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a Metaplectic Group?
Martin H. Weissman

Metaplectic groups “cover” symplectic groups, fitting into
a short exact sequence like

1 → {±1} → Mp2𝑛(ℝ) → Sp2𝑛(ℝ) → 1.

They arise when one realizes that a group of operators
almost satisfies relations among symplectic matrices. In
this formulation, they are creatures of geometry and har-
monic analysis. More profoundly, modular forms of half-
integer weight like those studied by Shimura [Shi73] come
from automorphic representations of metaplectic groups
[Gel76]. In this setting, and via the theta correspondence,
metaplectic groups belong to number theory and the Lang-
lands program. Here we introduce metaplectic groups
from multiple perspectives.

1. Topological
The two-by-two special linear group is the Lie group

SL2(ℝ) = {( 𝑎 𝑏
𝑐 𝑑 ) ∶ 𝑎𝑑 − 𝑏𝑐 = 1, 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ} .

The group structure here is by matrix multiplication, and
geometric structure arises from its embedding as a smooth
submanifold of ℝ4. Its subgroup of rotations is diffeomor-
phic to the circle,

SO2(ℝ) = {( cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃 ) ∶ 0 ≤ 𝜃 < 2𝜋} .
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Write 𝔭 for the real vector space of symmetric trace-zero
matrices,

𝔭 = {( 𝑢 𝑣
𝑣 −𝑢 ) ∶ 𝑢, 𝑣 ∈ ℝ} .

Then multiplication and the matrix exponential give a dif-
feomorphism

𝜙∶ SO2(ℝ) × 𝔭 → SL2(ℝ), 𝜙(𝑟, 𝑋) = 𝑟 ⋅ exp(𝑋).
E. Cartan proved such a statement for connected

semisimple Lie groups in 1927, thoughwe refer toMostow
[Mos49] for a tidier proof. In such a general context, one
finds a diffeomorphism,

𝜙∶ 𝐾 × 𝔭 diffeo−−−→ 𝐺, (1.1)

where 𝐾 is a maximal compact subgroup of 𝐺, and 𝔭 is a
real vector space. From this, it follows that the fundamen-
tal groups of 𝐾 and 𝐺 (with base point 1) can be identified.
In particular, we have

𝜋1 (SL2(ℝ)) ≡ 𝜋1 (SO2(ℝ)) = 𝜋1(○) = ℤ.
Associated to the quotient ℤ/2ℤ of 𝜋1(SL2(ℝ)), one

finds a two-fold covering space of SL2(ℝ). This covering
space is naturally a Lie group, and the covering map a Lie
group homomorphism, with kernel of order two. This
“covering group”Mp2(ℝ) is the simplest example of ameta-
plectic group, and it fits into a short exact sequence,

1 → 𝜇2 → Mp2(ℝ) → SL2(ℝ) → 1.
Here 𝜇2 ≔ {±1} ≅ ℤ/2ℤ is a group of order two, and it lies
in the center of Mp2(ℝ).

The term “metaplectic” (“groupemétaplectique”) is due
to André Weil [Wei64, §34], in a more general context,
wheremetaplectic groups cover symplectic groups. Indeed,
Cartan’s diffeomorphism (1.1) holds for the symplectic
groups Sp2𝑛(ℝ), where they provide an identification,

𝜋1 (Sp2𝑛(ℝ)) = 𝜋1 (U(𝑛)) = ℤ, when 𝑛 ≥ 1.
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In this way, the previous construction gives a central exten-
sion of Lie groups,

1 → 𝜇2 → Mp2𝑛(ℝ) → Sp2𝑛(ℝ) → 1.
Note 𝑛 = 1 gives Mp2(ℝ), since SL2(ℝ) = Sp2(ℝ). These 2-
fold coverings Mp2𝑛(ℝ) of symplectic groups Sp2𝑛(ℝ) are
called metaplectic groups, since Weil’s landmark paper.

On the other hand, this topological construction also
provides a 𝑑-fold covering of Sp2𝑛(ℝ) for every positive in-
teger 𝑑, corresponding to the quotient ℤ/𝑑ℤ of the funda-
mental group ℤ. These are sometimes called “higher meta-
plectic groups” though naming is not so consistent.

If one attempts to work with SL𝑛(ℝ), things change
more dramatically. While SO2(ℝ) is the circle, with fun-
damental group ℤ, the space-rotation group SO3(ℝ) has
fundamental group of order 2. This corresponds to the fa-
mous double cover,

1 → 𝜇2 → SU(2) → SO3(ℝ) → 1.
In fact, the fundamental groups 𝜋1(SO𝑛(ℝ)) are all just
ℤ/2ℤ, for 𝑛 ≥ 3. Since SO𝑛(ℝ) is a maximal compact sub-
group of SL𝑛(ℝ), one finds only 2-fold covers of SL𝑛(ℝ)
for 𝑛 ≥ 3. Some describe these 2-fold covers of 𝑆𝐿𝑛(ℝ) as
“metaplectic covers of 𝑆𝐿𝑛(ℝ)” even though the symplectic
group is no longer present.

2. Weil’s Groups of Operators
We have given a topological characterization ofMp2(ℝ), but
not really a construction. One might compare to the case of
spin groups, where the fundamental group of SO𝑛(ℝ) has
order two (assuming 𝑛 > 2). As a result, there is a central
extension,

1 → 𝜇2 → Spin𝑛(ℝ) → SO𝑛(ℝ) → 1.
This “covering group” of SO𝑛(ℝ) is the compact group
known as the spin group. But a more direct construction
of Spin𝑛(ℝ) is possible using the Clifford algebra of dimen-
sion 2𝑛. With it, one may embed Spin𝑛(ℝ) in the group of
invertible 2𝑚 × 2𝑚 matrices with 𝑚 = ⌊(𝑛 − 1)/2⌋ – a great
cost, to be sure, but at least the spin groups are groups of
matrices. (Should we call Spin𝑛(ℝ) a metaplectic group? I
think not, but others may disagree.)

The traditional metaplectic groups Mp2𝑛(ℝ) admit no
such matrix representation. In fact, this is a theorem.

Theorem 2.1. Let 𝑁 be a positive integer and let
𝜌∶ Mp2𝑛(ℝ) → GL𝑁(ℂ) be a continuous homomorphism.
Then Ker(𝜌) contains 𝜇2, i.e., 𝜌 factors through Sp2𝑛(ℝ). In
particular, 𝜌 is not injective.

A proof is difficult to locate in the literature; Bourbaki
suggests it as an exercise in [Bou98, Ch.III, Exercises for §6].
It suffices to assume 𝑛 = 1, sinceMp2(ℝ) ⊂ Mp2𝑛(ℝ) for all
𝑛 ≥ 1. Finite-dimensional representations of Mp2(ℝ) are
determined by associated representations of its Lie algebra,
𝔪𝔭2(ℝ) = 𝔰𝔩2(ℝ). Those can all be written down, and the

corresponding representations of Mp2(ℝ) factor through
Mp2(ℝ)/𝜇2 = SL2(ℝ).

Since Mp2𝑛(ℝ) does not sit inside a group of finite ma-
trices, one must go further and work with groups of uni-
tary operators on a Hilbert space. Such representations
of Mp2(ℝ)—in fact, of the universal covering of SL2(ℝ)—
were classified by Pukánzsky [Puk64] in 1964. In the
same year, Weil [Wei64] published “Sur certains groupes
d’opérateurs unitaires,” where he constructed metaplectic
groups via such operators.

Herewe describe themetaplectic groupMp2(ℝ) in terms
of unitary operatorsU(ℋ) on the Hilbert spaceℋ = ℒ2(ℝ)
of square-integrable functions. One learns about various
unitary operators in a first course in harmonic analysis.
One example is the Fourier transform,

[𝐅𝑓](𝑥) = ∫
∞

−∞
𝑓(𝑦)𝑒−2𝜋𝑖𝑥𝑦𝑑𝑦.

It will be convenient to scale the Fourier transform by an
eighth root of unity, to define

𝐖𝑓 = 𝜁 ⋅ 𝐅𝑓, and 𝜁 = 𝑒𝑖𝜋/4.
Fourier inversion gives the formulae,

[𝐅𝐅𝑓](𝑥) = 𝑓(−𝑥), so [𝐖𝐖𝑓](𝑥) = 𝑖𝑓(−𝑥). (2.2)

Note that 𝐅4 = Id, but 𝐖4 = −1, in the group U(ℋ).
Another operator is obtained by multiplying by a func-

tion of absolute value one. For 𝑏 ∈ ℝ, define 𝜎𝑏(𝑥) =
𝑒𝜋𝑖𝑏𝑥2 (a “quadratic sinusoid”), and define unitary opera-
tors 𝐄+(𝑏), 𝐄−(𝑏) by

[𝐄+(𝑏)𝑓](𝑥) = 𝜎𝑏(𝑥) ⋅ 𝑓(𝑥), and

𝐄−(𝑏) = 𝐖𝐄+(𝑏)𝐖−1.
A computation in Fourier analysis (admittedly not in

ℒ2) shows that 𝐅𝜎𝑏 = |𝑏|−1/2𝜁sgn(𝑏)𝜎−1/𝑏. This allows us to
compute

[𝐄−(𝑏)𝑓](𝑥) = |𝑏|−1/2𝜁sgn(𝑏) ⋅ [𝜎−1/𝑏 ∗ 𝑓](𝑥).
Here the star ∗ denotes convolution.

For 0 ≠ 𝑢 ∈ ℝ, define the operator 𝐇(𝑢) by

[𝐇(𝑢)𝑓](𝑥) = |𝑢|1/2𝑓(𝑢𝑥) ⋅ {1 if 𝑢 > 0;
−𝑖 if 𝑢 < 0.

This is a familiar “time-scaling” operator in Fourier analy-
sis, scaled by |𝑢|1/2 to make it unitary, and scaled by 1 or
−𝑖 to make the following equation true.

𝐄−(𝑢−1)𝐄+(𝑢) = 𝐄+(−𝑢)𝐇(𝑢)𝐖 for all 𝑢 ∈ ℝ×.
This implies

𝐇(𝑢) = 𝐄+(𝑢)𝐄−(𝑢−1)𝐄+(𝑢)𝐖−1.
The proofs of these formulae are left as a computational
exercise. And if the reader has made it through the zoo of
unitary operators, 𝐖 and 𝐄±(𝑏), and 𝐇(𝑢), they can find
the following relations.
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Proposition 2.3. The operators above satisfy the following re-
lations (for all 𝑎, 𝑏 ∈ ℝ, 𝑢, 𝑣 ∈ ℝ×).

i. 𝐖2 = 𝐇(−1);
ii. 𝐄+(𝑎 + 𝑏) = 𝐄+(𝑎)𝐄+(𝑏);
iii. 𝐇(𝑢)𝐇(𝑣) = (𝑢, 𝑣)2𝐇(𝑢𝑣);
iv. 𝐇(𝑢)𝐄+(𝑎)𝐇(𝑢−1) = 𝐄+(𝑎𝑢2).
In (iii), the expression (𝑢, 𝑣)2 ∈ {1, −1} is the Hilbert symbol,
defined by

(𝑢, 𝑣)2 = { 1 if 𝑢 > 0 or 𝑣 > 0;
−1 if 𝑢 < 0 and 𝑣 < 0.

We have focused on the operators and relations above,
because they are analogous to matrices and relations in
𝑆𝐿2. For any field 𝐹, define matrices in SL2(𝐹),

𝑤 ≔ ( 0 1
−1 0 ) , 𝑒+(𝑏) ≔ ( 1 𝑏

0 1 ) for all 𝑏 ∈ 𝐹.

Define also, for all 𝑏 ∈ 𝐹, 𝑢 ∈ 𝐹×,

𝑒−(𝑏) ≔ 𝑤𝑒+(𝑏)𝑤−1 = ( 1 0
−𝑏 1 ) ,

ℎ(𝑢) ≔ 𝑒+(𝑢)𝑒−(𝑢−1)𝑒+(𝑢)𝑤−1 = ( 𝑢 0
0 𝑢−1 ) .

In Shalika’s thesis [Sha04, Thm. 1.2.1] he proves:

Proposition 2.4. Let 𝐹 be a field. Then SL2(𝐹) can be pre-
sented by generators {𝑤, 𝑒+(𝑏) ∶ 𝑏 ∈ 𝐹}, subject to the following
relations.

i. 𝑤2 = ℎ(−1).
ii. 𝑒+(𝑎 + 𝑏) = 𝑒+(𝑎)𝑒+(𝑏) for all 𝑎, 𝑏 ∈ 𝐹.
iii. ℎ(𝑢)ℎ(𝑣) = ℎ(𝑢𝑣) for all 𝑢, 𝑣 ∈ 𝐹×.
iv. ℎ(𝑢)𝑒+(𝑎)ℎ(𝑢−1) = 𝑒(𝑎𝑢2) for 𝑎 ∈ 𝐹, 𝑢 ∈ 𝐹×.
The only difference in the relations, between Proposi-

tions 2.3 and 2.4, is the sign in relation (iii). Taken to-
gether, we find the following.

Theorem 2.5. Let 𝑀 be the subgroup of U(ℋ) generated by
𝐖 and {𝐄+(𝑏) ∶ 𝑏 ∈ ℝ}. Then there is a unique isomorphism
𝜄∶ 𝑆𝐿2(ℝ) → 𝑀/{±1} satisfying

𝜄 ( 0 1
−1 0 ) = 𝐖 and 𝜄 ( 1 𝑏

0 1 ) = 𝐄+(𝑏).

Indeed, the relations (i-iv) of 𝑆𝐿2(ℝ) are satisfied by
𝐖 and 𝐄+(𝑏), once we quotient out by ±1. This pro-
vides the unique homomorphism from 𝑆𝐿2(ℝ) to 𝑀/{±1}.
Surjectivity is clear since 𝑀 is by definition generated by
{𝐖,𝐄+(𝑏) ∶ 𝑏 ∈ ℝ}. For injectivity, we can use the fact that
the only proper nontrivial normal subgroup of 𝑆𝐿2(ℝ) is
{±1}, and

𝜄 ( −1 0
0 −1 ) = 𝜄(ℎ(−1)) = [𝐇(−1)] ≠ [±1].

In this way, one can constructively define themetaplectic
group Mp2(ℝ) to be the subgroup of U(ℋ) generated by
𝐖 and {𝐄+(𝑏) ∶ 𝑏 ∈ ℝ}. The topological characterization

of the first section is replaced by an analytic construction.
This construction extends fromMp2(ℝ) toMp2𝑛(ℝ), when
the Hilbert space ℒ2(ℝ) is replaced by ℒ2(ℝ𝑛).

More dramatically, this construction extends from ℝ to
any field where one may perform harmonic analysis, e.g.,
the fields ℝ, ℚ𝑝, 𝔽𝑝((𝑡)), and their finite extensions (avoid-
ing characteristic two). TheHilbert spaceℒ2(ℝ) is replaced
by ℒ2(𝐹) for such a local field 𝐹. The function 𝑥 ↦ 𝑒2𝜋𝑖𝑥 is
replaced by a suitable additive character 𝑥 ↦ 𝐞(𝑥) ∈ U(1),
to define a Fourier transform 𝐅 and operator 𝐄+(𝑏) in
this context. This defines metaplectic groups Mp2𝑛(𝐹) for
every local field (avoiding characteristic two), following
Weil [Wei64] and Shalika’s 1966 PhD thesis (published in
[Sha04]).

Beyond just constructing the metaplectic group for its
own sake, Weil’s operator theoretic approach set the stage
for decades of results in number theory. Constructing the
metaplectic group over all local fields, and putting the lo-
cal fields together, Weil’s construction defines an adelic
metaplectic group Mp2𝑛(𝔸). Here 𝔸 is the ring of adeles,
and Mp2𝑛(𝔸) is a double-cover of the adelic symplectic
group Sp2𝑛(𝔸).

As is customary in number theory (since Tate’s The-
sis) and automorphic forms, one considers the subgroup
Sp2𝑛(ℚ) ⊂ Sp2𝑛(𝔸). The metaplectic cover Mp2𝑛(𝔸) natu-
rally “splits” over Sp2𝑛(ℚ), meaning that the inclusionmap
Sp2𝑛(ℚ) ↪ Sp2𝑛(𝔸) lifts to realize Sp2𝑛(ℚ) as a subgroup
of Mp2𝑛(𝔸).

1 𝜇2 Mp2𝑛(𝔸) Sp2𝑛(𝔸) 1

Sp2𝑛(ℚ)
inclusion

splits!

This natural splitting carries precisely the information of
quadratic reciprocity, Thus one finds a basic connection
between harmonic analysis (on local fields and the adeles)
and reciprocity laws in number theory. The splitting above
also set the stage for Gelbart’s analysis [Gel76] of automor-
phic forms and representations of metaplectic groups, e.g.,
the spectral decomposition of ℒ2(SL2(ℚ)\Mp2(𝔸)). This
in turn led to the full development of the theta correspon-
dence by Waldspurger. It is too big a subject for treatment
here, so we refer to the beautiful survey of Dipendra Prasad
[Pra98] and more recent state of the art by Wee Teck Gan
and Wen-Wei Li [GL18].

3. Steinberg and Matsumoto
Proposition 2.4 describes SL2(𝐹) by generators and rela-
tions, and Steinberg generalizes this to Chevalley groups
in [Ste16, §6]. While Shalika used relations like (i-iv) to
prove that the group of operatorsMp2(𝐹) is a double-cover
of SL2(𝐹), one may use generators and relations to directly
construct the metaplectic group – without any reference
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to operators at all! Here we describe this last approach
to metaplectic groups as it leads to important generaliza-
tions.

Forget about topology and analysis, and consider a sim-
ple simply-connected Chevalley group over any field 𝐹.
These are classified according to Cartan type: the type 𝐴ℓ
groups are SLℓ+1(𝐹), and the type 𝐶ℓ are the symplectic
groups Sp2ℓ(𝐹), and the type 𝐵ℓ and 𝐷ℓ are the “split” spin
groups Spin2ℓ+1(𝐹) and Spin2ℓ(𝐹) respectively. One has ex-
ceptional Chevalley groups too, with types𝐸6, 𝐸7, 𝐸8, 𝐹4, 𝐺2.
Each Chevalley group comes with a root system Φ, which
Steinberg uses to present the group: the generators are el-
ements 𝑒𝛼(𝑥) for each root 𝛼 ∈ Φ and all 𝑥 ∈ 𝐹. The rela-
tions (see [Ste16, §6]) are essentially those of Proposition
2.4, but for all roots in Φ:

A. 𝑒𝛼(𝑥 + 𝑦) = 𝑒𝛼(𝑥)𝑒𝛼(𝑦) for all 𝑥, 𝑦 ∈ 𝐹, 𝛼 ∈ Φ.
B. A description of the commutator of 𝑒𝛼(𝑥) and 𝑒𝛽(𝑦),

for all 𝛼, 𝛽 ∈ Φ with 0 ≠ 𝛼 + 𝛽.
B̃. 𝑤𝛼(𝑡)𝑒𝛼(𝑥)𝑤𝛼(−𝑡) = 𝑒−𝛼(−𝑡−2𝑥) for all 𝑡 ∈ 𝐹×, 𝑥 ∈ 𝐹.

Here 𝑤𝛼(𝑡) ≔ 𝑒𝛼(𝑡)𝑒−𝛼(𝑡−1)𝑒𝛼(𝑡).
C. ℎ𝛼(𝑢)ℎ𝛼(𝑣) = ℎ𝛼(𝑢𝑣) for all 𝑢, 𝑣 ∈ 𝐹×. Here ℎ𝛼(𝑡) ≔

𝑤𝛼(𝑡)𝑤𝛼(−1) for all 𝑡 ∈ 𝐹×.
LetG(𝐹) be the simply-connected Chevalley group with

entries in a field 𝐹, presented as above with generators
{𝑒𝛼(𝑥) ∶ 𝛼 ∈ Φ, 𝑥 ∈ 𝐹}. If one keeps relations A, B, B̃, and
drops relation C, one gets a new sort of covering group
G′(𝐹) with a surjective homomorphism 𝜋 to G(𝐹). In this
way, one finds a short exact sequence

1 → 𝜅(G, 𝐹) → G′(𝐹) 𝜋−→ G(𝐹) → 1. (3.1)

Steinberg and Matsumoto prove the following theorem,
after a first step by Moore [Moo68] for SL2.

Theorem 3.2. Assume #𝐹 ≥ 5 in general, and #𝐹 ≥ 11
when G = SL2. Then the group G′(𝐹) is the universal central
extension of G(𝐹). Namely, 𝜅(G, 𝐹) ≔ Ker(𝜋) is in the center
of G′(𝐹), and the short exact sequence (3.1) is universal among
central extensions of G(𝐹) by abelian groups, as described by the
diagram below.

1 𝜅(G, 𝐹) G′(𝐹) G(𝐹) 1

1 𝐴 𝑀 G(𝐹) 1
∃! ∃! =

Remarkably, the kernel 𝜅(G, 𝐹) in this universal central
extension does not depend as much on the group G(𝐹) as
one would expect! Steinberg studied the kernel 𝜅(G, 𝐹) ex-
tensively, and Matsumoto completed the work to prove
the following in [Mat69, Corollaire 5.11].

Theorem 3.3. Suppose that G is not of type 𝐶, i.e., exclude
G = Sp2𝑛. Then the kernel 𝜅(G, 𝐹) is isomorphic to the Milnor

K-theory group K2(𝐹),

𝜅(G, 𝐹) ≅ K2(𝐹) ≔
𝐹× ⊗ℤ 𝐹×

⟨𝑠 ⊗ (1 − 𝑠) ∶ 𝑠 ∈ 𝐹 − {0, 1}⟩ .

In type 𝐶, the Milnor K-theory group K2(𝐹) is naturally a quo-
tient of 𝜅(G, 𝐹).

The theorem is a bit anachronistic in the presentation
above; Milnor’s group K2(𝐹) was defined in 1970, a few
years after Steinberg and Matsumoto; in fact, Milnor ex-
plains in [Mil69] that his definition of K2(𝐹)wasmotivated
by Steinberg, Moore, and Matsumoto.

With this hindsight, we have now constructed central
extensions of Chevalley groups,

1 → K2(𝐹) → G′(𝐹) → G(𝐹) → 1. (3.4)

This construction is purely by generators and relations, us-
ing (A,B,B̃), and makes sense for every field 𝐹. So how does
it relate to our metaplectic groups, like our original group
Mp2(ℝ)?

The connection is through the Hilbert symbol, and we
refer to number theory texts, like Cassels and Fröhlich
[CF67, Exercises, p.351] for a fuller treatment. As it is usu-
ally presented, one begins with a local field 𝐹, and assumes
that 𝐹 contains a primitive 𝑑th root of unity. In particu-
lar, one assumes that char(𝐹) ∤ 𝑑, and writes 𝜇𝑑 = {𝜁 ∈
𝐹 ∶ 𝜁𝑑 = 1} for the resulting cyclic group of order 𝑑. The
Hilbert symbol is then a function,

(•, •)∶ 𝐹× × 𝐹× → 𝜇𝑑,
satisfying the properties

(𝑢𝑣, 𝑤) = (𝑢,𝑤)(𝑣, 𝑤) and (𝑢, 𝑣𝑤) = (𝑢, 𝑣)(𝑢, 𝑤),
(𝑢, 𝑣)(𝑣, 𝑢) = 1, and (𝑠, 1 − 𝑠) = 1,

for all 𝑢, 𝑣, 𝑤 ∈ 𝐹×, and all 𝑠 ∈ 𝐹 − {0, 1}.
From these properties, the Hilbert symbol (•, •) factors

through the Milnor K-theory group K2(𝐹). In fact when 𝐹
is a local field containing a primitive 𝑑th root of unity, the
Hilbert symbol gives a surjective homomorphism

Hilb𝑑 ∶ K2(𝐹) → 𝜇𝑑.
Recalling the central extensionG′(𝐹) from (3.4), and defin-
ing G̃(𝐹) = G′(𝐹)/ Ker(Hilb𝑑), we find a new sort of cover-
ing group

1 → 𝜇𝑑 → G̃(𝐹) → G(𝐹) → 1.
When 𝑑 = 2 and G = Sp2𝑛, this construction gives yet
another definition of metaplectic groups,

G̃(𝐹) = Mp2𝑛(𝐹)
by generators and relations (algebra) along with the
Hilbert symbol (number theory).

For other Chevalley groups, the covering groups G̃(𝐹)
(generalized metaplectic groups) play an important role
in number theory and automorphic forms, e.g., the 3-fold
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cover of SL3 in [BFG01]. The 2-fold cover of the excep-
tional group of type 𝐹4 arises in the theta correspondence,
e.g., if one wishes to understand half-integral weight mod-
ular forms on SU(1, 2). The 3-fold cover of the excep-
tional group G2 arises if one wishes to understand “min-
imal” representations—analogues of Weil’s operator con-
struction for exceptional groups.

4. Further Generalizations
Work of Steinberg and Matsumoto demonstrates that
K2(𝐹) appears in the study of central extensions of G(𝐹),
when G is a Chevalley group. But if one wants to go be-
yond Chevalley groups—to understand reductive groups
like GL𝑛 or “non-split” groups like SU3—one finds more
difficulties. Deodhar had success adapting the Steinberg-
Matsumoto techniques to simple quasisplit groups in
[Deo75]. In 1984, Prasad and Raghunathan used the ge-
ometry of the Bruhat-Tits building to describe the uni-
versal topological central extension for isotropic simply-
connected groups over local fields in [PR84a,PR84b]. But
groups like GL𝑛 and algebraic tori do not have universal
central extensions at all.

Brylinski and Deligne created a new framework in
[BD01], which incorporates K2 in the definition of the
central extension rather than discovering it later. They
study central extensions of a reductive algebraic group G
by K2, viewing all “groups” as sheaves of groups on the
big Zariski site over a field. At the end of the day, Brylin-
ski and Deligne’s framework includes all of the central
extensions of Steinberg and Matsumoto, including Weil’s
metaplectic groups of course. For a number theorist in-
terested in metaplectic groups, the extensions of Brylinski
and Deligne seem most convenient and general for extend-
ing the Langlands program—this was the goal of the au-
thor, with Wee Teck Gan and Fan Gao, in our Asterisque
volume [GGW18].
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[Puk64] L. Pukánszky, The Plancherel formula for the universal
covering group of SL(𝑅, 2), Math. Ann. 156 (1964), 96–143,
DOI 10.1007/BF01359927. MR170981

[Sha04] Joseph A. Shalika, Representation of the two by two uni-
modular group over local fields, Contributions to automor-
phic forms, geometry, and number theory, Johns Hopkins
Univ. Press, Baltimore, MD, 2004, pp. 1–38. MR2058601

[Shi73] Goro Shimura, On modular forms of half integral
weight, Ann. of Math. (2) 97 (1973), 440–481. MR332663

810 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 5

http://www.ams.org/mathscinet-getitem?mr=1896177
http://www.ams.org/mathscinet-getitem?mr=1882041
http://www.ams.org/mathscinet-getitem?mr=332663
http://www.ams.org/mathscinet-getitem?mr=2058601
http://www.ams.org/mathscinet-getitem?mr=170981
http://www.ams.org/mathscinet-getitem?mr=147892
http://www.ams.org/mathscinet-getitem?mr=740894
http://www.ams.org/mathscinet-getitem?mr=736564
http://www.ams.org/mathscinet-getitem?mr=32656
http://www.ams.org/mathscinet-getitem?mr=244258
http://www.ams.org/mathscinet-getitem?mr=260844
http://www.ams.org/mathscinet-getitem?mr=240214
http://www.ams.org/mathscinet-getitem?mr=3802416
http://www.ams.org/mathscinet-getitem?mr=0424695
http://www.ams.org/mathscinet-getitem?mr=372057
http://www.ams.org/mathscinet-getitem?mr=0215665
http://www.ams.org/mathscinet-getitem?mr=1728312
http://dx.doi.org/10.1007/s10240-001-8192-2
http://dx.doi.org/10.1007/BF01359927
http://dx.doi.org/10.1090/conm/210/02790
http://dx.doi.org/10.2307/2006967
http://dx.doi.org/10.1090/S0002-9904-1949-09325-4
http://dx.doi.org/10.1090/S0002-9904-1949-09325-4
http://dx.doi.org/10.1090/S0002-9904-1975-13742-6
http://dx.doi.org/10.1090/S0002-9904-1975-13742-6
http://dx.doi.org/10.1007/s10240-001-8192-2


[Ste16] Robert Steinberg, Lectures on Chevalley groups, Univer-
sity Lecture Series, vol. 66, American Mathematical Soci-
ety, Providence, RI, 2016. Notes prepared by John Faulkner
and Robert Wilson; Revised and corrected edition of the
1968 original [ MR0466335]; With a foreword by Robert
R. Snapp, DOI 10.1090/ulect/066. MR3616493
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