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Handwritten signatures have been used to verify the au-
thenticity of documents for centuries. In the late 1970s,
mathematicians discovered pivotal techniques to con-
struct digital signatures for authenticating any message or
data that can be represented as bit strings [DH76,RSA78].
Digital signatures quickly evolved from theoretical tools to
essential components of our global digital world. Software
patches and updates are digitally signed by the provider so
that before a device installs the update, the device can ver-
ify the origin of the software and that the software package
was not modified after the signature was applied. Transac-
tions on public blockchains like Bitcoin and Ethereum are
digitally signed by the coin-sender to authenticate the de-
tails of the transaction (coin amount to be sent, recipient,
etc.) and to prevent unauthorized changes to the transac-
tion details.
Components of a digital signature. Digital signature al-
gorithms (DSAs) are used to establish authenticity and in-
tegrity. The former assures that the signed message origi-
nated from the claimed sender and the latter assures that
themessage has not been changed during transit. A typical
example is illustrated in Figure 1.
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Figure 1. Alice generates a pair of keys and sends a signed
message to Bob. Bob uses Alice’s public key to verify the
signature.

There are three components of a digital signature
scheme: key generation, sign, verify.

During the first phase of the protocol,
key generation generates a pair of keys: one public
key 𝑝𝑘 for signature verification and one secret key 𝑠𝑘 for
signing messages. To prevent forgeries, it is critical that the
signer does not share 𝑠𝑘 with anyone.

The sign algorithm can use 𝑠𝑘 to sign any message or
data. Unlike handwritten signatures, a digital signature de-
pends on the message and will thus vary. Upon receipt of
a signedmessage, the message recipient uses public knowl-
edge of 𝑝𝑘 to run the verify algorithm to determine
whether the signature is valid with respect to the message.

998 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 6



Keystones

Figure 2. Edwards curve examples.

Constructing digital signatures. Many digital signature
schemes are constructed using trapdoor functions. That is,
functions that are easy to compute but difficult to invert
without some knowledge of the trapdoor. One such digi-
tal signature scheme is the Edwards-curveDigital Signature
Algorithm (EdDSA).

EdDSA belongs to a family of digital signature algo-
rithms that use elliptic curves over finite fields. It is well
known that for an elliptic curve ℰ defined over a finite field
𝔽𝑞, ℰ(𝔽𝑞) forms an abelian group under addition with re-
spect to a particular addition law. At a high level, an Ed-
wards curve ℰ is defined by 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 over 𝔽𝑞,
𝑑 ≠ 0, 1 [Edw07]. Some examples of Edwards curves over
ℝ with various 𝑑 values are given in Figure 2. The Edwards
addition law is, for two points (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ ℰ(𝔽𝑞),

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = ( 𝑥1𝑦2 + 𝑥2𝑦1
1 + 𝑑𝑥1𝑥2𝑦1𝑦2

, 𝑦1𝑦2 − 𝑥1𝑥2
1 − 𝑑𝑥1𝑥2𝑦1𝑦2

) .

The security of EdDSA is based on the difficulty of
solving the Elliptic Curve Discrete Logarithm Problem
(ECDLP). Let 𝑃 ∈ ℰ(𝔽𝑞) be a point of prime order 𝑝, and
let ⟨𝑃⟩ be the subgroup generated by 𝑃. For any 𝑄 ∈ ⟨𝑃⟩,
𝑄 = 𝑎 ⋅ 𝑃 for some 𝑎 ∈ [0, 𝑝 − 1]. The ECDLP is, given
𝑃,𝑄, and ℰ, find 𝑎. Computing 𝑎 ⋅ 𝑃 is computationally
easy, but solving the ECDLP requires significantly more
computation time. In fact, for appropriately chosen pa-
rameters, solving the ECDLP is computationally infeasi-
ble.
EdDSA. The following is a highly simplified version of
how the components of EdDSA are used to sign a message
𝑚 using an Edwards curve ℰ(𝔽𝑞). Let 𝐻 be a function that
maps messages of arbitrary length to bit strings of a fixed
size in a manner that is difficult to invert and difficult to
find a pair of distinct input strings that map to the same
output.
key generation: Selects a point 𝑃 ∈ ℰ(𝔽𝑞) of prime

order 𝑝, and a random integer 𝑎 ∈ [1, 𝑝 − 1]. The point
𝑃 is a public parameter, 𝑝𝑘 is the point 𝑄 = 𝑎 ⋅ 𝑃 = (𝑥, 𝑦),
and 𝑠𝑘 is the scalar 𝑎.

sign: Given message 𝑚 and 𝑎, computes integer 𝑟 =
𝐻(𝐻(𝑎) + 𝑚) mod 𝑞 and point 𝑅 = 𝑟 ⋅ 𝑃. For simplicity,
assume that 𝑚 and points 𝑅,𝑄 are encoded in such a way
that enables addition modulo 𝑞. Let ℎ = 𝐻(𝑅 + 𝑄 + 𝑚)
mod 𝑞. The signature on 𝑚 is the pair (𝑅, 𝑠) = (𝑅, 𝑟 + ℎ ⋅ 𝑎
mod 𝑞).
verify: Computes ℎ = 𝐻(𝑅+𝑄+𝑚) mod 𝑞 and two

points: 𝑃1 = 𝑠⋅𝑃, and 𝑃2 = 𝑅+ℎ⋅𝑄. If 𝑃1 = 𝑃2, the signature
(𝑅, 𝑠) is accepted. Otherwise, rejected. The curious reader
is encouraged to check that verify accepts well-formed
signatures.

Integrity is broken if an attacker manages to forge a sig-
nature on a new message𝑚′. It is not known how to forge
EdDSA (at cryptographic sizes) signatures without knowl-
edge of 𝑠𝑘, and recovering 𝑠𝑘 from 𝑝𝑘 requires one to solve
the ECDLP. The security of EdDSA depends on the diffi-
culty of solving the ECDLP.

The predecessor of EdDSA, the elliptic curve digital sig-
nature algorithm (ECDSA), emerged in the 1990s and per-
formed remarkably better than the DSAs of the 1970s. Ed-
DSA varies a bit from ECDSA but can provide even more
efficiency with additional security protections. EdDSA
has recently been included in US cryptographic standards
[Nat23].
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