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Tropical geometry is a relatively recent network of ideas
at the intersection of geometry and combinatorics. In
its purest form, tropical geometry is a combinatorial ana-
logue of algebraic geometry and can be studied logically
independently from it. The basic objects in tropical geom-
etry are things like graphs or simplicial complexes. They
are decorated with some additional data that allows them
to coarsely mimic objects from algebraic geometry. The
properties of these objects are constrained by combinato-
rial analogues of the basic theorems in geometry. For ex-
ample, the tropical analogue of a Riemann surface is a
graph, and there are purely combinatorial analogues of
the Riemann–Roch and Riemann–Hurwitz theorems for
graphs. The surprising turn is often that theorem state-
ments in tropical geometry are the same as or similar to
parallel ones in algebraic geometry, even though all the
words mean something completely different.
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While these tropical objects are very interesting in their
own right, tropicalization is a process that turns algebraic
varieties into tropical objects. This bridges the two worlds
and sets up an intricate and imperfect dictionary: geomet-
ric constraints imply combinatorial ones and combinato-
rial constraints imply geometric ones. An enjoyable and
compelling part of the subject is that even when there
is not a logical implication, known theorems on each
side provide predictions and conjectures for results on the
other.

The present article aims to give the reader a feel for this
network, some of its subtleties, and how it is used. The
first topic is a quick and dirty introduction to the process
of tropicalization, and some of the early observations in
the subject that might have inspired people to look closer.
The next topic is the “backwards direction,” i.e., the trop-
ical inverse problem. Our main goal here will be to ex-
hibit one interesting example of a non-realizable tropical
object, and give some sense for why it is non-realizable.
Finally, we sketch how tropicalization, both forwards and
backwards, predicts new theorems in traditional algebraic
geometry.

1048 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 7



The prototypical tropicalization. The simplest example
of tropicalization applies to spaces defined by algebraic
equations inside the algebraic torus, i.e., (ℂ⋆)𝑛. We start
with a collection of Laurent polynomials 𝑓1, … , 𝑓𝑘 in 𝑛 vari-
ables and look at their common zeroes:

𝑉 = {𝑓1 = 𝑓2 = ⋯ = 𝑓𝑘 = 0} ⊂ (ℂ⋆)𝑛.
Objects 𝑉 that are defined in this fashion are the local
building blocks in algebraic geometry. They are examples
of algebraic varieties. The primary move in tropical geom-
etry comes from the map:

Log𝑡 ∶ (ℂ⋆)𝑛 → ℝ𝑛,
(𝑧1, … , 𝑧𝑛) ↦ (log𝑡 |𝑧1|, … , log𝑡 |𝑧𝑛|),

where the logarithm has base 𝑡, some real number. The
right-hand side tracks the logarithmic size of a tuple of
complex numbers. The image of 𝑉 under this map,
namely Log𝑡(𝑉), is the set of possible sizes of solutions
to the equations {𝑓𝑖}. The motivation behind this move
is to split the process of studying solutions to polynomial
systems into two steps: first study the possible sizes of so-
lutions and then study solutions of a fixed size.

It is useful to slightly repackage the information. By the
logarithm rules, if 𝑡 changes the set Log𝑡(𝑉) is rescaled. The
tropicalization is the limit of this rescaling as the base be-
comes small:

trop(𝑉) = lim
𝑡→0

Log𝑡(𝑉).

The limit procedure reveals a simple combinatorial struc-
ture. We will see some examples soon, but for now, let
us note that this process is a completely elementary but
strange thing to do to an algebro-geometric object. At first
sight, the nice structure that 𝑉 inherits from being defined
by polynomials might be destroyed by applying this tran-
scendental “limit logarithm” operation. A fundamental
theorem of Bieri and Groves from the 1980s reveals that
trop(𝑉) is far from chaotic.

Theorem 0.0.1. Let 𝑉 ⊂ (ℂ⋆)𝑛 be an algebraic variety of
dimension 𝑟. Then the tropicalization trop(𝑉) is a polyhedral
complex of dimension 𝑟 in ℝ𝑛.

Polyhedral complexes are very concrete structures, anal-
ogous to the simplicial complexes that one encounters in
topology. Just as simplicial complexes are glued from sim-
plices, polyhedral complexes are glued from (a finite num-
ber of) polyhedra. A polyhedron in ℝ𝑛 is any locus where
a fixed finite collection of affine functions is non-negative.
Examples of this include the familiar polytopes in ℝ2, as
well as unbounded regions such as ℝ𝑚

≥0. We will see a few
examples below, and reader will be able to find precise def-
initions and numerous pictures and examples in the text-
book [10].

The first entry in almost everyone’s database of tropi-
calizations is depicted in the figure below. It shows the

tropicalization of the curve {𝑥 + 𝑦 + 1 = 0} in (ℂ⋆)2. The
tropicalization is a union of three rays (which are simple
examples of polyhedra), based at the origin, inℝ2. There is
one ray each in the direction of the positive 𝑥-axis, positive
𝑦-axis, and the negative diagonal direction. The picture can
be obtained by an explicit calculation, but the reader may
find it a pleasant exercise to use a computer to plot a large
number of points and see the figure emerge.

Figure 1. The tropicalization of the curve 𝐶1 given by
{𝑥 + 𝑦 + 1 = 0}.

Prettier pictures. In the literature, the term tropicalization
is used for a myriad of different operations, but they are all
based on the maneuver above. An important upgrade that
will be relevant in our discussion is allowing the equations
𝑓1, … , 𝑓𝑘 to depend on the base of the logarithm 𝑡. Pre-
cisely, we can choose each 𝑓𝑖 to be a polynomial whose
coefficients are polynomials, or even power series, in the
variable 𝑡. For some of the statements later in this article
to hold, we should allow the coefficients to at least be a
power series in 𝑡 that converges in some neighborhood of
0, but I encourage the reader to imagine that the coeffi-
cients are polynomials in 𝑡. When there is a dependence
on a parameter 𝑡, we sometimes refer to this as a family of
varieties, imagining that for each value of 𝑡 there is a differ-
ent variety.

The generalization to allow variable coefficients leads to
much richer pictures, which betters our odds of transport-
ing meaningful information into tropical geometry. With-
out varying the coefficients, the tropicalization of a cubic
could, and likely would, look exactly like the tropicaliza-
tion of the curve 𝐶1 that we discussed above.

For example, let us take 𝑓 to be a degree-3 polynomial
in 𝑥 and 𝑦. There are 10 possible coefficients to choose
when doing this, as we can write the polynomial as a sum
of monomials:

𝑓(𝑥, 𝑦) = ∑𝑎𝑖𝑗𝑥𝑖𝑦𝑗 .
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We can now choose the 𝑎𝑖𝑗 to themselves be polynomials in
𝑡 and then tropicalize 𝐶2 = {𝑓 = 0}. For example, we could
choose the coefficients of each 𝑥𝑖𝑦𝑗 to simply be different
powers of 𝑡. I won’t do out the calculation here, but if these
powers of 𝑡 in front of the monomials 𝑥𝑖𝑦𝑗 are chosen in
a sufficiently random way, the tropicalization could look
like the picture below. Different choices of coefficients 𝑎𝑖𝑗
will lead to different pictures, and in fact, there are over
1000 possibilities for tropicalizations of cubics! Neverthe-
less, the process of going from such polynomials to their
tropicalizations is rather concrete, and can be found in the
early chapters of the text [10]. Despite the numerous pos-
sibilities for the actual tropicalization, in most cases, the
key features of the picture below will persist.

Figure 2. The tropicalization of the curve 𝐶2 given by the
vanishing set of cubic equations, with coefficients depending
on a parameter 𝑡.

A first look at the tropical dictionary. The Bieri–Groves
theorem already asserts that the tropicalization of a vari-
ety 𝑉 in (ℂ⋆)𝑛 sees the dimension of 𝑉 . The calculation
of the dimension of algebraic varieties that arise naturally
in mathematics has been the content of several deep theo-
rems, so this already has significant potential.

But staring at the pictures, you might start to get a sense
that there’s quite a lot more going on here. Let us exam-
ine a few suspicious coincidences. First, a little differential
topology and analysis tells us what the spaces 𝐶1 and 𝐶2
look like when they are given their Euclidean topology. It
turns out that 𝐶1 is homeomorphic to a sphere 𝕊2 minus
three points, while, for each small nonzero value of 𝑡, the
space 𝐶2 is homeomorphic to the torus 𝕊1 × 𝕊1 minus 9
distinct points.

Now let us look at the tropicalizations. Looking at 𝐶1,
one notices the coincidence of 3: the legs running off to
infinity in trop(𝐶1) and the missing points in 𝐶1. In the
case of 𝐶2, one might notice the coincidence of 9, again

between the legs and the missing points. In this case, one
might also notice that the topological surface 𝐶2 has genus
1 while trop(𝐶2) has a cycle in the middle.

Another interesting coincidence comes from placing
trop(𝐶1) and trop(𝐶2) in the same picture. If the pictures
are shifted around a little bit, one can notice that in most
cases, the two tropicalizations intersect at exactly three
points. But we know that in most cases, 𝐶1 ∩ 𝐶2 is also
exactly three points (for each value of the parameter 𝑡)—if
we plug in the equation for 𝐶2 into 𝐶1 we end up with a
cubic in 1 variable.

Figure 3. The tropicalizations of a cubic curve and of a line
seem to intersect at three points.

If the degree of the polynomial 𝑓 above was changed
from 3 to 𝑑, the corresponding curve 𝕍(𝑓) would—if the
polynomial was chosen with a little bit of care—have

genus
(𝑑−1)(𝑑−2)

2
and have 3𝑑 missing points, and sure

enough, there would be exactly
(𝑑−1)(𝑑−2)

2
independent cy-

cles in trop(𝕍(𝑓)) and exactly 3𝑑 legs running off to infin-
ity. Now, we’ve certainly not rigorously argued that any of
these geometric invariants, such as the genus or the num-
ber of intersection numbers, are equal to the correspond-
ing tropical ones. But if you noticed this while having a
think in the park, you might be sufficiently compelled to
do some more experiments!

In the course of your experiments, you would occasion-
ally be confounded. For example, the intersection of trop-
icalizations of two distinct lines can sometimes be infinite.
If we had chosen our degree-3 polynomial defining 𝐶2 in a
bad way, its tropicalization would not contain a cycle at all,
and in some other cases wewould find fewer than nine legs
running off to infinity. In fact, these “failures” illustrate
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the quirk that tropicalization is an imperfect process: even
in the best of situations it forgets lots of geometry, and it is
essentially never the case that trop(𝑉) can recover 𝑉 . The
core principle in tropical geometry is to figure out exactly
how much information can be extracted from trop(𝑉), be-
cause when the information is actually there, it is likely to
be easier to extract from the tropicalization than from 𝑉
itself.
How is the dictionary used? The prototypical tropical-
ization above sends an algebraic variety inside (ℂ⋆)𝑛 to a
polyhedral complex, but there are various different flavors
of tropicalization that one gets from taking the basic idea
we’ve just discussed and adding technology and formalism
to it, ranging from Gröbner theory to classifying stacks. In
fact, it is not even clear what gets to be called a tropical-
ization and what doesn’t, but Table 1 is a rough collection
of things that people call tropicalizations in different con-
texts. In each instance, one starts with a family of the ob-
jects on the left, depending in a nice way on a parameter
𝑡, and extracts an object of the form on the right. But the
prototype tropicalization is usually hiding somewhere in
this extraction process.

Let me say a few words about the last three rows in the
table. The right-hand side in the fourth example might be
unfamiliar. Matroids are basic objects in combinatorics
that encode combinatorial patterns that arise in linear al-
gebra, such as the independence relations between subsets
of a finite set of vectors. You can read about them in an
earlier article in this publication [1]. The final two exam-
ples are special types of algebraic varieties, and even if you
haven’t seen them before, the point to take away is there is
a lot of regularity and control in tropicalization—by spec-
ifying algebro-geometric properties on the left, we can un-
derstand the shape of the objects appearing on the right.
In fact, there are natural classes of algebro-geometric ob-
jects that tropicalize to Möbius strips, Klein bottles, and
real projective planes. The tropical dictionary is used in
both directions and in multiple ways. Let us briefly dis-
cuss two uses of the dictionary that have attracted a lot of
interest.
Brill–Noether theory. In Brill–Noether theory, one exam-
ines the types of meromorphic functions that a compact
Riemann surface or, equivalently, a smooth projective al-
gebraic curve can admit.1 Despite being a central topic in
algebraic geometry as far back as the 19th century, the sub-
ject is filled with compelling open questions. In a very in-
fluential paper, Baker proposed using the tropical dictio-
nary in Brill–Noether theory [2,7]. Later in this article, we

1In this article, we will move back and forth between using the terminology of
(smooth and projective) algebraic curve and (compact) Riemann surface, de-
pending on which aspects of the structure we want to emphasize. They are com-
pletely equivalent, so the reader should feel free to do a “find and replace” in
their minds if they have a preference.

will discuss ways in which tropical geometry has helped
shed light on such questions.

For now, let us give a blueprint for what such an applica-
tion of tropical geometry might look like. One of the first
interesting facts in Brill–Noether theory is that a Riemann
surface of genus 3 typically will not admit a meromorphic
function of degree 2, i.e., a meromorphic function such
that all but finitely many values inℂ are hit twice. One can
argue on theoretical grounds that if this latter statement
were not true, every finite graph with 3 cycles would carry
a certain combinatorial structure—a special type of “chip
firing” configuration. The latter is an extremely concrete
assertion, and can be checked by hand on a few sheets of
paper. By finding an example of a graph that violates this,
one proves a theorem in algebraic geometry. Another re-
cent article in this publication gives a friendly introduction
to chip-firing and its applications [7].

The central pillar in the subject is the Brill–Noether
theorem, which was proved by Griffths and Harris in the
1980s [6]. It simultaneously captures numerous results of
the above form, concerning howmanymeromorphic func-
tions a Riemann surface can admit of a given type, pro-
vided the Riemann surface is “generic.” We will explain
the statement a bit later on. About a decade ago, Cools,
Draisma, Payne, and Robeva gave an ingenious combina-
torial argument proving the Brill–Noether theorem using
themethod that Baker had envisioned [5]. The logic of the
proof is exactly the toy example outlined above—find one
example (in each genus) of a graph where one can classify
all the appropriate chip-firing configurations. The Brill–
Noether theorem in algebraic geometry is a consequence.

The type of argument above is an “impossibility
constraint”—we preclude the existence of structures in al-
gebraic geometry by showing that they would produce im-
possible structures in combinatorics. It is a trickier busi-
ness to turn this logic on its head, and prove the existence
of geometric structures using the existence of tropical ones.
It is for this reason that the tropical inverse problem is dif-
ficult and interesting.
Enumerative geometry. The tropical dictionary can also
be used to “count” geometric objects, and in fact, this
spurred heavy interest in the subject in the early 2000s. An
instance of such a counting problem is as follows. If we fix
a positive integer 𝑑 and choose 3𝑑 − 1 points in the com-
plex projective plane ℙ2, one expects that there are a finite
number of ways to build polynomial maps

𝜑 ∶ ℙ1 → ℙ2,

that pass through the 3𝑑 − 1 points, and such that 𝜑 has
“degree 𝑑,” up to changing coordinates on the source. The
map 𝜑 is given by two polynomials, and their degreesmust
be 𝑑. The count, which we denote 𝑁𝑑 is a curve counting
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algebraic tropical
variety in (ℂ⋆)𝑛 polyhedral complex in ℝ𝑛

Riemann surface (metric) graph
Riemann surface+meromorphic function metric graph+piecewise linear function
linear subspace of dimension 𝑟 in ℂ𝑛 matroid of rank 𝑟 on 𝑛 elements

abelian variety of dimension 𝑔 real torus of dimension 𝑔 + additional structure
𝐾3 surface 2-sphere + additional structure

Table 1.

invariant. As long as our 3𝑑 − 1 points are chosen to be in
general position, the count of curves is the same.

If 𝑑 is 1 then we’re trying to pass a line through two
points, and when 𝑑 is 2we’re trying to pass a conic through
five points. In both instances, there is exactly one way to
do it (though 𝑁3 and 𝑁4 are 12 and 620, so we’re not just
repeatedly computing the number 1). The figure below
shows tropicalizations of lines and conics, passing through
two and five points—they turn out to be the unique such
curves. In celebrated work, Mikhalkin showed that these
numbers 𝑁𝑑 can be computed from an analogous tropical
problem: one examines tropical curves, similar to the ones
we saw in the early sections of this article, through 3𝑑 − 1
points in ℝ2, see [11]. An appropriately weighted count of
these tropical curves is equal to the number 𝑁𝑑.

Figure 4. The figure on the left is the unique tropical curve
through two points. The figure on the right is the unique
tropical conic through five points.

The engine behind Mikhalkin’s results is a solution to
an appropriate tropical inverse problem: if we want to
count curves, we need to know that we are not counting
tropical objects that have nothing to do with algebraic ge-
ometry. Twenty years on, the theorem is well-understood
from numerous different perspectives, though none of
them is by any means elementary!

The two uses of the tropical dictionary above reflect
what this author personally knows and loves, but there are
a number of other interesting ways in which tropical ge-
ometry can be used. For example, it has number theoretic
applications to the structure of solutions to Diphantine
problems and applications to studying the geometry be-
hind mirror symmetry, a deep mathematical phenomenon

arising from theoretical physics. It can also be used to im-
port tools from algebraic geometry, such as the structure
of cohomology rings, to purely combinatorial questions
about graphs and matroids [1].
Tropicalizing abstract curves. When we discussed the
prototype for tropicalization, we started with a variety 𝑉
together with an embedding of it inside (ℂ⋆)𝑛. However,
if one is given an “abstract” variety𝑉 , it doesn’t reallymake
sense to tropicalize it. By abstract variety here, we mean a
topological space that is locally isomorphic to an affine va-
riety, together with the appropriate theory of functions. In
simple terms, the space (ℂ⋆)𝑛 and anything inside it, has
a canonical system of coordinates. But if 𝑉 does not have a
distinguished set of coordinates, there is nothing to which
we can apply the above limit logarithm trick.

However, for abstract algebraic curves there is a canoni-
cal tropicalization procedure. The procedure is closely re-
lated to some deep theorems in algebraic geometry, con-
cerning the existence of a canonical compactification of
the moduli space of curves, which were proved by Deligne
and Mumford in the 1960s.
Stable reduction. We now contemplate a smooth projec-
tive algebraic curve. In order to get an object like this, one
would have to take a finite set of equations 𝑓1, … , 𝑓𝑘 in a
finite set of variables and look at their common vanish-
ing locus. The word “curve” means that the solution set
has dimension 1. The word “smooth” means that the so-
lution set is a manifold (note that this is something you
can easily check using the implicit function theorem). The
word “projective” means that the ambient space in which
we solve these polynomials is not ℂ𝑛 or (ℂ⋆)𝑛, but rather
complex projective space ℂℙ𝑛. If this seems unfamiliar,
you can also have in mind a compact Riemann surface, or
even just an orientable compact topological surface that
arises from a system of polynomial equations.

The key thing to take from the above paragraph is that
although the curve 𝐶 will be defined by polynomials in
some ambient space, we are not actually going to remem-
ber the way in which 𝐶 was defined.

In order to construct nontrivial tropical objects, we will
once again assume that there is some base parameter 𝑡, and
that the defining equations of 𝐶 depend on 𝑡 in a nice
fashion. The smoothness condition tells us that for all
sufficiently small nonzero values 𝑡0 of 𝑡, the curve 𝐶𝑡0 is
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homeomorphic to some orientable surface of genus 𝑔,
with 𝑔 independent of 𝑡0.

The stable reduction theorem is a deep theorem of
Deligne–Mumford on the geometry of families of alge-
braic curves. It is a kind of algebraic geometer’s analogue
of decomposing an orientable surface into pairs of pants,
by cutting along real curves, and completely controls what
happens to our family of curves 𝐶𝑡 of curves when 𝑡 be-
comes 0.

The geometric intuition behind the stable reduction the-
orem is the following. For all small values of 𝑡, the curve
𝐶𝑡 is a one-dimensional complex manifold (i.e., Riemann
surface) whose underlying space is homeomorphic to an
orientable compact topological surface of genus 𝑔. We can
think of the variation of the 𝑡 parameter as changing the
complex manifold structure on this fixed topological sur-
face 𝑆.

The theorem says that there are a finite number of dis-
joint closed real curves whose lengths depend on 𝑡, but
shrink to 0 as 𝑡 goes to 0. It may be instructive to look at Fig-
ure 5. When 𝑡 changes, these lengths change, and the com-
plex structure on the 𝑆 changes. However, when 𝑡 becomes
0, these real curves shrink to 0. If we imagine contracting
these, there is a change in topology. The resulting object,
which we call 𝐶0, might no longer be a smooth curve. But,
with a few pictures, you might convince yourself that 𝐶0 is
obtained from a collection of Riemann surfaces 𝐷1, … , 𝐷ℓ
by attaching them at points. Curves of this form are called
semistable; they are not necessarily Riemann surfaces but
they are always formed from Riemann surfaces by gluing
them together at points.

The stable reduction theorem says that the set of all
smooth curves 𝐶𝑡 for nonzero values of 𝑡 fit in, together
with this new broken Riemann surface 𝐶0, to form a nice
variety 𝒞, over a small disk 𝔻 ⊂ ℂ. Part of the theorem is
that this can always be done in a canonical fashion.

We now explain what the tropicalization of 𝐶𝑡 is. First,
look at 𝐶0, which, as we have noted already, is obtained
by gluing a collection of topological surfaces 𝐷1, … , 𝐷ℓ—
to each other or to themselves. We form a graph Γ whose
vertices are in bijection with these surfaces 𝑉1, … , 𝑉ℓ. For
each point at which 𝐷𝑖 and 𝐷𝑗 are glued, we add an edge
between 𝑉𝑖 and 𝑉𝑗. This is probably best illustrated graph-
ically; see Figure 5.

This graph 𝐺 is still not the tropicalization. We record
twomore pieces of information. First, at each vertex 𝑉𝑗, we
record the genus of the corresponding topological surface
𝐷𝑗 in the description above.

Second, we enhance the data on the edges. Recall that
for each edge 𝐸 of 𝐺, there was a real closed curve in the
surface whose length is vanishing. Associated to this curve
is a parameter, which contains information such as the rate
at which the length of the curve is shrinking. We can write

Figure 5. A picture of a family of abstract algebraic
curves/Riemann surfaces of genus 2, depending on a
parameter 𝑡. As 𝑡 goes to 0, the real closed curves depicted
with dashes shrink to length 0. The curve 𝐶0 is obtained by
taking two spheres and gluing each sphere to a point on itself,
then attaching the resulting surfaces along a point.

out this function as

𝑟𝐸(𝑡) = 𝑎𝑡ℓ𝐸 + higher-order terms in 𝑡.
We now build a new space based on 𝐺 and these numbers
ℓ𝐸 . We simply declare that the length of the edge 𝐸 is ℓ𝐸
and the result is now ametric space that naturally enhances
the finite graph 𝐺. Each edge is now naturally identified
with an interval.

The result of this process is denoted Γ(𝐶𝑡) and is referred
to as the tropicalization of 𝐶𝑡. Summing up, the tropicaliza-
tion of a family of abstract smooth projective curves 𝐶𝑡 is a
metric space Γ(𝐶𝑡) that enhances a finite graph. If we keep
track of the genus of the Riemann surfaces 𝐷𝑗 above, then
the sum of these genera, plus the number of independent
cycles in the graph, is equal to the genus 𝑔 of the curve 𝐶𝑡.
Note that the number of independent cycles in a graph is
the number of edges lying in the complement of any cho-
sen spanning tree.

In ideal situations, the two tropicalizations we have
seen so far—the first via logarithmic limit sets and the sec-
ond via semistable reductions—coincide, and it doesmake
sense to call them both tropicalizations. The precise rela-
tionship is, however, a highly nontrivial line of inquiry.
A perfect tropical inverse problem. In what follows, an
abstract tropical curve will be a finite graph 𝐺 together with
an enhancement of it to a metric space, by the specifica-
tion of a positive integer length for every edge, and a genus
attached to each vertex—exactly the data structure that ax-
iomatizes the metric graphs that arise in the above sense.
The tropical inverse problem asks: does every abstract tropi-
cal curve arise as the tropicalization Γ(𝐶𝑡) of a family of smooth
projective algebraic curves? The question has a very satisfying
answer.

Theorem 0.0.2. Let Γ be an abstract tropical curve. There ex-
ists a family of abstract tropical curves 𝐶𝑡 whose tropicalization
Γ(𝐶𝑡) coincides with Γ.
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The theorem is a combinatorialmanifestation of a beau-
tiful fact in algebraic geometry: the moduli space of all
stable curves of a given genus 𝑔 itself forms a smooth and
compact space. If you’d like to learn more about the mod-
uli space of curves, you can start with two earlier articles in
this publication [3,15].
Curves with a function. I now want to discuss a tropical-
ization process where the forwards and backwards direc-
tions of tropical geometry are not so perfectly synced up.
We begin by recalling a little bit of complex analysis. Let
𝐶 be a compact Riemann surface (or projective algebraic
curve over ℂ). A meromorphic function is a partially defined
map

𝜑∶ 𝐶 99K ℂ,
which fails to be defined at finitely many bad points 𝐵 ⊂ 𝐶.
At the bad points, the function takes on the value infinity,
and locally looks like

1
𝑧𝑘

for some 𝑘 > 0.
Let us organize the functions above by “shape.” Pre-

cisely, on the subset where it is defined, the function is
holomorphic: recalling that a Riemann surface is a space
where a neighborhood of every point looks like a disk in
ℂ, we’re saying that away from 𝐵 the function is given by
a power series in this neighborhood. Near the bad points,
the function is given by a Laurent series. As a result, at each
“bad point” there is a well-defined pole order: the number
𝑘 in the paragraph above, or more intrinsically, the most
negative power that appears in the Laurent expansion. At
finitelymany points 𝑍 ⊂ 𝐶, the function takes on the value
0, and there is a zero order: the first positive power that ap-
pears in the power series expansion.

In order to track these data, fix points 𝑝1, … , 𝑝𝑛 on 𝐶
and integers 𝑎1, … , 𝑎𝑛. We now consider pairs (𝐶, 𝜑) of a
compact Riemann surface and a meromorphic function 𝜑
such that the zeroes and poles of 𝜑 are exactly the points
𝑝1, … , 𝑝𝑛. If 𝑎𝑖 is positive (resp. negative) the point 𝑝𝑖 is
a zero of 𝜑 (resp. a pole of 𝜑) of this order. It is a conse-
quence of basic Riemann surface theory that the sum of all
the 𝑎𝑖 has to be 0. Figure 6 depicts a meromorphic func-
tion on a genus 1 curve.
Tropicalizing the curve. Just as we’ve done on multiple
occasions in this article, we can consider a situation where
the curve and the function 𝜑 depend on a parameter 𝑡. The
abstract tropicalization discussed above gives us a metric
graph Γ(𝐶𝑡). By remembering the fact that the points 𝑝𝑖
played a special role, the tropicalization procedure can be
tweaked to produce a slightly enhanced version of Γ(𝐶𝑡),
where for each of the points 𝑝1, … , 𝑝𝑛 we attach to Γ(𝐶𝑡) a
ray ℝ≥0. These “legs” are very similar to legs we saw when
tropicalizing plane curves at the start of our journey. I will
call this Γ.
Tropicalizing the function. By blending the abstract trop-
icalization and the prototypical one we started with, the

Figure 6. A cartoon of a meromorphic function on a Riemann
surface of genus 1. The function has two points where it is 0
and two poles. The 𝑎𝑖’s track the orders of these zeroes and
poles.

Figure 7. An abstract tropical curve, enhanced by two “legs”
by the presence of distinguished points 𝑝1 and 𝑝2 on 𝐶𝑡.

data (𝐶𝑡, 𝜑𝑡) produces a piecewise linear function on Γ, i.e.,
a map

𝑓 ∶ Γ → ℝ,
that is continuous and is linear on the interior of each edge.
A more refined analysis tells us two more things. First,
along the 𝑗th leg, the slope of 𝑓 is equal to 𝑎𝑗. If 𝑎𝑗 is posi-
tive, the value of 𝑓 increases to +∞ as we move along the
edge. If it is negative, it decreases to −∞. Second, at each
vertex 𝑉 , the sum of the slopes along the edges leaving 𝑉
is zero. This is called the balancing condition, and comes
from the fact that the weighted count of zeroes and poles
meromorphic function on a Riemann surface is 0.

Figure 8 is another picture that captures what is happen-
ing.
The non-realizables exist! Noticing the tropicalizations
of pairs (𝐶𝑡, 𝜑𝑡) are always abstract tropical curves together
with balanced piecewise linear functions, we can now con-
template such pairs (Γ, 𝑓) without knowing beforehand
that they come from algebraic geometry. I am now go-
ing to sketch an argument that some pairs (Γ, 𝑓) of piece-
wise linear functions cannot come from algebraic geom-
etry. The argument can be made fully rigorous with the
right geometric formalism.
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Figure 8. The tropical curve in this figure is the top picture. It
has four unbounded legs, three on the right and one on the
left. The metric graph, enhanced with its unbounded legs, is
equipped with a piecewise linear function. The numbers
decorating the edges and legs indicate the slopes along each
edge, from left to right.

Fix a genus 𝑔 for the curves that we’re interested in, and
the integers 𝑎1, … , 𝑎𝑛, which together must sum to 0. We’re
looking for pairs (𝐶, 𝑝1, … , 𝑝𝑛, 𝜑), where 𝜑 is a meromor-
phic function with the zero and pole data at the 𝑝𝑖 given by
the 𝑎𝑖. It follows from the theory of Riemann surfaces that
space of possible choices for (𝐶, 𝑝1, … , 𝑝𝑛) has dimension
3𝑔 − 3 + 𝑛. In fact, this was already known to Riemann;
it is recorded in a very illuminating manner in [14, Sec-
tion 2.3]. However, among these, only a 2𝑔− 3+𝑛 dimen-
sional subspace admit a function 𝜑 of the given type. One
can deduce this from the Riemann–Hurwitz theorem. It
turns out that the function 𝜑, if it exists at all, is unique
up to scalar—this follows from the Riemann–Roch theo-
rem. Putting it all together, the possible set of choices has
dimension 2𝑔 − 2 + 𝑛.

Let us specialize these numbers: take the genus 𝑔 to
be 1, the number 𝑛 to be 4, and let (𝑎1, 𝑎2, 𝑎3, 𝑎4) be
(2, 2, −2, −2). The dimension 2𝑔 − 2 + 𝑛 now works out
to be 4.

Let us now inspect the two types of graphs of piece-
wise linear functions in Figure 9. In each picture, the
graph is fixed but we think of the lengths as being vari-
able; the numbers indicate the slopes of the piecewise lin-
ear function. In both cases, there are ways to change the
edge lengthswhilemaintaining the conditions on the func-
tions: they should be continuous, piecewise linear, and
balanced.

In the first case, there is an interesting constraint: the
top edge of the cycle needs to have length equal to a third
of the length of the borrom edge for the map to be contin-
uous. However, in the second case, the edge lengths on the
two sides of the loop are completely unconstrained by the
existence of the function 𝑓—the existence of the function
does not impose conditions on the loop. Therefore in the
second case, we can move the edge lengths around to find

five free parameters: four from the edge lengths and one
coming from translating the piecewise linear function by
a constant.

The Bieri–Groves theorem told us that, for subvarieties
of (ℂ⋆)𝑛, the tropicalization detects the dimension. The
set of (𝐶, 𝑝1, … , 𝑝𝑛, 𝜑) with the data 𝑔 and (𝑎1, … , 𝑎𝑛) fixed,
together forms a natural space, which is at least to first ap-
proximation, an algebraic variety. We will call it 𝖬. Sim-
ilarly, the set of tropical curves equipped with balanced,
piecewise linear functions with matching data, forms a
new subset which I will call 𝖳.

Let us highlight something before carrying on. To first
approximation, the space 𝖬 can be embedded into an al-
gebraic torus in a canonical manner and it can be tropical-
ized. However, the space 𝖳 is a purely tropical object and
we have made no assertion that the latter is the tropicaliza-
tion of the former! The space 𝖳 plays the role of the ambi-
ent vector space ℝ𝑛 in our first theorem, which contained
the tropicalization. By using our prototype construction,
with some technological upgrades, one finds that there is
a continuous map

trop ∶ 𝖬 → 𝖳.
It is not too hard to show that this map corresponds pre-
cisely to taking the data (𝐶𝑡, 𝜑𝑡) and sending it the corre-
sponding tropical pair.

If we believe that tropicalization preserves dimension,
even in this more general context, then we have just ar-
gued that the codomain has larger dimension than the do-
main. Therefore the map cannot possibly be surjective. It
follows that if one chooses the edge lengths of 𝐸1 and 𝐸2
generically, the data (Γ2, 𝑓2) cannot come from algebraic
geometry.
Harder facts. The dimension constraint above is useful
for proving negatives, i.e., that there exist non-realizable
tropical curves. In our argument, it’s clear where the issue
comes from. A function that is linear puts a constraint on
each cycle: because there are two ways to go around the
cycle, if the function 𝜑 is non-constant on the cycle, it says
that the lengths of the two paths depend on each other. If
the function is constant, this constraint goes away.

The following theorem says that the converse is true,
and is much harder to prove.

Theorem 0.0.3. Let Γ be a tropical curve, and let 𝜑 be a piece-
wise linear function. Assume that every vertex of Γ has exactly
three outgoing edges. If 𝜑 is non-constant on all cycles of Γ,
then 𝜑 is realizable.

The result above was proved, in a much more general
context, by Cheung, Fantini, Park, and Ulirsch [4]. Ignor-
ing the condition about the three outgoing edges at ev-
ery vertex, it basically says that if the dimension argument
in the previous section does not apply, then realizability
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Figure 9. Two examples of abstract tropical curves Γ1 and Γ2 (with legs) and piecewise linear functions 𝑓1 and 𝑓2. The edges are
labelled with the slopes of the appropriate piecewise linear function. In the picture on the right, the cycle and its two adjacent
edges are collapsed, i.e., 𝑓2 is constant on this subgraph.

holds. This is not at all obvious: why does the dimension
argument see all the possible ways in which the realizability
problem might fail? Nevertheless, the result is true, and the
proof is a nice application of some abstractmachinery: log-
arithmic deformation theory.

In a different direction, Speyer proved a beautiful result
about the realizability of tropical curves of genus 1 [13]. If
we specialize this theorem to our non-realizable example
from before, one finds the following simple consequence.
There are two contracted edges in the figure that are la-
belled as 𝐸1 and 𝐸2, adjacent to the cycle in the graph. As
a result of Speyer’s theorem, we have the following fact:

The pair (Γ2, 𝑓2) above is realizable if and only if 𝐸1
and 𝐸2 have the same length.

Speyer’s proof of this theorem required a sophisticated
piece of algebraic geometry called non-archimedean uni-
formization for elliptic curves, developed by Tate. Many
different proofs have been found in the 15 year since then,
but the result does not appear to be elementary.
Brill–Noether theory for curves. We now discuss an ap-
plication of these ideas involving tropicalization and its
inversion to Brill–Noether theory, which we mentioned in
passing early in this article. Let us first state the basic goal
of Brill–Noether theory.

Understand the geometry of spaces parameterizing
of maps from curves to projective space of a given

type.

The word “understand” above includes things like
knowing when such spaces are nonempty, calculating their
basic invariants such as dimension or Euler characteris-
tic, or determining topological properties such as con-
nectedness or smoothness. The phrase “of a given type”
means fixing numerical parameters. The questions in
Brill–Noether theory involve three simple numerical pa-
rameters: the genus 𝑔 of the curve 𝐶, the dimension 𝑟 of
the projective space ℙ𝑟, and the degree 𝑑 of the maps. The

numbers combine to give the Brill–Noether number:

𝜌(𝑔, 𝑟, 𝑑) = 𝑔 − (𝑟 + 1)(𝑔 − 𝑑 + 𝑟).

If we fix a curve 𝐶, there is a space 𝑊𝑟
𝑑 (𝐶) that can

be thought of as a parameter space for maps from 𝐶 to
ℙ𝑟 of degree 𝑑, whose image is not contained in a hyper-
plane. I have suppressed a few fudge factors here, related
to changes of coordinates and “base points.”

We can now state the fundamental theorem in Brill–
Noether theory. Recall that the space of abstract curves
ℳ𝑔 of genus 𝑔 has dimension 3𝑔 − 3. In what follows, we
will say that a statement holds “for the general curve” if it
holds for a dense subset of curves inℳ𝑔.

The Brill–Noether theorem. If𝐶 is a general curve, the space
𝑊𝑟
𝑑 (𝐶) has dimension exactly 𝜌(𝑔, 𝑟, 𝑑).

Part of the assertion is that if 𝜌(𝑔, 𝑟, 𝑑) is negative, the
space𝑊𝑟

𝑑 (𝐶) is empty. The statement has roots in the 19th
century, but was first rigorously proved in the late 20th
century. As we mentioned earlier, part of this statement is
accessible via an impossibility constraint—when 𝜌(𝑔, 𝑟, 𝑑)
is negative, one has to find a graph that does not admit a
certain combinatorial structure.

When 𝜌(𝑔, 𝑟, 𝑑) is positive, one can actually use tropi-
cal inverse problems to calculate the dimension of𝑊𝑟

𝑑 (𝐶),
and this was done in [9]. In order to do this, one has to
prove that “sufficiently many” abstract tropical curves of
genus 𝑔 admit a map toℝ𝑟 of genus 𝑔, and that the choices
for maps have 𝜌(𝑔, 𝑟, 𝑑) dimensions worth of choices. Ex-
tracting this statement is subtle—one needs to choose the
right family of graphs and check various conditions on the
maps, but once the dust has settled, the task is to analyze
maps

Γ → ℝ𝑟

from genus 𝑔 abstract tropical curves, that are built up from
the balanced piecewise linear functions we saw earlier. The
key question is then: do all of these maps come from algebraic
geometry?
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The strategywe saw in the previous discussion for curves
with a piecewise linear function works perfectly well in
this multivariate setting, and one can show that Cheung,
Fantini, Park, and Ulirsch’s work applies perfectly, and al-
lows us to deduce the complete Brill–Noether theorem—
proving both the non-existence of maps when 𝜌(𝑔, 𝑟, 𝑑) is
negative, but also proving the existence of maps when it is
positive.
Beyond general curves. While the Brill–Noether theorem
tells us precisely when maps to ℙ𝑟 do and do not exist
from general curves of a given genus, it does not settle the
story. For example, for every value of the genus 𝑔, there
exist curves of genus 𝑔 that admit a map to ℙ1 of degree
2. Since 𝜌(𝑔, 𝑟, 𝑑) is negative, this is “unexpected.” In or-
der to get a more complete picture we must go beyond the
general curve, and to do this we need a way to measure the
failure of a curve to be general.

One classical way to measure that failure of a curve to
be general is the gonality. The gonality of a curve 𝐶 is the
smallest degree of a map from that curve to ℙ1. The go-
nality takes values between 2 and ⌊𝑔+3

2
⌋. The curves of go-

nality 2 are called hyperelliptic and appear in numerous con-
texts. Classical geometry had given us an understanding of
curves of gonality 2, 3, and 4 in all genus, but the general
case remained open.

In 2016, Pflueger revisited this problem from the point
of view of tropical geometry [12]. For each value 𝑘 of the
gonality, Pflueger studied carefully-chosen tropical curves
Γ𝑔, one in each genus. These were known to be tropicaliza-
tions of algebraic curves of gonality 𝑘. He then performed
a beautiful combinatorial analysis to calculate the dimen-
sion of a space𝑊𝑟

𝑑 (Γ𝑔)—a purely tropical geometric object
that plays the role of 𝑊𝑟

𝑑 (𝐶) above. The combinatorial
analysis was done via the combinatorics of chip-firing and
Young tableaux.

The result of the combinatorial analysis was a formula
for the dimension of𝑊𝑟

𝑑 (Γ𝑔), which we will call 𝜌𝑘(𝑔, 𝑟, 𝑑).
The definition of this number is a little complicated but
similar to the 𝜌(𝑔, 𝑟, 𝑑) above. Together with Jensen, we
proved a 𝑘-gonal refinement of the classical Brill–Noether
theorem [9].

The Brill–Noether theorem. If 𝐶 is a general curve of gonal-
ity 𝑘, the space 𝑊𝑟

𝑑 (𝐶) has dimension exactly 𝜌𝑘(𝑔, 𝑟, 𝑑).

The proof of this theorem involved a solution to a
tropical inverse problem. Points in the space 𝑊𝑟

𝑑 (Γ𝑔) for
Pflueger’s graphs Γ𝑔 turn out to give rise to maps

Γ𝑔 → ℝ𝑟,
which are balanced piecewise linear functions in each
coordinate—just as we saw when discussing the the trop-
ical inverse problem. However, in each coordinate,
they behave more like the badly behaved examples with

contracted cycles than the nicer examples where the earlier
results of Cheung, Fantini, Park, and Ulirsch apply.

By combining Speyer’s theorem on realizablity with re-
sults in logarithmic geometry and non-archimedean anal-
ysis that had been developed in the preceding years, we
solved the relevant tropical inverse problem to show that
Pflueger’s analysis on the tropical side correctly predicted
the dimensions of the corresponding algebraic varieties.

My goal was to convey a sense of what these tropical
inverse problems look like, and what kind of information
their answers can reveal. However, I should say that in the
years since these results were first proved, the subject of
Brill–Noether theory beyond the general curve has flour-
ished, with many new beautiful results using a variety of
different and new methods. See the survey [8] and refer-
ences therein.

References
[1] Federico Ardila, The geometry of matroids, Notices Amer.

Math. Soc. 65 (2018), no. 8, 902–908. MR3823027
[2] MatthewBaker, Specialization of linear systems from curves to

graphs, Algebra Number Theory 2 (2008), no. 6, 613–653,
DOI 10.2140/ant.2008.2.613. With an appendix by Brian
Conrad. MR2448666

[3] Melody Chan,Moduli spaces of curves: classical and tropical,
Notices Amer. Math. Soc. 68 (2021), no. 10, 1700–1713,
DOI 10.1090/noti2360. MR4323846

[4] Man-Wai Cheung, Lorenzo Fantini, Jennifer Park, and
Martin Ulirsch, Faithful realizability of tropical curves, Int.
Math. Res. Not. IMRN 15 (2016), 4706–4727, DOI
10.1093/imrn/rnv269. MR3564625

[5] Filip Cools, Jan Draisma, Sam Payne, and Elina Robeva,
A tropical proof of the Brill-Noether theorem, Adv. Math. 230
(2012), no. 2, 759–776, DOI 10.1016/j.aim.2012.02.019.
MR2914965

[6] Phillip Griffiths and Joseph Harris,On the variety of special
linear systems on a general algebraic curve, Duke Math. J. 47
(1980), no. 1, 233–272. MR563378

[7] David Jensen, Chip firing and algebraic curves, Notices
Amer. Math. Soc. 68 (2021), no. 11, 1875–1881, DOI
10.1090/noti2378. MR4339420

[8] David Jensen and Sam Payne, Recent Developments in Brill-
Noether Theory, arXiv:2111.00351 (2021).

[9] David Jensen and Dhruv Ranganathan, Brill-Noether the-
ory for curves of a fixed gonality, Forum Math. Pi 9 (2021),
Paper No. e1, 33, DOI 10.1017/fmp.2020.14. MR4199236

[10] DianeMaclagan and Bernd Sturmfels, Introduction to trop-
ical geometry, Graduate Studies in Mathematics, vol. 161,
American Mathematical Society, Providence, RI, 2015,
DOI 10.1090/gsm/161. MR3287221

[11] GrigoryMikhalkin, Enumerative tropical algebraic geometry
in ℝ2, J. Amer. Math. Soc. 18 (2005), no. 2, 313–377, DOI
10.1090/S0894-0347-05-00477-7. MR2137980

[12] Nathan Pflueger, Brill-Noether varieties of 𝑘-
gonal curves, Adv. Math. 312 (2017), 46–63, DOI
10.1016/j.aim.2017.01.027. MR3635805

AUGUST 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1057

http://www.ams.org/mathscinet-getitem?mr=3823027
http://www.ams.org/mathscinet-getitem?mr=2448666
http://www.ams.org/mathscinet-getitem?mr=4323846
http://www.ams.org/mathscinet-getitem?mr=3564625
http://www.ams.org/mathscinet-getitem?mr=2914965
http://www.ams.org/mathscinet-getitem?mr=563378
http://www.ams.org/mathscinet-getitem?mr=4339420
http://www.ams.org/mathscinet-getitem?mr=4199236
http://www.ams.org/mathscinet-getitem?mr=3287221
http://www.ams.org/mathscinet-getitem?mr=3635805
http://dx.doi.org/10.1016/j.aim.2017.01.027
http://dx.doi.org/10.1090/S0894-0347-05-00477-7
http://dx.doi.org/10.1090/gsm/161
http://dx.doi.org/10.1017/fmp.2020.14
http://dx.doi.org/10.1090/noti2378
http://dx.doi.org/10.1016/j.aim.2012.02.019
http://dx.doi.org/10.1093/imrn/rnv269
http://dx.doi.org/10.1090/noti2360
http://dx.doi.org/10.2140/ant.2008.2.613
http://www.arxiv.org/abs/2111.00351
http://www.ams.org/mathscinet-getitem?mr=2137980


[13] David E. Speyer, Parameterizing tropical curves I: Curves of
genus zero and one, Algebra Number Theory 8 (2014), no. 4,
963–998, DOI 10.2140/ant.2014.8.963. MR3248991

[14] R. Vakil, The moduli space of curves and Gromov-Witten
theory, Enumerative invariants in algebraic geometry and
string theory, 2008, pp. 143–198. MR2493586

[15] Ravi Vakil, The moduli space of curves and its tautological
ring, Notices Amer. Math. Soc. 50 (2003), no. 6, 647–658.
MR1988577

Glimpses of Soliton Theory
Second Edition   |   by Alex Kasman
Solitons are nonlinear waves which behave like interacting particles. This new edition of 
Glimpses of Soliton Theory reveals the hidden connections discovered over the last half-cen-
tury that explain the existence of these mysterious mathematical objects. It aims to convince 
the reader that, like the mirrors and hidden pockets used by magicians, the underlying alge-
bro-geometric structure of soliton equations provides an elegant explanation of something 
seemingly miraculous.

Visit bookstore.ams.org/stml-100

Background image credit: Liudmila Chernetska / iStock / Getty Images Plus via Getty Images

Student Mathematical Library
Celebrates

100th Title
in Series

Dhruv Ranganathan

Credits

The opening image is courtesy of bgblue via Getty.
Figures 1–9 are courtesy of the author.
Photo of Dhruv Ranganathan is courtesy of Rachael Boyd.

1058 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 7

http://www.ams.org/mathscinet-getitem?mr=3248991
http://www.ams.org/mathscinet-getitem?mr=2493586
http://www.ams.org/mathscinet-getitem?mr=1988577
http://dx.doi.org/10.2140/ant.2014.8.963

