjunctions between ∞-
categories.9

Proposition 3.4 ([RV2, 2.1.9]). Adjunctions between ∞-
categories compose:

𝐴 𝐵 𝐶 ⇝ 𝐴 𝐶
ᵆ
⊥
𝑓

𝑣
⊥
𝑔

𝑣∘ᵆ
⊥
𝑓∘𝑔

Proposition 3.5 ([RV2, 2.1.10]). Given an adjunction

𝐴 𝐵
ᵆ
⊥
𝑓

between∞-categories and a functor 𝑓′ ∶ 𝐵 → 𝐴,

𝑓′ is left adjoint to 𝑢 if and only if there exists a natural isomor-
phism 𝑓 ≅ 𝑓′.

Proposition 3.6 ([RV2, 2.1.12]). Any equivalence can be
promoted to an adjoint equivalence at the cost of replacing either
of the natural isomorphisms.

Relative adjunctions. The unit and counit in an adjunc-
tion satisfy a universal property in the 2-category ∞-𝖢𝖠𝖳
that we now explore in the case of the counit 𝜖∶ 𝑓𝑢 ⇒ id𝐴.
Given any ∞-functors 𝑎∶ 𝑋 → 𝐴 and 𝑏∶ 𝑋 → 𝐵, pasting
with 𝜖 defines a bijection between ∞-natural transforma-
tions 𝛼∶ 𝑓𝑏 ⇒ 𝑎 and 𝛽∶ 𝑏 ⇒ 𝑢𝑎. Any 𝛼∶ 𝑓𝑎 ⇒ 𝑏 factors
through a unique 𝛽∶ 𝑏 ⇒ 𝑢𝑎 as displayed below:

𝑋 𝐵 𝑋 𝐵

𝐴 𝐴 𝐴 𝐴

𝑏

𝑎 ∀⇓𝛼 𝑓

𝑏

𝑎
∃!⇓𝛽

⇓𝜖
𝑓= ᵆ (3.7)

which is to say that the pair (𝑢, 𝜖) defines an absolute right
lifting of id𝐴 through 𝑓. Indeed, 𝑓 is left adjoint to 𝑢 with
counit 𝜖 if and only if (𝑢, 𝜖) defines an absolute right lifting
of id𝐴 through 𝑓 [RV2, 2.3.7].

Any component 𝜖𝑎 of the counit 𝜖 of an adjunction sat-
isfies a universal property analogous to (3.7):

𝑌 𝐵 𝑌 𝐵

𝑋 𝐴 𝑋 𝐴 𝐴

𝑏

𝑥 ∀⇓𝛼 𝑓

𝑏

𝑥 ∃!⇓𝛽
⇓𝜖

𝑓

𝑎

=

𝑎

ᵆ

which asserts that (𝑢𝑎, 𝜖𝑎) defines an absolute right lifting
of 𝑎 through 𝑓. Motivated by examples such as these, ab-
solute right liftings (𝑟, 𝜌) of a generic∞-functor 𝑔∶ 𝐶 → 𝐴
through 𝑓∶ 𝐵 → 𝐴 can be thought of as exhibiting 𝑟 as
right adjoint to 𝑓 relative to 𝑔 with partial counit 𝜌.

9What is less obvious is that these definitions are “correct” for ∞-category the-
ory. In the case of equivalences, this is easily seen in any of the models. In
the case of adjunctions, this is quite subtle, and involves the fact that the low-
dimensional data enumerated in Definition 3.3 suffices to determine a full “ho-
motopy coherent adjunction,” uniquely up to a contractible space of choices
[RV1].
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Definition 3.8. Given∞-functors 𝑔∶ 𝐶 → 𝐴 and 𝑓∶ 𝐵 →
𝐴 with common codomain, a functor 𝑟∶ 𝐶 → 𝐵 and ∞-
natural transformation 𝜌∶ 𝑓𝑟 ⇒ 𝑔 define an absolute
right lifting of 𝑔 through 𝑓 or a right adjoint of 𝑓 rela-
tive to 𝑔 if pasting with 𝜌 induces a bijection between ∞-
natural transformations as displayed below:

𝑋 𝐵 𝑋 𝐵

𝐶 𝐴 𝐶 𝐴

𝑏

𝑐 ∀⇓𝛼 𝑓

𝑏

𝑐
∃!⇓𝛽

⇓𝜌
𝑓

𝑔

=

𝑔

𝑟

The following lemmas about relative right adjoints ad-
mit straightforward 2-categorical proofs:

Lemma 3.9 ([RV2, 2.3.6]). If (𝑟, 𝜌) is right adjoint to
𝑓∶ 𝐵 → 𝐴 relative to 𝑔∶ 𝐶 → 𝐴 then for any 𝑐∶ 𝑋 → 𝐶,
(𝑟𝑐, 𝜌𝑐) is right adjoint to 𝑓 relative to 𝑔𝑐.

𝐵

𝑋 𝐶 𝐴
⇓𝜌

𝑓

𝑐 𝑔

𝑟

Lemma 3.10 ([RV2, 2.4.1]). Suppose that (𝑟, 𝜌) is right ad-
joint to 𝑓∶ 𝐵 → 𝐴 relative to 𝑔∶ 𝐶 → 𝐴. Then in any diagram
of∞-functors and∞-natural transformations

𝐷

𝐵

𝐶 𝐴

⇓𝜍
𝑘

⇓𝜌
𝑓

𝑔

𝑟

𝑠

(𝑠, 𝜎) is right adjoint to 𝑘 relative to 𝑟 if and only if (𝑠, 𝜌 ⋅ 𝑓𝜎)
is right adjoint to 𝑓𝑘 relative to 𝑔.
Limits and colimits. Relative adjunctions can be used to
define limits and colimits of diagrams valued inside an
∞-category 𝐴 and indexed by another ∞-category 𝐽. As
a cartesian closed 2-category, ∞-𝖢𝖠𝖳 contains a terminal
∞-category 1, which admits a unique ∞-functor ! ∶ 𝐽 → 1
from any other∞-category 𝐽. Maps 𝑎∶ 1 → 𝐴 from the ter-
minal∞-category into another∞-category define elements
in the∞-category 𝐴.10 Using the cartesian closed structure,
any diagram 𝑑∶ 𝐽 → 𝐴 defines an element 𝑑∶ 1 → 𝐴𝐽 in
the ∞-category of 𝐽-shaped diagrams in 𝐴. Exponentiation
with the unique functor ! ∶ 𝐽 → 1 defines the constant dia-
grams functor Δ∶ 𝐴 → 𝐴𝐽 , which carries an element of 𝐴 to
the constant 𝐽-shaped diagram at that element.

Definition 3.11. An ∞-category 𝐴 admits 𝐽-shaped lim-
its if the constant diagrams functor Δ∶ 𝐴 → 𝐴𝐽 admits a

10We find this terminology less confusing than referring to the “objects” in an
∞-category 𝐴, which is itself an object of∞-𝖢𝖠𝖳.

right adjoint and admits 𝐽-shaped colimits if the constant
diagrams functor admits a left adjoint:

𝐴 𝐴𝐽∆

lim
⊥

colim

⊥

The counit 𝜆 of the adjunction Δ ⊣ lim and the unit 𝛾
of the adjunction colim ⊣ Δ encode the limit and colimit
cones, as is most easily seen when considering their com-
ponents at a diagram 𝑑∶ 1 → 𝐴𝐽 . By Lemma 3.9, the right
and left adjoints restrict to define relative adjunctions:

𝐴 𝐴

1 𝐴𝐽 𝐴𝐽 1 𝐴𝐽 𝐴𝐽
⇓𝜆

∆
⇑𝛾

∆

𝑑

lim

𝑑

colim

These observations allow us to generalize Definition 3.11
to express the universal properties of the limit or colimit
of a single diagram in settings where the limit and colimit
functors do not exist.

Definition 3.12. A diagram 𝑑∶ 𝐽 → 𝐴 between ∞-
categories admits a limit just when Δ admits a relative
right adjoint at 𝑑 and admits a colimit just when Δ admits
a relative left adjoint at 𝑑, as encoded by absolute lifting di-
agrams:

𝐴 𝐴

1 𝐴𝐽 1 𝐴𝐽
⇓𝜆𝑑

∆
⇑𝛾𝑑

∆

𝑑

lim𝑑

𝑑

colim𝑑

There is an easy formal proof of the ∞-categorical ver-
sion of a classical theorem:

Theorem 3.13. Right adjoints preserve limits and left adjoints
preserve colimits.

Proof. Consider an adjunction as in Definition 3.3 and a
limit of a diagram as in Definition 3.12. To show that the
limit is preserved by the right adjoint, we must show that

𝐴 𝐵

1 𝐴𝐽 𝐵𝐽
⇓𝜆𝑑

∆

ᵆ

∆

𝑑

lim𝑑

ᵆ𝐽

defines a relative right adjoint. By Lemma 3.10, it suffices
to demonstrate this after pasting with the relative right ad-
joint encoded by the component at 𝑑 of the counit 𝜖𝐽 of
the adjunction 𝑓𝐽 ⊣ 𝑢𝐽 , as below-left:

𝐴 𝐵 𝐵 𝐵

1 𝐴𝐽 𝐵𝐽 𝐴 𝐴 𝐴

𝐴𝐽 1 𝐴𝐽 𝐴𝐽 1 𝐴𝐽

⇓𝜆𝑑
∆

𝑢

∆
⇓𝜖

𝑓 ⇓𝜖lim𝑑
𝑓lim𝑑

𝑑
𝑢𝐽

𝑓𝐽⇓𝜖𝐽
=

⇓𝜆𝑑

𝑢

∆ ∆

=

⇓𝜆𝑑
∆

𝑑

lim𝑑

𝑑

lim𝑑

𝑢 lim𝑑

From the 2-functoriality of the exponential in a cartesian
closed 2-category, 𝑓𝐽Δ = Δ𝑓 and 𝜖𝐽Δ = Δ𝜖. Hence,
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the pasting diagram displayed above-left equals the one
displayed above-center, which equals the diagram above-
right. This latter diagram is a pasted composite of relative
right adjoints, and is then a relative right adjoint in its own
right by Lemma 3.10. □

Universal properties. Definitions 3.3 and 3.12 do not ex-
press the full universal properties of adjunctions between
and co/limits in ∞-categories. These require additional
structure borne by the 2-category ∞-𝖢𝖠𝖳, namely the ex-
istence of comma ∞-categories for any pair of ∞-functors
𝑓∶ 𝐵 → 𝐴 and 𝑔∶ 𝐶 → 𝐴. The comma ∞-category is an
∞-category Hom𝐴(𝑓, 𝑔) equipped with canonical functors
and an∞-natural transformation as below-left, formed by
the pullback of ∞-categories below-right:

Hom𝐴(𝑓, 𝑔) 𝐵 Hom𝐴(𝑓, 𝑔) 𝐴2

𝐶 𝐴 𝐶 × 𝐵 𝐴 ×𝐴

dom

cod ⇓𝜙 𝑓
⌟

𝜙

(cod,dom) (cod,dom)

𝑔 𝑔×𝑓

(3.14)

While the universal property of Hom𝐴(𝑓, 𝑔) as an object
of ∞-𝖢𝖠𝖳 is weaker than the standard notion of comma
object in 2-category theory, nevertheless:

Theorem 3.15 ([RV2, 3.5.8]). An ∞-functor 𝑓∶ 𝐵 → 𝐴
admits a right adjoint 𝑟∶ 𝐶 → 𝐵 relative to 𝑔∶ 𝐶 → 𝐴 if and
only if there exists an equivalence over 𝐶 × 𝐵:

Hom𝐴(𝑓, 𝑔) ≃𝐶×𝐵 Hom𝐵(𝐵, 𝑟).

When Theorem 3.15 is applied to 𝑓∶ 𝐵 → 𝐴 and id𝐴, it
specializes to:

Corollary 3.16 ([RV2, 4.1.1]). An∞-functor 𝑓∶ 𝐵 → 𝐴 ad-
mits a right adjoint 𝑢∶ 𝐴 → 𝐵 if and only if Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵
Hom𝐵(𝐵, 𝑢).

When Theorem 3.15 is applied to Δ∶ 𝐴 → 𝐴𝐽 and
𝑑∶ 1 → 𝐴𝐽 it specializes to:

Corollary 3.17 ([RV2, 4.3.1]). A diagram 𝑑∶ 𝐽 → 𝐴 has a
limit ℓ∶ 1 → 𝐴 if and only if Hom𝐴𝐽 (Δ, 𝑑) ≃𝐴 Hom𝐴(𝐴, ℓ).

Here the comma ∞-category Hom𝐴𝐽 (Δ, 𝑑) defines the
∞-category of cones over 𝑑. The ∞-category Hom𝐴(𝐴, ℓ)
admits a terminal element idℓ ∶ 1 → Hom𝐴(𝐴, ℓ),
which defines a right adjoint to the unique functor
! ∶ Hom𝐴(𝐴, ℓ) → 1. Via the equivalence Hom𝐴𝐽 (Δ, 𝑑) ≃𝐴
Hom𝐴(𝐴, ℓ) we see that the limit cone is terminal in the
∞-category of cones. Indeed, 𝑑 admits a limit if and
only if the∞-category of cones admits a terminal element
[RV2, 4.3.2].
Could we teach this to undergraduates? If classical cat-
egory theory were a standard course in the undergraduate
mathematics curriculum, then perhaps students with a par-
ticular interest in the subject might go on to learn some
2-category theory, like students with a particular interest
in algebra might go on to take more specialized courses in
classical algebraic geometry, algebraic number theory, or

representation theory when offered. From this point, the
proofs of the results stated here are not too difficult.

But these results encompass only a small portion of ∞-
category theory, and for most of the rest there is a greater
jump in complexity when extending from 1-categories to
∞-categories. This is best illustrated by considering the
Yoneda lemma, which in an important special case is
stated as follows:

Theorem 3.18 ([RV2, 5.7.1]). Given an ∞-category 𝐴 and
elements 𝑎, 𝑏∶ 1 → 𝐴, the ∞-groupoid Hom𝐴(𝑎, 𝑏) is equiva-
lent to the∞-groupoid of functors Hom𝐴(𝐴, 𝑎) → Hom𝐴(𝐴, 𝑏)
over 𝐴.

One direction of this equivalence is easy to describe: the
map from right to left is defined by evaluation at the iden-
tity element id𝑎 ∶ 1 → Hom𝐴(𝑎, 𝑎). The inverse equiva-
lence defines the Yoneda embedding, which is notoriously
difficult to construct in ∞-category theory as it involves
equipping𝐴with a homotopy coherent composition func-
tion [L2, §5.1.3].

To achieve further simplifications of∞-category theory,
one idea is to ask our foundation system to do more of the
work.

4. A Synthetic Theory of ∞-Categories
To explain the desiderata for an alternative founda-
tion, consider the default notions of “sameness” for ∞-
categorical data. Two elements in an ∞-category are the
same if and only if they are connected by a path in the
underlying∞-groupoid, while parallel morphisms are the
same if and only if they are connected by an invertible 2-
cell, defining a path in the appropriate mapping space. For
an∞-categorical construction to be “well-defined” it must:

(i) respect the notions of sameness encoded by paths in
suitable spaces, and

(ii) respect equivalences between these spaces themselves,
since they are only well-defined as homotopy types.

Axiomatizing sameness. In traditional foundations,
there is a similar axiom that mathematical constructions
or results must respect sameness as encoded by equality.
The axioms that define the binary relation “=” in first-order
logic are:

• reflexivity: for all 𝑥, 𝑥 = 𝑥 is true.
• indiscernibility of identicals: for all 𝑥, 𝑦 and for all

predicates 𝑃, if 𝑥 = 𝑦 then 𝑃(𝑥) holds if and only if
𝑃(𝑦) holds.

Analogous rules govern Martin-Löf’s identity types in an
alternative foundational framework for constructive math-
ematics known as dependent type theory [M-L]. Here the
primitives include types like N, 𝐺𝐿𝑛(R), and Group and
terms like 17 ∶ N, 𝐼𝑛 ∶ 𝐺𝐿𝑛(R), 𝑆𝑛 ∶ Group, which may de-
pend on an arbitrary context of variables drawn from pre-
viously defined types (e.g., the 𝑛 ∶ N appearing in three
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examples above).11 In traditional foundations, mathemat-
ical structures are defined in the language of set theory,
while proofs obey the rules of first-order logic. In depen-
dent type theory, mathematical constructions and mathe-
matical proofs are unified: both are given by terms in ap-
propriate types. The ambient type then describes the sort
of object being constructed or the mathematical statement
being proven, while the context describes the inputs to the
construction or the hypotheses for the theorem.

The rules for Martin-Löf’s identity types include:12

• identity-formation: in the context of two variables
𝑥, 𝑦 ∶ 𝐴 there is a type 𝑥 =𝐴 𝑦.

Types encodemathematicallymeaningful statements or as-
sertions, so this rule says that it is reasonable to inquire
whether 𝑥 and 𝑦might be identified, once 𝑥 and 𝑦 are terms
in the same type. Certain identity types, such as 3 =N 4,
will be empty, since the terms 3 and 4 cannot be identified,
but the type nevertheless exists.

• identity-introduction: for any 𝑥 ∶ 𝐴, there is a term
refl𝑥 ∶ 𝑥 =𝐴 𝑥.

Terms in types are witnesses to the truth of the statement
encoded by the type, so this rule corresponds to the reflex-
ivity axiom.

• identity-elimination: given any family of types
𝑄(𝑥, 𝑦, 𝑝) depending on 𝑥, 𝑦 ∶ 𝐴 and 𝑝 ∶ 𝑥 =𝐴 𝑦,
to provide a family of terms 𝑞𝑥,𝑦,𝑝 ∶ 𝑄(𝑥, 𝑦, 𝑝) for
all 𝑥, 𝑦, 𝑝 it suffices to provide a family of terms 𝑑𝑥 ∶
𝑄(𝑥, 𝑥, refl𝑥) for all 𝑥.

This rule implies Leibniz’s indiscernibility of identicals
and much more besides:

Theorem 4.1 ([BG, Lu]). The iterated identity types provide
any type with the structure of an∞-groupoid, in which the terms
are the points, the identifications are the paths, and the higher
identifications encode homotopies.

In low dimensions, the ∞-groupoid structure on the it-
erated identity types of a type 𝐴 provides:

• functions (−)−1 ∶ (𝑥 =𝐴 𝑦) → (𝑦 =𝐴 𝑥) that invert
identifications,

• functions − ∗− ∶ (𝑥 =𝐴 𝑦) × (𝑦 =𝐴 𝑧) → (𝑥 =𝐴 𝑧) that
compose identifications,

• higher identifications assoc ∶ (𝑝∗𝑞)∗𝑟 =𝑥=𝐴𝑤 𝑝∗(𝑞∗𝑟)
between composable triples of identifications,

and much more. All of these terms are constructed us-
ing the identity-elimination rule from the reflexivity terms
provided by the identity-introduction rule. Since an

11In a mathematical statement of the form “Let . . . be . . . then . . . ” the stuff
following the “let” likely declares the names of the variables in the context de-
scribed after the “be,” while the stuff after the “then” most likely describes a type
or term in that context.
12One additional rule, not listed here, concerns the computational behavior of
this system.

identification 𝑝 ∶ 𝑥 =𝐴 𝑦 defines a path from 𝑥 to 𝑦 in
the ∞-groupoid 𝐴, identifications in dependent type the-
ory are often referred to colloquially as “paths.”
The homotopical interpretation of dependent type the-
ory. The homotopical interpretation of dependent type
theory was discovered in the early 21st century by Awodey–
Warren and Voevodsky, building on earlier work of Hof-
mann and Streicher. This connection inspired Voevodsky
to make the following definition:

Definition 4.2. A type 𝐴 is contractible just when there is
a term of type

Σ𝑥∶𝐴Π𝑦∶𝐴𝑥 =𝐴 𝑦,
which may be read as “there exists 𝑥 ∶ 𝐴, so that for all 𝑦 ∶
𝐴, 𝑥 is identifiable with 𝑦” with all quantifiers interpreted
as requiring continuous specifications of data.13

Just as contractible spaces might contain uncountably
infinitely many points, contractible types might contain
more than one term. But since any two terms in a
contractible type may be identified, and since identity-
elimination implies that all of dependent type theory
respects identifications, the theory behaves as if a con-
tractible type had a unique term.
Univalent foundations. Martin-Löf’s dependent type the-
ory is a formal system inwhich all constructions are contin-
uous in paths, our first desideratum. The second desider-
atum, of well-definedness under equivalences between
types, follows once Voevodsky’s univalence axiom is added
to dependent type theory, resulting in a formal system
called homotopy type theory or univalent foundations.

Voevodsky’s univalence connects two notions of same-
ness for types. In traditional dependent type theory, types
can be encoded as terms in a universe of types.14 Thus,
one notion of sameness between types 𝐴, 𝐵 belonging to a
universe 𝒰 is given by paths 𝑝 ∶ 𝐴 =𝒰 𝐵 in the universe.
Another notion of sameness is suggested by types as ∞-
groupoids: for any 𝐴 and 𝐵 there is a type 𝐴 ≃ 𝐵 of (homo-
topy) equivalences from 𝐴 to 𝐵.15 By identity-elimination,
to define a natural map id-to-equiv ∶ 𝐴 =𝒰 𝐵 → 𝐴 ≃ 𝐵 it
suffices to define the image of refl𝐴 ∶ 𝐴 =𝒰 𝐴, which we
take to be the identity equivalence. The univalence axiom
asserts that this map is an equivalence for all types 𝐴 and
𝐵.

By univalence, an equivalence 𝑒 ∶ 𝐴 ≃ 𝐵 gives rise to a
path ua(𝑒) ∶ 𝐴 =𝒰 𝐵, which can then be used to transport

13The definition of contractible types makes use of the dependent pair
and dependent function types in dependent type theory. A term of type
Σ𝑥∶𝐴Π𝑦∶𝐴𝑥 =𝐴 𝑦 provides a term 𝑐 ∶ 𝐴, the “center of contraction,” together
with a family of paths 𝑝𝑧 ∶ 𝑐 =𝐴 𝑧 for all 𝑧 ∶ 𝐴, the “contracting homotopy.”
14Russell’s paradox can be resolved by a cumulative hierarchy of universes.
15It is an interesting challenge to define a type whose data witnesses that a given
map 𝑓∶ 𝐴 → 𝐵 is an equivalence in such a way that this type is contractible
whenever it is inhabited.
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terms in any type involving 𝐴 to terms in the correspond-
ing type involving 𝐵. Thus, univalent mathematics is auto-
matically invariant under equivalence between types.
∞-categories in univalent foundations. There is an ex-
perimental exploration of ∞-category theory [RS, BW,Ba]
in an extension of homotopy type theory in which every
type 𝐴 has a family of arrows Hom𝐴(𝑥, 𝑦) in addition to
the family of paths 𝑥 =𝐴 𝑦. These types are obtained from
a new type-forming operation that produces extension types,
whose terms are type-valued diagrams that strictly extend
a given diagram along an inclusion of “shapes” (polytopes
embedded in directed cubes constructed in the theory of
a strict interval) [RS, §2-4]. Extension types include types
analogous to the pullbacks of (1.4) and (3.14).

The formal system has semantics in complete Segal
spaces [RS,W] so it provides a rigorous way to prove the-
orems about ∞-categories as understood in traditional
foundations. At the same time, the experience of working
with∞-categories in this “univalent” foundational setting
is much more akin to the experience of working with 1-
categories in traditional foundations.

It takes work to set up this formal system and consider-
ably more to describe its interpretation in complete Segal
spaces; indeed, this is where the hard work of solving ho-
motopy coherence problems goes. But once this is done,
it is possible to define the notion of an ∞-category, some-
thing that would no doubt be reassuring to undergradu-
ates hoping to learn about them.16 The two axioms ex-
press the “Segal” and “completeness” conditions of Rezk’s
model [R1], respectively.

Definition 4.3 ([RS, 5.3,10.6]). An∞-category is a type 𝐴
in which:

• every composable pair of arrows has a unique compos-
ite, and

• for any pair of terms 𝑥, 𝑦 ∶ 𝐴 the natural map 𝑥 =𝐴
𝑦 → 𝑥 ≅𝐴 𝑦 from paths in 𝐴 to isomorphisms in 𝐴 is
an equivalence.

The “uniqueness” in the first axiom is in the sense of
Definition 4.2: what it asserts is that a suitable space of
composites analogous to Definition 1.3 is contractible—
the default meaning of uniqueness in this formal system.
Like in the space defined by (1.4), a term in the space of
composites provides a higher-dimensional witness to the
composition relation. A composition function

∘∶ Hom𝐴(𝑦, 𝑧) ×Hom𝐴(𝑥, 𝑦) → Hom𝐴(𝑥, 𝑧),
is obtained by throwing away these witnesses. Like any
construction in homotopy type theory, this function re-
spects identifications and is therefore well-defined. It

16Recall that in the formal ∞-category theory developed in the 2-category
∞-𝖢𝖠𝖳, a concrete definition of∞-categories is not used.

follows from this axiom that composition is associa-
tive and unital, using canonical identity arrows id𝑥 ∶
Hom𝐴(𝑥, 𝑥).

The second axiom involves a type of isomorphisms in
𝐴, which may be defined in a similar manner to the type
of equivalences between types [RS, §10].
The Yoneda lemma. The advantages of this synthetic
framework for ∞-category theory are on display when
comparing the proofs of the Yoneda lemma in [RV2, 5.7.1]
and in [RS, 9.1]. We sketch the latter here in the same spe-
cial case considered in Theorem 3.18.

Theorem 4.4 ([RS, 9.1]). Given an ∞-category 𝐴 and ele-
ments 𝑎, 𝑏∶ 1 → 𝐴, the type Hom𝐴(𝑎, 𝑏) is equivalent to the
type Π𝑥∶𝐴Hom𝐴(𝑥, 𝑎) → Hom𝐴(𝑥, 𝑏) of fiberwise functions.

A key difference between Theorem 3.18 and Theorem
4.4 is that in the present framework it is straightforward to
define the inverse equivalence to the evaluation at iden-
tity map. The inverse equivalence takes an arrow 𝑓 ∶
Hom𝐴(𝑎, 𝑏) to the natural map 𝑥 ↦ 𝑔 ↦ 𝑓 ∘ 𝑔 ∶
Π𝑥∶𝐴Hom𝐴(𝑥, 𝑎) → Hom𝐴(𝑥, 𝑏). The usual proof then
demonstrates that these maps are inverse equivalences.
In one direction, this is given by an identification 𝑓 ∘
id𝑎 =Hom𝐴(𝑎,𝑏) 𝑓, which expresses the fact that composi-
tion in an ∞-category is unital. In the other direction, we
must show that a fiberwise map 𝜙 agrees with the map
whose component at 𝑥 is given by 𝑔 ↦ 𝜙𝑎(id𝑎) ∘ 𝑔 ∶
Hom𝐴(𝑥, 𝑎) → Hom𝐴(𝑥, 𝑏). By a consequence of the uni-
valence axiom called “function extensionality,” it suffices
to show that 𝜙𝑎(id𝑎) ∘ 𝑔 =Hom𝐴(𝑥,𝑏) 𝜙𝑥(𝑔). This follows
from the fact that fiberwise maps are automatically “nat-
ural,” providing an identification 𝜙𝑎(id𝑎) ∘ 𝑔 =Hom𝐴(𝑥,𝑏)
𝜙𝑥(id𝑎∘𝑔). Since the function 𝜙𝑥 respects the identification
id𝑎 ∘ 𝑔 =Hom𝐴(𝑥,𝑎) 𝑔, we obtain the required identification.

In fact, [RS, 9.5] proves a generalization of the Yoneda
lemma that was first discovered with this formal system
and later proven in traditional foundations [RV2, 5.7.2]
Conclusion. Significant technical problems remain to
make it feasible to teach∞-category theory to undergradu-
ates, but I have hope that in the future the subject will not
seem as forbidding as it does today.
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