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A WORD FROM. . .
JuanC.Meza, FormerDirector of theDivision ofMathematical Sciences at theNSF

The opinions expressed here are not necessarily those of the Notices or the AMS.
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It’s been over four years since
I was interviewed by AMS af-
ter being selected for the po-
sition of Director of the Di-
vision of Mathematical Sci-
ences (DMS). At that time,
I was asked about my ex-
pectations for the position,
and I responded that it was
too early to tell. Here, I’d
like to recap some of my ex-
periences as division direc-
tor, including some of the
highlights and challenges we

faced. Through these experiences, I also discovered some
strategies that I think the math community could use to
more effectively partner with DMS for the benefit of both.

DMS is the biggest supporter of mathematical sciences
research in the United States and accounts for more
than 60% of federally funded basic mathematics research.
These areas include algebra, topology and geometric anal-
ysis, number theory, applied mathematics, analysis, com-
binatorics, probability and statistics, computational math-
ematics, and mathematical biology. The annual budget
for DMS was $233M when I started in 2018 and grew to
$244M in fiscal year 2021. About 73% of these funds go
to Individual PIs. Looking at it another way, every year,
DMS supports close to 6500 researchers including over
2600 senior researchers, 2300 graduate students, 380 post-
docs, and 1200 undergraduate students. In terms of the
number of proposals, DMS also handles one of the largest

Juan C. Meza is a professor of mathematics at the University of California,
Merced. His email address is jcmeza@ucmerced.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
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portfolios at NSF, managing over 3000 proposal reviews
annually, yielding around 750 awards per year.

Research Highlights
An important role for the division director is to champion
the value of mathematics research. Throughout my time
at DMS, I found that developing new partnerships with
other directorates was an excellent means of achieving this.
One important initiative was the 10 Big Ideas started by
the NSF Director France Cordova. DMS responded by ac-
tively participating in three of the Big Ideas: Harnessing
the Data Revolution (HDR), the Rules of Life, and Quan-
tum Leap. In the HDR Big Idea, DMS was involved in the
Transdisciplinary Research in Principles of Data Science
(TRIPODS) and the TRIPODS Institutes. By design, each
of the awards had mathematicians playing a major role in
the team. We also participated in the Rules of Life Big Idea
through the NSF-Simons Research Centers for Mathemat-
ics of Complex Biological Systems program. Partnerships
weren’t restricted to the US either. We initiated two new
partnerships, one with the UK and another with Israel to
jointly fund proposals that supported collaborations be-
tween PIs in those two countries.

One unexpected challenge was the COVID-19 pan-
demic, and it would be hard to overstate the effect that it
had on the operations of DMS. We had to transition to full
virtual panels and the staff moved to full remote telework
within a few weeks. As the normal means of meeting with
PIs was no longer viable, we sought out new ways to en-
gage with the math community. One initiative was a new
monthly DMS Virtual Office Hours. Starting in October
2020, we averaged about 150 participants at each session.
Topics ranged across all the DMS programs and included
news updates from NSF, MPS, and DMS.

In direct response to the pandemic, NSF was provided
with additional funds to address the challenges the coun-
try faced. In turn, NSF issued a call for proposals in the
spring of 2020 to address COVID-19. Watching the math
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community respond to our request for proposals was one
of the most rewarding events I’ve ever participated in. In
the end, we were able to fund 20 proposals that led to
novel approaches to understanding the spread of the pan-
demic as well as new methods for understanding the dis-
ease itself. Because of the overwhelming response to this
call, the following year DMS cohosted a workshop with
the Social, Behavioral, and Economic Sciences directorate
that sought to develop new epidemiological models in col-
laboration with social scientists.

Two other initiatives that I believe will have a long-term
influence came out of an earlier partnership with the Si-
mons Foundation and involved the rapidly growing field
of Deep Learning. This led to a new program on the
Mathematical and Scientific Foundations of Deep Learn-
ing (MoDL) in 2020. While other programs existed in this
area, none of them addressed the foundational or theoret-
ical aspects of the field.

Training Opportunities and Broadening
Participation
One recurring comment I heard from the community was
the difficulty in providing support for graduate students.
This troubled me, as I’ve always believed that we must pro-
vide support for our early-career mathematicians to ensure
a healthy profession. As a result, we decided to increase
funds in this area. In 2019–2020, DMS invested $20M to-
ward graduate student support, which resulted in an ad-
ditional 675 graduate students funded on research fellow-
ships.

DMS also participated in two new programs aimed
at early-career PIs, the ASCEND and LEAPS programs.
The ASCEND program supports postdocs who will help
broaden the participation of groups that are underrepre-
sented in the mathematical and physical sciences. The
LEAPS program, supports the research of early-career fac-
ulty and is focused on those working at institutions such as
minority-serving institutions, predominantly undergradu-
ate institutions and R2 universities. I believe that both pro-
grams are a great step toward increasing the diversity of the
math community.

One observation I had when I arrived at DMS was that
there was a lack of diversity in program officers. During
my initial discussions with the program officers, this sub-
ject kept popping up, especially with regard to gender di-
versity. This led to several discussions at our weekly staff
meetings, where everyone agreed that we needed to em-
phasize gender diversity within our own ranks. When I
arrived, there were three women program directors. By
2022, we had a 50-50 split of men/women program direc-
tors. In my last year, we hired seven rotators, of whom
four were women and two were underrepresented minori-
ties. In total, during my time at NSF, we hired 26 rota-
tors, 16 of whom were women and four of whom were

underrepresented minorities. I’m happy to see that this
trend has continued, and today the division stands at 27
program directors, with 16 being women—a true team ef-
fort by everyone at DMS.

Recommendations
Based on my experiences, I found that DMS has done an
exceptional job in serving the mathematics research com-
munity. I take heart that the Committee of Visitors, which
reviewed the programs inDMS agreeswith that assessment.
Nonetheless, I believe that both DMS and the mathemati-
cal community can do better in terms of making the case
for mathematics research in the country. In what follows, I
make several recommendations that I hope will start some
discussions between all the parties involved.

My first suggestion is that the math community should
take additional steps to partner more effectively with NSF,
and DMS in particular. From the perspective of NSF, input
from the community is highly valued and important, espe-
cially during budget discussions. Other directorates have
active constituencies—astronomy and computing sciences
for example. In astronomy, the community produces a
decadal survey prioritizing their large facilities. In comput-
ing, the Computing Research Association (CRA) produces
quadrennial papers that provide potential research direc-
tions, challenges, and recommendations. AMS should
consider doing something similar. Many of the internal
discussions at NSF revolve around the needs of the scien-
tific communities and having such reports provides impor-
tant reference points.

The math community already engages DMS through
various science policy committees and the Government Re-
lations Office. The science policy committees are a good
start, but they generally only meet once a year. More fre-
quent and active partnerships would enhance relations.
Professional societies could play an important role in col-
lecting and championing new research areas. Congres-
sional briefings are another excellent idea, and the work of
Karen Saxe, head of government relations at AMS, is always
appreciated. AMS has a unique ability to take the pulse
of the math research community and to elevate important
new research areas to the attention of NSF and DMS.

Another avenue is through convening workshops on
current research trends. I already mentioned the DMS-
funded workshop on Research on Enhancing Socially and
Behaviorally Modulated Mathematical Models for Human
Epidemiology. Other examples included the workshops
on Statistics at a Crossroads: Who is for the Challenge?,
the workshops on Rules of Life in the Context of Future
Mathematical Sciences, and the Workshop Report for Re-
search Training Group Grants. All these reports were in-
strumental in helping DMS define its funding portfolio.

Finally, I’ll point to the important role that program di-
rectors play in the operations of DMS. I encourage those

1382 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 9



of you who might be interested in serving as a program
director to contact DMS about opportunities. I found my
time at NSF to be rewarding and I learned much about the
state of research (both in mathematical sciences as well as
other areas) in the US.

My four years at NSF were a time of great change and
many challenges. And they were also some of the best
times in my career. Let me end with my heartfelt thanks
and deep appreciation to everyone who helped me while
I was at DMS. Together we were able to accomplish much,
and it was all because of the many people who came to-
gether under challenging times to maintain a vibrant and
exciting mathematics research environment.
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.gov/news/special_reports/big_ideas/
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Definability and Arithmetic

Hector Pasten
The purpose of this article is to give an overview of some
very active interactions between first order definability and
arithmetic. However, even to get started we need to clar-
ify what we mean by “first order definability”. The reader
who is already familiar with these notions can safely skip
directly to the second section.

For the experts, we would like to clarify that this intro-
ductory note is not intended to be a comprehensive survey,
and many interesting topics are left out by space limita-
tions: uniformity and effectivity in unlikely intersections,
arithmetic of complex function fields, Diophantine sets of
infinite extensions ofℚ, etc. Furthermore, at several points
we prefer to discuss less-general theorems for the sake of

Hector Pasten is an associate professor at the Faculty of Mathematics of the Pon-
tificia Universidad Católica de Chile. His email address is hector.pasten
@mat.uc.cl.
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For permission to reprint this article, please contact:
reprint-permission@ams.org.
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clarity of the exposition. Nevertheless, further reading will
be indicated at the relevant points.
Languages and structures. For us, a language will be a set
ℒ consisting of symbols for constants, for relations, and
for functions. An ℒ-structure is a set endowed with some
distinguished constants, relations, and functions that give
meaning to the symbols in ℒ. For instance, the language
of arithmetic is ℒ𝑎𝑟 = {0, 1, +, ×, =} and any (semi-)ring is
an ℒ𝑎𝑟-structure in the obvious way.

Given a language ℒ, a (first order) ℒ-formula is a finite
string of symbols that only uses the quantifiers ∃ and ∀,
the conjunction ∧, the disjunction ∨, implications → and
↔, the negation symbol ¬, parentheses, and symbols from
ℒ (we may use commas to improve readability). One re-
quires that such a formula is well-written: it can be read.
For instance, the string of symbols ∀∃𝑥+ = is not an ℒ𝑎𝑟-
formula, while ∀𝑥∃𝑦𝑥 + 𝑦 = 0 is an ℒ𝑎𝑟-formula.

An ℒ-formula may or may not have free variables (vari-
ables not under a quantifier) and both cases are of interest
to us.

Formulas without free variables are called sentences, and
given an ℒ-structure they can be true or false in the given
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structure. For instance, recall our ℒ𝑎𝑟-formula ∀𝑥∃𝑦, 𝑥 +
𝑦 = 0; this is true over ℤ but it is false over ℕ = {0, 1, 2, … }.
If 𝜙 is anℒ-sentence and𝑀 is anℒ-structure, we write𝑀 ⊧
𝜙 to express that 𝜙 is true on 𝑀.

Let𝑀 be an ℒ-structure. Formulas with 𝑛 free variables
can be used to define subsets of 𝑀𝑛. Indeed, we say that
𝑆 ⊆ 𝑀𝑛 is defined by an ℒ-formula 𝜙(𝑥1, … , 𝑥𝑛) with free
variables 𝑥𝑖 if for every tuple 𝐚 ∈ 𝑀𝑛, we have that 𝐚 ∈ 𝑆 if
and only if 𝑀 ⊧ 𝜙(𝐚).

Let us clarify this important idea with an example. Con-
sider the ℒ𝑎𝑟-structure ℕ and the inequality relation

𝑅 = {(𝑎, 𝑏) ∶ 𝑎 ≤ 𝑏} ⊆ ℕ2.
This is ℒ𝑎𝑟-defined by the formula

𝜙(𝑥, 𝑦) ∶ ∃𝑧, 𝑦 = 𝑥 + 𝑧
because the pairs (𝑎, 𝑏) ∈ ℕ2 such that ℕ ⊧ 𝜙(𝑎, 𝑏) holds
are precisely the elements of 𝑅.

A final disclaimer: for the sake of exposition we will
often identify the symbols in a language with their inter-
pretation in a structure.

Equipped with these notions, let us discuss a first exam-
ple of how definability interacts with arithmetic.
What can be expressed using addition? As a warm-up,
let us discuss a classical problem: to understand the sets
over the integers that can be defined using addition.

For instance, one can ask whether we can define mul-
tiplication in ℤ using addition. To have a more precise
question we need to be clear about what we mean by “de-
fine”. For our purposes, we will restrict our attention to
first order formulas over a language. In our case the lan-
guage will be ℒ𝑃𝑟𝑒𝑠 = {0, 1, +,=, ≤} which is interpreted in
ℤ in the usual way. Then the question can be formulated
as: Is multiplication in ℤ definable by a first order formula over
the language ℒ𝑃𝑟𝑒𝑠?

The key to answer this question is the following classical
result of Presburger, which follows from a general result on
elimination of quantifiers [16]:

Theorem 1 (Presburger). A subset 𝑆 ⊆ ℕ ⊆ ℤ is first order
definable over the language ℒ𝑃𝑟𝑒𝑠 if and only if 𝑆 is eventually
periodic: there is𝑀 ∈ ℕ such that {𝑥 ∈ 𝑆 ∶ 𝑥 ≥ 𝑀} is periodic
in the set {𝑀,𝑀 + 1,𝑀 + 2, … }.

As a consequence we finally get

Corollary 2. Multiplication in ℤ is not first order definable
over the language ℒ𝑃𝑟𝑒𝑠.

Proof. Suppose it is. Then so is the set of squares 𝑆 = {𝑛2 ∶
𝑛 ∈ ℕ}, but this set is not eventually periodic. □

The connection between definability and arithmetic in
Presburger’s theorem is rather direct. Let us discuss an-
other kind of definable sets that enjoy a less obvious con-
nection with arithmetic.

O-minimal structures. Consider ℝ as a structure over the
language ℒℝ

𝑟𝑐 = {0, 1, +, ×, =, ≤} ∪ ℝ of real-closed fields
expanded by allowing constants from ℝ in our formulas.

It is a classical theorem of Tarski that ℝ over the lan-
guage ℒℝ

𝑟𝑐 admits elimination of quantifiers: every ℒℝ
𝑟𝑐-

formula 𝜙 is equivalent over ℝ to an ℒℝ
𝑟𝑐-formula without

quantifiers. For instance, consider the formula

𝜙(𝑥) ∶ ∃𝑦, 𝑥2 + 𝑦2 = 1
(where 𝑥2 = 𝑥×𝑥). Overℝ this formula defines the interval
[−1, 1] and, in fact, the same set is defined by the quantifier-
free formula

0 ≤ 𝑥 + 1 ∧ 𝑥 ≤ 1.
The ℒℝ

𝑟𝑐-definable sets in ℝ𝑛 are called semi-algebraic and,
due to elimination of quantifiers, they are exactly the sets
defined by finitely many equations and inequalities be-
tween polynomials. In particular we get the following con-
sequence of Tarski’s theorem:

Corollary 3. All the ℒℝ
𝑟𝑐-definable subsets of ℝ are finite

unions of points and (possibly unbounded) intervals.

The concept of o-minimality —introduced by van den
Dries [2]— comes as a generalization of this structural re-
sult for definable subsets of ℝ. This was further developed
by Steinhorn, Marker, and many others.

Consider ℝ as a structure over a language ℒ expand-
ing ℒℝ

𝑟𝑐. We say that this ℒ-structure is o-minimal if all
ℒ-definable subsets of ℝ are finite unions of points and
intervals.

As an example of a structure which is not o-minimal,
consider ℝ with the language ℒsin consisting of ℒℝ

𝑟𝑐 and
the sine function. Then the (quantifier-free) formula
sin(𝑥) = 0 defines a discrete infinite set in ℝ.

One can ask about o-minimal structures beyond ℝ over
ℒℝ
𝑟𝑐. A first example, due to Denef and van den Dries after

work of Gabrielov, is the following: let ℝ𝑎𝑛 be the struc-
ture ℝ over the language ℒ𝑎𝑛 consisting of ℒℝ

𝑟𝑐 augmented
by all functions 𝑓 ∶ [0, 1]𝑛 → ℝ (for all 𝑛) that are real
analytic on some open neighborhood of [0, 1]𝑛.
Theorem 4. The structure ℝ𝑎𝑛 is o-minimal.

On the other hand, let exp ∶ ℝ → ℝ be the exponential
function and let ℝexp be the structure ℝ over the language
ℒexp = ℒℝ

𝑟𝑐∪{exp}. Then we have the following celebrated
theorem of Wilkie:

Theorem 5. The structure ℝexp is o-minimal.

Van den Dries and Miller generalized the previous two
results by showing o-minimality overℒ𝑎𝑛∪{exp}. In fact, o-
minimality has been proved over several other languages,
but we do not intend to present a survey here.

Definable sets over o-minimal structures are very well-
behaved, which allows for a rich theory that generalizes
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real algebraic geometry (which is the case of ℝ over ℒℝ
𝑟𝑐).

Some of the results that can be proved in this general-
ity are existence of cell-decompositions, a good theory
of dimension, finiteness of connected components, and
parametrization results.

We refer the reader to [3] for an exposition of the theory
of o-minimal structures.
Counting rational points. Having discussed the notion
of o-minimal structures, let us now turn into connections
with arithmetic.

For a rational number 𝑞 = 𝑎/𝑏 with 𝑎, 𝑏 coprime inte-
gers, the height of 𝑞 is 𝐻(𝑞) = max{|𝑎|, |𝑏|}. The height of a
tuple 𝐪 = (𝑞1, … , 𝑞𝑛) ∈ ℚ𝑛 is defined as𝐻(𝐪) = max𝑗 𝐻(𝑞𝑗).
For a subset Γ ⊆ ℝ𝑛 and 𝑇 > 1 we define

𝑁(Γ, 𝑇) = #{𝐪 ∈ Γ ∩ ℚ𝑛 ∶ 𝐻(𝐪) ≤ 𝑇}.

The story begins with the following counting result of
Pila which builds on an earlier result by Bombieri and Pila.

Theorem 6. Let 𝑓 ∶ [0, 1] → ℝ be a transcendental real
analytic function on an open set containing [0, 1] and let Γ ⊆
[0, 1]×ℝ be its graph. Let 𝜖 > 0. There is a number 𝑐(𝑓, 𝜖) > 0
such that for all 𝑇 > 1 we have

𝑁(Γ, 𝑇) ≤ 𝑐(𝑓, 𝜖)𝑇𝜖.

The hypothesis that 𝑓 is transcendental cannot be
dropped, as can be easily seen by considering, for instance,
𝑓(𝑥) = 𝑥2.

Naturally, counting rational points is a topic of great
arithmetic interest and the previous result provides a very
general tool valid for rational points in curves. Pila and
Wilkie [12] managed to prove a far-reaching generaliza-
tion. For this we need to define the transcendental part
of a set.

Given a set 𝑋 ⊆ ℝ𝑛, we denote by 𝑋𝑎𝑙𝑔 the union
of all connected positive dimensional semi-algebraic sub-
sets of 𝑋 (i.e., those definable over ℒℝ

𝑟𝑐 or, equivalently,
those definable by finitely many equations and inequali-
ties between polynomials). The transcendental part of 𝑋 is
𝑋𝑡𝑟 = 𝑋 − 𝑋𝑎𝑙𝑔. We remark that, in general, 𝑋𝑎𝑙𝑔 is not
semialgebraic.

With this notation, the Pila–Wilkie theorem is

Theorem 7. Let ℝ over ℒ be an o-minimal structure and let
𝑋 ⊆ ℝ𝑛 be ℒ-definable. Let 𝜖 > 0. There is 𝑐(𝑋, 𝜖) > 0 such
that for all 𝑇 > 1 we have

𝑁(𝑋𝑡𝑟, 𝑇) < 𝑐(𝑋, 𝜖)𝑇𝜖.

Observe that Theorem 6 is a special case when we con-
sider the o-minimal structure ℝ𝑎𝑛.

We remark that in order to get the 𝑇𝜖 bound it is un-
avoidable to discard 𝑋𝑎𝑙𝑔 as this subset can accumulate too
many rational points.

While all of this is of course very interesting in its own
right, it turns out that since the late 2000s, the point-
counting theorems in o-minimal structures have found re-
markable and unexpected applications inDiophantine Ge-
ometry, in the context of unlikely intersections.
Unlikely intersections. Let 𝑋 be an algebraic variety over
ℂ endowed with a countable set 𝑆 of “special” points and
let 𝑌 be a properly contained subvariety of 𝑋 . Counting
dimensions, the intersection 𝑌 ∩ 𝑆 is unlikely to happen
even if 𝑆 is Zariski dense in 𝑋 . Thus, onemight expect 𝑌∩𝑆
to be small, even finite, unless there is a good reason for
this to be otherwise.

Here is a concrete instance of this phenomenon. Con-
sider 𝑋 = ℂ× × ℂ× the two-dimensional multiplicative
group and 𝑆 its set of torsion points, namely, pairs (𝜂1, 𝜂2)
where 𝜂𝑗 are roots of unity. Then 𝑆 is countable and Zariski
dense in 𝑋 . Now consider 𝑌 ⊆ 𝑋 an irreducible curve. Is
𝑌 ∩ 𝑆 infinite? A good reason for this to happen would be
that 𝑌 is a multiplicative subgroup of 𝑋 , or even a multi-
plicative translate by a point in 𝑆. For example, the hyper-
bola 𝑌 = {(𝑥, 𝑦) ∈ 𝑋 ∶ 𝑥𝑦 = 1} is amultiplicative subgroup
and it contains all the points (𝜂, 𝜂−1) for 𝜂 a root of unity.
Lang conjectured that, in fact, this is the only way that 𝑌∩𝑆
can be infinite. The result was later proved, independently,
by Ihara, Serre, and Tate.

Theorem 8. Let 𝑌 ⊆ ℂ× × ℂ× be an irreducible curve con-
taining infinitely many torsion points (i.e., points of the form
(𝜂1, 𝜂2) with 𝜂𝑗 roots of unity.) Then 𝑌 is the translate by a
torsion point of a multiplicative subgroup of ℂ× × ℂ×.

The previous result has been generalized in a number of
ways and there are several other important problems in the
subject of unlikely intersections, but here we will restrict
our attention only to two of them: the Manin–Mumford
conjecture and the André–Oort conjecture.

In its simplest form, the Manin–Mumford conjecture
asked the following:

Conjecture 9. Let 𝑌 be a smooth projective curve of genus
𝑔 ≥ 2 defined over a number field 𝑘, contained in its Jacobian
𝐽. Then 𝑌 contains at most finitely many torsion points of 𝐽(ℂ).

This is a remarkable statement; note that the torsion
points of 𝐽(ℂ) are dense in 𝐽 even in the complex topol-
ogy, but somehow the curve 𝑌 manages to avoid almost
all of them!

The Manin–Mumford conjecture was proved by Ray-
naud in 1983. Several other proofs came afterward. In
2008 Pila and Zannier gave a new proof via point count-
ing in o-minimal structures. Let us briefly outline the ar-
gument.

Sketch of proof. The abelian variety 𝐽, over ℂ, is biholomor-
phic to ℂ𝑔/Λ for a suitable lattice Λ. Thus, there is a
real-analytic uniformization 𝜙 ∶ ℝ2𝑔 → 𝐽 which descends
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to ℝ2𝑔/ℤ2𝑔, hence, having [0, 1]2𝑔 as a fundamental do-
main.

The points in [0, 1]2𝑔 corresponding to torsion points
of 𝐽(ℂ) are precisely those with rational coordinates, and
the height of such rational points in [0, 1]2𝑔 is essentially
the same as the order of the corresponding torsion point
in 𝐽(ℂ).

On the other hand, the complex curve 𝑌 ⊆ 𝐽 corre-
sponds, via 𝜙, to a certain ℒ𝑎𝑛-definable set 𝑍 ⊆ [0, 1]2𝑔.
One wishes to show that 𝑍 has only finitely many rational
points. For the moment, let us assume that 𝑍𝑎𝑙𝑔 = ∅, so that
𝑍𝑡𝑟 = 𝑍. By the Pila–Wilkie theorem on the o-minimal
structure ℝ𝑎𝑛, for every 𝜖 > 0 we have

𝑁(𝑍, 𝑇) < 𝑐(𝑍, 𝜖)𝑇𝜖.
But if 𝑃 ∈ 𝐽(ℂ) is a torsion point of large order and it
belongs to 𝑌 , then its Galois orbit over the base num-
ber field 𝑘 has to be considerably large (a precise estimate
was proved by Masser; alternatively, one can use results of
Serre), giving too many torsion points in 𝑌 : the whole Ga-
lois orbit of 𝑃. A careful analysis of the situation leads to
a lower bound of the form

𝑁(𝑍, 𝑇) > 𝑐′ ⋅ 𝑇𝛿

for certain fixed 𝛿 > 0 and 𝑐′ > 0. This contradicts the
upper bound coming from the Pila–Wilkie theorem. Then
one has to justify why 𝑍𝑎𝑙𝑔 = ∅ to conclude the argument.

□

The approach in the previous sketch of proof is known
as the Pila–Zannier strategy.

This leads to the following general question: Given a
transcendental analytic uniformization 𝜙 ∶ Ω → 𝑋 of an
algebraic variety 𝑋 , how to characterize those sets 𝑉 ⊆ Ω
such that both 𝑉 and 𝜙(𝑉) are algebraic? Such sets might
be called bi-algebraic for 𝜙. Of course this is only a vague
question, but in many applications of the Pila–Zannier
strategy it is a crucial step of the argument in order to com-
pute 𝑍𝑎𝑙𝑔. Nowadays there is a general approach to com-
puting bi-algebraic sets by means of generalizations of the
Ax–Schanuel theorem from functional transcendence.

Another important problem in the setting of unlikely
intersections is the André–Oort conjecture. This concerns
the special points (in a technical sense) of a Shimura va-
riety; in the simplest case, an example of Shimura variety
is the affine line over ℂ (seen as the modular curve 𝑌(1)),
and its set of special points are the 𝑗-invariants of elliptic
curves with complex multiplication.

Conjecture 10. Let 𝑋 be a Shimura variety and let 𝑌 be an
irreducible subvariety of 𝑋. If the set of special points of 𝑋 con-
tained in 𝑌 is Zariski dense in 𝑌 , then 𝑌 is a special subvariety.

After partial progress by André (unconditional) and
Edixhoven (under GRH), a breakthrough occurred in 2011

when Pila unconditionally proved the André–Oort conjec-
ture for products of modular curves using the Pila–Zannier
strategy.

These ideas led to a series of advances on the André–
Oort conjecture by several authors. It soon became clear
that the two main difficulties were: necessary results
on bi-algebraic sets for the relevant analytic uniformiza-
tions, and lower bounds on the size of Galois orbits of
special points. The first difficulty was solved by Klin-
gler, Ullmo, and Yafaev in 2014. The issue on sizes of
Galois orbits remained as the final obstruction. Very
recently, a preprint by Pila–Shankar–Tsimerman finally
proves the André–Oort conjecture in full generality by
bringing 𝑝-adic Hodge theory into the study of heights
of special points. This builds on work of Binyamini–
Schmidt–Yafaev (based on an idea of Schmidt) and an
earlier result by Tsimerman for 𝒜𝑔 (which crucially relies
onwork ofMasser–Wüstholz, Andreatta–Goren–Howard–
Madapusi Pera, and Yuan–Zhang). But this is not the end
of the story; the Zilber–Pink conjecture still awaits on the
horizon!

There are several excellent expositions about the con-
nections between o-minimality and Diophantine geome-
try. See for instance [4] or [20].
Diophantine equations. Let us go back to the basics: Dio-
phantine equations. These are polynomials equations in
possibly many variables and having integral coefficients,
for which integral or rational solutions are sought.

The topic is very old. It seems that the earliest written
record of a (non-linear) Diophantine equation is the Baby-
lonian clay tablet Plimpton 322, written about 1800 BC.
This tablet displays several integral solutions of the Dio-
phantine equation 𝑥2 + 𝑦2 = 𝑧2.

However, Diophantine equations are named after the
greek mathematician Diophantus of Alexandria (3rd cen-
tury AD), due to his series of books Arithmetica where he
presents a systematic study of several of these equations. In
Arithmetica, Diophantus provides examples of integral and
rational solutions of Diophantine equations along with a
detailed explanation of themethod by which the solutions
were found.

In modern language, here are some remarkable exam-
ples from Arithmetica:

• Book II, problem 8: Parametrization of the conic
𝑥2 + 𝑦2 = 𝑧2 by rational functions, using the chord
method.

• Book IV, problem 24: Duplication of points in the el-
liptic curve 𝑦(6 − 𝑦) = 𝑥3 − 𝑥 by the tangent method.

• Book VI, problem 17: Construction of rational points
in the genus 2 curve 𝑦2 = 𝑥8 + 𝑥4 + 𝑥2 (birational to
𝑦2 = 𝑥6 + 𝑥2 + 1) by specializing an algebraic iden-
tity. This equation was fully solved by Wetherell in
the nineties using 𝑝-adic methods.
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Diophantus’s Arithmetica deeply influenced several
scholars who wrote notes on the margin of their copies
of the book. Just to mention two:

Around 1637 Fermat wrote in the margin of Book II,
problem 8 (quoted above) the statement of his famous
“Last Theorem” (solved in the nineties by Wiles) along
with an apology for not having enough space for writing
his proof.

On the other hand, two centuries earlier than Fermat,
Chortasmenos wrote in the margin of the same problem
“May your soul, Diophantus, be with Satan because of the
difficulty of your other theorems and, particularly, of this
one.” And in fact, Diophantine equations are truly difficult
in a technical sense.

In 1900 Hilbert proposed a famous list of 23 problems.
The tenth problem in the list was the following:

Hilbert’s Tenth Problem (HTP): Given a Diophantine
equation with any number of unknown quantities and with ra-
tional integral numerical coefficients: To devise a process ac-
cording to which it can be determined in a finite number of
operations whether the equation is solvable in rational integers.

The notion of “process” in the statement of HTP was
later formalized as Turing machine (or “algorithm” for
short). After the work of M. Davis, H. Putnam, and J.
Robinson, in 1970 Y. Matiyasevich gave a negative solu-
tion to this problem [8].

Theorem 11. HTP is unsolvable: there is no algorithm to de-
cide solvability in ℤ of Diophantine equations.

Diophantine sets of integers. Let us return to the subject
of definability. The key to Theorem 11 is the notion of
Diophantine set: those subsets of ℤ𝑚 that can be defined
using Diophantine equations. The precise definition is the
following:

A set 𝑆 ⊆ ℤ𝑚 is Diophantine if there are polynomials
𝐹1, … , 𝐹𝑟 ∈ ℤ[𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑛] such that for each 𝐚 ∈
ℤ𝑚 we have 𝐚 ∈ 𝑆 if and only if there is 𝐛 ∈ ℤ𝑛 with
𝐹𝑗(𝐚, 𝐛) = 0 for all 1 ≤ 𝑗 ≤ 𝑟.

(We remark that one can always take 𝑟 = 1 by consider-
ing 𝐹 = 𝐹21 +⋯+ 𝐹2𝑟 .)

As a first example of Diophantine set we have the odd
integers: 𝑎 ∈ ℤ is odd if and only if there is 𝑏 ∈ ℤ with
𝑎 = 2𝑏 + 1. Here, 𝑟 = 1 and 𝐹1 = 𝑥 − 2𝑦 − 1.

A more interesting example is given by the ≤ relation
𝑅 = {(𝑎1, 𝑎2) ∈ ℤ2 ∶ 𝑎1 ≤ 𝑎2} ⊆ ℤ2: by the 4-squares
theorem we have that 𝑎1 ≤ 𝑎2 if and only if there are
𝑏1, … , 𝑏4 ∈ ℤ with 𝑎2 = 𝑎1 + 𝑏21 +⋯+ 𝑏24.

Here is an alternative way to think about Diophantine
sets. Consider an affine algebraic variety 𝑋 ⊆ 𝔸𝑚+𝑛 de-
fined by equations over ℤ and take its set of integral points
𝑋(ℤ). Now, project 𝑋(ℤ) onto its first 𝑚 coordinates. The
set constructed in this way is Diophantine, and every Dio-
phantine set arises from this construction.

For instance, in our example of odd integers we can take
𝑋 ⊆ 𝔸2 as the line defined by 𝑥 = 2𝑦 + 1, consider all
integer solutions (𝑎, 𝑏) ∈ ℤ2, and then project onto the
𝑥-coordinate.

There is yet a third equivalent way to define Diophan-
tine sets. Recall the language ℒ𝑎𝑟 = {0, 1, +, ×, =} and con-
sider ℤ as an ℒ𝑎𝑟-structure. A set 𝑆 ⊆ ℤ𝑚 is Diophantine
if and only if it is defined by a positive existential ℒ𝑎𝑟-
formula.

This requires some explanation. A formula is positive
existential if the only quantifier in it is ∃, it contains no
negations, and the only connectives that it uses are ∨ and
∧.

For instance, odd integers are defined by the formula
∃𝑦, 𝑥 = 2𝑦 + 1.

One can use Diophantine sets to construct new ones.
For instance, we can exhibit the ≠ relation {(𝑎1, 𝑎2) ∈ ℤ2 ∶
𝑎1 ≠ 𝑎2} ⊆ ℤ2 as a Diophantine set by the positive existen-
tial formula

𝜙(𝑥1, 𝑥2) ∶ (𝑥1 + 1 ≤ 𝑥2) ∨ (𝑥2 + 1 ≤ 𝑥1)
where each ≤ is hiding four existential quantifiers.

At first one might find the fact that the relation ≠ can
be expressed over ℤ without using negations quite impres-
sive. It makes us wonder what else can be presented as a
Diophantine set over ℤ.

Certainly, not every subset of ℤ𝑚 can be Diophantine:
there are only countably many Diophantine sets (count
the equations). A more interesting restriction is the fol-
lowing:

Lemma 12. Every Diophantine set 𝑆 is listable: there is an
algorithm that produces all of its elements and nothing else.

Proof. Consider a Diophantine set 𝑆 ⊆ ℤ𝑚 defined by the
formula

𝜙(𝑥1, … , 𝑥𝑚) ∶ ∃𝑦1 …∃𝑦𝑛, 𝐹(𝐱, 𝐲) = 0,
where 𝐹 is a polynomial (by our earlier remarks on multi-
plication of polynomials and sums of squares of polyno-
mials, this suffices). Then let us algorithmically enumerate
the elements 𝐜 ∈ ℤ𝑚+𝑛 and at each step evaluate 𝐹(𝐜). If
one gets a non-zero value, we ignore this 𝐜, while if we
get 0 we print the first 𝑚 coordinates of 𝐜. This process al-
gorithmically produces all the elements of 𝑆 and nothing
else. □

The previous lemmamight seem to provide a restriction
on Diophantine sets that is too weak. For instance, the set
of factorials is certainly listable, while there is no obvious
reason for it to be Diophantine. It turns out that, actually,
there is no other restriction: Diophantine sets over ℤ are
the same as listable sets!

Theorem 13 (DPRM). Over ℤ, listable sets are the same as
Diophantine sets.
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Thus, for instance, the sets of factorials, powers of 2,
primes, etc. are indeed Diophantine!

The DPRM theorem is named after M. Davis, H. Put-
nam, J. Robinson, and Y. Matiyasevich. The core of the
proof is to use Diophantine sets to simulate any Turing
machine; Davis, Putnam, and Robinson reduced the prob-
lem to showing that the graph of the exponential function
(𝑎, 𝑏) ↦ 𝑎𝑏 (𝑎, 𝑏 ≥ 1) is Diophantine, while Matiyasevich
provided the final step by showing that this is indeed the
case [8].

While the knowledge of a precise description of all Dio-
phantine sets is a remarkable achievement in its own right,
it was obtained as a tool to give a negative solution to HTP.
Let us explain this point:

Proof of Theorem 11 using DPRM. Thanks to a theorem of
Turing, the Halting problem from computability theory
provides a set 𝐻 ⊆ ℤ which is listable but it is not decidable:
there is no algorithm to decide membership to 𝐻.

Nevertheless, 𝐻 is listable, so it is Diophantine by the
DPRM theorem. Let 𝐹 ∈ ℤ[𝑥, 𝑦1, … , 𝑦𝑛] be a polynomial
such that 𝐻 is defined by

𝜙(𝑥) ∶ ∃𝑦1 …∃𝑦𝑛, 𝐹(𝑥, 𝐲) = 0.
Now, for each 𝑎 ∈ ℤ let 𝐹𝑎 ∈ ℤ[𝑦1, … , 𝑦𝑛] be the polyno-
mial 𝐹(𝑎, 𝐲). For the sake of contradiction suppose that
HTP has a positive solution and let𝒜 be an algorithm that
decides solvability of Diophantine equations over ℤ.

Given 𝑎 ∈ ℤ apply 𝒜 to 𝐹𝑎; if the output is YES then
𝐹𝑎 = 0 has a solution in integers and ℤ ⊧ 𝜙(𝑎), hence, 𝑎 ∈
𝐻. Otherwise, 𝑎 ∉ 𝐻. This decides membership to 𝐻; a
contradiction. □

The DPRM theorem is not an isolated result and ana-
logues have been obtained in other contexts. For instance
we mention the work of Demeyer over 𝔽𝑞[𝑧].
Extensions of Hilbert’s tenth problem. Let 𝐴 be a (com-
mutative, unitary) ring which is computable. Roughly
speaking, this means that 𝐴 and its operations can be en-
coded in ℕ in a computable way, thus, one can use el-
ements from 𝐴 as inputs for an algorithm (Turing ma-
chine).

Hilbert’s tenth problem can be seen as a special case of
the following more general question:

Problem 14 (𝐻𝑇𝑃(𝐴)). Is there an algorithm to decide the
following? Given a system of polynomial equations over 𝐴 as
input, to decide whether the system has solutions over 𝐴.

In this generality one does not always have a negative
solution. However, we are interested in rings 𝐴 with rich
arithmetic, so that one can expect a negative solution to
𝐻𝑇𝑃(𝐴).

As we will see, the key to approach the generalized
HTP is the notion of a Diophantine set over 𝐴: the def-
inition is the same as over ℤ but now the polynomials

have coefficients in 𝐴. Alternatively (and more convenient
in practice) we say that 𝑆 ⊆ 𝐴𝑚 is Diophantine (over 𝐴)
if there is a positive existential formula 𝜙(𝑥1, … , 𝑥𝑚) over
ℒ𝑎𝑟 = {0, 1, +, ×, =}with parameters from 𝐴 (i.e., elements
of 𝐴 are allowed in 𝜙) such that for each 𝐚 ∈ 𝐴𝑚 we have

𝐚 ∈ 𝑆 if and only if 𝐴 ⊧ 𝜙(𝐚).
We refer the reader to the excellent surveys [5] and [14]

for more information on extensions of HTP, as well as the
books [19] and [10]. Here we will only focus in the case
of rings of integers and global fields.
The case of rings of integers. A natural extension of
Hilbert’s tenth problem is to ask the analogous question
not only for ℤ but also for rings of integers of number
fields, such as ℤ[√2] or the Gaussian integers ℤ[√−1].

Let 𝐾 be a number field, that is, a finite algebraic exten-
sion ofℚ. Let𝑂𝐾 be its ring of integers. Denef and Lipshitz
[1] proposed the following conjecture in the seventies:

Conjecture 15. For every number field 𝐾 we have that
𝐻𝑇𝑃(𝑂𝐾) has a negative solution.

But, how to approach this problem? Should we follow
the DPRM strategy by simulating Turing machines over
𝑂𝐾? It turns out that we don’t have to reinvent the wheel.

Lemma 16. Let 𝐾 be a number field. If ℤ ⊆ 𝑂𝐾 is Diophan-
tine over 𝑂𝐾 , then 𝐻𝑇𝑃(𝑂𝐾) has a negative solution.

Proof. Assume that ℤ is Diophantine in 𝑂𝐾 . For the sake
of contradiction, suppose that there is an algorithm 𝒜
that decides solvability over 𝑂𝐾 of systems of polyno-
mial equations over 𝑂𝐾 . Take any Diophantine equation
𝐹(𝑥1, … , 𝑥𝑚) = 0 over ℤ. Now consider the system 𝑆 over
𝑂𝐾 formed by the equation 𝐹 = 0 seen over 𝑂𝐾 and, for
each variable 𝑥𝑗, the requirement that 𝑥𝑗 ∈ ℤ (which by as-
sumption can be done with Diophantine equations over
𝑂𝐾!).

Apply 𝒜 to 𝑆. If the output is YES then 𝐹 = 0 has a
solution over 𝑂𝐾 with all the 𝑥𝑗 in ℤ, and if the output
is NO then such a solution does not exist. Thus, we have
decided solvability of 𝐹 = 0 over ℤ. We get a contradiction
with the negative solution to 𝐻𝑇𝑃(ℤ). □

So, the key is to show that ℤ is Diophantine in 𝑂𝐾 . We
remark that, actually, it is a theorem of J. Robinson dating
back to the fifties that ℤ is first order definable in 𝑂𝐾 for
every number field 𝐾; it is the Diophantine definability
what remains open.

In the seventies and eighties, Conjecture 15 was proved
in the following cases:

• 𝐾 is totally real or quadratic extension of totally real
(Denef–Lipshitz)

• 𝐾 has exactly one pair of complex conjugate embed-
dings (Pheidas, Shlapentokh, Videla)

• 𝐾 is abelian over ℚ (Shapiro–Shlapentokh).
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After a long hiatus, some new families of cases were
proved by Mazur and Rubin in 2015 and by Garcia-Fritz
and Pasten in 2019.

In addition, Conjecture 15 is known to follow from
standard conjectures on elliptic curves: Mazur and
Rubin proved this under the finiteness conjecture for
Shaferevich–Tate groups, Murty and Pasten proved this un-
der the BSD conjecture, and most recently Pasten proved
this under certain well-known conjecture on ranks of fibres
of elliptic surfaces. See [9] and the references therein for
more details.

All the recent progress on Conjecture 15 has followed
from an elliptic curve criterion proved independently by
Poonen and Shlapentokh [18]:

Theorem 17. Let 𝐿/𝐾 be an extension of number fields. If
there is an elliptic curve 𝐸 over 𝐾 with positive rank over 𝐾 that
remains the same over 𝐿, then 𝑂𝐾 is Diophantine in 𝑂𝐿.

This result has some predecessors in the work of Denef,
Poonen, and Cornelissen–Pheidas–Zahidi. Currently, it is
the most promising approach to showing that ℤ is Dio-
phantine in 𝑂𝐾 for every number field 𝐾, which in view of
Lemma 16 would prove Conjecture 15.

Finally, we mention a surprising result of Shlapentokh
[9] that considerably simplifies the problem:

Theorem 18. Suppose that for every quadratic extension of
number fields 𝐿/𝐹 one has that 𝑂𝐹 is Diophantine in 𝑂𝐿. Then
for every number field 𝐾 we have that ℤ is Diophantine in 𝑂𝐾 .

Global fields. A global field is a field 𝐾 which is either a
number field (finite extension of ℚ) or the function field
of a curve over a finite field. For the sake of exposition, let
us restrict our attention to the two most basic cases: ℚ and
𝔽𝑞(𝑧) for a prime power 𝑞 = 𝑝𝑠 (𝑝 prime).

First, we have the following celebrated theorem of Phei-
das [11]:

Theorem 19. If 𝑞 is odd, then 𝐻𝑇𝑃(𝔽𝑞(𝑧)) has a negative
answer.

(The case of 𝑞 even is due to Videla.) Pheidas proved
this result by constructing an interpretation (in a techni-
cal sense) of (ℤ; 0, 1, +, ×, =) in 𝔽𝑞(𝑧) using positive exis-
tential formulas. Then one can transfer the negative an-
swer of 𝐻𝑇𝑃(ℤ) to a negative answer for 𝐻𝑇𝑃(𝔽𝑞(𝑧)) very
much as in the proof of Lemma 16. The proof of Theo-
rem 19 requires definability of Frobenius orbits and of valua-
tions. As of today, all the results onHilbert’s tenth problem
for positive characteristic function fields require in some
way these two key steps. This technique has been gener-
alized by several authors, and in particular, Eisentraeger
and Shlapentokh extended Phedias’s theorem to all global
function fields.

As the arithmetic of 𝔽𝑞(𝑧) is believed to be analogous
to that of ℚ, one expects that 𝐻𝑇𝑃(ℚ) also has a negative

solution, but this remains as a main open problem in the
field. As in Lemma 16 the strategy is to show that ℤ is
Diophantine in ℚ. There are several partial results in the
literature, and we can highlight:

(i) (J. Robinson [17]) There is a first order definition of ℤ
in ℚ.

(ii) (Poonen [13]) There is a computable set of primes 𝑆
with density 1 in the primes such that 𝐻𝑇𝑃(ℤ[𝑆−1])
has a negative solution.

(iii) (Koenigsmann, [6]) The set of non-integers ℚ − ℤ
is Diophantine in ℚ. Furthermore, there are defini-
tions of ℤ in ℚ with quantifiers of the form ∀⋯∀
and ∀∃⋯∃ (a Diophantine definition would be of the
form ∃⋯∃.)

On the other hand, it might be the case that ℤ is not
Diophantine in ℚ, which would require an alternative ap-
proach to𝐻𝑇𝑃(ℚ). First, we have the following conjecture
of Mazur proposed in 1992:

Conjecture 20. Let 𝑋 be an algebraic variety over ℚ and let
𝑈 be the real closure of its set of rational points 𝑋(ℚ) in 𝑋(ℝ).
Then 𝑈 is semi-algebraic; in particular, it has finitely many
connected components.

This conjecture implies at once that ℤ is not Diophan-
tine in ℚ; otherwise, one would get an affine algebraic va-
riety 𝑋 ⊆ 𝔸𝑛+1 such that the projection of 𝑋(ℚ) onto the
fist coordinate is ℤ, contradicting Mazur’s conjecture.

In another direction, we have the following conjecture
of the author:

Conjecture 21. Let 𝐷 ⊆ ℚ be a Diophantine set. Then the
supremum of 𝐷 in ℝ, if finite, is algebraic.

The connection with 𝐻𝑇𝑃(ℚ) is given by the following
folklore result:

Lemma 22. If ℤ is Diophantine in ℚ, then listable sets and
Diophantine sets of ℚ are the same.

Thus, if ℤ is Diophantine in ℚ then the set 𝐷 =
{3, 3.1, 3.14, 3.141, … } of increasing decimal approxima-
tions of 𝜋 would be Diophantine, contradicting Conjec-
ture 21.

In addition to the previous conjectures there is the fol-
lowing result of Kollár [7]:

Theorem 23. ℂ[𝑧] is not Diophantine in ℂ(𝑧).
Thus, if one believes that the arithmetic ofℤ inℚ is anal-

ogous to that of ℂ[𝑧] in ℂ(𝑧), then this can be considered
as evidence toward the non-Diophantineness of ℤ in ℚ.
Elementary equivalence versus isomorphism. So far we
have discussed the connection between arithmetic and de-
finability of sets inside a structure. But first order formulas
over a language ℒ can also be used to define a structure
across a class of ℒ-structures.
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For instance, let ℒ𝑔𝑝 = {𝑒, ∗, =} be the language of
groups and let us define 𝒢 as the class of ℒ𝑔𝑝-structures
given by groups in the obvious way. Then the trivial group,
up to isomorphism, can be defined by the ℒ𝑔𝑝-sentence:

𝜙 ∶ ∀𝑥, 𝑥 = 𝑒.

That is, a group 𝐺 ∈ 𝒢 is isomorphic to the trivial group if
and only if 𝐺 ⊧ 𝜙.

Two ℒ-structures that cannot be distinguished by the
truth of first orderℒ-sentences are called elementarily equiv-
alent: to so say, they have the same theorems (expressible
by first order formulas). In our example, the trivial group
seen as an ℒ𝑔𝑝-structure is only elementary equivalent to
groups that are isomorphic to itself.

While it is obvious that isomorphic ℒ-structures are el-
ementarily equivalent, the converse is false in general. For
instance, over the language ℒ𝑎𝑟 = {0, 1, +, ×, =} the fields
ℚ and ℂ are elementarily equivalent (by a result of Tarski)
but they are not isomorphic: one is countable and the
other is not.

The natural fields that one considers when doing arith-
metic geometry are finitely generated fields. For instance,
global fields such as ℚ and 𝔽𝑞(𝑧) are finitely generated.
Let us call this class of fields ℱ𝑓𝑖𝑛 and consider them as
ℒ𝑎𝑟-structures. The following conjecture seems to have ap-
peared in print by the first time in [15], although it was
around already in the seventies:

Conjecture 24. Within the class ℱ𝑓𝑖𝑛 of ℒ𝑎𝑟-structures, iso-
morphism is the same as elementary equivalence.

There has been considerable progress on this problem
and one can refer to the work of Duret, Pierce, Poonen,
Pop, Rumely, Sabbagh, Scanlon, and Vidaux, among oth-
ers.

A recent preprint by Dittmann and Pop finally proves
Conjecture 24, provided that one excludes the fields of
characteristic 2, or that one assumes resolution of singu-
larities in characteristic 2. This is very exciting news and
it opens the door to other problems in the field. For in-
stance, one can ask what are the subclasses of ℱ𝑓𝑖𝑛 that
can be defined by a first order formula overℒ𝑎𝑟 (a question
first asked by Poonen), or the same for positive existential
formulas.
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3-Dimensional
Mirror Symmetry

Ben Webster and Philsang Yoo
1. Introduction
1.1. The House of Symplectic Singularities. Some have
compared research in mathematics to searching through a
dark room for a light switch.1 In other circumstances, it can
be like walking through the same house during the day—
one can see all the furniture, but can still look through
the drawers and cupboards for smaller nuggets of treasure.
As enjoyable as such a treasure hunt is (and easier on the
shins), discovering new rooms we haven’t seen before may
lead to even greater rewards. In some fields, this is just
a matter of walking down the hall; the hard part is sim-
ply knowing which door to open. But even more exciting
is finding a secret passage between two rooms we already
thought we knew.
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Of course, if you are not playing a game of Clue, secret
passages can be hard to find. You cannot just go tearing
out walls and expecting them to be there. However, in the
late 20th and early 21st centuries, mathematicians found
one remarkable source of such secret passages: quantum
field theory (QFT).

What are called “dualities” in QFT often provide con-
nections between mathematical objects that were totally
unexpected beforehand. For example, (2-dimensional)
mirror symmetry has shown that algebraic and symplectic
geometers were actually living in the same house, though
the passage between them is still quite poorly lit and
harder to traverse than we would like. Unfortunately, em-
ploying these dualities in mathematics is not just a mat-
ter of bringing in a physicist with their x-ray specs; it is
more like receiving an incomplete and weather-worn set
of blueprints, possibly written in an unknown language,
that hint at the right place to look. Still, we get some very
interesting hints.

1Perhaps I could best describe my experience of doing mathematics in terms of
entering a dark mansion. One goes into the first room, and it’s dark, completely
dark. One stumbles around bumping into the furniture, and gradually, you
learn where each piece of furniture is, and finally, after six months or so, you
find the light switch. You turn it on, and suddenly, it’s all illuminated and you
can see exactly where you were. —Andrew Wiles.
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For representation theorists, themost splendid and best
explored of all mansions is the house of simple Lie al-
gebras; while it is more than a century old, it still has
many nooks and crannies with fascinating surprises. It
also has a rather innocent-looking little pass-through be-
tween rooms, called Langlands duality. After all, it is just
transposing the Cartan matrix; most of us cannot keep the
Cartan matrix straight from its transpose without looking
it up anyway. The Langlands program has revealed the in-
credible depths of this simple operation.

Many new wings have been found to this manor: Lie
superalgebras, representations of algebraic groups in char-
acteristic 𝑝, quiver representations, quantum groups, cate-
gorification, etc. Despite their diversity, they all rely on the
same underlying framework of Dynkin diagrams. But in
recent years, researchers have found a new extension more
analogous to the discovery of many new series of Dynkin
diagrams: the world of symplectic resolutions and sym-
plectic singularities. According to an oft-repeated bon mot,
usually attributed to Okounkov: “symplectic singularities
are the Lie algebras of the 21st century.”

Interesting results about this particular annex started ap-
pearing around the turn of the 21st century, based on work
of Kaledin, Bezrukavnikov, and others. Some time in 2007,
my2 collaborators Tom Braden, Nick Proudfoot, Tony Li-
cata, and I noticed hints of another secret passage, con-
necting pairs of rooms (i.e., symplectic resolutions) there.
Many coincidences were needed for the different rooms to
line up precisely, making space for a secret passage. How-
ever, we were not able to step into the passage itself. Nev-
ertheless, we found one very intriguing example: the secret
passages we were looking for would generalize Langlands
duality to many new examples.

Of course, you can guess from the earlier discussion
what happened. After I gave a talk at the Institute for Ad-
vanced Study in 2008, Sergei Gukov pointed out tome that
physicists already knew that these secret passages should
exist based on a known duality: 3-dimensional mirror
symmetry. As explained above, this definitely did not
resolve all of our questions; to this day, an explanation
of several of the observations we had made remains elu-
sive. More generally, this duality was poorly understood
by physicists at the time (andmany questions remain), but
at least it provided an explanation of why such a passage
should exist and a basis to search for it.

In the 15 years since that conversation, enormous
progress has beenmade on the connections betweenmath-
ematics and 3-dimensional QFT. The purpose of this arti-
cle is to give a short explanation of this progress and some
of the QFT behind it for mathematicians. It is, of necessity,
painfully incomplete, but we hope that it will be a useful
guide for mathematicians of all ages to learn more.

2All pronouns in this section are from the perspective of BW.

1.2. Plan of the paper. Let us now discuss our plan with
a bit more precise language. A symplectic resolution is a
pair consisting of

1. a singular affine variety 𝑋0; and
2. a smooth variety 𝑋 with an algebraic symplectic form

which resolves the singularities of 𝑋0.
The singular affine variety 𝑋0 is a special case of a symplec-
tic singularity, which is a singular affine variety where the
smooth locus is equipped with a symplectic form that is
well-behaved at singularities.

The most famous example of a symplectic resolution is
the Springer resolution, where 𝑋0 is the variety of nilpo-
tent elements in a semisimple Lie algebra 𝔤, and 𝑋 is the
cotangent bundle of the flag variety of 𝔤. You can recon-
struct 𝔤 from the geometry of this resolution. Thus, one
perspective on the house of simple Lie algebras is that
the Springer resolution is really the fundamental object in
each room of a simple Lie algebra, with all other aspects
of Lie theory determined by looking at the Springer reso-
lution from various different angles.

Thus, simple Lie algebras lie at one end of a hallway,
with many other doors that lead to other symplectic res-
olutions and singularities. This leads to the natural ques-
tion of whether any given notion for Lie algebras general-
izes to other symplectic resolutions if we treat them like
the Springer resolution of a new Lie algebra that we have
never encountered. For example, each symplectic singular-
ity has a “universal enveloping algebra” which generalizes
the universal enveloping algebra of a Lie algebra.

Two examples accessible to most mathematicians are:

• The cotangent bundle 𝑋(A)
𝑛 = 𝑇∗ℂℙ𝑛−1 of complex

projective space. This can be written as

𝑇∗ℂℙ𝑛−1 = {(ℓ, 𝜙) ∈ ℂℙ𝑛−1 ×𝑀𝑛×𝑛(ℂ)
∣ 𝜙(ℂ𝑛) ⊂ ℓ, 𝜙(ℓ) = {0}}.

Projection to the second component is a resolution of
𝑀rk≤1

𝑛×𝑛 (ℂ), the space of 𝑛×𝑛matrices of rank ≤ 1. This
cotangent bundle has a canonical symplectic form,
which makes this resolution symplectic.

• The cyclic group ℤ/𝑛ℤ acts onℂ2, preserving its canon-
ical symplectic form, by the matrices

𝑘 ↦ [exp(2𝜋𝑖𝑘/𝑛) 0
0 exp(−2𝜋𝑖𝑘/𝑛)] .

The quotient ℂ2/(ℤ/𝑛ℤ) has a unique symplectic reso-
lution 𝑋(B)

𝑛 whose exceptional fiber is a union of 𝑛−1
copies of ℂℙ1’s that form a chain.

We have an isomorphism 𝑋(A)
2 ≅ 𝑋(B)

2 , but for 𝑛 > 2, these
varieties have different dimensions. There are some in-
triguing commonalities when we look at certain combina-
torial information coming out of these varieties. Central
to this are two geometric objects:
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• The action of a maximal torus 𝑇 (∗) on 𝑋(∗)
𝑛 for ∗ ∈

{A,B} which preserves the symplectic structure. One
obvious invariant is the set of its fixed points of this
torus.3

• The affine variety 𝑋0 has a unique minimal decompo-
sition into finitely many smooth pieces with induced
symplectic structures, generalizing the decomposition
of nilpotent matrices into Jordan type.

There are some intriguing coincidences between this pair
of varieties:

1. We have isomorphisms

𝔱(A) ≅ 𝐻2(𝑋(B)
𝑛 ) 𝔱(B) ≅ 𝐻2(𝑋(A)

𝑛 ).
We can make this stronger by noting that we match
geometrically defined hyperplane arrangements on
these spaces.4

2. Both torus actions have the same number of fixed
points, which is 𝑛; this also shows that the sum of the
Betti numbers of 𝑋(∗)

𝑛 is 𝑛.
3. The stratifications on 𝑋(A)

0 and 𝑋(B)
0 have the same

number of pieces, which is 2.5

It would be easy to dismiss these as not terribly significant,
but they are numerical manifestations of a richer phenom-
enon. That is,

4. the “universal enveloping algebra” of 𝑋(∗)
𝑛 has a spe-

cial category of representations that we call “category
𝒪” (see [BLPW16, §3]) and the categories 𝒪 of 𝑋(A)

𝑛
and 𝑋(B)

𝑛 are Koszul dual; the homomorphisms be-
tween projective modules in one category describe the
extensions between simple modules in the other.

The other reason that we should not dismiss these “coin-
cidences” is that the same statements 1.–4. apply to many
pairs of symplectic singularities, which are discussed in
[BLPW16, §9]. These include all finite and affine type A
quiver varieties and smooth hypertoric varieties. Some ex-
amples are self-dual:

• 𝑌 (A)
𝑛 = 𝑌 (B)

𝑛 = 𝑇∗ Fl𝑛, the cotangent bundle of the
variety of complete flags in ℂ𝑛.

• 𝑍(A)𝑛 = 𝑍(B)𝑛 = Hilb𝑛(ℂ2), the Hilbert scheme of 𝑛
points in ℂ2.

After suitable modification6 of 3., it also includes the

3𝑇(A) is the diagonal matrices in 𝑃𝐺𝐿𝑛(ℂ); 𝑇(B) the diagonal matrices in
𝑆𝐿2(ℂ) modulo the 𝑛 torsion.
4In 𝔱, the vectors where the vanishing set of the corresponding vector field jumps

in dimension; in 𝐻2(𝑋(B)𝑛 ), the Mori walls that cut out the ample cones of the
different crepant resolutions of the same affine variety.
5The smooth locus is one stratum, and in both cases, the other one is a single
point.
6In this case, the strata are the adjoint orbits of nilpotent elements, and the
number of these is different for types 𝐵𝑛 and 𝐶𝑛. We can recover a bijection by
only considering special orbits, of which there are the same number.

Springer resolutions of Langlands dual pairs of Lie alge-
bras.

This mysterious duality on the set of symplectic singu-
larities and their resolutions has obtained the name of
“symplectic duality” for its connection of two apparently
unrelated symplectic varieties.

Question 1.1. Is there an underlying principle that ex-
plains statements 1.-4., that is, which explains the symplec-
tic duality between these pairs of varieties?

As discussed above, work on QFT in dimension 3 sug-
gests that the answer to this question is closer to “yes” than
it is to “no.” Our aim in this article is to explain the basics
of why this is so and what it tells us about mathematics.

We can break this down into two sub-questions:

Q1. What are 3d 𝒩 = 4 SUSY QFTs and their topological
twists?

Q2. What do they have to do with symplectic duality?

In Section 2, we will provide an answer to the questions,
which we now briefly summarize.

First, every 3-dimensional topological quantum field
theory (TQFT) gives us a Poisson algebra. In many cases,
this ring is the coordinate ring of a symplectic singular-
ity 𝑋0, and all the examples discussed above can be con-
structed in this way. Given a QFT, a choice of a topological
twist gives rise to a TQFT. In fact, for a 3d 𝒩 = 4 theory
𝒯, there are two such choices, called the 𝐴-twist and the
𝐵-twist. Hence each 3d theory gives two symplectic sin-
gularities 𝔐𝐴(𝒯) and 𝔐𝐵(𝒯) called the Coulomb branch
and Higgs branch of the theory.

The pairs of symplectic varieties 𝑋(A) and 𝑋(B) (simi-
larly, 𝑌, 𝑍, etc.) all turn out to be the Coulomb and Higgs
branches of a single theory 𝒯. Then statements 1.–4. can
be understood in terms of the physical duality referenced
in Section 1.1, called “3-dimensional mirror symmetry.”

This is a very large topic, and due to constraints on the
length and number of references, we will concentrate on
the relationship to symplectic resolutions of singularities,
giving relatively short shrift to the long and rich literature
in physics on the topic; the introduction of [BDGH16] will
lead the reader to the relevant references, starting from the
original work of Intrilligator–Seiberg and Hanany–Witten,
which laid the cornerstone of this theory.

Just as the 2-dimensional mirror symmetry known to
mathematicians suggests that complexmanifolds and sym-
plectic manifolds (with extra structure) come in pairs
whose relationship is hard to initially spot, 3-dimensional
mirror symmetry rephrases our answer to Question 1.1:
the Coulomb branch of one theory can also be thought
of as the Higgs branch of its dual theory: 𝔐𝐴(𝒯) =
𝔐𝐵(𝒯∨). Thus, we can also describe our dual pairs of
symplectic varieties as the Higgs branches of dual theories
(𝔐𝐵(𝒯),𝔐𝐵(𝒯∨)).

OCTOBER 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1397



This answer is not as complete as we would like, since
we cannot construct 3-dimensional QFTs as rigorousmath-
ematical objects. We can only work with mathematical
rigor on certain aspects of some classes of theories, the
most important of which are linear gauge theories. In
these cases, we have mathematical definitions of the Higgs
and Coulomb branches and thus can prove mathematical
results about them.

In Section 3, we will review these constructions of the
Higgs and Coulomb branches in the case of linear gauge
theories. The former of these constructions has been
known to mathematicians for many decades [HKLR87],
but the construction of Coulomb branches was a surprise
even to physicists when it appeared in 2015 [BFN18], and
is key to the progress we have made since that time.

These varieties are the keystones of a rapidly develop-
ing research area that combines mathematics and physics.
In particular, they point the way to understanding a mir-
ror symmetry of 3-dimensional theories that is not only a
counterpart to the mirror symmetry known to mathemati-
cians (which is 2-dimensional mirror symmetry) but also
provides an enrichment of the geometric Langlands pro-
gram (which comes from a duality of 4-dimensional theo-
ries).

We will conclude the article in Section 4 with a brief
discussion of interesting directions of current and future
research to give the interested reader guidance on where
to turn next.

2. Physical Origin
2.1. QFT. In this section, we will give a very short intro-
duction to (Euclidean) QFT. Typically, a QFT has the fol-
lowing input data:

1. (spacetime) a 𝑑-dimensional Riemannian manifold
(𝑀, 𝑔);

2. (fields) a fiber bundle 𝐵 over 𝑀 and the space ℱ =
ℱ(𝑀) = Γ(𝑀, 𝐵) of sections of 𝐵 over 𝑀;

3. (action functional) a functional 𝑆∶ ℱ → ℝ.

In very rough terms, ℱ should be viewed as the space of
all possible states of a physical system, while the function
𝑆 controls which states will likely be physically achieved.

In a classical physical system, we want to think about
measuring quantities, such as the velocity or position of
a particle. We can formalize this in the notion of an ob-
servable, which is, by definition, a functional 𝑂∶ ℱ → ℝ.
A particularly important type is local operators at 𝑥 that
depend only on the value of a field or its derivatives at 𝑥.

Example 2.1 (Free scalar field theory).

1. a (compact) Riemannian manifold (𝑀, 𝑔);
2. 𝐵 = 𝑀 × ℝ so that ℱ = 𝐶∞(𝑀);

3. 𝑆∶ 𝒞∞(𝑀) → ℝ given by 𝑆(𝜙) = ∫𝑀 𝜙Δ𝑔𝜙Vol𝑔, where
Δ𝑔 is the Laplacian of the metric 𝑔 and Vol𝑔 is the vol-
ume form associated to 𝑔.

In the case of 𝑀 = ℝ, for any point 𝑥 ∈ ℝ, the function-
als 𝑂𝑥, 𝑂(1)

𝑥 ∶ 𝐶∞(ℝ) → ℝ defined by 𝑂𝑥(𝜙) = 𝜙(𝑥) and
𝑂(1)
𝑥 (𝜙) = 𝜙′(𝑥) are local operators at 𝑥.
Two other types of field theories play an important role

for us:

1. Let 𝐺𝑐 be a compact Lie group. When ℱ consists of
connections on a principal 𝐺𝑐-bundle over 𝑀, such a
field theory is called a gauge theory and 𝐺𝑐 is called
the gauge group of the theory.

2. Let𝑋 be amanifold. Whenℱ consists ofmaps from𝑀
to 𝑋 , such a theory is called a 𝜎-model and 𝑋 is called
the target of the 𝜎-model. In this case, 𝐵 = 𝑀 × 𝑋 .

One insight of the quantum revolution in physics is
that a physical system cannot be described by a single field,
which would have a well-defined value for each observable.
Instead, we can only find the expectation values of observ-
ables as integrals, where a measure depending on the ac-
tion accounts for how probable states are. These integrals
are often written notionally in the form

⟨𝑂⟩ ≔ ∫
𝜙∈ℱ(𝑀)

𝑒−𝑆(𝜙)/ℏ𝑂(𝜙)𝐷𝜙.

However, in many cases, these integrals do not make sense
because the spaceℱ(𝑀) is often infinite-dimensional, and
as a result, the Lebesgue measure 𝐷𝜙 cannot be defined.

More generally, given observables 𝑂𝑖’s which only de-
pend on the values of the fields on open sets that do not
overlap, we consider the integrals of the following form

⟨𝑂1,⋯ ,𝑂𝑛⟩ ≔ ∫
𝜙∈ℱ(𝑀)

𝑒−𝑆(𝜙)/ℏ𝑂1(𝜙)⋯𝑂𝑛(𝜙)𝐷𝜙.

These are called the correlation functions of the theory
and the main objects of study in a QFT. One may also un-
derstand the integral as the correlation function of a single
observable, as the notion of operator product allows one
to express products of 𝑂1,⋯ ,𝑂𝑛 as a single observable.
2.2. TQFT. In the framework of Atiyah and Segal, a 𝑑-
dimensional topological quantum field theory (TQFT)
is a symmetric monoidal functor 𝑍 from the category
(Bord𝑑, ⨿, ∅) to the category (Vectℂ,⊗, ℂ) of complex vec-
tor spaces. Objects of Bord𝑑 are closed oriented (𝑑 − 1)-
manifolds 𝑁, a morphism from 𝑁 to 𝑁′ is a diffeomor-
phism class of a 𝑑-dimensional bordism 𝑀 from 𝑁 to 𝑁′,
and the monoidal structure is given by disjoint union ⨿
with the empty set ∅ being the unit object.

Regarding a closed 𝑑-manifold𝑀 as a bordism from ∅ to
∅ yields a complex number 𝑍(𝑀). Physically, one should
imagine that 𝑍(𝑀) = ∫𝜙∈ℱ(𝑀) 𝑒−𝑆(𝜙)/ℏ𝐷𝜙. On the other
hand, the complex vector space 𝑍(𝑁) attached to a closed
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(𝑑−1)-manifold 𝑁 is the Hilbert space of states on 𝑁. The
most important case is that of 𝑁 = 𝑆𝑑−1. In this case, the
vector space 𝑍(𝑆𝑑−1) will be the vector space of local oper-
ators in the TQFT. The principle that these spaces coincide
is called “the state-operator correspondence.”

Suppose 𝑑 = 2. Since any closed oriented 1-manifold is
a disjoint union of copies of circles, it is enough to describe
𝑍(𝑆1). Moreover, the map associated to a pair of pants
yields a linear map 𝑚∶ 𝑍(𝑆1) ⊗ 𝑍(𝑆1) → 𝑍(𝑆1) and the
one associated to a disk is a linear map 𝑢∶ 𝑍(∅) → 𝑍(𝑆1):

pair of pants disk

Topological arguments show that these maps and oth-
ers from the reversed picture induce a commutative Frobe-
nius algebra structure on 𝑍(𝑆1).

Note that one can apply a similar idea to any 𝑑-
dimensional TQFT 𝑍 to show that 𝑍(𝑆𝑑−1) obtains a com-
mutative algebra structure for 𝑑 ≥ 2 using the cobordism
where we remove two disjoint 𝑑-balls from the interior of a
𝑑-ball. When we interpret 𝑍(𝑆𝑑−1) as the space of local op-
erators of the theory, this product has a physical meaning:
it is precisely the operator product introduced above.7

Since this is a commutative ℂ-algebra, 𝑍(𝑆𝑑−1) can be
interpreted as the coordinate ring of an algebraic variety.
In fact, the spectrum 𝔐 = Spec 𝑍(𝑆𝑑−1) has a physical
interpretation as well: it is the moduli space of vacua of
the theory. This reflects the fact that at a vacuum state,
which by definition is a linear map ⟨−⟩∶ 𝑍(𝑆𝑑−1) → ℂ,
measurements at distant points cannot interfere so that
⟨𝑂1𝑂2⟩ = ⟨𝑂1⟩⟨𝑂2⟩. Thus, 𝑂 ↦ ⟨𝑂⟩ defines a ring map
𝑍(𝑆𝑑−1) → ℂ, and a point in the spectrum.

In many examples of applications of the idea of physics
to mathematics, the perspective of TQFT provides a useful
guiding principle. Before discussing how to use the idea,
let us explain how one may obtain a TQFT starting from a
QFT.
2.3. From QFT to TQFT. There are two well-known ways
to construct a TQFT, that is, a theory which is indepen-
dent of a metric of the spacetime manifold. One is to
begin with a space of fields and action functional which
do not depend on a metric. For example, Chern–Simons
theory is one such theory. This approach is quite limited
and leads to relatively few examples. Manymore examples
arise from applying a topological twist to a supersymmet-
ric field theory (which depends on a metric). Let us briefly
review the latter idea.

7An important warning for the reader: we will considering topological twists of
QFTs below, which do not always produce TQFTs in the framework above, since
the maps defined by some cobordisms may not converge. For example, 𝑍(𝑆𝑑−1)
will not be finite-dimensional in the examples we consider.

Consider𝑀 = ℝ𝑑 with the standard metric. In this case,
the isometry group ISO(𝑑,ℝ) = SO(𝑑,ℝ)⋉ℝ𝑑 is called the
Poincaré group and acts onℝ𝑑 by rotation and translation.
Wewill only consider field theories onℝ𝑑 where the action
functional is equivariant under the induced action on the
space of fields.

We will also only consider theories where the space of
sections ℱ is ℤ/2ℤ-graded; this arises physically from the
spin angular momentum of particles, and thus the natural
classifications of particles into bosons (even) and fermions
(odd). We call a field theory supersymmetric (SUSY) if it
admits nontrivial “odd symmetries,” which one calls su-
percharges.

More precisely, this means that the space ℱ carries an
action of a Lie superalgebra 𝔞 called a super-Poincaré
algebra whose even part is the Poincaré algebra 𝔞0 =
𝔰𝔬(𝑑) ⋉ ℝ𝑑 and whose odd part 𝔞1 = Σ consists of copies
of spin representations of 𝔰𝔬(𝑑). A Lie bracket is given by
the action of 𝔰𝔬(𝑑) on Σ, as well as a symmetric8 pairing
Γ∶ Σ ⊗ Σ → ℝ𝑑 of 𝔰𝔬(𝑑)-representations.

For simplicity, we work with a complexification of the
supersymmetry algebra from now on; this is mostly harm-
less for the purpose of discussing twists.

Example 2.2.

1. The 𝑑 = 2, (𝒩+,𝒩−) supersymmetry algebra 𝔞𝑑=2 has
odd part 𝑆+⊗𝑊+⊕𝑆−⊗𝑊−, where 𝑆± ≅ ℂ are the two
spin representations of 𝔰𝔬(2) and dim𝑊± = 𝒩±. The
pairing Γ∶ Σ⊗Σ → ℂ2 is induced by the isomorphism
𝑆⊗2+ ⊕ 𝑆⊗2− ≅ ℂ2 as 𝔰𝔬(2)-representations.

2. The 𝑑 = 3, 𝒩 = 𝑘 supersymmetry algebra 𝔞𝑑=3 has
odd part 𝑆 ⊗𝑊 , where 𝑆 ≅ ℂ2 is the spin representa-
tion of 𝔰𝔬(3) and dim𝑊 = 𝒩. The pairing Γ∶ Σ⊗Σ →
ℂ3 is induced by the isomorphism Sym2 𝑆 ≅ ℂ3 as
𝔰𝔬(3)-representations.

Finally, in order to extract a TQFT from a SUSY theory,
suppose that one has chosen a supercharge 𝑄 of a SUSY
algebra such that [𝑄, 𝑄] = 0. Since 𝑄 is odd, this means
1
2
[𝑄, 𝑄] = 𝑄2 acts as zero in any representation of 𝔞. Hence,

one can consider ℱ or even 𝔞 itself as a ℤ/2ℤ graded com-
plex, and take its 𝑄-cohomology. Necessarily, this proce-
dure results in a simpler theory, which one calls a twist or
a twisting.

If an element 𝑥 ∈ ℝ𝑑 ⊂ 𝔞 is in the image of [𝑄, −], then
translation by 𝑥 will be trivial in the twisted theory. The
most important case for us is if the image of 𝑄 fills in all of
ℂ𝑑. In this case, the dependence on position vanishes and
the theory becomes topological; consequently, the twisted
theory is called a topological twist of the original theory.

8In the world of super Lie algebras, a Lie bracket is symmetric if both inputs are
odd!
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Whether a topological twist exists is purely dependent
on the super-Poincaré algebra 𝔞, and thus on 𝑑 and𝒩. Let
𝔞𝑑=3 (resp. 𝔞𝑑=2) be the supersymmetry algebra with 𝑑 = 3
(resp. 𝑑 = 2) and 𝒩 = 𝑛 (resp. 𝒩 = (𝑛+, 𝑛−)) supersym-
metry. By a standard argument (see, e.g., [ESW22, §§11.2
& 12.1]), we have:

• In the case 𝑑 = 3 (resp. 𝑑 = 2) there is a topological
twist if and only if 𝑛 ≥ 4 (resp. 𝑛± ≥ 2).

• In the case where 𝑛 = 4 (resp. 𝑛± = 2), there are ex-
actly 2 topological twists up to appropriate symmetry,
which we denote by 𝑄A and 𝑄B.

2.4. Mirror symmetry. When 𝑋 is a Calabi–Yau mani-
fold, there is a physics construction of a 2-dimensional
𝒩 = (2, 2) SUSY 𝜎-model 𝒯𝑑=2(𝑋) with target 𝑋 . If we
twist with respect to 𝑄A/B, the resulting TQFT is called the
A/B-model 𝒯𝑑=2

A/B (𝑋). The A model depends on the sym-
plectic topology of 𝑋 , and the B-model on the complex
geometry of 𝑋 .

There is a remarkable duality, called mirror symme-
try, on the set of such SUSY 𝜎-models, which identifies
𝒯𝑑=2(𝑋) and 𝒯𝑑=2(𝑋∨) for another mirror dual Calabi–
Yau manifold 𝑋∨. Moreover, this duality is compatible
with topological twists: the identification of 𝒯𝑑=2(𝑋) and
𝒯𝑑=2(𝑋∨) is compatible with an involution of the 𝑑 = 2,
𝒩 = (2, 2) SUSY algebra which exchanges 𝑄A and 𝑄B.
Therefore, the 𝑑 = 2 TQFTs𝒯𝑑=2

A (𝑋) and𝒯𝑑=2
B (𝑋∨) should

be equivalent. This idea has resulted in several marvelous
predictions. The most famous is that the numbers of ratio-
nal curves of degree 𝑑 on a quintic 3-fold, understood as
the correlation functions of 𝒯𝑑=2

A (𝑋), should be equal to
the correlation functions of 𝒯𝑑=2

B (𝑋∨), which can be more
easily computed.

The remarkable success of 𝑑 = 2 mirror symmetry mo-
tivates the consideration of an analogous duality, called
3d mirror symmetry, for 𝑑 = 3, 𝒩 = 4 SUSY field the-
ories, which identifies two superficially different theories,
say 𝒯 and 𝒯∨. Just as before, there are still two interesting
topological twists 𝑄A and 𝑄B in the super-Poincaré alge-
bra, and an automorphism of 𝔞 which switches these. By
the same logic, we have an equivalence of topologically
twisted theories between 𝒯A and 𝒯∨

B, which we write 𝑍𝒯A
and 𝑍𝒯∨

B , respectively, to emphasize the TQFT perspective.
We will focus on understanding the algebras𝒜A/B(𝒯) =

𝑍𝒯A/B(𝑆2). As discussed in Section 2.2, the algebraic vari-
eties

𝔐A(𝒯) = Spec 𝑍𝒯A(𝑆2) 𝔐B(𝒯) = Spec 𝑍𝒯B (𝑆2)

are the moduli spaces of vacua of the respective theories.
We will call these the Coulomb branch𝔐A(𝒯) and Higgs
branch 𝔐B(𝒯) of the theory 𝒯. Of course, the identifica-
tion of local operators 𝒜A(𝒯) in one theory with 𝒜B(𝒯∨)
in the mirror theory is one of the most important features

of mirror symmetry in this case as well:

𝔐A(𝒯) ≅ 𝔐B(𝒯∨) 𝔐B(𝒯) ≅ 𝔐A(𝒯∨).

Thus we call the varieties 𝔐A(𝒯) and 𝔐B(𝒯) mirror to
each other, or symplectic duals in the terminology of
[BLPW16]. These varieties have the virtue of being familiar
types of mathematical objects, while still carrying much of
the structure of the theory 𝒯.

3. Higgs and Coulomb Branches
This section focuses on the Coulomb and Higgs branches
in one particularly important case: the 𝑑 = 3, 𝒩 = 4
SUSY 𝜎-model intoℍ𝑛, gauged by the action of a subgroup
𝐺𝑐 ⊂ 𝑈(𝑛, ℍ). The fields corresponding to the map to ℍ𝑛

are often called the “matter content” of the theory. It is of-
ten more convenient to forget the coordinates on ℍ𝑛 and
think of it as a general ℍ-module 𝑋 with a choice of norm
and an action of 𝐺𝑐. It will also simplify things for us to
consider𝑋 as aℂ-vector spacewith complex structure 𝐼 and
the induced action of the complexification 𝐺 of 𝐺𝑐; we can
encode the action of the quaternions 𝐽 and 𝐾 in the holo-
morphic symplectic form Ω(𝑥, 𝑦) = ⟨𝐽𝑥, 𝑦⟩ + 𝑖⟨𝐾𝑥, 𝑦⟩. We
will denote the corresponding theory by 𝒯(𝑋,𝐺) and de-
note the Higgs and Coulomb branches by 𝔐A/B(𝑋, 𝐺).

Both of these varieties have concrete mathematical de-
scriptions, which we will describe here as best we can in
limited space. Both can be derived from manipulations
in infinite-dimensional geometry, using the principle that
the Hilbert space of a physical theory is obtained by geo-
metric quantization of the phase space of the theory. This
geometric quantization is easiest if 𝑋 = 𝑇∗𝑁 for a 𝐺-
representation 𝑁. In incredibly rough terms, this phase
space comes from maps of 𝑆2 into the cotangent bundle
of the quotient𝑁/𝐺 satisfying certain properties. These are
easiest to explain if we deform our 𝑆2 to be the boundary
of the cylinder

𝖢𝗒𝗅𝛿 = {(𝑥, 𝑦, 𝑧) ∣ 𝑥2 + 𝑦2 ≤ 𝛿, |𝑧| ≤ 𝛿}

for some real number 𝛿 > 0.

x y

z

We will frequently refer to the top, bottom, and sides of
this cylinder, by which we mean the unit disks in the 𝑧 =
𝛿,−𝛿 planes, and the portion of the boundary in between.
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(A) The algebra 𝒜A is the algebra of locally constant func-
tions on the space of maps of the cylinder to 𝑁/𝐺
which are constant on the sides and holomorphic on
the top and bottom.

(B) The algebra 𝒜B is the algebra of holomorphic functions
on the space of maps of the cylinder to 𝑁/𝐺 which are
constant on the sides and locally constant on the top
and bottom.

We have phrased this to emphasize the parallelism, that is,
how the difference between the A- and B-twists is reflected
by the placement of “locally constant” and “holomorphic.”
In the sections below, we will unpack more carefully how
we interpret the concepts in the formulations (A) and (B),
since some generalization is necessary.
3.1. Higgs branches. First, we consider the B-twist.
While second in alphabetical order, the associated Higgs
branch is easier to precisely understand, and thus gener-
ally attracted more attention in the mathematical litera-
ture. According to the description (B), the algebra 𝒜B
should be functions on constant maps 𝑆2 → 𝑁/𝐺. Here
in addition to a point in 𝑁/𝐺, one should also consider a
covector to this quotient (see [BF19, §7.14]).

We can define this more concretely using the moment
map 𝜇∶ 𝑋 → 𝔤∗ of 𝐺 on the symplectic vector space (𝑋,Ω).
If 𝑋 = 𝑇∗𝑁, then 𝜇−1(0) consists of all pairs of 𝑛 ∈ 𝑁 and
covectors 𝜉 that vanish on the tangent space to the orbit
through 𝑛 (and thus can be considered covectors on the
quotient).

Definition 3.1. The Higgs branch 𝔐B(𝑋, 𝐺) is defined
as a holomorphic symplectic quotient, that is, one has
𝒜B(𝑋, 𝐺) = 𝑍B(𝑆2) = ℂ[𝜇−1(0)]𝐺, the complex poly-
nomial functions on 𝜇−1(0) which are 𝐺-invariant, and
𝔐B = Spec𝒜B. The points of this space are in bijection
with closed 𝐺-orbits in 𝜇−1(0).

The resulting variety is typically singular symplectic.
One can reasonably ask if this variety has a symplectic res-
olution. This does not happen in all cases, but in some
cases it does.

There are two particular examples that we will focus on
in this article: abelian and quiver gauge theories. In both
cases, the target space 𝑋 = 𝑇∗𝑁 is the cotangent bundle of
a ℂ-representation 𝑁 of 𝐺.
3.1.1. Abelian/hypertoric gauge theories. Assume that 𝐺 is
abelian. Since it is connected and reductive, this means
𝐺 ≅ (ℂ×)𝑘 for some 𝑘. For any ℂ-representation 𝑁 of 𝐺,
we can choose an isomorphism 𝑁 ≅ ℂ𝑛 such that 𝐺 ↪ 𝐷
is a subgroup of the full group𝐷 of 𝑛×𝑛 diagonal matrices.

These ingredients are typically used in the construction
of a toric variety: the GIT quotient 𝑁 ⫽𝜆 𝐺, at any regular
value of the moment map will give a quasi-projective toric
variety for the action of the quotient 𝐹 = 𝐷/𝐺.

The construction of the Higgs branch 𝔐B(𝑇∗𝑁,𝐺) of
this theory is thus a quaternionic version of the construc-
tion of toric varieties. The resulting variety is called a hy-
pertoric variety or toric hyperkähler variety. This variety
has complex dimension 2(dim𝑁 − dim𝐺). Probably the
most familiar examples for readers are the following:

Example 3.2. Let 𝐺 = {𝜑𝐼 ∣ 𝜑 ∈ ℂ×} ⊂ 𝐷 be the scalar 𝑛×𝑛
matrices. We can consider the elements of 𝑇∗𝑁 as pairs of
an 𝑛×1 column vector 𝐚 and a 1×𝑛 row vector 𝐛, with the
group 𝐺 ≅ ℂ× acting by

𝜑 ⋅ (𝐚, 𝐛) = (𝜑𝐚, 𝜑−1𝐛).
The outer product 𝐚𝐛 is thus an 𝑛 × 𝑛 matrix of rank ≤ 1,
invariant under the action of 𝐺. Thus, (𝐚, 𝐛) ↦ 𝐚𝐛 de-
fines a map 𝔐B(𝑇∗ℂ𝑛, 𝐺) → 𝑀𝑛×𝑛(ℂ). The moment map
𝜇(𝐚, 𝐛) = 𝐛𝐚 is defined by the dot product, so 𝜇(𝐚, 𝐛) =
0 if and only if 𝐚𝐛 is nilpotent. Thus, we have a map
𝔐B(𝑇∗ℂ𝑛, 𝐺) → 𝑀rk≤1

𝑛×𝑛 (ℂ) to the space of nilpotent ma-
trices of rank ≤ 1.

The 𝐺-orbit through (𝐚, 𝐛) is closed if and only if 𝐚 and
𝐛 are both nonzero or both zero; you can see from this that
the map above is a bijection. Thus we find𝔐B(𝑇∗ℂ𝑛, 𝐺) ≅
𝑀rk≤1

𝑛×𝑛 (ℂ).
Example 3.3. Let 𝐺 ⊂ 𝐷 be the diagonal matrices of de-
terminant 1. We can again think of 𝑇∗𝑁 as pairs (𝐚, 𝐛).
In this case, the moment map condition guarantees that
𝑎𝑖𝑏𝑖 = 𝑎𝑗𝑏𝑗 for all 𝑖, 𝑗, and the closed orbit condition that
if 𝑎𝑖 = 0 for some 𝑖, then 𝑎𝑗 = 0 for all other 𝑗, and simi-
larly with 𝑏∗’s. By multiplying with a diagonal matrix, we
can assume that 𝑎1 = ⋯ = 𝑎𝑛 and 𝑏1 = ⋯ = 𝑏𝑛 as
well. This defines a surjective map ℂ2 → 𝔐B, sending
(𝑥, 𝑦) to 𝐚 = (𝑥, … , 𝑥) and 𝐛 = (𝑦, … , 𝑦). However, this
is not injective: the diagonal matrices 𝑒2𝜋𝑖𝑘/𝑛𝐼 have deter-
minant 1 and define an action of the cyclic group ℤ𝑛 on
the image of this map from ℂ2. This matches the action
of the matrix diag(𝑒2𝜋𝑖𝑘/𝑛, 𝑒−2𝜋𝑖𝑘/𝑛) on ℂ2. Thus, we find
𝔐B(𝑇∗ℂ𝑛, 𝐺) ≅ ℂ2/ℤ𝑛.

While the hypertoric varieties for other tori are less fa-
miliar and more complicated, they still have a very com-
binatorial flavor, and typically questions about them can
be reduced to studying hyperplane arrangements, much
as toric varieties can be studied using polytopes. Notably,
they all possess symplectic resolutions, constructed with
GIT quotients or equivalently hyperhamiltonian reduction
at nonzero moment map values. For Example 3.2 above,
this resolution is 𝑇∗ℂℙ𝑛−1 and for Example 3.3, it is the
unique crepant resolution obtained by iterated blowups
at singular points.
3.1.2. Quiver gauge theories. Themost famous examples of
these reductions are Nakajima quiver varieties. That is,
we fix a directed graph Γ, and a pair of vectors 𝐯,𝐰 whose
components are indexed by the vertex set 𝐼. The group
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𝐺 = ∏𝑖∈𝐼 GL(𝑣𝑖; ℂ) has representations ℂ𝑣𝑖 for each 𝑖 ∈ 𝐼.
The representation we will consider is

𝑁 = (⨁
𝑖→𝑗

Hom(ℂ𝑣𝑖 , ℂ𝑣𝑗 )) ⊕ (⨁
𝑖∈𝐼

Hom(ℂ𝑣𝑖 , ℂ𝑤𝑖 )).

We want a left group action, so (𝐴, 𝐵) ∈ GL(𝑣𝑖; ℂ) ×
GL(𝑣𝑗 ; ℂ) acts on 𝑀 ∈ Hom(ℂ𝑣𝑖 , ℂ𝑣𝑗 ) by 𝐵𝑀𝐴−1. We call
gauge theories𝒯(𝑇∗𝑁,𝐺) for this choice of𝐺 and𝑁 quiver
gauge theories, and the Higgs branches 𝔐B(𝑇∗𝑁,𝐺) are
Nakajima quiver varieties. These are geometric avatars of
the 𝜇 weight space of a representation of highest weight 𝜆
for the Kac–Moody algebra with Dynkin diagram Γ.

Physicists will typically draw two copies of each node,
one in a circle filled with 𝑣𝑖, and one in a square filled with
𝑤𝑖, and draw in the edges of Γ between the first copies, and
then edges between the circle and square copies of vertex
(not drawing vertices with 0’s).

Example 3.4. If we have a quiver with a single vertex so
that we have a single 𝑣 and𝑤, then𝑁 = Hom(ℂ𝑣, ℂ𝑤), and
𝑋 = 𝑇∗𝑁 = Hom(ℂ𝑣, ℂ𝑤)⊕Hom(ℂ𝑤, ℂ𝑣), that is a pair of
matrices (𝐴, 𝐵) which are 𝑤×𝑣 and 𝑣 ×𝑤 respectively. The
moment map in this case is 𝜇(𝐴, 𝐵) = 𝐵𝐴. If 𝑣 = 1, then
this reduces to Example 3.2; more generally, the matrix 𝐴𝐵
is unchanged by the action of the GL(𝑣), and defines an
isomorphism

𝔐B(𝑇∗𝑁,𝐺) ≅ {𝐶 ∈ 𝑀𝑤×𝑤(ℂ) ∣ 𝐶2 = 0, rk(𝐶) ≤ 𝑣}.
Other important examples:

E1. This quiver gives the space of 𝑛×𝑛 nilpotent matrices:

1 2 n− 1 n· · ·

E2. This quiver gives the symmetric power Sym𝑛 ℂ2 =
(ℂ2)𝑛/𝑆𝑛.

n 1

There are many variations on these, but these will suf-
fice as our main examples for the rest of this article. All of
these examples have symplectic resolutions obtained by re-
placing the affine quotient with a GIT quotient: the space
of rank ≤ 𝑣 matrices is resolved by 𝑇∗ Gr(𝑤, 𝑣) if 𝑣 ≤ 𝑤/2,
the nilpotent cone is resolved by the cotangent bundle of
the flag variety (this is a special case of the Springer reso-
lution), and the symmetric power Sym𝑛 ℂ2 is resolved by
the Hilbert scheme of 𝑛 points on ℂ2.
3.2. Coulomb branches. Compared to Higgs branches,
Coulomb branches are harder to describe. In older
papers, one will generally see the statement that the

“classical” Coulomb branch is 𝑇∗𝐿𝑇/𝑊 for 𝐿𝑇 Langlands
dual to the maximal torus 𝑇 of 𝐺. However, this is not the
true answer, as there are nontrivial “quantum corrections.”
In certain special cases, the true Coulomb branch could be
determined by other methods:

• Work of Hanany–Witten and extensions identified the
Coulomb branches of the quiver gauge theories E1.
and E2. using string dualities.

• It is implicit in [Tel14] that the Coulomb branch of a
pure gauge theory (meaning 𝑁 = 0) with gauge group
𝐺 is the (Lie algebra) regular centralizer variety for 𝐺∨,
called the Bezrukavnikov–Finkelberg–Mirković space
BFM(𝐺∨) there.

Work of Braverman, Finkelberg, andNakajima [BFN18]
gives an explicit mathematical definition of the Coulomb
branch based on the geometry of affine Grassmannians
when 𝑋 = 𝑇∗𝑁. Let us try to roughly explain the source of
this construction, which can look quite intimidating.

By the description (A), we should considermaps to𝑁/𝐺
that are holomorphic on the top and bottom disks of the
cylinder and constant along the sides. We will shrink the
parameter 𝛿 that defines the cylinder to be infinitesimally
small and only consider the Taylor expansion at the origin
in the top and bottom planes 𝑧 = ±𝛿. If we let 𝑡 = 𝑥 + 𝑖𝑦,
then each holomorphic map 𝐷 → 𝑁/𝐺 corresponds to a
Taylor series 𝑛(𝑡) ∈ 𝑁[[𝑡]], and two give the same map
if they are in the same orbit of the 𝐺-valued Taylor series
𝐺[[𝑡]].

Finally, the map should be constant along the sides
of the cylinder. Mapping to a quotient means that two
things are equal if they are in the same orbit for a group-
valued function on the circle. Since this is only on the sides
of the cylinder, the group-valued function comparing the
top and bottom might have a pole at the origin. Thus, if
𝑛±(𝑡) is the Taylor expansion at (0, 0, ±𝛿), then we must
have 𝑔±𝑛−(𝑡) = 𝑛+(𝑡) for some 𝐺-valued Laurent series
𝑔±(𝑡) ∈ 𝐺((𝑡)).
Definition 3.5. The BFN space for (𝐺, 𝑁) is the quotient
of the set {(𝑛+, 𝑛−, 𝑔±) ∣ 𝑔±𝑛−(𝑡) = 𝑛+(𝑡)} by the action of
𝐺[[𝑡]] × 𝐺[[𝑡]] given by

(ℎ+, ℎ−) ⋅ (𝑛+, 𝑛−, 𝑔𝑝𝑚) = (ℎ+𝑛+, ℎ−𝑛−, ℎ+𝑔±ℎ−1− ).
By (A), we should consider the locally constant func-

tions on this space. We have to be careful, and in fact, we
need to consider the Borel–Moore homology (very care-
fully defined) of this quotient. That is:

Definition 3.6. The algebra 𝒜A(𝑇∗𝑁,𝐺) is the Borel–
Moore homology of the BFN space.

While the action of 𝐺[[𝑡]] × 𝐺[[𝑡]] is not free, we can
still interpret the homology of the quotient using equivari-
ant topology; the interested reader should refer to [BFN18]
for a more precise discussion. We can still compute using
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usual methods from finite-dimensional topology and, in
particular, identify the Coulomb branches in many cases.

The Coulomb branch comes equipped with aℂ× action,
induced by the homological grading on Borel–Moore ho-
mology. Unfortunately, there can be operators of negative
degree. We call such theories bad. Most other cases are
called good.

One bad example which had already attracted the inter-
est of mathematicians was the case of pure gauge theory
where 𝑁 = 0. The Higgs branch is quite degenerate in this
case, but 𝔐A = BFM(𝐺) is the phase space of the rational
Toda lattice, that is, the universal (Lie algebra) centralizer,
restricted to the Kostant slice; see [Tel14, §5.1] for a longer
discussion of this variety. The other interesting cases we
know fall into the two cases discussed before:
3.2.1. Abelian/hypertoric gauge theories. If 𝐺 is an abelian
group and acts faithfully on 𝑁, then the Coulomb branch
will coincide with the Higgs branch of another good
abelian theory.

Recall that we can assume that 𝐺 ⊂ 𝐷 is a subgroup
of the group 𝐷 of diagonal matrices. The Langlands dual
group 𝐿𝐹 of 𝐹 = 𝐷/𝐺 can be realized as the connected
subgroup of 𝐷 whose Lie algebra is the perpendicular to
𝔤 ⊂ 𝔡 = ℂ𝑛; this is also isomorphic to (ℂ×)𝑘, but the iso-
morphism 𝐹 ≅ 𝐿𝐹 is not canonical. We thus have two
Langlands dual short exact sequences of tori:

1 → 𝐺 →𝐷 → 𝐹 → 1
1 → 𝐿𝐺 ←𝐷 ← 𝐿𝐹 ← 1.

Theorem 3.7. We have isomorphisms 𝔐A/B(𝑇∗ℂ𝑛, 𝐺) ≅
𝔐B/A(𝑇∗ℂ𝑛, 𝐿𝐹).

This isomorphism was widely expected earlier, but
seems to have first been checked using the mathematical
definition by Dimofte and Hilburn; see [BDG17, §3.3]
for a physical discussion of this isomorphism, and
[BFN18, §4(vii)] for an elegant mathematical proof.

Let us give a sketch of it. First, the algebras 𝒜A/B carry
a grading by the weight lattice of 𝐹/coweight lattice of 𝐿𝐹:
(1) On 𝒜B(𝑇∗ℂ𝑛, 𝐺), induced by the 𝐷-action on 𝑇∗ℂ𝑛;
(2) On 𝒜A(𝑇∗ℂ𝑛, 𝐿𝐹), induced by the bijection of compo-
nents of the affine Grassmannian of 𝐿𝐹 to the coweight
lattice. Second, in both algebras, the degree 0 elements
form a copy of Sym(𝔣): (1) On 𝔐B(𝑇∗ℂ𝑛, 𝐺), the poly-
nomial functions that factor through the moment map
𝔐B(𝐺, 𝑇∗ℂ𝑛) → 𝔣∗; (2) In𝒜A(𝑇∗ℂ𝑛, 𝐿𝐹), the Borel–Moore
homology of a point modulo the action of 𝐿𝐹[[𝑡]], isomor-
phic to Sym(𝔣) ≅ 𝐻∗

𝐿𝐹(pt). The isomorphism of algebras is
close to being determined by matching these two aspects
of the Higgs and Coulomb branches.
3.2.2. Quiver gauge theories. The other class of theories
we discussed before are the quiver gauge theories. The
resulting Coulomb branches are thus the mirrors of the

Nakajima quiver varieties. Those which are good in the
sense discussed above correspond to pairs of a highest
weight 𝜆 for the Kac–Moody Lie algebra with Dynkin dia-
gram given by the quiver, and a dominant weight 𝜇. These
are characterized by:

1. The highest weight vector has weight 𝑤𝑖 for the root
𝔰𝔩2 for the node 𝑖 (that is, 𝛼∨𝑖 (𝜆) = 𝑤𝑖).

2. For simple roots 𝛼𝑖, we have 𝜆 − 𝜇 = ∑𝑣𝑖𝛼𝑖.
When Γ is an ADE Dynkin diagram, these Coulomb
branches have an interpretation in terms of the affine
Grassmannian of the finite-dimensional group 𝐺Γ whose
Dynkin diagram is Γ. We can interpret 𝜆 and 𝜇 as coweights

of 𝐺Γ, and thus consider the closure of the orbit 𝖦𝗋
𝜆
=

𝐺𝒪𝑡𝜆𝐺𝒪/𝐺𝒪 ⊂ 𝐺𝒦/𝐺𝒪 .

Proposition 3.8 ([BFN19, Th. 3.10]). The Coulomb branch
𝔐A(𝑇∗𝑁,𝐺) for an ADE quiver gauge theory is isomorphic to

the transverse slice to a generic point of 𝖦𝗋
𝜇
inside 𝖦𝗋

𝜆
.

Since these affine Grassmannian slices are not familiar
to most readers, let us discuss a few examples:

Example 3.9. The quivers E1., E2. both satisfy𝔐A ≅ 𝔐B!
This is coincidental and usually doesn’t happen.

Example 3.10. In the case of the quiver 1 𝑛 , where

𝔐B ≅ 𝑀rk≤1
𝑛×𝑛 (ℂ), the Coulomb branch 𝔐A is the affine va-

rietyℂ2/ℤ𝑛, with the cyclic group ℤ𝑛 acting by the matrices
diag(𝑒2𝜋𝑖𝑘/𝑛, 𝑒−2𝜋𝑖𝑘/𝑛).
Example 3.11. In the quiver below, the Higgs and
Coulomb branches are reversed from the previous exam-
ple: 𝔐B ≅ ℂ2/ℤ𝑛, 𝔐A ≅ 𝑀rk≤1

𝑛×𝑛 (ℂ).

1 1 1 1· · ·

These are special cases of a much more general result.
For good quiver theories where Γ is an affine type ADynkin
diagram (that is, a single cycle), including the Jordan
quiver (a single loop), the Coulomb branch is also a Higgs
branch for a theory of an affine type A Dynkin diagram,
but potentially of a different size, as proven in [NT17].
The combinatorics of this correspondence is a little compli-
cated, but it matches the previously known combinatorics
of rank-level duality. This suggests that the corresponding
theories are mirror to each other.

4. Advanced Directions
Having given the definition of Higgs and Coulomb
branches, the reader will naturally wonder what mathe-
matics these lead to. There are a number of directions
which are too deep to discuss in full detail, but which the
interested reader might want to explore further:
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4.1. Stable envelopes. Aganagić and Okounkov [AO20],
building on earlier work of Maulik–Okounkov, define
classes called elliptic stable envelopes on each symplec-
tic resolution with a Hamiltonian ℂ∗-action. There are
many examples of these which arise as 𝔐A/B for different
3d, 𝒩 = 4 gauge theories.

The equivariant stable envelopes are classes in equivari-
ant elliptic cohomology which correspond to the thim-
bles flowing to the different ℂ∗-fixed points on the reso-
lution (equivalently, the stable manifolds of the real mo-
ment map, thought of as a Morse function). These play an
important role in the study of enumerative geometry and
are expected to be one of the key mathematical manifesta-
tions of 3d mirror symmetry. The elliptic stable envelopes
of mirror varieties are expected to be obtained from the
specialization of a natural “Mother” class on the product
𝔐A ×𝔐B; this is confirmed in the case of Example 3.4 by
Rimányi–Smirnov–Varchenko–Zhou [RSZV22]. This iden-
tification switches two classes of parameters in the physical
theory:

1. “masses” which index resolutions of 𝔐A, and ℂ∗-
actions on 𝔐B, and

2. “Fayet–Iliopoulos (FI) parameters” which play the op-
posite role of indexing ℂ∗-actions on 𝔐A and resolu-
tions of 𝔐B.

4.2. Koszul duality of category 𝒪’s. One of the math-
ematical phenomena which has attracted attention to 3-
dimensional mirror symmetry is Koszul duality between
categories 𝒪. These are based on a deformation quanti-
zation of the algebras 𝒜A/B to noncommutative algebras.
These deformations can be understood as incorporating
the action of the rotation of ℝ3 by 𝑆1 around the 𝑧-axis;
in physics terms, this is called an Ω-background. The re-
sulting algebra is noncommutative, since only the 𝑧-axis
is invariant under the 𝑆1-action, and two invariant points
cannot switch places while staying on the 𝑧-axis.

1. The algebra 𝒜A is deformed by considering the 𝑆1-
equivariant homology of the BFN space.

2. The algebra 𝒜B is deformed by replacing ℂ[𝑋] =
Sym𝑋∗ by its Weyl algebra, which is defined by the
relations [𝑥, 𝑦] = ℏΩ(𝑥, 𝑦); we can replace the oper-
ations of taking the 𝐺-invariant functions on 𝜇−1(0)
with a noncommutative analogue of Hamiltonian re-
duction.

Category𝒪 is a category of special modules over these non-
commutative algebras. This can be regarded as a categori-
fication of the stable envelopes, in that instead of consid-
ering the homology classes of the thimbles flowing into
fixed points, we consider sheaves of modules over a defor-
mation quantization of𝔐A/B supported on these thimbles.
See [BLPW16, §3] for more details.

It was noticed by Soergel that the principal block of cat-
egory 𝒪 for a semisimple Lie algebra has an interesting
self-duality property: It is equivalent to the category of un-
graded modules over a graded algebra and inside the de-
rived category 𝐷𝑏(�̃�) of graded modules over that algebra,
there is a second “hidden” copy of the original category.
For variations, such as singular blocks of category𝒪 or par-
abolic category 𝒪, a similar phenomenon occurs, but it is
a copy of another category that appears; for example, the
singular and parabolic properties interchange. That is, the
graded lifts of these categories are Koszul and their Koszul
dual is another category (sometimes different, sometimes
the same) of a similar flavor.

As discussed in the introduction, we can pretend that
another symplectic singularity is the nilpotent cone of a
new simple Lie algebra. The definition of category 𝒪
for a general symplectic singularity with a ℂ∗-action was
given by Braden, Licata, Proudfoot, and the first author in
[BLPW16]. Computing numerous examples led these au-
thors to the conjecture:

Conjecture 4.1. The categories 𝒪 of mirror dual symplectic
singularities (i.e., the Higgs and Coulomb branch of a 3d𝒩 =
4 supersymmetric gauge theory) are Koszul dual.

A version of this conjecture (obviously, requiring more
careful stating) is confirmed in [Web]. The physical inter-
pretation of this Koszul duality is still uncertain, though
one is proposed in [BDGH16, §7.5].
4.3. Line operators. Just as local operators stand for ob-
servations one can make at a single point, there are line
operators that describe observations one can make along
a single line. Studying these is a natural way to extend our
study of 3d mirror symmetry beyond the definition of the
Higgs and Coulomb branches.

We can describe this category using the framework of
𝑑-dimensional extended TQFT, which assigns not just a
Hilbert space to a (𝑑 − 1)-manifold, but more generally a
𝑘-category to each manifold of codimension 𝑘+1. We can
then generalize the description of the local operators as the
space 𝑍(𝑆𝑑−1) by identifying the operators supported on a
𝑘-plane with the 𝑘-category 𝑍(𝑆𝑑−𝑘−1). In particular, the
category of line operators should be given by 𝑍(𝑆𝑑−2).

For the 3d𝒩 = 4 theories of interest to us, these can be
understood after passing to the A- or B-twisted theory. In-
deed, algebraic descriptions of these categories have been
proposed by Hilburn and the second author. Here we only
provide a rough description of 𝑍(𝑆1) with a similar flavor
to (A) and (B) (see [BF19] for a more precise statement of
this proposal):

• In the A-twist, we obtain locally constant sheaves (that
is, D-modules) on holomorphic loops 𝑁((𝑡))/𝐺((𝑡)) in
the quotient 𝑁/𝐺.
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• In the B-twist, we obtain holomorphic sheaves (that is,
quasi-coherent sheaves) on a version of the locally con-
stant loops (that is, the small loop space) in 𝑁/𝐺.

This proposal is actually a good way to derive Definition
3.6: the trivial line is given by the pushforward D-module
from 𝑁[[𝑡]]/𝐺[[𝑡]], and naively computing the endomor-
phisms of this pushforward as the Borel–Moore homology
of the fiber product gives precisely Definition 3.6.

It is an intriguing but challenging problem to identify
these categories in the already known dual pairs, which
one may call the de Rham 3d homological mirror symmetry
(see below for more context for the name). Recent work
of Hilburn–Raskin [HR22] confirms this in the case where
𝑁 = ℂ, 𝐺 = {1}.
4.4. Connections to 4d field theory and the Lang-
lands program. Seminal work of Kapustin and Witten
[KW07] interprets a version of the geometric Langlands
correspondence in terms of a physical duality between
4-dimensional field theories with 𝒩 = 4 supersymme-
try: the supersymmetric Yang–Mills theory in 4 dimen-
sions for a pair of Langlands dual groups are related by
S-duality. Elliott and the second author [EY18] developed
a mathematical framework to describe a variant of their
proposal which yields the geometric Langlands correspon-
dence upon (categorified) geometric quantization. More-
over, by applying this procedure to the A- and B-twists of
a 3d 𝒩 = 4 theory, one can obtain the aforementioned
categories of line operators.

This connects to the 3-dimensional perspective dis-
cussed earlier in this paper, since 3d𝒩 = 4 theories appear
as boundary conditions on 4d𝒩 = 4 super Yang–Mills the-
ory. In particular, 𝑆-duality of these boundary conditions,
as studied by Gaiotto and Witten [GW09], is one of our
most powerful tools for finding mirror theories. The the-
ories associated to Nakajima quiver varieties for linear or
cyclic (finite or affine type A) quivers arise this way, and
this is the quickest route to understanding the duality of
these theories discussed in Section 3.2.2.

The mathematical understanding of this perspective is
still an emerging topic. Hilburn and the second author
proposed a new relationship between the global/local geo-
metric Langlands program and the statement of de Rham
3d homological mirror symmetry. In independent work,
Ben-Zvi, Sakellaridis, and Venkatesh realized the physical
perspective in the context of the relative Langlands pro-
gram and have announced a number of interesting con-
jectures relating periods and special values of 𝐿-functions.
4.5. Betti 3d mirror symmetry. The Betti (singular) co-
homology and de Rham cohomology of an algebraic va-
riety are, of course, isomorphic, but they have different
nonabelian generalizations. They manifest as the mod-
uli spaces of local systems and of flat connections on a
given variety, which are analytically isomorphic (via the

Riemann–Hilbert correspondence) but algebraically differ-
ent.

Most importantly for us, the complex structure on the
de Rham moduli space depends on the complex structure
of the underlying curve, whereas the Betti space does not.
Analogously, Ben-Zvi and Nadler propose a “Betti” version
of the geometric Langlands correspondence which gives an
automorphic description of the quasi-coherent sheaves on
the Betti moduli space, to complement the “de Rham” ver-
sion of the geometric Langlands correspondence.

Our discussions in the earlier sections of this paper also
belong to the de Rham world. Namely, in our description
of moduli spaces of vacua, objects attached to 𝑆2 depend
on a complex structure on this curve; the appearance of
structures which are holomorphic in one plane and con-
stant on an orthogonal line is a sort of degenerate complex
structure on 𝑆2. On the other hand, for physicists, this per-
spective looks somewhat artificial, compared to treating all
directions in ℝ3 equally.

Indeed, the proposal of Kapustin and Witten [KW07] is
already phrased from a Betti perspective: It does not de-
pend on the complex structure of the curve and needs to
be modified to fit with the usual (de Rham) Langlands
conjecture (as is done in [EY18]). Another key feature
of Higgs and Coulomb branches, which is physically ex-
pected, but hard to see from a de Rham perspective, is
the existence of a hyperkähler metric. These have been
constructed for Higgs branches 𝔐B(𝑇∗𝑁,𝐺) using hyper-
hamiltonian quotients, but it is hard to imagine the con-
struction of such a metric on the Coulomb branch in the
framework of [BFN18]. Possibly the most intriguing as-
pect of the Betti perspective is that, as it does not depend
on a complex structure, it is better suited to the approach
of extended TQFT. Hence, this is the framework in which
one can push the approach of homological mirror symme-
try to the fullest.

In the case of 2-dimensional mirror symmetry, Kont-
sevich made the striking realization that we can capture
the equivalence of the A-model of one theory and the B-
model of another as an equivalence of two triangulated
(dg/𝐴∞) categories: from the Fukaya category of a symplec-
tic manifold to the derived category of coherent sheaves
on a complex variety. These are the categories of bound-
ary conditions of the respective twisted theories, and hence
the equivalence of theories can be reconstructed from the
equivalence of categories. In terms of extended 2d TQFT,
this is an equivalence of 𝑍(pt)’s of the dual theories.

This provides an enticing model to follow in the 3d
case. Ideally, we would assign a 2-category 𝑍(pt) of
boundary conditions to the A- and B-twist of each the-
ory 𝒯 and conjecture the equivalence between those for
dual theories, which we would call the Betti 3d homo-
logical mirror symmetry. This program was put forward
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by Teleman [Tel14], based on a proposal of Kapustin–
Rozansky–Saulina [KRS09] for 𝒯(𝑇∗𝑁,𝐺). Significant
progress on the A-model 2-category has been made in the
abelian case in recent work of Gammage–Hilburn–Mazel-
Gee [GHM22] andDoan–Rezchikov [DR22] suggesting an
ambitious program for a more general case.
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Some Applications of
𝔾𝑎-actions on Affine Varieties

V = xmy = zpe
+ t + tsp

V × A
1
k
∼= A

4
k

Neena Gupta
1. Introduction
Over a field 𝑘, an affine 𝑛-space 𝔸𝑛𝑘 simply refers to 𝑘𝑛 with
certain mathematical (topological and sheaf) structures,
and affine varieties refer to irreducible closed subspaces of
𝔸𝑛𝑘 defined by the zero locus of polynomials. Over an al-
gebraically closed field 𝑘, affine spaces correspond to poly-
nomial rings and the affine varieties to affine domains, i.e.,
finitely generated 𝑘-algebras which are integral domains.

In affine algebraic geometry (AAG), researchers are
mainly interested in the study of certain affine varieties,
especially the affine spaces, equivalently, the polynomial
rings. There are many fascinating and fundamental prob-
lems on polynomial rings which can be formulated in
an elementary mathematical language but whose solu-
tions remain elusive. Any significant progress requires
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development of new and powerful methods and their
ingenious applications. The most celebrated problems
on polynomial rings include the Jacobian problem (first
asked by Ott-Heinrich Keller in 1939), the Zariski cancel-
lation problem (ZCP), the epimorphism or embedding
problem of Abhyankar–Sathaye, the affine fibration prob-
lem of Dolgačev–Veı̌sfeı̌ler, the linearization problem of
Kambayashi, the problem of characterization of polyno-
mial rings by a few chosen properties, and the study of
the automorphism groups of polynomial rings. In this ar-
ticle, we will discuss how 𝔾𝑎-actions and their invariants
have been employed in recent decades to achieve break-
throughs on some of the above challenging problems on
polynomial rings.

The concept of a 𝔾𝑎-action and its equivalent formula-
tions exponential map and locally nilpotent derivation will be
defined in Section 2 along with a brief overview on 𝔾𝑎-
actions.

In Section 3, we recall Miyanishi’s algebraic characteri-
zation of the affine plane obtained in the 1970s using 𝔾𝑎-
action and then Fujita–Miyanishi–Sugie’s theorem on the
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ZCP for the affine plane using this characterization. We
shall also discuss a more recent elementary solution of
ZCP for the affine plane by Crachiola and Makar-Limanov
using tools of 𝔾𝑎-action.

In Section 4, we revisit an invariant of 𝔾𝑎-actions in-
troduced by Makar-Limanov in the 1990s, now known
as the Makar-Limanov invariant. We discuss how Makar-
Limanov used it to distinguish a well-known threefold
from the affine three space. This result led to the solution
of the linearization conjecture of Kambayashi for ℂ3.

Finally in Section 5, we see how the tools of 𝔾𝑎-action
were used in the last decade to establish counterexamples
to the ZCP in positive characteristic in higher dimensions.

Due to the restriction on the size of the bibliography,
many important results and references on 𝔾𝑎-actions and
allied topics had to be omitted. Interested readers may re-
fer to the monograph of Freudenburg ([7]) and the survey
articles [18], [6] and [13].

Throughout the article, 𝑘 will denote a field. By a ring,
we mean a commutative ring with unity. For a ring 𝑅, 𝑅∗
denotes the group of all units of 𝑅. For an algebra 𝐴 over
a ring 𝑅, the notation 𝐴 = 𝑅[𝑛] will mean that 𝐴 is isomor-
phic to a polynomial ring in 𝑛-variables over 𝑅, and for a
prime ideal 𝑃 of 𝑅, 𝐴𝑃 denotes 𝑆−1𝐴, where 𝑆 = 𝑅 ⧵ 𝑃.
Capital letters like 𝑋, 𝑌, 𝑍,𝑊, 𝑇, 𝑋1, … , 𝑋𝑛, etc., will mean
indeterminates over respective rings or fields. For a ring 𝑅
and 𝑅-algebras 𝐴 and 𝐵, the notation 𝐴 ≅𝑅 𝐵 means that
𝐴 is isomorphic to 𝐵 as 𝑅-algebras. We shall denote the set
of all maximal ideals of a ring 𝑅 by Max(𝑅).

We recall below the concept of morphisms between
affine varieties over 𝑘 and their relationships with certain
𝑘-algebra homomorphisms.

Remark 1.1. Recall that for two affine algebraic varieties
𝑉 ⊆ 𝔸𝑛𝑘 and 𝑊 ⊆ 𝔸𝑚𝑘 , a morphism or a polynomial func-
tion Φ ∶ 𝑉 → 𝑊 is simply a function defined by 𝑚 poly-
nomials

𝜙1(𝑋1, … , 𝑋𝑛), 𝜙2(𝑋1, … , 𝑋𝑛), … , 𝜙𝑚(𝑋1, … , 𝑋𝑛)
such that (𝜙1(𝑎1, … , 𝑎𝑛), 𝜙2(𝑎1, … , 𝑎𝑛), … , 𝜙𝑚(𝑎1, … , 𝑎𝑛)) ∈
𝑊 for all (𝑎1, … , 𝑎𝑛) ∈ 𝑉 . In particular, any polynomial
𝜙(𝑋1, … , 𝑋𝑛) gives rise to a polynomial function 𝜙 ∶ 𝑉 → 𝑘.
The coordinate ring 𝑘[𝑉] refers to the ring of polynomial
functions on 𝑉 . Any morphism Φ ∶ 𝑉 → 𝑊 induces a
𝑘-algebra homomorphism Φ̃ ∶ 𝑘[𝑊] → 𝑘[𝑉] defined by
Φ̃(𝑓) = 𝑓 ∘ Φ for all 𝑓 ∈ 𝑘[𝑊].
Remark 1.2. For an affine variety 𝑉 over an algebraically
closed field 𝑘, by the celebrated Hilbert Nullstellensatz
(1893), the maximal ideals of the coordinate ring 𝑘[𝑉] are
in one to one correspondence with the set of points of 𝑉 .
HenceMax(𝑘[𝑉]) is identified with 𝑉 itself. Moreover, as a
consequence of Hilbert Nullstellensatz, for any 𝑘-algebra
homomorphismΨ ∶ 𝑘[𝑊] → 𝑘[𝑉] and any maximal ideal
m of 𝑘[𝑉], Ψ−1(m) is a maximal ideal of 𝑘[𝑊]. Thus any

𝑘-algebra homomorphism Ψ ∶ 𝑘[𝑊] → 𝑘[𝑉] induces a
map Max(𝑘[𝑉]) → Max(𝑘[𝑊]) and hence induces a map
Ψ̂ ∶ 𝑉 → 𝑊 which can be shown to be a morphism of
varieties. Further, any morphism Φ ∶ 𝑉 → 𝑊 can be re-
covered from its induced 𝑘-algebra homomorphism Φ̃, i.e.,
ˆ̃Φ = Φ and conversely, for any 𝑘-algebra homomorphism

Ψ ∶ 𝑘[𝑊] → 𝑘[𝑉], ˜̂Ψ = Ψ.

2. 𝔾𝑎-action, Exponential Map, and LND
In this section we shall recall the concept of 𝔾𝑎-actions on
affine algebraic varieties and its connection with the con-
cept of exponential maps on affine domains (finitely gen-
erated 𝑘-algebras which are integral domains) and the con-
cept of locally nilpotent derivations in characteristic zero.
We first recall the concept of the group 𝔾𝑎.

Recall that an affine algebraic group 𝐺 over a field 𝑘 is
an affine variety over 𝑘 such that 𝐺 is a group compatible
with the underlying variety structure. This means that the
binary group operation 𝜇 ∶ 𝐺 × 𝐺 → 𝐺 and the inverse
group operation 𝜄 ∶ 𝐺 → 𝐺 are morphisms of affine vari-
eties. For example, 𝑘 is an affine algebraic group with + as
the group operation and is denoted by 𝔾𝑘

𝑎. More precisely:

Definition. The group 𝔾𝑘
𝑎 over a field 𝑘 is the affine alge-

braic group (𝑘, +) comprising 𝑘 as an affine variety together
with the additive group structure ‘+’, i.e., the binary group
operation

𝜇 ∶ 𝑘 × 𝑘 → 𝑘, defined by 𝜇(𝑎, 𝑏) = 𝑎 + 𝑏

and the inverse operation

𝜄 ∶ 𝑘 → 𝑘, defined by 𝜄(𝑎) = −𝑎

are morphisms of affine varieties. When the underlying
field 𝑘 is understood, the simplified notation 𝔾𝑎 is used in
place of 𝔾𝑘

𝑎. We note that 𝔾𝑎 is isomorphic to the affine
algebraic group

{(1 𝑎
0 1) ∈ SL2(𝑘) | 𝑎 ∈ 𝑘},

and hence is a unipotent group (that is, a matrix group
whose eigenvalues are all 1).

Definition. A 𝔾𝑎-action on an affine variety 𝑉 over an al-
gebraically closed field 𝑘 is a morphism of affine varieties
𝜃 ∶ 𝔾𝑎 × 𝑉 → 𝑉 satisfying

(i) 𝜃(0, 𝑥) = 𝑥, for all 𝑥 ∈ 𝑉 , and
(ii) 𝜃(𝛼, 𝜃(𝛽, 𝑥)) = 𝜃(𝛼 + 𝛽, 𝑥) for all 𝑥 ∈ 𝑉 , 𝛼, 𝛽 ∈ 𝔾𝑎.

Thus, for each 𝜆 ∈ 𝑘, the 𝔾𝑎-action 𝜃 induces an iso-
morphism 𝜃𝜆 ∶ 𝑉 → 𝑉 given by 𝜃𝜆(𝑥) = 𝜃(𝜆, 𝑥) for all
𝑥 ∈ 𝑉 . Let 𝐵 denote the coordinate ring 𝑘[𝑉] of 𝑉 . Then,
we get a 𝑘-algebra automorphism 𝜃𝜆 of the ring 𝐵 defined
by 𝜃𝜆(𝑓) = 𝑓 ∘ 𝜃𝜆 for 𝑓 ∈ 𝐵.
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Let 𝐵𝜃 denote the subset of 𝐵 comprising elements
which are fixed by these induced automorphisms 𝜃𝜆, i.e.,

𝐵𝜃 ≔ {𝑓 ∈ 𝐵 | 𝜃𝜆(𝑓) = 𝑓 for all 𝜆 ∈ 𝑘} .

It is easy to see that the set 𝐵𝜃 is a 𝑘-subalgebra of 𝐵. The
ring 𝐵𝜃 is called the ring of invariants of the 𝔾𝑎-action 𝜃.

Definition. Let 𝐵 be an integral domain containing a field
𝑘 and 𝜙 ∶ 𝐵 → 𝐵[1] be a 𝑘-algebra homomorphism. For an
indeterminate 𝑈 over 𝐵, let 𝜙𝑈 denote the map 𝜙 ∶ 𝐵 →
𝐵[𝑈]. Then 𝜙 is said to be an exponential map on 𝐵, if the
following conditions are satisfied:

(i) 𝜖0𝜙𝑈 = 𝑖𝑑𝐵, where 𝜖0 ∶ 𝐵[𝑈] → 𝐵 is the evaluation
map at 𝑈 = 0.

(ii) 𝜙𝑉𝜙𝑈 = 𝜙𝑈+𝑉 , where 𝜙𝑉 ∶ 𝐵 → 𝐵[𝑉] is extended
to a 𝑘-algebra homomorphism 𝜙𝑉 ∶ 𝐵[𝑈] → 𝐵[𝑈, 𝑉], by
setting 𝜙𝑉 (𝑈) = 𝑈.

The ring of invariants of the exponentialmap 𝜙 is defined
to be the subring 𝐵𝜙 of 𝐵 defined as

𝐵𝜙 ≔ {𝑓 ∈ 𝐵 | 𝜙(𝑓) = 𝑓}.

An exponential map 𝜙 is said to be nontrivial if 𝐵 ≠ 𝐵𝜙.
Let EXP(𝐵) denote the set of all 𝑘-linear exponential

maps on 𝐵. The Makar-Limanov invariant of 𝐵, denoted
by ML(𝐵), is a subring of 𝐵 defined as

ML(𝐵) ≔ ⋂
𝜙∈EXP(𝐵)

𝐵𝜙.

If 𝐵 admits no nontrivial exponential map, then ML(𝐵) =
𝐵. The invariant ML(𝐵) was introduced by L. Makar-
Limanov and, as we shall see, it has turned out to be a
powerful tool in solving certain problems on polynomial
rings.

There is a connection between 𝔾𝑎-action and exponen-
tial map as stated below.

Theorem 2.1. When 𝑘 is algebraically closed, 𝐵 is an affine
domain over 𝑘 and 𝑉 ≔ Max(𝐵), then any 𝔾𝑎-action 𝜃 on 𝑉
gives rise to an exponential map 𝜙 on 𝐵 and conversely. Further,
𝐵𝜃 = 𝐵𝜙.

Proof. Anymorphism 𝜃 ∶ 𝔾𝑎×𝑉 → 𝑉 of algebraic varieties
induces a 𝑘-algebra homomorphism 𝜙 ∶ 𝐵 → 𝐵⊗𝑘 𝑘[𝑈] =
𝐵[𝑈] of their corresponding coordinate rings by Remark
1.1. Further, it is easy to see that the conditions (i) and (ii)
of the morphism 𝜃 correspond algebraically to the condi-
tions (i) and (ii) of the 𝑘-algebra homomorphism 𝜙. The
converse also follows similarly (cf. Remark 1.2). □

For illustration we consider an example.

Example 2.2. Let 𝑉 be the affine surface in 𝔸3𝑘 defined
by {(𝑎, 𝑏, 𝑐) ∈ 𝔸3𝑘 | 𝑎𝑐 = 𝑏2 − 1} and 𝐵 = 𝑘[𝑉] =
𝑘[𝑋, 𝑌, 𝑍]/(𝑋𝑍 −𝑌2 +1) be the coordinate ring of 𝑉 . Con-
sider the morphism

𝜃 ∶ 𝔾𝑎 × 𝑉 → 𝑉 defined by 𝜃(𝜆, (𝑎, 𝑏, 𝑐))
= (𝑎, 𝑏 + 𝑎𝜆, 𝑐 + 2𝑏𝜆 + 𝑎𝜆2).

Then,

(i) 𝜃(0, (𝑎, 𝑏, 𝑐)) = (𝑎, 𝑏, 𝑐) for all (𝑎, 𝑏, 𝑐) ∈ 𝑉 and
(ii) 𝜃(𝛼, 𝜃(𝛽, (𝑎, 𝑏, 𝑐))) = 𝜃(𝛼 + 𝛽, (𝑎, 𝑏, 𝑐)) for all

(𝑎, 𝑏, 𝑐) ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝑘.
Hence 𝜃 is a 𝔾𝑎-action on 𝑉 .

Let 𝑥, 𝑦, and 𝑧 denote the images of 𝑋 , 𝑌 , and 𝑍 in 𝐵.
Now 𝜃 induces the ring homomorphism 𝜙 ∶ 𝐵 → 𝐵[𝑈]
defined by

𝜙(𝑥) = 𝑥, 𝜙(𝑦) = 𝑦 + 𝑥𝑈 and 𝜙(𝑧) = 𝑧 + 2𝑦𝑈 + 𝑥𝑈2.

One can see that 𝜙 is an exponential map on 𝐵 and 𝐵𝜃 =
𝐵𝜙 = 𝑘[𝑥].

We now define locally nilpotent derivations.

Definition. Let 𝐵 be an integral domain containing a field
𝑘 of characteristic zero. A 𝑘-linear derivation 𝐷 on 𝐵 is
said to be a locally nilpotent derivation (or LND) if, for any
𝑎 ∈ 𝐵 there exists an integer 𝑛 (depending on 𝑎) satisfying
𝐷𝑛(𝑎) = 0. Thus a 𝑘-linear map 𝐷 ∶ 𝐵 → 𝐵 is said to be an
LND if

(i) 𝐷(𝑥𝑦) = 𝑥𝐷(𝑦) + 𝑦𝐷(𝑥) ∀ 𝑥, 𝑦 ∈ 𝐵 and
(ii) 𝐷𝑛(𝑎) = 0 for some 𝑛 ≥ 1 (depending on 𝑎) for

each 𝑎 ∈ 𝐵.

For an LND𝐷, let Ker(𝐷) denote the kernel of the deriva-
tion 𝐷, i.e.,

Ker(𝐷) ≔ {𝑓 ∈ 𝐵 |𝐷(𝑓) = 0}.

Then Ker(𝐷) is a subring of 𝐵.
For example, the partial derivations 𝜕/𝜕(𝑋), 𝜕/𝜕(𝑌), and

𝜕/𝜕(𝑍) on the ring 𝑘[𝑋, 𝑌, 𝑍] are LNDs with kernels 𝑘[𝑌, 𝑍],
𝑘[𝑋, 𝑍], and 𝑘[𝑋, 𝑌] respectively. Thus an LND may be
thought of as a generalization of partial derivation on a
polynomial ring 𝐵. The famous Jacobian conjecture can
also be formulated as a problem in LND ([7, Chapter 3]).

We now see that, over an algebraically closed field of
characteristic zero, the study of exponential maps (equiva-
lently the study of𝔾𝑎-actions on an affine variety) is equiv-
alent to the study of locally nilpotent derivations.

Theorem 2.3. Let 𝑘 be an algebraically closed field of char-
acteristic zero and 𝐵 be a 𝑘-domain. An exponential map
𝜙 ∶ 𝐵 → 𝐵[𝑈] induces a locally nilpotent derivation 𝐷 on
𝐵 and conversely.
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Proof. Let 𝜙 ∶ 𝐵 → 𝐵[𝑈] be an exponential map on 𝐵. For
any 𝑏 ∈ 𝐵, let

𝜙(𝑏) = 𝜙0(𝑏) + 𝜙1(𝑏)𝑈 + 𝜙2(𝑏)𝑈2 +⋯+ .
Note that since 𝜙 is a 𝑘-algebra homomorphism, we have

(I) {𝜙𝑛} are 𝑘-linear maps on 𝐵.
(II) 𝜙𝑛(𝑎𝑏) = ∑𝑖+𝑗=𝑛 𝜙𝑖(𝑎)𝜙𝑗(𝑏) for all 𝑎, 𝑏 ∈ 𝐵 and 𝑛 ≥ 0
(III) For each 𝑏 ∈ 𝐵, there exists 𝑛 ∈ ℕ such that 𝜙𝑚(𝑏) = 0

for all 𝑚 ≥ 𝑛.
Further, as 𝜙 is an exponential map, we have

(IV) 𝜙0 is the identity map on 𝐵, by property (i) of expo-
nential maps.

(V) 𝜙𝑖𝜙𝑗 = (𝑖+𝑗
𝑖
)𝜙𝑖+𝑗 for all 𝑖, 𝑗 ≥ 0, by property (ii) of

exponential maps.

Therefore, by (V), in characteristic zero, we have

𝜙2 =
1
2!𝜙

2
1, … , 𝜙𝑛 =

1
𝑛!𝜙

𝑛
1 … . (1)

Let 𝐷 ≔ 𝜙1. Then 𝐷 ∶ 𝐵 → 𝐵 is a 𝑘-linear map satisfying
𝐷(𝑎𝑏) = 𝑎𝐷(𝑏) + 𝑏𝐷(𝑎) by property (II) and (IV). Further,
by equation (1),𝐷𝑛(𝑏) = 𝑛! 𝜙𝑛(𝑏), and hence𝐷𝑛(𝑏) = 0 for
some 𝑛 ≥ 1 by (III). Thus𝐷 is a locally nilpotent derivation
on 𝐵. Further, it follows that 𝑏 ∈ Ker(𝐷)⟺𝜙(𝑏) = 𝑏, i.e.,
𝑏 ∈ 𝐵𝜙.

Conversely, let 𝐷 ∶ 𝐵 → 𝐵 be an LND. Then it is easy to
see that the map 𝜙 ∶ 𝐵 → 𝐵[𝑈] defined by

𝑏⟼ 𝑏+ 𝐷(𝑏)𝑈 + 𝐷2(𝑏)
2! 𝑈2 + 𝐷3(𝑏)

3! 𝑈3 + …

induces an exponential map on 𝐵. We note that the image
of 𝜙 is actually a polynomial in𝑈 since𝐷𝑛(𝑏) = 0 for some
𝑛 ≥ 1. Also, 𝐷(𝑏) = 0⟺ 𝜙(𝑏) = 𝑏 for any 𝑏 ∈ 𝐵. □

As an example we see below the LND induced by the
exponential map defined in Example 2.2.
Example 2.4. Let the notation and hypothesis be as in
Example 2.2. The exponential map 𝜙 induces the locally
nilptent derivation 𝐷 on 𝐵 defined by

𝐷(𝑥) = 0, 𝐷(𝑦) = 𝑥, and 𝐷(𝑧) = 2𝑦.
Thus by Theorems 2.1 and 2.3, over an algebraically

closed field of characteristic 0, we have

𝔾𝑎-action on 𝑉 ⟺ Exponential map on 𝐵
⟺ LND of 𝐵.

and

Ring of invariants of 𝔾𝑎-action

= Ring of invariants of exponential maps = Ker(𝐷).
Hence, going forward we shall be using 𝔾𝑎-action, ex-

ponential map, and LND interchangeably.
M. Nagata (in 1959) had constructed an example of a

unipotent group action over a polynomial ring 𝑘[𝑛] whose

ring of invariants is not finitely generated. Thus the con-
cept of studying unipotent group actions came to be per-
ceived as pathological, not of interest to many geometers.

It is now known that the ring of invariants of even a 𝔾𝑎-
action on a polynomial ring need not be finitely generated.
In 1990, P. Roberts constructed a nonfinitely 𝑘-algebra 𝐴
over a field of characteristic zero, as the symbolic blow-up
of a prime ideal 𝑃 of 𝑘[3]. Later, A. A’Campo-Neuen real-
ized the ring 𝐴 in Roberts’s example as the ring of invari-
ants of an LND on 𝑘[7]. This was the first example of a non-
finitely generated ring of invariants of a 𝔾𝑎-action over a
polynomial ring 𝑘[7]. For subsequent examples, one can
see [7, Chapter 7].

In spite of the apparently pathological nature of unipo-
tent group actions, a few mathematicians like P. Gabriel,
Y. Nouaźe, R. Rentschler, and J. Dixmier proved some
early fundamental results in the 1970s on 𝔾𝑎-actions. M.
Miyanishi began to systematically investigate 𝔾𝑎-actions
and LND. He highlighted the concepts, proved important
theorems on them and applied them to mainstream prob-
lems in AAG like classification of surfaces, algebraic char-
acterization of affine plane, etc. His algebraic characteri-
zation of the affine plane (1975) eventually led to the so-
lution of the ZCP for the affine plane by Miyanishi–Sugie
and Fujita in 1980. In 2008, L. Makar-Limanov and A. Cra-
chiola ([3]) gave an elementary proof of the cancellation
theorem for the affine plane using exponential maps. The
proof is discussed in Section 3.

Since the 1990s, many algebraists including L. Makar-
Limanov, J. Deveney, D. Finston, A. van den Essen, S. Kali-
man, D. Daigle, G. Freudenburg, H. Derksen, A. Dubouloz,
S.M. Bhatwadekar, A.K. Dutta, and subsequent researchers
have been contributing regularly in the study of𝔾𝑎-actions
on affine varieties. With passage of time, there has been an
increasing recognition of the importance of the concept
of 𝔾𝑎-actions in its own right as well as for application to
problems in AAG, some of them longstanding.

A major breakthrough in AAG was obtained during
the 1990s when, using LND, L. Makar-Limanov distin-
guished the famous Koras–Russell threefold from the affine
three space by showing that the Makar-Limanov invariant
(named after him) of this threefold does not coincide with
the affine three space. This led to the solution of the lin-
earization conjecture of Kambayashi that “Every faithful
algebraic ℂ∗-action on ℂ3 is linearizable”. Thus, even for
the study of a “good” action (ℂ∗-action), one had to study
a so called “bad” (ℂ, +)-action (see Section 4).

Another breakthrough was obtained by the author in
2010s when she used exponential maps to obtain coun-
terexamples to the ZCP in positive characteristic in higher
dimensions (see Section 5).

In the above two cases, the tools and techniques of
𝔾𝑎-actions were the cornerstones in the solutions of the
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respective problems. Certain invariants of 𝔾𝑎-actions
could distinguish between two rings, when all hitherto
known methods had failed. These episodes illustrate that
“𝔾𝑎-action” can be a part of the general armoury of al-
gebraists and geometers, and not confined to specialists.
More details are given in [7].

3. Algebraic Characterization of the Plane
and ZCP

The ZCP for polynomial rings can be posed as follows (cf.
[8], [7, Chapter 10], [13, Section 2]):

Question 1. Let 𝐴 be an affine 𝑘-algebra. Suppose that
𝐴[𝑋] ≅𝑘 𝑘[𝑋1, … , 𝑋𝑛+1]. Does it follow that 𝐴 ≅𝑘
𝑘[𝑋1, … , 𝑋𝑛]? In other words, is the polynomial ring
𝑘[𝑋1, … , 𝑋𝑛] cancellative?

For an algebraically closed field 𝑘, Question 1 is equiv-
alent to the following geometric version:

Question 1′. Let 𝑘 be an algebraically closed field and let
𝑉 be an affine 𝑘-variety such that 𝑉 × 𝔸1𝑘 ≅𝑘 𝔸𝑛+1𝑘 . Does it
follow that 𝑉 ≅𝑘 𝔸𝑛𝑘? In other words, is the affine 𝑛-space
𝔸𝑛𝑘 cancellative?

Question 1 has inspiredmany fruitful explorations over
the past 50 years. Some of the major research accomplish-
ments during the 1970s, like the characterization of the
affine plane, originated from the efforts to investigate the
question. It is not very difficult to show that the polyno-
mial ring 𝑘[𝑋] is cancellative over a field 𝑘 of any character-
istic. A more general result was shown by S. S. Abhyankar,
P. Eakin, and W. J. Heinzer (1972). But for the polynomial
ring 𝑘[𝑋, 𝑌], the problem is much more intricate.

In an attempt to solve the cancellation problem for
ℂ[𝑋, 𝑌], C.P. Ramanujam established in 1971 his cele-
brated topological characterization of the affine plane over
ℂ. In 1975, M. Miyanishi gave a characterization of the
polynomial ring 𝑘[𝑋, 𝑌] using𝔾𝑎-action (quoted below as
Theorem 3.1). This characterization was used by T. Fujita,
M. Miyanishi, and T. Sugie ([8], [17]) to prove the cancel-
lation property of 𝑘[𝑋, 𝑌] over fields of characteristic zero
and by P. Russell ([19]) over perfect fields of arbitrary char-
acteristic. Later (in 2002), using methods of D. Mumford
and C.P. Ramanujam, R.V. Gurjar gave a topological proof
of the cancellation property of ℂ[𝑋, 𝑌]. More recently, a
simplified proof of the cancellation property of 𝑘[𝑋, 𝑌] for
an algebraically closed field 𝑘 was given by A. Crachiola
and L. Makar-Limanov in [3] using tools of exponential
maps. The arguments in this paper were used by S.M. Bhat-
wadekar and the author to establish the cancellation prop-
erty of 𝑘[𝑋, 𝑌] over any arbitrary field 𝑘. For more details
one can see [13, Sections 2 and 3].

In 1987, T. Asanuma constructed a three-dimensional
affine ring over a field of positive characteristic (see Exam-
ple 5.3) as a counterexample to the 𝔸2-fibration problem

(defined in Section 5) over a PID not containing ℚ. Later,
in 1994, this ring was envisaged as a possible candidate
for a counter-example to either the ZCP or the linearization
problem (discussed in Section 4) for the affine 3-space in
positive characteristic. In 2014, the author showed that
Asanuma’s ring is indeed a counter-example to the cancel-
lation problem (see Section 5). Thus, when ch. 𝑘 > 0, the
affine 3-space 𝔸3𝑘 is not cancellative. Subsequently, the au-
thor showed that when ch. 𝑘 > 0, the affine 𝑛-space 𝔸𝑛𝑘 is
not cancellative for any 𝑛 ≥ 3. Thus, over a field of posi-
tive characteristic, the ZCP has been completely answered
in all dimensions ([12]).

Question 1 is still open in characteristic zero for 𝑛 ≥ 3
and is of great interest in the area of AAG.

We now return to the two-dimensional case. We first
state Miyanishi’s algebraic characterization of the affine
plane ([18, Theorem 2.2.3]).

Theorem 3.1. Let 𝑘 be an algebraically closed field and 𝐵 be
a finitely generated 𝑘-algebra of dimension 2 such that

(i) 𝐵 is a UFD.
(ii) 𝐵∗ = 𝑘∗.
(iii) There exists a nontrivial exponential map on 𝐵.
Then 𝐵 = 𝑘[2].

Theorem 3.1 had led to following fundamental result of
T. Fujita, M. Miyanishi, and T. Sugie ([17] and [8]) proving
the cancellation property of 𝑘[𝑋, 𝑌] over any field of char-
acteristic zero and the result of P. Russell ([19]) proving it
over any perfect field of arbitrary characteristic.

Theorem 3.2. Let 𝑘 be a field and 𝐵 be a 𝑘-domain such that

𝐵[1] = 𝑘[3].
Then 𝐵 = 𝑘[2].

The original proof uses many ideas making them not
quite self-contained for a large class of mathematicians.
A simplified proof of Theorem 3.2 for the case 𝑘 is alge-
braically closed was given by L. Makar-Limanov and A.
Crachiola ([3]) using exponential maps (equivalently 𝔾𝑎-
action). Their proof merely uses the following lemma on
exponential maps whose proof is elementary. The sim-
plification indicates the power of the tools introduced by
Makar-Limanov comprising the concept of ML-invariant
of 𝔾𝑎-action and elementary results on the invariant.

Lemma 3.3. Let 𝐵 be a finitely generated 𝑘-algebra such that
there exists an exponential map 𝜙 of 𝐵[𝑇] with (𝐵[𝑇])𝜙 ≠ 𝐵.
Then there exists an exponential map 𝜓 of 𝐵 such that 𝐵𝜓 ≠ 𝐵,
i.e., if ML(𝐵) = 𝐵 then ML(𝐵[𝑇]) = 𝐵.

We note that the ring 𝐶 = 𝑘[𝑋1, … , 𝑋𝑛] admits several
exponential maps. More specifically, for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛,
𝜓𝑖 ∶ 𝐶 → 𝐶[𝑈], given by

𝜓𝑖(𝑋𝑖) = 𝑋𝑖 + 𝑈 and, for 𝑖 ≠ 𝑗, 𝜓𝑖(𝑋𝑗) = 𝑋𝑗
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are exponential maps on 𝐶. We see that

𝐶𝜓𝑖 = 𝑘[𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝑛] and ⋂
𝑖
𝐶𝜓𝑖 = 𝑘.

Therefore, ML(𝐶) = 𝑘.
We now show how Theorem 3.2 follows easily from The-

orem 3.1 and Lemma 3.3.

Proof of Theorem 3.2. Since 𝐵[1] = 𝑘[3], it is easy to see that
𝐵 is a finitely generated 𝑘-algebra, 𝐵 is a UFD and 𝐵∗ = 𝑘∗.
Hence by Theorem 3.1, it is enough to show that 𝐵 admits
a nontrivial exponential map. Again as 𝐵[1] = 𝑘[3], the ring
𝐵[𝑇] admits an exponential map 𝜙 such that (𝐵[𝑇])𝜙 ≠ 𝐵.
Hence the result follows from Lemma 3.3. □

In view of the importance of Theorem 3.1, some char-
acterizations of the affine three space have been obtained
by Miyanishi (1984, 1987), Kaliman (2002) and the au-
thor with Nikhilesh Dasgupta (2021). So far, no suitable
characterization of the affine 𝑛-space for 𝑛 ≥ 4 is known to
the author. For more details on the characterization prob-
lem one can see [18, Section 2.2] for a detailed survey and
[13, Section 3] for a more updated survey.

4. The Russell–Koras Threefold
A special case of the linearization conjecture of Kam-
bayashi ([15]) asserts the following:

Conjecture. Every algebraic action of 𝑘∗ on an affine 𝑛-space
𝔸𝑛𝑘 is linearizable.

By the equivalence of 𝑘∗-action on affine varieties and
ℤ-graded structure on their respective coordinate ring, the
conjecture asserts that given any ℤ-graded structure of the
polynomial ring 𝐵 = 𝑘[𝑛], there exists a homogeneous set of
coordinates for 𝐵, i.e., 𝐵 = 𝑘[𝑋1, … , 𝑋𝑛], where 𝑋1, … , 𝑋𝑛 are
homogeneous elements with respect to the given ℤ-grading.

By a result of Kambayashi ([15]), it follows that any
𝑘∗-action on 𝑘[2] is linearizable. However the case 𝑛 = 3
turned out to be highly nontrivial. An affirmative answer
was finally obtained in characteristic zero as a culmination
of efforts of several researchers over a period of nearly three
decades.

We now discuss the solution of ℂ∗-action on ℂ[3] which
had been eluding mathematicians for many years. While
studyingℂ∗-action onℂ[3], M. Koras and P. Russell encoun-
tered a family of contractible threefolds which shared sev-
eral properties of 𝔸3ℂ and observed that if any such three-
fold was isomorphic to 𝐴3ℂ, then it would lead to a non-
linearisable ℂ∗-action on ℂ[3]. Any member of this family
was known as a Koras–Russell threefold. One such exam-
ple (also known as Russell’s cubic) is the following ring:

𝐴 = ℂ[𝑋, 𝑌, 𝑍, 𝑇]/(𝑋2𝑌 + 𝑋 + 𝑍2 + 𝑇3).
Let 𝑉 = Max(𝐴) and let 𝑥 denote the image of 𝑋 in 𝐴. The
ring 𝐴 satisfies several properties of the polynomial ring

ℂ[3], namely, it is a regular UFD with 𝐴∗ = ℂ∗. Moreover,
𝑉 is diffeomorphic to ℝ6 with respect to Euclidean topol-
ogy and there exists a dominant morphism from 𝔸3ℂ to 𝑉 .
By C.P. Ramanujam’s or byM.Miyanishi’s characterization
of the affine plane, the corresponding properties suffice for
a two-dimensional surface to be the affine plane. There
was an excitement, especially in the AAG community, re-
garding the possibility that 𝑉 is isomorphic to 𝔸3ℂ. For, if
𝑉 = 𝔸3ℂ, i.e., 𝐴 = ℂ[3], then the ring 𝐴 would have led to a
counterexample to the Abhyankar–Sathaye epimorphism
conjecture for ℂ[3] which asserts that if 𝐹 ∈ ℂ[3] = 𝐵 is
such that 𝐵/(𝐹) = ℂ[2], then 𝐵 = ℂ[𝐹][2]. Now note that
𝐴/(𝑥 − 𝜆) = ℂ[2] ∀𝜆 ∈ ℂ∗ but 𝐴/(𝑥) ≠ ℂ[2]. Thus, if
𝐴 = ℂ[3], then 𝐴 ≠ ℂ[𝑥 − 𝜆][2] for any 𝜆 ∈ ℂ, contradicting
the Abhyankar–Sathaye conjecture.

In 1994, in a conference at McGill University, P. Rus-
sell discussed the open problem about the triviality of the
above ring 𝐴 and the linearization conjecture. L. Makar-
Limanov, who was attending the conference, announced
in the meeting that the ring 𝐴 is not ℂ[3]. His proof
was elementary (though not easy) and involved an inge-
nious idea. He showed that 𝑥 ∈ ML(𝐴) ([16]), i.e., for
every 𝔾𝑎-action on 𝑉 (equivalently any LND 𝐷 on 𝐴),
the regular function determined by 𝑥 on 𝑉 is fixed (i.e.,
𝑥 ∈ Ker(𝐷)). On the other hand it is easy to see that
ML(ℂ[𝑋, 𝑌, 𝑍]) = ℂ. As 𝑥 ∉ 𝐴∗ = ℂ∗, it follows that
ML(𝐴) ≠ ℂ(= ML(ℂ[3])). Thus, 𝐴 ≇ ℂ[3]. Later, Kali-
man and Makar-Limanov proved that none of the Russell–
Koras threefolds is isomorphic to the affine 3-space. This
led to the solution of the linearization conjecture for 𝔸3ℂ
by Kaliman–Koras–Makar-Limanov–Russell ([14]).

The ring 𝐴 is now a potential threat to the Zariski can-
cellation conjecture for the affine three space in charac-
teristic zero. For if 𝐴[1] = ℂ[4], then 𝐴 would be a coun-
terexample to the ZCP in characteristic zero for 𝑛 = 3. A.
Dubouloz has shown in 2009 ([4]) thatML(𝐴[1]) = ℂ and
A. Dubouloz and J. Fasel have shown in 2018 that 𝑉 is “𝔸1-
contractible” ([5]). The variety𝑉 is in fact the first example
of an 𝔸1-contractible threefold which is not algebraically
isomorphic to ℂ3.

5. The Asanuma Threefold
We first recall the affine fibration problem. For a ring 𝑅
and any prime ideal 𝑃 of 𝑅, the notation 𝑘(𝑃) denotes the
residue field of the local ring 𝑅𝑃 . It is also the same as the
field of fractions of the integral domain 𝑅/𝑃.

Definition. Let 𝑅 be a ring. A finitely generated flat 𝑅-
algebra 𝐵 is said to be an 𝔸𝑛-fibration over 𝑅 if 𝐵⊗𝑅 𝑘(𝑃) =
𝑘(𝑃)[𝑛] for each prime ideal 𝑃 of 𝑅.

A major problem in the area of affine fibrations is the
following question of Dolgačev and Veı̌sfeı̌ler.
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Question 2. Let 𝑅 be a regular local ring of dimension 𝑑
and 𝐴 be an 𝔸𝑛-fibration over 𝑅. Is 𝐴 necessarily a polyno-
mial ring over 𝑅?

For a survey on the above problem one may see [6, Sec-
tion 3.1]. T. Kambayashi, M. Miyanishi, and David Wright
have shown that Question 5 has an affirmative answer for
𝔸1-fibrations, i.e., any 𝔸1-fibration over a regular local ring
is necessarily a polynomial ring. Their results were fur-
ther refined by A.K. Dutta who showed that it is enough
to assume the fiber conditions only on generic and co-
dimension one fibers.

In 1983, A. Sathaye obtained the followingmajor break-
through on 𝔸2-fibrations ([20]):

Theorem 5.1. Let 𝑅 be a PID containing ℚ and 𝐴 be an 𝔸2-
fibration over 𝑅. Then 𝐴 = 𝑅[2].

In 1987, T. Asanuma made the next major break-
through on the affine fibration problem: a deep structure
theorem on 𝔸𝑛-fibrations ([1, Theorem 3.4]). From his
main structure theorem, he deduced the following stable
structure theorem for any affine fibration over a regular lo-
cal ring ([1, Corollary 3.5]).

Theorem 5.2. Let 𝑅 be a regular local ring of dimension 𝑑 ≥ 1
and 𝐴 be an 𝔸𝑛-fibration over 𝑅. Then 𝐴[𝑚] = 𝑅[𝑚+𝑛] for some
integer 𝑚 ≥ 0.

In the same paper, Asanuma also constructed the first
counter-example to the 𝔸2-fibration problem over a PID
not containing ℚ ([1, Theorem 5.1]). We present below a
version of Asanuma’s example.

Example 5.3. Let 𝑘 be a field of characteristic 𝑝 > 0 and
let

𝐴 = 𝑘[𝑋, 𝑌, 𝑍, 𝑇]/(𝑋𝑚𝑌 + 𝑍𝑝𝑒 + 𝑇 + 𝑇𝑠𝑝), 𝑚, 𝑒, 𝑠 ∈ ℕ
and 𝑝𝑒 ∤ 𝑠𝑝, 𝑠𝑝 ∤ 𝑝𝑒.

(2)
Let 𝑥 denote the image of 𝑋 in 𝐴. Then 𝑘[𝑥] ⊂ 𝐴 and the
following properties are satisfied by 𝐴 (cf. [1, Theorem
5.1]):

(1) 𝐴⊗𝑘[𝑥] 𝑘(𝑃) = 𝑘(𝑃)[2] for every prime ideal 𝑃 of 𝑘[𝑥].
(2) 𝐴[1] = 𝑘[𝑥][3] = 𝑘[4].
(3) 𝐴 ≠ 𝑘[𝑥][2].

We note that (3) means that “𝐴 is not a polynomial ring
over its subring 𝑘[𝑥]”. It does not imply that “𝐴 is not a
polynomial ring over 𝑘”, i.e., 𝐴 ≠ 𝑘[3].

(1) shows that 𝐴 is an 𝔸2-fibration over 𝑘[𝑥]; (2) shows
that 𝐴 is a stably polynomial ring over 𝑘[𝑥], in particular,
a stably polynomial ring over 𝑘; and (3) shows that 𝐴 is
not a polynomial ring over 𝑘[𝑥]. Thus 𝐴 is a nontrivial
𝔸2-fibration over 𝑘[𝑥], apart from being a nontrivial stably
polynomial ring over 𝑘[𝑥].

This ring 𝐴 was soon to acquire a wider significance.
In a subsequent paper ([2, Theorem 2.2]), using the ring

𝐴, Asanuma constructed nonlinearizable 𝑘∗-actions on 𝔸𝑛𝑘
over any infinite field 𝑘 of positive characteristic when
𝑛 ≥ 4. He then asked whether 𝐴 is a polynomial ring
and explained the significance of his question as follows
([2, Remark 2.3]):

“If 𝐴 is a polynomial ring then it will give an example
of a nonlinearizable torus action on 𝑘3 in positive char-
acteristic. On the other hand if 𝐴 is not a polynomial
ring then it will clearly give a counter-example to the
cancellation problem.”

Thus either way one would answer a major problem in
AAG. This dichotomy has been popularized by P. Russell
as “Asanuma’s Dilemma”.

In [10], using some basic results on exponential maps,
the author has shown that the ring 𝐴 in Example 5.3 is not
a polynomial ring when 𝑚 ≥ 2. Consequently, it follows
that the ZCP does not have an affirmative answer in posi-
tive characteristic. In [11], the author made further investi-
gations on the Asanuma ring discussed below.

Recall that a polynomial 𝑔 ∈ 𝑘[𝑍, 𝑇] is called a line if
𝑘[𝑍, 𝑇]/(𝑔) = 𝑘[1] and a line 𝑔 is called a nontrivial line if
𝑘[𝑍, 𝑇] ≠ 𝑘[𝑔][1]. The famous epimorphism theorem of
S.S. Abhyankar and T. Moh (also proved independently by
M. Suzuki for 𝑘 = ℂ) asserts that there does not exist any
nontrivial line over any field of characteristic zero. How-
ever, as early as in 1957, B. Segre had exhibited an example
of a nontrivial line over any field of positive characteristic.
Later M. Nagata gave a family of examples of such nontriv-
ial lines. For more details on the epimorphism problem,
see [6, Section 2].

Asanuma’s three-dimensional ring in Example 5.3 can
be considered as a special case of the general class of three-
folds in 𝔸4𝑘 defined by the zero locus of a polynomial of
the form 𝑋𝑚𝑌 − 𝑓(𝑍, 𝑇), where 𝑓(𝑍, 𝑇) is a Segre–Nagata
nontrivial line. This led us to a problem which was asked
to the author independently by P. Russell.

Question 3. Let 𝑓 be any nontrivial line in 𝑘[𝑍, 𝑇] and let
𝐴 be a ring defined by the relation 𝑥𝑟𝑦 = 𝑓(𝑧, 𝑡). Is the ring
𝐴 necessarily not a polynomial ring over the field 𝑘?

As classification of nontrivial lines is still an open prob-
lem, Russell’s question has to be approached abstractly. In
[11], the author has considered a more general threefold
and answered Russell’s question affirmatively as a part of
a general theory which is independent of the characteristic
of the field. This generalization is more transparent and
conceptual, and has simplified the earlier proof by the au-
thor in [10] of the noncancellative property of 𝑘[3] in pos-
itive characteristic. The precise statement proved by the
author is ([11, Theorem 3.11]):
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Theorem 5.4. Let 𝑘 be a field of any characteristic and 𝐹 ∈
𝑘[𝑋, 𝑍, 𝑇]. Let 𝑓(𝑍, 𝑇) = 𝐹(0, 𝑍, 𝑇), 𝐺 = 𝑋𝑟𝑌−𝐹(𝑋, 𝑍, 𝑇) ∈
𝑘[𝑋, 𝑌, 𝑍, 𝑇], where 𝑟 > 1 and 𝐴 = 𝑘[𝑋, 𝑌, 𝑍, 𝑇]/(𝐺). Then
the following statements are equivalent:

(i) 𝑓(𝑍, 𝑇) is a variable in 𝑘[𝑍, 𝑇], i.e., 𝑘[𝑍, 𝑇] = 𝑘[𝑓][1].
(ii) 𝐴 = 𝑘[𝑥][2], where 𝑥 denotes the image of 𝑋 in 𝐴.
(iii) 𝐴 = 𝑘[3].
(iv) 𝐺 is a variable in 𝑘[𝑋, 𝑌, 𝑍, 𝑇], i.e., 𝑘[𝑋, 𝑌, 𝑍, 𝑇] =

𝑘[𝐺][3].
(v) 𝐺 is a variable in 𝑘[𝑋, 𝑌, 𝑍, 𝑇] along with 𝑋, i.e.,

𝑘[𝑋, 𝑌, 𝑍, 𝑇] = 𝑘[𝑋, 𝐺][2].
Theorem 5.4 answers in one statement several very dif-

ferent looking questions that had been of long interest in
the field. The equivalence of (i) and (iii) answers Russell’s
question affirmatively. It also explains the nontriviality of
the Russell–Koras threefold defined in Section 4. On the
other hand the following theoremof the author shows that
if 𝑓 is a line, then 𝐴 is a stably polynomial ring. More pre-
cisely ([11, Theorem 4.2]):

Theorem 5.5. Let 𝑘 be a field of any characteristic, 𝐹 ∈
𝑘[𝑋, 𝑍, 𝑇] and let

𝐴 = 𝑘[𝑋, 𝑌, 𝑍, 𝑇]/(𝑋𝑟𝑌 − 𝐹(𝑋, 𝑍, 𝑇)), where 𝑟 ≥ 1.
Then 𝐴 is a stably polynomial ring if 𝐹(0, 𝑍, 𝑇) is a
line in 𝑘[𝑍, 𝑇]. That is, 𝐴[1] = 𝑘[𝑥][3] = 𝑘[4] if
𝑘[𝑍, 𝑇]/(𝐹(0, 𝑍, 𝑇)) = 𝑘[1].

By the equivalence of (i) and (iii) in Theorem 5.4,
it follows that 𝐴 is not a polynomial ring if 𝑘[𝑍, 𝑇] ≠
𝑘[𝐹(0, 𝑍, 𝑇)][1]. Thus, if 𝐹(0, 𝑍, 𝑇) is a nontrivial line in
𝑘[𝑍, 𝑇], then 𝐴 is a stably polynomial ring but not a poly-
nomial ring over 𝑘. This gives a recipe for constructing
counter-examples to the ZCP. We emphasize again that
the proofs of Theorems 5.5 and 5.4 are independent of
the characteristic of the field. However, we know by the
Abhyankar–Moh–Suzuki theorem that a nontrivial line
never exists in characteristic zero. Thus, for obtaining
counter-examples to the cancellation problem for affine
3-space, an application of Theorems 5.5 and 5.4 can be
made only in positive characteristic.

Theorem 5.4was achieved through the study of another
invariant of a ring arising out of exponential maps that
was introduced by H. Derksen, and is now known as the
Derksen invariant. For an affine 𝑘-algebra 𝑅, the Derksen
invariant of 𝑅 is the subring of 𝑅, denoted by DK(𝑅) and
defined by

DK(𝑅) ≔ 𝑘[𝑓 ∈ 𝑅𝜙 | 𝜙 ∈ Exp(𝑅) and 𝐵𝜙 ≠ 𝐵].
A major result used in the proof of Theorem 5.4 is the fol-
lowing proposition.

Proposition 5.6. Let 𝐴 be an integral domain defined by

𝐴 = 𝑘[𝑋, 𝑌, 𝑍, 𝑇]/(𝑋𝑚𝑌 − 𝐹(𝑋, 𝑍, 𝑇)), where 𝑚 > 1.

Set 𝑓(𝑍, 𝑇) ≔ 𝐹(0, 𝑍, 𝑇). Let 𝑥, 𝑦, 𝑧, and 𝑡 denote, respectively,
the images of 𝑋, 𝑌 , 𝑍, and 𝑇 in 𝐴. Suppose that DK(𝐴) ≠
𝑘[𝑥, 𝑧, 𝑡]. Then the following statements hold.

(i) There exist 𝑍1, 𝑇1 ∈ 𝑘[𝑍, 𝑇] and 𝑎0, 𝑎1 ∈ 𝑘[1] such that
𝑘[𝑍, 𝑇] = 𝑘[𝑍1, 𝑇1] and 𝑓(𝑍, 𝑇) = 𝑎0(𝑍1) + 𝑎1(𝑍1)𝑇1.

(ii) If 𝑘[𝑍, 𝑇]/(𝑓) = 𝑘[1], then 𝑘[𝑍, 𝑇] = 𝑘[𝑓][1].

From Proposition 5.6, it follows that in case 𝐴 is as in
Example 5.3 with 𝑚 ≥ 2, then DK(𝐴) = 𝑘[𝑥, 𝑧, 𝑡] ⫋ 𝐴.
Thus DK(𝐴) ≠ 𝐴 and hence 𝐴 ≠ 𝑘[3], as DK(𝑘[3]) = 𝑘[3].

Subsequently, the author generalized the Asanuma
threefold to obtain counterexamples to the ZCP in positive
characteristic in higher dimensions ([12]). Recently with
Parnashree Ghosh, the author has used exponential maps
to obtain the following generalization of Theorem 5.4 in
higher dimensions ([9]).

Theorem 5.7. Let 𝐹 = 𝐹(𝑋1, … , 𝑋𝑚, 𝑍, 𝑇) = 𝑓(𝑍, 𝑇) +
(𝑋1⋯𝑋𝑚)𝑔, for some 𝑔 ∈ 𝑘[𝑋1, … , 𝑋𝑚, 𝑍, 𝑇], 𝐺 ≔
𝑋𝑟1
1 ⋯𝑋𝑟𝑚𝑚 𝑌 − 𝐹 and

𝐴 = 𝑘 [𝑋1, … , 𝑋𝑚, 𝑌 , 𝑍, 𝑇]
(𝑋𝑟1

1 ⋯𝑋𝑟𝑚𝑚 𝑌 − 𝐹(𝑋1, … , 𝑋𝑚, 𝑍, 𝑇))
,

𝑟𝑖 > 1 for all 𝑖, 1 ⩽ 𝑖 ⩽ 𝑚,
(3)

Then the following statements are equivalent:

(i) 𝑘[𝑋1, … , 𝑋𝑚, 𝑌 , 𝑍, 𝑇] = 𝑘[𝑋1, … , 𝑋𝑚, 𝐺][2].
(ii) 𝑘[𝑋1, … , 𝑋𝑚, 𝑌 , 𝑍, 𝑇] = 𝑘[𝐺][𝑚+2].
(iii) 𝐴 = 𝑘[𝑥1, … , 𝑥𝑚][2].
(iv) 𝐴 = 𝑘[𝑚+2].
(v) 𝑘[𝑍, 𝑇] = 𝑘[𝑓(𝑍, 𝑇)][1].

Moreover, each of the above conditions is equivalent to each of
the following four conditions involving the Derksen invariant;
and each of the subsequent four conditions involving the Makar-
Limanov invariant.

(vi) 𝐴[𝑙] = 𝑘[𝑙+𝑚+2] for some 𝑙 ⩾ 0 and 𝑘[𝑥1, … , 𝑥𝑚, 𝑧, 𝑡] ⫋
DK(𝐴).

(vii) 𝐴 is an 𝔸2-fibration over 𝑘[𝑥1, … , 𝑥𝑚] and
𝑘[𝑥1, … , 𝑥𝑚, 𝑧, 𝑡] ⫋ DK(𝐴).

(viii) 𝑓(𝑍, 𝑇) is a line in 𝑘[𝑍, 𝑇] and 𝑘[𝑥1, … , 𝑥𝑚, 𝑧, 𝑡] ⫋
DK(𝐴).

(ix) 𝐴 is a UFD, 𝑘[𝑥1, … , 𝑥𝑚, 𝑧, 𝑡] ⫋ DK(𝐴) and ( 𝐴
𝑥𝑖𝐴

)
∗
= 𝑘∗,

for every 𝑖 ∈ {1, … ,𝑚}.
(x) 𝑓(𝑍, 𝑇) is a line in 𝑘[𝑍, 𝑇] and ML(𝐴) = 𝑘.
(xi) 𝐴[𝑙] = 𝑘[𝑙+𝑚+2] for 𝑙 ⩾ 0 and ML(𝐴) = 𝑘.
(xii) 𝐴 is an 𝔸2-fibration over 𝑘[𝑥1, … , 𝑥𝑚] and ML(𝐴) = 𝑘.
(xiii) 𝐴 is a UFD, ML(𝐴) = 𝑘 and ( 𝐴

𝑥𝑖𝐴
)
∗
= 𝑘∗, for every

𝑖 ∈ {1, … ,𝑚}.
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On the Geometry
of Metric Spaces

Manuel Ritoré
1. Introduction
Themeasurement of distances because of practical reasons,
as the delimitation of parcels of farmland after floodings or
those related to construction problems, lies behind the ori-
gins of mathematics in ancient civilizations. It was Euclid,
in Proposition 20 of the first book of the Elements, who
proved that the sum of two sides of a triangle is greater
than the remaining one. This fact was probably used by
Archimedes to state as assumption, in his work On the
sphere and cylinder, that the straight line is the shortest be-
tween two points. Both achievements are now proven in
basic courses on Linear Algebra.
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Presently, the notion of distance on a nonempty set 𝑋 is
formalized as a function 𝑑 ∶ 𝑋 × 𝑋 → ℝ satisfying

1. 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 ,
3. 𝑑(𝑥, 𝑦) ⩽ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

These conditions imply 𝑑 ⩾ 0. The second property is the
symmetry one. In Gromov’s words this assumption “[. . . ]
unpleaseantly limits many applications.” Removing this
symmetry condition gives rise to the concept of asymmetric
distance, see Busemann’s Local metric geometry (1958). The
third property is the well-known triangle inequality.

The pair (𝑋, 𝑑), where 𝑋 is a nonempty set and 𝑑 a dis-
tance on 𝑋 , is called a metric space.

Metric spaces were introduced by Fréchet in 1906 in the
context of functional analysis. Shortly after, a comprehen-
sive treatment of the theory was presented by Hausdorff
in the second part of his monograph [Hau14] published
in 1914, where the notion of topological space was intro-
duced.
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Metric spaces appear everywhere in modern mathemat-
ics. They are an invaluable tool in functional analysis, ge-
ometry of manifolds, graph theory, artificial intelligence,
and many other fields. The aim of this note is to give a
glance of the role of metric spaces in several fields of math-
ematics without any intention of being exhaustive. We fo-
cus on different notions of curvature inmetric spaces, com-
pactness results for Riemannian manifolds, and an appli-
cation of metric graph theory to group theory.

2. Length Spaces
Given a subset of a Euclidean space we may consider the
restriction of the Euclidean distance to the set. For in-
stance, the distance between two antipodal points on a
unit sphere is 2. However, this distance is not intrinsic in
the sense that cannot be measured inside the subset.

Given a continuous curve 𝛾 ∶ [𝑎, 𝑏] → 𝑋 on a metric
space, its length 𝐿(𝛾) can be defined as the supremum of
the quantities

𝑘
∑
𝑖=1

𝑑(𝛾(𝑡𝑖−1), 𝛾(𝑡𝑖)),

over all partitions 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘 = 𝑏, 𝑘 ∈ ℕ, of the
interval [𝑎, 𝑏]. When 𝐿(𝛾) is finite the curve 𝛾 is said to be
rectifiable. Hence the length of curves, sometimes infinite,
can be measured in metric spaces.

A metric space (𝑋, 𝑑) is a length space if the distance
𝑑(𝑥, 𝑦) between any pair of points 𝑥, 𝑦 ∈ 𝑋 can be com-
puted as

inf
𝛾
𝐿(𝛾),

where 𝛾 ∶ [𝑎, 𝑏] → 𝑋 is any rectifiable curve connecting 𝑥
and 𝑦 (i.e., such that 𝛾(𝑎) = 𝑥, 𝛾(𝑏) = 𝑦). A length space
(𝑋, 𝑑) is geodesic if for every pair of points 𝑥, 𝑦 ∈ 𝑋 , there ex-
ists a rectifiable curve 𝛾 connecting 𝑥, 𝑦, such that 𝑑(𝑥, 𝑦) =
𝐿(𝛾). A geodesic in 𝑋 is a rectifiable curve 𝛾 ∶ [𝑎, 𝑏] → 𝑋
such that 𝑑(𝛾(𝑡), 𝛾(𝑠)) = 𝐿(𝛾|[𝑠,𝑡]) for all 𝑎 ⩽ 𝑠 < 𝑡 ⩽ 𝑏. The
interested reader is referred to Burago, Burago and Ivanov’s
[BBI01] for a complete presentation of length spaces.

Examples of length spaces are Riemannian, Finsler and
sub-Riemannian manifolds. A Riemannian manifold (𝑀, 𝑔)
is a manifold 𝑀 together with an scalar product 𝑔 on the
fiber bundle (a continuously varying scalar product on
each tangent space). In a Finsler manifold the scalar prod-
uct is replaced by a smooth norm. A sub-Riemannian man-
ifold (𝑀,ℋ, ℎ) is a manifold 𝑀 together with a noninte-
grable horizontal distribution ℋ and a positive definite
scalar product ℎ on ℋ. The classical example of a sub-
Riemannian manifold is the Heisenberg group ℍ1: the 3-
dimensional Euclidean space ℝ3 together with a noncom-
mutative product and the left-invariant vector fields

𝑋 = 𝜕
𝜕𝑥 + 𝑦 𝜕𝜕𝑧 , 𝑌 = 𝜕

𝜕𝑦 − 𝑥 𝜕
𝜕𝑧 , 𝑍 = 𝜕

𝜕𝑧

induce a left-invariant Riemannian metric 𝑔𝐿 making
𝑋, 𝑌, 𝑍 an orthonormal basis. The vectors fields 𝑋, 𝑌 gen-
erate a nonintegrable distribution ℋ that, together with
the restriction of 𝑔𝐿 toℋ, provide a sub-Riemannian struc-
ture on ℍ1. On a connected sub-Riemannian manifold𝑀,
Chow–Rashevskii theorem, see §0.4 and §1.1, §1.2 in Gro-
mov [Gro96], implies that every pair of points can be con-
nected by a smooth horizontal curve on𝑀 (i.e., everywhere
tangent to the horizontal distribution).

To define a distance we consider, in the Riemannian and
Finsler cases, the class of piecewise smooth curves and, in
the sub-Riemannian case, the class of piecewise smooth
horizontal curves. In all cases, the length of a curve 𝛾 ∶
𝐼 → 𝑀 can be computed as

∫
𝐼
‖𝛾′(𝑠)‖ 𝑑𝑠,

where ‖ ⋅ ‖ is the norm associated to 𝑔 in the Riemannian
case, the Finsler norm, or the one associated to ℎ in the sub-
Riemannian case. Associated to this length we can define a
distance between two points as the infimum of the length
of the curves joining both points. This way we obtain the
Riemannian distance, the Finsler distance, or the Carnot-
Carathéodory distance. Geodesics are curves of minimum
distance connecting two given points.

Figure 1. Geodesics in the Riemannian and sub-Riemannian
Heisenberg group ℍ1 connecting two points in the same
vertical line. The vertical line is a Riemannian geodesic. The
helicoidal curve is a sub-Riemannian geodesic, forced to be
tangent to the horizontal distribution.

3. Metric Spaces with Bounded Curvature
Curvature in Riemannian geometry was introduced as a
measure of how a Riemannian space deviates from Eu-
clidean space, see Gromov [Gro91] for an enlightening dis-
cussion. For surfaces embedded in Euclidean space, the
curvature coincides with the product of the principal cur-
vatures of the surface and it is referred to as the Gauß curva-
ture. The classical Gauß–Bonnet theorem provides a first
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hint on how the curvature 𝐾 affects the behavior of geo-
desic triangles on a surface. If 𝑇 is a triangle delimited by
geodesics making inner angles 𝛼, 𝛽 and 𝛾 then

∫
𝑇
𝐾 = (𝛼 + 𝛽 + 𝛾) − 𝜋.

Hence the sum of the inner angles of a triangle on a surface
depends on the sign of the Gauß curvature: it is equal to
𝜋 on surfaces with 𝐾 = 0, larger than 𝜋 on surfaces with
𝐾 ⩾ 0 and smaller than 𝜋 when 𝐾 ⩽ 0.

𝐾 > 0

𝐾 = 0

𝐾 < 0

Figure 2. Behavior of geodesics triangles according to
Gauß–Bonnet theorem.

According to the historical account in the preface of
Alexander, Kapovitch, and Petrunin’s monograph, see
arXiv:1903.08539, the first synthetic description of curva-
ture is due to A. Wald in a paper published in 1936, fol-
lowed by a paper by Alexandrov in 1941. It is generally con-
sidered that Rauch’s comparison results for Jacobi fields
in the early 1950s can be thought of as an infinitesimal tri-
angle comparison result which was soon followed by the
celebrated Toponogov’s comparison theorem in the late
1950s.

A version of triangle comparison not involving angles
can be stated as follows. Assume we have a point 𝑝 ∈ 𝑀
in a Riemannian manifold and a unit-speed geodesic 𝛾 ∶
[0, 𝑇] → 𝑀 in a small neighborhood of 𝑝. We consider a
second unit-speed geodesic ̄𝛾 ∶ [0, 𝑇] → ℝ2 in the plane
and a point ̄𝑝 ∈ ℝ2 such that | ̄𝑝 − ̄𝛾(0)| = 𝑑(𝑝, 𝛾(0)), | ̄𝑝 −
̄𝛾(𝑇)| = 𝑑(𝑝, 𝛾(𝑇)). This way we construct a comparison

triangle whose vertices ̄𝛾(0), ̄𝛾(𝑇), ̄𝑝 lie at the same distance
as the ones of the original triangle 𝛾(0), 𝛾(𝑇), 𝑝. We define
the functions 𝑓(𝑡) = 𝑑(𝑝, 𝛾(𝑡)), ̄𝑓(𝑡) = | ̄𝑝 − ̄𝛾(𝑡)|. Then we
have the following.

Theorem. Under the conditions above

1. If 𝑀 has nonnegative sectional curvatures then 𝑓(𝑡) ⩾
̄𝑓(𝑡).

2. If 𝑀 has nonpositive curvature then 𝑓(𝑡) ⩽ ̄𝑓(𝑡).

This result is typically proven by means of Jacobi fields,
see Cheeger and Ebin (1975), but perhaps the reader could
find useful the following alternative argument. Assume
that the sectional curvatures of𝑀 are no larger than 0. Take
𝑝 ∈ 𝑀, a normal neighborhood𝑈 of 𝑝where the exponen-
tial map is a diffeomorphism, and a geodesic 𝛾 ∶ [0, 𝑇] →
𝑈 parameterized by arc length. A basic result on Jacobi
fields, similar to the one used in the proof of Bishop’s vol-
ume comparison, implies that the Hessian ∇2 of the func-
tion 𝑑2/2, where 𝑑 is the distance to 𝑝, satisfies

∇2( 1
2
𝑑2)(𝑣, 𝑣) ⩾ 1 (1)

for any 𝑣 ∈ 𝑇𝑞𝑀, 𝑞 ∈ 𝑈, and |𝑣| = 1. In Euclidean space
we would have equality in (1) replacing 𝑑 by the Euclidean
distance ̄𝑑 to ̄𝑝. Then the functions ℎ(𝑡) = 𝑑2(𝛾(𝑡))/2 and
̄ℎ(𝑡) = ̄𝑑2( ̄𝛾(𝑡))/2 satisfy

ℎ″(𝑡) = ∇2( 1
2
𝑑2)(𝛾′(𝑡), 𝛾′(𝑡))

⩾ ∇2( 1
2
̄𝑑2)( ̄𝛾′(𝑡), ̄𝛾′(𝑡)) = ̄ℎ″(𝑡).

Hence (ℎ − ̄ℎ)″ ⩾ 0 on [0, 𝑇] and, since the function ℎ − ̄ℎ
vanishes at the endpoints of the interval, we get ℎ ⩽ ̄ℎ,
which implies 𝑓 ⩽ ̄𝑓.

̄𝑝

̄𝛾(0)

̄𝛾(𝑇)
̄𝛾(𝑡)

𝑝

𝛾(0)

𝛾(𝑇)

𝛾(𝑡)

Figure 3. Illustration of triangle comparison. The one to the
right lies in a Riemannian manifold 𝑀. The one to the left is a
comparison triangle in the Euclidean plane. If the sectional
curvature of 𝑀 is nonnegative then 𝑑(𝑝, 𝛾(𝑡)) ⩾ | ̄𝑝 − ̄𝛾(𝑡)|. The
opposite inequality holds when 𝑀 has nonpositive sectional
curvature.

This comparison can be stated also in terms of angles.
Consider a small geodesic triangle in a Riemannian mani-
fold 𝑀. If 𝑀 has nonnegative curvature then, at every ver-
tex, the angle made by the sides of the triangle is larger
than or equal to the comparison angle at the vertex (i.e.,
the Euclidean angle of a comparison triangle). For non-
positive curvature we have the opposite inequality. Similar
comparisons with a simply connected surface of constant
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curvature 𝜅 hold when the sectional curvature of 𝑀 is no
smaller or no larger than 𝜅.

The triangle comparison for Riemannian manifolds al-
lows to introduce a synthetic notion ofmetric space 𝑋 with
curvature bounded, above or below, in terms of properties
of geodesic triangles on the metric space.

Note that angles can be defined in a metric space using
the law of cosines. Given three different points 𝑥, 𝑦, 𝑧 in
a metric space 𝑋 , we can build a comparison Euclidean
triangle of vertices ̄𝑥, ̄𝑦, ̄𝑧 by requiring that the distances
𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧), 𝑑(𝑥, 𝑧) equal | ̄𝑥− ̄𝑦|, | ̄𝑦− ̄𝑧|, | ̄𝑥− ̄𝑧|. The com-
parison angle ∡̃𝑥𝑦𝑧 is defined as the Euclidean angle ∡ ̄𝑥 ̄𝑦 ̄𝑧,
that is,

∡̃𝑥𝑦𝑧 = arccos 𝑑(𝑦, 𝑥)
2 + 𝑑(𝑦, 𝑧)2 − 𝑑(𝑥, 𝑧)2
2 𝑑(𝑦, 𝑥) 𝑑(𝑦, 𝑧) .

If we have two curves 𝛼, 𝛽 ∶ [0, 𝜀) → 𝑋 emanating from the
same point 𝑥, the angle ∡(𝛼, 𝛽) is

∡(𝛼, 𝛽) = lim
𝑡,𝑠→0

∡𝛼(𝑠)𝑥𝛽(𝑡)

when the limit exists.
The term CAT(𝑘) spaces is used for metric spaces with

𝑘 as an upper curvature bound (CAT stands for Cartan–
Alexandrov–Topogonov) and the term Alexandrov spaces
for spaces with lower curvature bounds. The reader should
be aware that sometimes a different terminology is used
depending on the direction of the bound.

The theory of CAT(𝑘) spaces and the one of Alexan-
drov spaces differ in many respects. In the case of curva-
ture bounded above, Hadamard manifolds, complete sim-
ply connected length spaces of nonpositive curvature, play
a central role. Almost all classical results for Riemann-
ian manifolds have been extended to Hadamard mani-
folds, like uniqueness of geodesics connecting two given
points, the validity of triangle comparison for large trian-
gles, the fact that the squared distance function is globally
concave. Essential references on CAT(𝑘) spaces are Brid-
son and Haeffliger [BH99], and Ballman, Gromov, and
Schroeder [BGS85]. As for Alexandrov spaces, there are
two main points that make the theory quite different from
the one of CAT(𝑘) spaces. The first is that triangle compari-
son holds for arbitrarily large triangles without additional
assumptions. This is the content of Toponogov’s theorem.
The second one concerns the local structure: in an Alexan-
drov space the Hausdorff dimension coincides with the
topological dimension, which is an integer or infinite. An
Alexandrov space is a manifold except on a small set of
points. Examples of Alexandrov spaces are the boundaries
of convex sets in Euclidean spaces. Numerous results valid
for Riemannian manifolds also hold in the class of Alexan-
drov spaces with curvature bounded from below by 𝑘. To
cite just a few, an upper bound on the diameter when 𝑘 >
0, a splitting theorem, Gromov–Bishop inequalities for the

volume of balls. Petrunin also proved a Levy–Gromov
type isoperimetric inequality (see the author’s monograph
[Rit23] for the Riemannian case). The reader is referred
to Burago, Burago and Ivanov [BBI01], the already men-
tioned monograph by Alexander, Kapovitch, and Petrunin,
and the references cited therein, for excellent introductions
to the theory of metric spaces with bounds on curvature.

4. Convergence of Metric Spaces
The introduction of curvature bounds on metric spaces
might seem an abstract construction with no special inter-
est. However, it is related to the behavior of sequences
of Riemannian manifolds. One can consider the space of
all Riemannian manifolds with some topology and asks
whether some given subset is compact or precompact with
this topology. In many cases the limit of the sequence is
not a Riemannian manifold. This is one of the situations
where metric spaces with bounds on curvature play a role.

A standard way of measuring the distance between two
sets 𝐴, 𝐵 in a metric space (𝑋, 𝑑) is the Hausdorff distance
𝑑𝐻(𝐴, 𝐵), defined by

𝑑𝐻(𝐴, 𝐵) = inf {𝜀 > 0 ∶ 𝐴 ⊂ 𝐵𝜀, 𝐵 ⊂ 𝐴𝜀},

where for any set 𝐶 ⊂ 𝑋 , 𝐶𝜀 = {𝑥 ∈ 𝑋 ∶ 𝑑(𝑥, 𝐶) < 𝜀} is the
open tubular neighborhood of 𝐶 of radius 𝜀.

Gromov, see [Gro81, Gro07] introduced a way of mea-
suring the distance between two metric spaces 𝑋, 𝑌 , nowa-
days known as the Gromov–Hausdorff distance, denoted by
𝑑𝐺𝐻(𝑋, 𝑌). To compute it, we take all metric spaces 𝑍
which contain isometric copies 𝑋 ′ of 𝑋 and 𝑌 ′ of 𝑌 , com-
pute their Hausdorff distance 𝑑𝐻(𝑋 ′, 𝑌 ′) on 𝑍, and take the
infimum over all possible metric spaces 𝑍.

Gromov–Hausdorff distance is really a distance on the
space of isometric classes ofmetric spaces since two isomet-
ric metric spaces have 𝑑𝐺𝐻 -distance equal to 0. Tomeasure
the Gromov–Hausdorff distance using its definition is not
very practical. However, for compact metric spaces 𝑋 , 𝑌 ,
should we have two 𝜀-nets {𝑥1, … , 𝑥𝑛} on 𝑋 , and {𝑦1, … , 𝑦𝑛}
on 𝑌 such that

|𝑑𝑋(𝑥𝑖, 𝑥𝑗) − 𝑑𝑌 (𝑦𝑖, 𝑦𝑗)| < 𝛿 for all 𝑖, 𝑗 = 1, … , 𝑛,

then we would have 𝑑𝐺𝐻(𝑋, 𝑌) < 2𝜀 + 𝛿.
Important classes of Riemannian manifolds which are

precompact in the Gromov–Hausdorff distance are the fol-
lowing:

• For 𝑚 ∈ ℕ and 𝑅, 𝑉 > 0, the class of 𝑚-dimensional
Riemannian manifolds with volume |𝑀| ⩽ 𝑉 and in-
jectivity radius inj(𝑀) ⩾ 𝑅.

• For any 𝑚 ∈ ℕ and 𝜅 ∈ ℝ, 𝐷 > 0, the class of 𝑚-
dimensional Riemannianmanifolds with diam𝑀 ⩽ 𝐷
and sectional curvature ⩾ 𝜅. The same result holds
assuming instead that the Ricci curvature is ⩾ 𝜅.
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While the Gromov–Hausdorff distance is useful when
considering compact metric spaces, it is usually a very
strong convergence for unbounded metric spaces. In
this case it should be replaced by the pointed Gromov–
Hausdorff convergence.

Natural measures which can be considered on metric
spaces are the Hausdorff measures. Given 𝑠 ⩾ 0, the 𝑠-
dimensional Hausdorff measure associated to a set 𝐴 ⊂ 𝑋
is given, up to a constant, by

ℋ𝑠(𝐴) = inf
𝛿>0

ℋ𝑠
𝛿(𝐴),

whereℋ𝑠
𝛿(𝐴) is the supremum of∑𝑖 diam(𝐸𝑖)𝑠 taken over

all coverings of 𝐴 by sets 𝐸𝑖 satisfying diam(𝐸𝑖) ⩽ 𝛿. For
a metric space 𝑋 there exists a constant 𝑁 ∈ [0, +∞] such
that ℋ𝑠(𝑋) = 0 for 𝑠 > 𝑁 and ℋ𝑠(𝑋) = ∞ for all 𝑠 < 𝑁.
The quantity 𝑁 is called the Hausdorff dimension of 𝑋 and
is denoted by dim𝐻(𝑋).

It is also important to note that Gromov–Hausdorff lim-
its (see next section) of Alexandrov spaces of curvature ⩾ 𝜅
are themselves Alexandrov spaces of curvature ⩾ 𝜅. There
are also compactness results for Alexandrov spaces. Gro-
mov himself proved that the space ℳ(𝑛, 𝜅, 𝐷) composed
of the Alexandov spaces with curvature ⩾ 𝜅, diameter ⩽ 𝐷
and Hausdorff (topological) dimension ⩽ 𝑛 is compact in
the Gromov–Hausdorff topology.

Although the Hausdorff measureℋ𝑁 on a metric space
(𝑋, 𝑑), with𝑁 = dim𝐻(𝑋), is a natural measure to consider,
sometimes it is more interesting to take a different one, see
Appendix 2 in [CC97]. This leads to the notion of metric
measure space (𝑋, 𝑑, 𝜇), which is nothing but a metric space
(𝑋, 𝑑) together with a Borel measure 𝜇 on 𝑋 . If (𝑋, 𝑑) is
a length (geodesic) space we refer to (𝑋, 𝑑, 𝜇) as a length
(geodesic) measure space.

A sequence (𝑋𝑖, 𝑑𝑖, 𝜇𝑖) of metric measure spaces con-
verges in measured Gromov–Hausdorff topology to a met-
ric measure space (𝑋, 𝑑, 𝜇) if there is a sequence of measur-
able maps 𝑓𝑖 ∶ 𝑋𝑖 → 𝑋 and a sequence of real numbers 𝜀𝑖
converging to 0 such that the maps 𝑓𝑖 are (1, 𝜀𝑖)-quasi-iso-
metries:

|| 𝑑(𝑓𝑖(𝑥), 𝑓𝑖(𝑥′)) − 𝑑𝑖(𝑥, 𝑥′)|| < 𝜀𝑖 𝑥, 𝑥′ ∈ 𝑋𝑖,

the tubular neighborhood of radius 𝜀𝑖 of 𝑓𝑖(𝑋𝑖) is 𝑋 , and
the push-forwardmeasures (𝑓𝑖)∗𝜇𝑖 converge in weak topol-
ogy to 𝜇, cf. Fukaya (1987).

5. Metric Spaces with a Lower Bound on
Ricci Curvature

That the curvature of a Riemannian manifold implies met-
ric properties of triangles was the key to introduce a syn-
thetic notion of metric spaces with bounded curvature. An
analogous approach should be possible for the Ricci cur-
vature on a Riemannian manifold.

It looks like the first ones to discuss the possibility of
such generalization were Cheeger and Colding in Appen-
dix 2 in [CC97], who suggested to use lower bounds on
the volume growth of sectors. See also §5.44 in Gro-
mov [Gro07]. In a Riemannian manifold 𝑀, the classical
Bishop–Gromov theorem implies that if𝕄𝜅 is amodel Rie-
mannian manifold (complete simply connected with con-
stant sectional curvature 𝜅) of the same dimension as 𝑀
and satisfying Ric𝑀 ⩾ Ric𝕄𝜅 , we have

|𝐴(𝑝, 𝑟2, 𝑟3)|
|𝐴(𝑝, 𝑟1, 𝑟2)|

⩽ |𝐴0(𝑟2, 𝑟3)|
|𝐴0(𝑟1, 𝑟2)|

for arbitrary 𝑟1 ⩽ 𝑟2 ⩽ 𝑟3, where 𝐴(𝑝, 𝑟, 𝑠) is the annulus
{𝑞 ∈ 𝑀 ∶ 𝑟 ⩽ 𝑑(𝑞, 𝑝) ⩽ 𝑠}, and 𝐴0(𝑟, 𝑠) the corresponding
annulus in 𝑀0, whose volume is independent of the base
point. The symbol | ⋅ | denotes the Riemannian volumes.
This inequality is also valid if we consider a geodesic sector
𝑆 ⊂ 𝑀 with focal point 𝑝, which is nothing but a set 𝑆 such
that, for each 𝑞 ∈ 𝑆, there is a geodesic segment connecting
𝑝 and 𝑞. Let 𝑆(𝑟, 𝑠) = 𝑆 ∩ 𝐴(𝑝, 𝑟, 𝑠). Then we have

|𝑆(𝑟2, 𝑟3)|
|𝑆(𝑟1, 𝑟2)|

⩽ |𝐴0(𝑟2, 𝑟3)|
|𝐴0(𝑟1, 𝑟2)|

for arbitrary 𝑟1 < 𝑟2 < 𝑟3.

𝑟1
𝑟2

𝑟3

𝑟1
𝑟2

𝑟3

Figure 4. Comparison of volume of geodesic sectors.

Another synthetic approach to Ricci curvature men-
tioned in Cheeger and Colding [CC97] is the use of the
Laplacian of the distance function. The classical Bishop
volume comparison for balls in an 𝑚-dimensional mani-
fold𝑀 with Ric ⩾ (𝑚−1)𝜅 follows from comparison of the
mean curvatures of geodesic spheres with the same radii in
𝑀 and the space form𝕄𝜅 of constant sectional curvature 𝜅.
The mean curvature of a geodesic sphere is the Laplacian
of the distance function 𝑑 to a fixed point. So, for instance,
when 𝜅 = 0, this translates into the equation

Δ𝑑 ⩽ (𝑚 − 1) 1𝑑 (2)

at least for small radius. Note that (𝑚 − 1)/𝑑 is the mean
curvature of a ball of radius 𝑑 in the Euclidean space ℝ𝑚.
Equation (2) was shown to hold in a weak sense in Rie-
mannian manifolds by Calabi (1958). In order for this
approach to work we need the extension of the notion of
Laplacian to a metric space. Observe that for a Lipschitz
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function on a metric measure space (𝑋, 𝑑, 𝜇) we can define

|∇𝑓|(𝑥) = lim sup
𝑦→𝑥

|𝑓(𝑦) − 𝑓(𝑥)|
𝑑(𝑦, 𝑥) ,

and the Cheeger energy

Ch(𝑓) = ∫
𝑋
|∇𝑓|2 𝑑𝜇.

By approximation of measurable functions by Lipschitz
functions, this energy can be extended to wider classes. In
general, Ch is not a quadratic form. We say that a metric
measure space is infinitesimally Hilbertian if the Cheeger en-
ergy is a quadratic form in 𝐿2(𝑋, 𝜇). On such spaces it is
possible to define a weak notion of Laplacian, thus giving
sense to inequality (2). This extension of differential calcu-
lus to metric spaces has been carried out by Gigli [Gig15].
See also Ambrosio’s lecture at ICM2018 [Amb18]. A recent
monograph byHeinonen, Koskela, Shanmugalingam, and
Tyson (2015) is a very good introduction to analysis on
metric spaces.

Yet another generalization of the notion of Ricci curva-
ture comes from the well-known Bochner’s formula. Re-
call that Bochner’s formula in a Riemannian manifold
reads

1
2Δ|∇𝑢|

2 = ∇𝑢(Δ𝑢) + |∇2𝑢|2 + Ric(∇𝑢,∇𝑢). (3)

If we assume Ric ⩾ 𝐾 and use the estimate |∇2𝑢|2 ⩾
(Δ𝑢)2/𝑚 we arrive at Bochner’s inequality

1
2Δ|∇𝑢|

2 ⩾ ∇𝑢(Δ𝑢) + (Δ𝑢)2
𝑚 + 𝐾|∇𝑢|2.

Here𝑚 = dim𝑀 and, of course, can be replaced by a larger
number. All the operators appearing in this formula can
be defined weakly on a metric measure space assuming
some extra hypotheses, thus providing a notion of Ricci
curvature bounded below.
5.1. An approach based on mass transport. In the first
decade of the 21st century, Lott and Villani [LV09] and
Sturm [Stu06a,Stu06b] introduced independently equiva-
lent notions of metric measure spaces with Ricci curvature
bounded below. These notions were based on mass trans-
portation properties on Riemannian manifolds with Ricci
curvature bounded below.

Let us introduce first a few concepts, see Villani [Vil09]
for an excellent exposition. Given a metric space (𝑋, 𝑑) we
consider the space 𝒫(𝑋) of probability measures on 𝑋 and
𝒫2(𝑋) ⊂ 𝒫(𝑋) the subset of those 𝜇 ∈ 𝒫(𝑋) satisfying

∫
𝑋
𝑑2(𝑥, 𝑦) 𝑑𝜇(𝑦) < ∞

for some (all) 𝑥 ∈ 𝑋 . Given 𝜇0, 𝜇1 ∈ 𝒫2(𝑋), a transport plan
between 𝜇0 and 𝜇1 is a probabilitymeasure 𝜇 on𝑋×𝑋 with
marginals 𝜇0, 𝜇1 (i.e., the push-forward measures (𝑝1)∗(𝜇),
(𝑝2)∗(𝜇) by the projections 𝑝𝑖 ∶ 𝑋 × 𝑋 → 𝑋 , 𝑖 = 1, 2, are

𝜇0 and 𝜇1). We denote the set of transport plans between
𝜇0 and 𝜇1 by Plan(𝜇0, 𝜇1). The Wasserstein distance W2 on
𝒫2(𝑋) is defined by

W2
2(𝜇0, 𝜇1) = min

𝜇∈Plan(𝜇0,𝜇1)
∫
𝑋×𝑋

𝑑2(𝑥0, 𝑥1) 𝑑𝜇(𝑥0, 𝑥1).

A minimizer of this problem is called an optimal transport
plan between 𝜇0 and 𝜇1. The metric space (𝒫2(𝑋),W2) in-
herits many properties of (𝑋, 𝑑). The equivalence between
geodesics in Wasserstein space and certain optimal trans-
port plans was established by Lott and Villani [LV09, §2.3]
and Sturm [Stu06a, §2.3].

Given (𝑋, 𝑑, 𝜇), we define the Shannon and Rényi entropy
functionals for a measure 𝜈 by

Ent(𝜈) = {∫𝑋 𝜌 log(𝜌) 𝑑𝜇, if the integral exists,
+∞, otherwise,

and

Ent𝑁(𝜈) = −∫
𝑋
𝜌1−1/𝑁 𝑑𝜇,

for 𝑁 ∈ [1,∞). Here 𝜈 = 𝜌𝜇 + 𝜈𝑠 is the decomposition
of 𝜈 as the sum of a measure absolutely continuous with
respect to 𝜇 and a singular measure 𝜈𝑠 ⟂ 𝜇.

We say that a function 𝑓 ∶ 𝒫2(𝑋) → ℝ is 𝐾-convex if for
any Wasserstein geodesic Γ ∶ [0, 1] → 𝒫2(𝑋),

𝑓(Γ(𝑡)) ⩽ (1 − 𝑡)𝑓(Γ(0))

+ 𝑡𝑓(Γ(1)) − 𝐾
2 (1 − 𝑡)W2

2(Γ(0), Γ(1)).

Observe that 0-convex just means convex. Then we say
that (𝑋, 𝑑, 𝜇) satisfies the CD(0,∞) property (or that has
curvature ⩾ 0) if, for any pair 𝜇0, 𝜇1 ∈ 𝒫2(𝑋), there is a
Wasserstein geodesic Γ ∶ [0, 1] → 𝒫2(𝑋) connecting 𝜇0, 𝜇1
such that Ent ∘ Γ is convex. We say that (𝑋, 𝑑, 𝜇) satisfy the
CD(0, 𝑁) property for 𝑁 ∈ [1,∞) if, for any 𝜇0, 𝜇1 ∈ 𝒫2(𝑋),
there exists a Wasserstein geodesic Γ ∶ [0, 1] → 𝒫2(𝑋) con-
necting 𝜇0, 𝜇1 such that Ent𝑁′ ∘ Γ is convex for all 𝑁′ ⩾ 𝑁.

Property CD(𝐾,∞) is defined the same way as CD(0,∞)
replacing convexity by𝐾-convexity of Ent∘Γ for anyWasser-
stein geodesic. Property CD(𝐾, 𝑁), for 𝑁 ∈ [1,∞), is de-
fined by replacing 𝐾-convexity by a more involved con-
dition in which the functions 1 − 𝑡, 𝑡, are replaced by
functions 𝜏(1−𝑡)𝐾,𝑁′ , 𝜏(𝑡)𝐾,𝑁′ , see Definition 5.4 in Ambrosio
[Amb18].

The CD(𝐾, 𝑁) property is satisfied for 𝑁-dimensional
Riemannian manifolds with Ric ⩾ 𝐾 and is stable under
measured Gromov–Hausdorff convergence.

Several refinements were made later to the theory of
CD(𝐾, 𝑁) spaces. The spaces CD∗(𝐾, 𝑁) satisfy locally the
CD condition. Equivalence of CD and CD∗ notions for
nonbranching metric measure spaces has been proved by
Cavalletti and Milman [CM21]. A geodesic space (𝑋, 𝑑) is
nonbranching if the map 𝑓𝑡 ∶ Geo(𝑋) → 𝑋2, taking any
geodesic 𝛾 ∶ [0, 1] → 𝑋 to the pair (𝛾(0), 𝛾(𝑡)), is injective
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for all 𝑡 ∈ (0, 1]. Finally RCD(𝐾, 𝑁) and RCD∗(𝐾, 𝑁) spaces
(the R stands for Riemannian) mean that the infinitesimally
Hilbertian hypothesis is added. Recently Erbar, Kuwada,
and Sturm [EKS15] and Ambrosio, Mondino and Savaré
[AMS19] obtained the validity of Bochner’s inequality in a
RCD(𝐾,∞) metric measure space.

Petrunin (2011) checked the compatibility of these no-
tions with the one of curvature bounded below by prov-
ing that 𝑚-dimensional Alexandrov spaces with nonneg-
ative curvature satisfy the curvature dimension condition
CD(0,𝑚) for 𝑚 < ∞.

Another approach to a synthetic notion of lower bound
on the Ricci curvature was introduced by Ohta (2007) in
terms of the metric contraction property. This property is
also equivalent, on a Riemannian manifold, to having a
a lower bound on the Ricci curvature. Also Alexandrov
spaces satisfy this property. Roughly speaking, the mea-
sure contraction property implies that for every set 𝐴 ⊂ 𝑋
with 0 < 𝜇(𝐴) < ∞ and for every 𝑥 ∈ 𝑋 , the normal-
ized restriction of the measure 𝜇 to 𝐴 (i.e., 𝜇|𝐴/𝜇(𝐴)) can
be transported in a controlled way along geodesics to the
Dirac measure 𝛿𝑥.

It is worth mentioning that the notion of CD(𝐾, 𝑁)
and the metric contraction property do not hold in sub-
Riemannian manifolds, even in the simplest case of the
Heisenberg groups, as shown by Juillet (2009). Recently
Milman (2021), inspired by Barilari and Rizzi (2019), has
suggested a quasi-convex relaxation QCD(𝑄, 𝐾, 𝑁) of the
CD(𝐾, 𝑁) condition for sub-Riemannian manifolds which
coincides with the latter when 𝑄 = 1.

6. Metric Structures on Graphs
A graph 𝒢 = (𝑉, 𝐸) is composed of a set of vertices 𝑉 and
a set of edges 𝐸 connecting two given vertices. We assume
that no more than one edge connects two given vertices
and that there are no loops, that is, edges connecting the
same vertex. A graph can be undirected, meaning that every
edge has no orientation, and in this case we denote an edge
connecting the vertices 𝑒, 𝑣 by {𝑒, 𝑣}. A graph can also be
directed, meaning that every edge has an initial and a final
point. In this case, it is denoted by (𝑒, 𝑣). The vertex 𝑒 is
the origin of the edge and 𝑣 the endpoint. We say that 𝑒, 𝑣
are incident to (𝑒, 𝑣) (or {𝑒, 𝑣}). Of course (𝑒, 𝑣) and (𝑣, 𝑒) are
different edges in a directed graph.

Given two vertices 𝑒, 𝑣 in a graph, a path connecting 𝑒
and 𝑣 is a sequence of vertices 𝑥0 = 𝑒, 𝑥1, … , 𝑥𝑘 = 𝑣 so
that {𝑥𝑖−1, 𝑥𝑖} (or (𝑥𝑖−1, 𝑥𝑖)) is an edge for all 𝑖 = 1, … , 𝑘.
A weight function 𝜔 ∶ 𝐸 → ℝ+ assigns to each edge ℓ a
positive measure 𝜔(ℓ) of the edge. A graph is connected if
any pair of vertices can be connected by a path.

We can define a distance on the set of vertices of an undi-
rected connected graph with an arbitrary weight function

by defining

𝑑(𝑒, 𝑣) = inf
𝑘
∑
𝑖=1

𝜔({𝑥𝑖−1, 𝑥𝑖}),

where the infimum is taken over all paths 𝑥0, … , 𝑥𝑘 con-
necting 𝑒 and 𝑣. Geodesics or shortest length paths are defined
as the ones that realize the distance between its extreme
points. The portion of a path connecting two vertices in a
geodesic is also a geodesic.
6.1. Asymmetric distances on graphs. If 𝒢 = (𝑉, 𝐸) is a
directed graph with a weight function 𝜔 ∶ 𝐸 → ℝ, we
can define a “distance” between two vertices 𝑒, 𝑣 simply by
setting

𝑑(𝑒, 𝑣) = inf
𝑘
∑
𝑖=1

𝜔((𝑥𝑖−1, 𝑥𝑖))

in case there is a path connecting 𝑒 and 𝑣. The infimum is
taken over all paths 𝑥0, … , 𝑥𝑘 connecting 𝑒 and 𝑣. If there
is no such path we define

𝑑(𝑒, 𝑣) = ∞.
We also define 𝑑(𝑒, 𝑒) = 0 for all 𝑒 ∈ 𝑉 . This way we have
defined a map 𝑑 ∶ 𝑉 × 𝑉 → 𝑅 = ℝ ∪ {∞} such that the
following properties hold

1. 𝑑(𝑒, 𝑣) ⩾ 0 for all 𝑒, 𝑣 ∈ 𝑉 ,
2. 𝑑(𝑒, 𝑣) ⩽ 𝑑(𝑒, 𝑤) + 𝑑(𝑤, 𝑣) for all 𝑒, 𝑣, 𝑤 ∈ 𝑉 .

In the triangle inequality we have used ∞+ 𝑎 = 𝑎 +∞ =
∞ + ∞ = ∞ for all 𝑎 ⩾ 0. In case 𝜔(ℓ) ⩾ 𝜀 > 0 for all
ℓ ∈ 𝐸 or some another alternative hypothesis is assumed
we also have

1’. 𝑑(𝑒, 𝑣), 𝑑(𝑣, 𝑒) > 0 if 𝑒 ≠ 𝑣.
A map 𝑑 ∶ 𝑉 × 𝑉 → 𝑅 satisfying 1,1′, and 2 is called an
asymmetric distance on 𝑉 . The pair (𝑉, 𝑑) is called an asym-
metric metric space.

1 2

34

5

6

7 8

Figure 5. Geodesics or shortest length paths between vertices
1 and 5 in a directed graph depicted in red. The weight
function here is 𝜔(ℓ) = 1 for any ℓ ∈ 𝐸.

Metric structures on graphs are commonly used in com-
puter science. For instance, the breadth-first search algo-
rithm, an exploratory algorithm in graphs, consist essen-
tially on the computation of the metric balls on an undi-
rected graph, where the weight function is 𝜔(ℓ) = 1 for
any edge ℓ. Dijkstra’s algorithm computes shortest length
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paths between two vertices in a directed graph with posi-
tive weights using metric projections on metric balls recur-
sively calculated, see [CLRS09].
6.2. Curvature-dimension conditions on graphs. A no-
tion of curvature-dimension curvature on graphs has been
introduced by Lin and Yau [LY10]. See also Ollivier (2009)
for a notion of Ricci curvature onMarkov chains on graphs,
and Erbar and Maas (2012) for finite Markov chains. For
the Lin and Yau notion, consider an undirected graph
𝒢 = (𝑉, 𝐸) with weight function 𝜔. We assume that 𝒢 is
locally finite in the sense that the number of edges connect-
ing every vertex to others is finite. Define

𝜇(𝑥) = ∑
{𝑥,𝑦}∈𝐸

𝜔({𝑥, 𝑦}),

and a measure of a set Ω ⊂ 𝑉 by

𝜇(Ω) = ∑
𝑥∈Ω

𝜔(𝑥).

For a function 𝑓 ∶ 𝑉 → ℝ the Laplacian Δ𝑓 and squared
gradient |∇𝑓|2 are defined by

Δ𝑓(𝑥) = 1
𝜇(𝑥) ∑

{𝑥,𝑦}∈𝐸
𝜔({𝑥, 𝑦})(𝑓(𝑦) − 𝑓(𝑥)),

|∇𝑓|2(𝑥) = 1
𝜇(𝑥) ∑

{𝑥,𝑦}∈𝐸
𝜔({𝑥, 𝑦})(𝑓(𝑦) − 𝑓(𝑥))2,

for every 𝑥 ∈ 𝑉 . In addition, for 𝑓, 𝑔 ∶ 𝑉 → ℝ, we define
the operators

Γ(𝑓, 𝑔) = 1
2{Δ(𝑓𝑔) − 𝑓Δ𝑔 − 𝑔Δ𝑓},

Γ2(𝑓, 𝑔) =
1
2{ΔΓ(𝑓, 𝑔) − Γ(𝑓, Δ𝑔) − Γ(𝑔, Δ𝑓)}.

According to Lin and Yaus’s paper [LY10] the graph 𝒢
satisfies the curvature-dimension condition CD(𝑚, 𝐾) if

Γ2(𝑓, 𝑓) ⩾
1
𝑚(Δ𝑓)2 + 𝐾Γ(𝑓, 𝑓),

and the CD(∞, 𝐾) condition if

Γ2(𝑓, 𝑓) ⩾ 𝐾Γ(𝑓, 𝑓).

The CD(𝑚, 𝐾) curvature-dimension condition is the dis-
crete counterpart of Bochner’s inequality. Lin and Yan
used these notions to prove that a locally finite graph sat-
isfies the CD(2, 1

𝑑
− 1) curvature condition, where 𝑑 is the

weighted degree of the graph, given by

𝑑 = sup
𝑥∈𝑉

sup
{𝑥,𝑦}∈𝐸

𝜇(𝑥)
𝜔({𝑥, 𝑦}) .

They also obtained a lower bound of the first nonzero
eigenvalue of the Laplacian on the graph in terms of the
degree 𝑑 and the diameter of the graph.

6.3. The Cayley graph. An interesting metric structure
can be introduced on groups, allowing the use of geomet-
ric arguments to obtain results on the algebraic structure.
Assume we have a group 𝐺 with a set of generators 𝑆 satis-
fying 𝑆−1 = 𝑆, that is, for every 𝑠 ∈ 𝑆 we have 𝑠−1 ∈ 𝑆. We
define the undirectedCayley graph associated to𝐺 as (𝐺, 𝐸),
where

𝐸 = {{𝑒, 𝑣} ∶ 𝑒−1𝑣 ∈ 𝑆}.
Hence the vertices are the elements of the group and the
edges incident to 𝑒 ∈ 𝐺 are of the form {{𝑒, 𝑒𝑠} ∶ 𝑠 ∈ 𝑆}.
We take as weight function 𝜔(ℓ) = 1 for any edge ℓ. If
𝑥0 = 𝑒, 𝑥1, … , 𝑥𝑘 = 𝑣 is a path connecting 𝑒 and 𝑣 then
there exist 𝑠1, … , 𝑠𝑘 such that 𝑥𝑖−1𝑠𝑖 = 𝑥𝑖 for 𝑖 = 1, … , 𝑘.
Hence 𝑣 = 𝑥𝑘 = 𝑒(𝑠1⋯𝑠𝑘) and

𝑒−1𝑣 = 𝑠1⋯𝑠𝑘.
Reciprocally, if we can express 𝑒−1𝑣 as a product of 𝑘 ele-
ments of 𝑆 then there is a path 𝑒 = 𝑥0, 𝑥1, … , 𝑥𝑘 = 𝑣 con-
necting 𝑒 and 𝑣. Hence the associated distance is the min-
imum number of generators needed to express 𝑒−1𝑣. This
is called the word metric on 𝐺.

Figure 6. Unit balls for the group ℤ2 with set of generators
𝑆 = {±(1, 0), ±(0, 1)}, and 𝑆 = {±(1, 0), ±(0, 1), ±(1, 1)},
respectively.

Since left-translations are isometries of the word metric,
all metric balls 𝐵(𝑟) of a fixed radius 𝑟 > 0 have the same
number of elements. A group has polynomial growth if there
are constants 𝐶 > 0 and 𝑑 > 0 such that

card 𝐵(𝑟) ⩽ 𝐶𝑟𝑑.
The first striking application of metric theory to group the-
ory was the following result by Gromov

Theorem ([Gro81]). If a finitely generated group has polyno-
mial growth then it contains a nilpotent subgroup of finite index.

This result is usually considered as the starting point of
Geometric group theory. See also Gromov’s Hyperbolic groups
(1987) andAsymptotic invariants of infinite groups (1993) for
influential works on the subject.

Final Comments
The theory of metric spaces is a lively research subject in
current Mathematics. The techniques developed to face
the problems in this area have had a deep, unifying and
simplifying influence in related areas of Mathematics. De-
spite the fact we have only covered in this note only a few
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of the geometric aspects, there is an enormous develop-
ment in progress of the theory of analysis on metric spaces.
The reader is referred to Semmes’s papers (2003) in these
Notices for an overview of the subject.

A version of this manuscript with full references can be
found on the author’s personal webpage: http://www.ugr
.es/~ritore.
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Almost Sufficiently Large

Danny Calegari
1. The Engineer
Wolfgang Haken, one of the greatest and most original
topologists of the 20th century, was born June 21, 1928,
in Berlin, Germany. He obtained a PhD in mathematics at
the University of Kiel in 1953, and then worked for almost
a decade as an electrical engineer designing microwave de-
vices at Siemens. While working there he solved what
was perhaps the most fundamental unsolved problem in
knot theory: the unknot recognition problem (hereafter URP)
— i.e., the problem of giving an algorithm to determine
whether a knot 𝐾 in 𝑆3 is the unknot.

Danny Calegari is a professor in the Department of Mathematics at the Univer-
sity of Chicago. His email address is dannyc@uchicago.edu.

Communicated by Notices Associate Editor Chikako Mese.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2775

1.1. Knots and the URP. For our purposes a knot 𝐾 is a
smooth embedded 𝑆1 in 𝑆3. Two knots 𝐾, 𝐾′ are equivalent
if one may be moved to the other by a smooth isotopy. An
unknot is any knot equivalent to a round circle in 𝑆3 (e.g.,
a great circle in the round metric).

Some people find it difficult to understandwhy theURP
is a difficult problem. Indeed, it is not easy to draw a di-
agram of an unknot that can’t be obviously simplified by
moving one or two strands. But it is easy to be mislead
if one thinks of knots that one can easily draw, that have
maybe a dozen crossings or fewer. Maybe one gets a bet-
ter sense of the complexity of the problem by contemplat-
ing the act of untangling a string of Christmas lights (or a
long garden hose). Figure 1 is one of Haken’s examples of
“complicated” unknots; the reader who can see easily how
to begin to untangle it is a better topologist than I.
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Figure 1. One of Haken’s unknots.

Unknots may be characterized in several ways:

1. 𝐾 is an unknot if and only if 𝜋1(𝑆3 − 𝐾) ≅ ℤ; or
2. 𝐾 is an unknot if and only if it is the boundary of an

embedded 𝐷2 in 𝑆3.

Any knot 𝐾 in 𝑆3 is the boundary of some compact ori-
ented embedded surface Σ (a so-called Seifert surface) for
𝐾. The least genus of a Seifert surface is called the genus
of the knot. Thus: a knot is the unknot if and only if its
genus is zero.
1.2. Linear programming. Haken’s solution to the URP
was revolutionary. It depends on the characterization of
an unknot as one that bounds an embedded disk in its
complement (a Seifert disk). Haken’s algorithm either
finds such a disk, or certifies that none exists.

Let’s suppose we want to find a Seifert disk 𝐷. If it exists,
it may be found among the set S of properly embedded
surfaces in the knot complement 𝑆3 − 𝐾. The problem
of course is that S is an enormously complicated set with
little apparent structure. The key is to replace S by a more
manageable collection of surfaces, as follows. Choose a
triangulation 𝜏 of 𝑆3 − 𝐾. A properly embedded surface
Σ in 𝑆3 − 𝐾 is said to be normal with respect to 𝜏 if the
intersection of Σ with each tetrahedron Δ of 𝜏 is a finite

Figure 2. The four triangles and one of three quadrilaterals
that might make up the components of Σ ∩ Δ for a normal
surface Δ and a tetrahedron Δ.

disjoint collection of triangles and quadrilaterals, each of
which has the combinatorial form depicted in Figure 2.

There are seven combinatorially distinct triangles and
quadrilaterals in each tetrahedron; thus a normal surface
Σ determines a nonnegative integral vector 𝑣(Σ) in ℤ7|𝜏|,
where |𝜏| is the number of tetrahedra in 𝜏. This enjoys the
following rather miraculous properties:

1. any properly embedded surface Σ may either be iso-
toped to be normal, or may be simplified by an oper-
ation (compression — we shall discuss this in § 2) that
reduces its topological complexity;

2. the set V of vectors 𝑣 of the form 𝑣(Σ) for some normal
surface Σ is precisely the subset of ℤ7|𝜏| satisfying a fi-
nite constructible set of integer linear equalities and
inequalities; and

3. normal surfaces may be recovered from their vectors;
i.e., given 𝑣 ∈ V we may recover Σ with 𝑣(Σ) = 𝑣
uniquely up to isotopy.

These properties, though easy to prove, have powerful con-
sequences: they reduce topological questions about em-
bedded surfaces in 3-manifolds — at least, the incompress-
ible ones — to linear programming.

A Seifert disk 𝐷 for 𝐾, if one exists, may not be com-
pressed (it is incompressible) so it may always be isotoped
to be normal, and represented by a vector 𝑣(𝐷) ∈ V. For
any triangulation 𝜏 the set V consists of the integer lat-
tice points in a finite union of rational convex polyhedral
cones in ℝ7|𝜏|; projectivizing this cone gives a finite set of
rational projective polyhedra. If a Seifert disk 𝐷 exists, one
may be found so that the projectivization of 𝑣(𝐷) is a vertex
of one of these polyhedra. Thus the URP comes down to
the (routine, though computationally expensive) problem
of determining these polyhedra, enumerating their finite
set of vertices, and checking whether any of these corre-
sponds to the desired 𝐷.
1.3. A “just so” story. The URP is not Haken’s best-
known theorem in topology. In 1976, with the collabora-
tion of Kenneth Appel, he proved the Four Color Theorem:
the conjecture — first made in the 1850s — that one may
label the vertices of a planar graph with at most four col-
ors in such a way that no two adjacent vertices receive the
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same label. Famously (or perhaps notoriously) the proof
depended essentially on the use of a computer. The argu-
ment proceeds by first constructing and certifying a finite
unavoidable set of graphs: a collection of graphs with the
property that any minimal counterexample must contain
one of these as a subgraph. Next one shows that each of
the graphs Γ in this collection is reducible: it may be sim-
plified to a new graph Γ′ in such a way that if Δ contains Γ,
and Δ′ is the result of replacing Γ in Δ with Γ′, then Δmay
be four-colored if Δ′ can. These two properties of a finite
collection — unavoidability and reducibility — together
show by induction that no minimal counterexample can
exist, and therefore the Four Color Theorem is true.

The essential use of a computer for the verification of
such a famous conjecture generated a storm of contro-
versy, centered on the philosophical question of surveya-
bility: whether one should accept the validity of a proof
whose details, while humanly checkable one by one, were
too numerous to be checkable in aggregate. If this strikes
the contemporary reader as a rather frivolous point to get
hung up on, it might be because the urgency of the contro-
versy always had more to do with the sociology of mathe-
matics than anything else.

Why was Haken able to solve such significant and long-
standing problems when others failed? I do not know the
answer, and probably it is unknowable.

Here is a guess. Haken appears to have been unusually
open-minded about the use of tools (linear programming,
computers) that were not part of the traditional mathe-
matical repertoire. Linear Programming was largely in-
vented by economists, and plays a significant role in many
highly applied fields such as network flow problems and
supply chainmanagement. And although the first comput-
ers were invented by mathematicians, arguably as a natu-
ral development of the formalization program of Hilbert
as pursued, e.g., by Russell–Whitehead, Gödel, and others,
their use as a theoretical tool did not conform to Courant’s
description of mathematics as “an expression of the hu-
man mind reflect(ing) the active will, the contemplative
reason, and the desire for aesthetic perfection.” Is it pos-
sible that Haken’s early career as an engineer made him
more familiar with, and unprejudiced about tools such as
these? What other tools, perspectives, metaphors, work-
habits might prove of value to contemporary mathemati-
cians if we were able to broaden our conception of our
discipline enough to include them?

2. Hierarchies
Let’s take a closer look at incompressibility. If Σ is an em-
bedded two-sided surface in a closed 3-manifold𝑀, a com-
pressing disk for Σ is a properly embedded disk 𝐷 in 𝑀 − Σ
so that 𝜕𝐷 ⊂ Σ is an essential simple loop in Σ (one that
does not bound a disk in Σ). One may cut out an annular

neighborhood of 𝜕𝐷 in Σ and glue in two parallel copies
of 𝐷 to produce a simpler surface, obtained from Σ by com-
pression. See Figure 3. If Σ admits no compressing disk, it
is incompressible (one also says Σ is essential).

Figure 3. A compressing disk in a surface and the result of
compression.

If 𝐷 is a compressing disk for Σ, the conjugacy class
represented by 𝜕𝐷 in 𝜋1(Σ) is in the kernel of the inclu-
sion map 𝜋1(Σ) → 𝜋1(𝑀). A remarkable theorem of Max
Dehn gives the converse: if Σ ⊂ 𝑀 is incompressible, then
𝜋1(Σ) → 𝜋1(𝑀) is injective.

It follows that in the universal cover �̃� the preimages
of Σ are properly embedded planes that cut up the univer-
sal cover into simply-connected complementary regions
which each (universally) cover a component of 𝑀 − Σ. A
graph Γ with one vertex for each complementary region
and one edge for each plane is in fact a tree (because �̃�
is simply-connected), and by construction this tree comes
with an action of 𝜋1(𝑀) for which the edge stabilizers are
the conjugates of 𝜋1(Σ) and the vertex stabilizers are the
conjugates of 𝜋1 of the components of 𝑀 − Σ.

Friedhelm Waldhausen introduced the term sufficiently
large for an irreducible 3-manifold 𝑀 (one in which every
smoothly embedded 2-sphere bounds a 3-ball) that satis-
fies the first (and therefore all) of the following equivalent
conditions:

1. 𝑀 contains an incompressible surface Σ;
2. 𝜋1(𝑀) splits nontrivially as an amalgam 𝐴 ∗𝐶 𝐵 or

HNN extension 𝐴∗𝐶 ;
3. 𝜋1(𝑀) acts nontrivially on a tree Γ.

Cutting 𝑀 along Σ produces a new (possibly discon-
nected) 3-manifold 𝑀′ with boundary. There is a notion
of essential surface in a manifold with boundary. If 𝜕𝑀′

contains a surface of positive genus, then 𝐻2(𝑀′, 𝜕𝑀′) is
nontrivial, and any embedded surface Σ′ representing a
nontrivial class may be repeatedly compressed or “bound-
ary compressed” until it becomes essential. Thus 𝑀′ is
also sufficiently large, and may be cut along Σ′ to pro-
duce 𝑀″ and so on, unless it happens at some point that
every boundary component is a 2-sphere, which implies
(because of the irreducibility of 𝑀) that the resulting 3-
manifold is a union of 3-balls. Technically, after two or
more cuts, one should think of the result as a manifold
“with corners,” and the 3-balls obtained at the end of the
procedure have the structure of (combinatorial) polyhe-
dra.

1430 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 9



Haken proved that this sequence of cuts — called a hi-
erarchy — must indeed necessarily terminate in a union
of 3-balls after an effectively computable number of steps,
and therefore one may understand and prove theorems
about sufficiently large 3-manifolds by induction. This has
turned out to be an extremely powerful perspective on 3-
manifold topology.

Over the years the terminology changed, so that “suffi-
ciently large” manifolds began to be referred to as “Haken
manifolds”; as a benchmark, Hempel’s book from 1976
[8] uses the former term, whereas Jaco’s book from 1980
[9] uses the latter. Thus a Haken manifold is an irreducible
3-manifold that contains an incompressible two-sided em-
bedded surface.
2.1. Topological rigidity. One of the first major applica-
tions of the theory of hierarchies, due to Waldhausen [19],
was the proof that Haken manifolds are “topologically
rigid”: a homotopy equivalence between Haken mani-
folds (satisfying certain further conditions if themanifolds
have boundary) is homotopic to a homeomorphism. Ex-
amples of (necessarily non-Haken) 3-manifolds for which
this fails are Lens spaces (quotients of 𝑆3 by cyclic isometry
groups): the Lens spaces 𝐿(𝑝; 𝑞1) and 𝐿(𝑝; 𝑞2) are homo-
topy equivalent if and only if one of ±𝑞1𝑞2 is congruent
to a square mod 𝑝, but are homeomorphic if and only if
𝑞1 is congruent to ±𝑞±12 mod 𝑝. Waldhausen straightens a
homotopy equivalence surface by surface, reducing to the
Alexander trick in the case of a ball.

In the same paper Waldhausen showed that the univer-
sal cover of aHakenmanifold is homeomorphic to a 3-ball.
He went on to remark that “of those irreducible manifolds,
known to me, which have infinite fundamental group and
are not sufficiently large, some (and possibly all) have a
finite cover which is sufficiently large” ([19], page 87); the
implication being that the universal covers of such man-
ifolds are likewise homeomorphic to a 3-ball. If one in-
terprets “(and possibly all)” as raising a question, this is
the first appearance in print of what became known as the
Virtual Haken Conjecture (hereafter VHC), the question of
whether every irreducible 3-manifold with infinite funda-
mental group is finitely covered by a Haken manifold.
2.2. Geometrization. In the late 1970s 3-manifold topol-
ogy was turned upside down by William Thurston’s Ge-
ometrization Conjecture — that every prime 3-manifold has
a canonical decomposition along a (possibly empty) fam-
ily of embedded essential tori into geometric pieces.

Here a geometric 3-manifold is one admitting a com-
plete Riemannian metric of finite volume modeled on
one of the eight “3-dimensional geometries,” which refer
to the possible homogeneous simply-connected complete
Riemannian 3-manifolds 𝑋 which admit a transitive max-
imal unimodular group 𝐺 of isometries. Of these eight
geometries, by far the most interesting and important is

hyperbolic 3-space. A closed hyperbolic 3-manifold is
necessarily irreducible, and furthermore its fundamental
group is infinite but does not contain a ℤ2 subgroup;
the geometrization conjecture implies that these necessary
conditions are also sufficient. The fundamental group of
a closed Haken manifold contains ℤ2 if and only if it con-
tains an essential embedded torus; thus the conjecture says
that a closedHakenmanifold is hyperbolizable if and only
if it contains no incompressible tori. Likewise, the conjec-
ture says that a Haken manifold with boundary is hyper-
bolizable if and only if every incompressible torus is iso-
topic to a boundary component, and it is not Seifert fibered
(roughly, a circle bundle over a surface orbifold).

Thurston gave an enormous amount of evidence for this
conjecture, proving it for several classes of manifolds, in-
cluding (most significantly) for Haken manifolds. Since
every knot complement in 𝑆3 is Haken, it follows from his
proof that any knot 𝐾 falls into one of the following three
classes:

1. torus knots: those that lie on an unknotted torus in 𝑆3
(such knot complements are Seifert fibered);

2. satellites: those that lie in an essential way in a solid
torus neighborhood of a nontrivial knot (the bound-
ary of the solid torus is essential but not boundary par-
allel); and

3. hyperbolic knots: those whose complements admit a
complete hyperbolic structure.

The hyperbolization theorem for Haken manifolds pro-
ceeds by induction. Even the base step of the argument is
rather subtle: one needs to “hyperbolize” the polyhedra
into which a Haken manifold is decomposed by a hierar-
chy, or exhibit a combinatorial obstruction why it cannot
be done.

Each such polyhedron 𝑃 can be thought of as a 3-ball to-
gether with a trivalent graph Γ embedded in the boundary,
and the goal is to find a hyperbolic metric on the 3-ball for
which the edges of Γ are geodesics, and the complementary
regions 𝜕𝑃3 − Γ are totally geodesic, and meet at right an-
gles along Γ. One necessary condition concerns the dual
graph Γ′ ⊂ 𝜕𝑃3 to Γ: it says that every loop 𝛾 in Γ′ of length
3 should be in the link of a vertex of Γ, and every loop of
length 4 should be in the link of an edge of Γ.

To see why these conditions are necessary, let𝐷 be a disk
in 𝑃 bounding 𝛾, and suppose 𝑄 is the closed 3-manifold
obtained from 𝑃 by reflection in the sides. This means the
following: if 𝑃 has 𝑛 faces 𝐹1,⋯ , 𝐹𝑛 we take 2𝑛 copies of
𝑃 indexed by maps from {1,⋯ , 𝑛} to {0, 1} and glue two
copies whose associated maps differ only at 𝑖 by identify-
ing their respective copies of the face 𝐹𝑖.

If 𝜕𝐷 has length 3 then 8 copies of 𝐷 fit together in 𝑄 to
form a sphere; similarly, if 𝜕𝐷 has length 4 then 4 copies
of 𝐷 fit together in 𝑄 to form a torus. Such spheres and
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tori will be essential unless the necessary condition holds;
thus they are an obstruction to hyperbolization. If 𝑃 is not
a tetrahedron, these necessary conditions turn out to be
sufficient, and 𝑃 may be hyperbolized.

The induction step is rather complicated, depending
on the quasiconformal deformation theory of hyperbolic
structures on 3-manifolds with incompressible boundary,
and we do not discuss it here. For details see, e.g., Misha
Kapovich’s book [11].
2.3. On proof and progress in mathematics. Thurston’s
proof of the hyperbolization theorem for Haken mani-
folds was written up and distributed as a series of preprints,
only one of which was ever formally published. Far more
influential than the details of the proof was the vision of
3-manifold theory implied by the geometrization conjec-
ture, and a suite of associated conjectures and questions
laid out in a famous Bulletin article [18].

This article contains few proofs and many examples.
The geometrization conjecture and its proof for Haken
manifolds is not the end but a starting point. One can
take the conclusion of the conjecture as a hypothesis, and
hyperbolic 3-manifolds as objects of interest in their own
right. Apparently disparate fields — complex and quasi-
conformal analysis, bounded cohomology, arithmetic lat-
tices, geometric group theory — are revealed as parts of a
deeper and more unified whole.

The article ends with a list of 24 questions/projects, of
which the geometrization conjecture was only the first,
which dominated research in 3-manifolds for the next 30
years. One can see the formulation of this list as both an
act of generosity, and of cultivation: it gifted the mathe-
matical community at once with new tools, and new lands
to explore with them.

An article Thurston wrote in 1994 [17] explains:

I concentrated most of my attention on develop-
ing and presenting the infrastructure in what I
wrote and in what I talked to people about . . .

The result has been that now quite a number of
mathematicians have what was dramatically lack-
ing in the beginning: a working understanding of
the concepts and the infrastructure that are natu-
ral for this subject. There has been and there con-
tinues to be a great deal of thriving mathemati-
cal activity. By concentrating on building the in-
frastructure and explaining and publishing defini-
tions and ways of thinking but being slow in stat-
ing or in publishing proofs of all the “theorems”
I knew how to prove, I left room for many other
people to pick up credit. . . .

What mathematicians most wanted and
needed from me was to learn my ways of thinking,
and not in fact to learnmy proof of the geometriza-
tion conjecture for Haken manifolds. It is unlikely

that the proof of the general geometrization con-
jecture will consist of pushing the same proof fur-
ther.

Number 16 on the problem list is the Virtual Haken
Conjecture (posed as a question). Onemay have viewed—
I and many colleagues I knew did view — this conjecture
as an intermediate step towards a possible approach to ge-
ometrization: given𝑀 closed and irreducible with infinite
𝜋1, if one knew𝑀 had a finite (regular) cover �̂� which was
Haken, one could geometrize �̂� and then analyze the ac-
tion of the deck group on �̂� to show that𝑀 was geometric
too (the details of how this argument might go emerged as
a corollary of work of Dave Gabai in 1997 [7]).

But how to get started? Suppose 𝑀 is a closed irre-
ducible 3-manifold. If the only thing we know about its
fundamental group is that it is infinite, how do we con-
struct any nontrivial finite cover of 𝑀 at all?

A curious chicken-and-egg situation emerges. Suppose
one already knew 𝑀 to be hyperbolic (say). Because the
group of isometries of hyperbolic 3-space is amatrix group,
we may deduce 𝜋1(𝑀) is linear and therefore (by a well-
known lemma of Atle Selberg) residually finite; this means
that for every nontrivial element 𝛾 ∈ 𝜋1(𝑀) there is a finite
index subgroup of 𝜋1(𝑀) that does not contain 𝛾. In partic-
ular, any hyperbolic 3-manifold admits many finite cover-
ings, and one can start to explore whether any Haken man-
ifolds may be found among them. Turning the conven-
tional view on its head, one could think of the geometriza-
tion conjecture itself as a stepping stone to the VHC.

As Thurston’s quote anticipates, the geometrization
conjecture was proved round the turn of the millenium us-
ing tools from completely different fields (geometric PDE
methods— specifically Ricci flow—and a deep analysis of
its singularity formation) by Grisha Perelman [12, 13] (a
short-cut to the Poincaré Conjecture spun off in a separate
paper in [14]). Thurston’s theorem for Haken manifolds
(and for that matter, most of 3-manifold topology) plays
almost no logical role in the argument.

3. Of LERF and RAAGs
After the work of Perelman the Virtual Haken Conjecture
narrowed to the question of whether every closed hyper-
bolic 3-manifold 𝑀 has a finite cover that contains an in-
compressible embedded surface. This question factorizes
naturally into two subquestions:

1. does 𝜋1(𝑀) contain a subgroup isomorphic to 𝜋1(𝑆)
for 𝑆 a closed surface (of genus at least 2)? and

2. does every immersed surface 𝑆 → 𝑀 injective on 𝜋1
lift to an embedding in a finite cover?

Immersed 𝜋1-injective surfaces in hyperbolic 3-manifolds
come in two distinct kinds: those that are (virtual) fibers of
a fibration of the manifold over the circle; and all the rest.
This distinction exactly captures a key geometric property
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of 𝜋1(𝑆) as a subgroup of 𝜋1(𝑀). If 𝑆 is a (virtual) fiber,
then 𝜋1(𝑆) is exponentially distorted in 𝜋1(𝑀), in the sense
that one may write certain elements of 𝜋1(𝑆) in terms of a
(fixed) generating set for 𝜋1(𝑀) far more efficiently than
they may be written in terms of a (fixed) generating set for
𝜋1(𝑆). On the other hand, if 𝑆 is not a virtual fiber, 𝜋1(𝑆) is
undistorted in 𝜋1(𝑀): translating elements of 𝜋1(𝑆) back
and forth between generating sets for 𝜋1(𝑆) and for 𝜋1(𝑀)
does no more than multiply word length by a bounded
multiplicative factor; one says in this situation that 𝜋1(𝑆)
is a quasiconvex subgroup of 𝜋1(𝑀).

Topologically, an incompressible immersed surface 𝑆
lifts to an embedded plane ̃𝑆 in the universal cover �̃�,
which is homeomorphic to ℝ3. But geometrically, if one
thinks of �̃� conformally as the interior of the round unit
ball in ℝ3, when 𝑆 is a virtual fiber the plane ̃𝑆 becomes
wilder and wilder near infinity, and limits to a sphere-
filling (Peano) curve; whereas when 𝑆 is not a virtual fiber,
the plane ̃𝑆 may be compactified to a closed disk in the
closed unit ball whose boundary is a topological circle
(technically, it enjoys the analytic regularity condition of
being a quasicircle).

Work of Peter Scott from 1978 [16] shows that the ques-
tion of lifting an immersed 𝜋1-injective surface to an em-
bedding can be re-expressed in purely algebraic terms. A
group 𝐺 is said to be LERF — an acronym for “locally ex-
tended residually finite” — if every finitely generated sub-
group 𝐻 is the intersection of some family of finite index
subgroups of 𝐺; equivalently, if, for every 𝑔 ∈ 𝐺 −𝐻 there
is a finite index subgroup 𝐻′ of 𝐺 containing 𝐻 but not
𝑔. Weaker than LERF is QCERF, or “quasiconvex extended
residually finite,” which asks for the LERF property only
for quasiconvex subgroups 𝐻 of 𝐺 (the analogous prop-
erty for hyperbolic 3-manifolds with (torus) boundary is
GFERF).
3.1. Nearly geodesic surfaces. How can one find (build?)
injective surfaces in a hyperbolic 3-manifold? There are
two problems: to find (build) the surface, and to show that
it is 𝜋1-injective. An embedded 2-sided surface that is not
𝜋1-injective has a simple essential loop in the kernel. For
an immersed surface this is unknown (this is the so-called
Simple Loop Conjecture), and in general it seems very hard
to give a purely topological criterion guaranteeing that an
immersion 𝑆 → 𝑀 is 𝜋1-injective. However it is possible
to give a geometric criterion.

In Euclidean space, submanifolds that are nearly flat on
a small scalemay be badly distorted on a large scale. But in
hyperbolic space, quasiconvexity is a local condition. Be-
cause hyperbolic space is negatively curved, geodesics di-
verge from each other exponentially quickly. This diver-
gence dominates the behavior of normal geodesics to a
submanifold whose extrinsic principal curvatures have ab-
solute value bounded away from 1, and (by comparison

with the endpoint map at infinity) certifies that such sub-
manifolds are 𝜋1-injective.

In 2009 Jeremy Kahn and Vladimir Markovic an-
nounced their proof [10] that every hyperbolic 3-manifold
contains (many!) 𝜋1-injective immersed surfaces. In fact
if 𝑀 is a closed hyperbolic 3-manifold, if 𝑝 ∈ 𝑀 is arbi-
trary, and if 𝑣 ∈ 𝑇𝑝𝑀 is an arbitrary vector of length 1, they
showed onemay find for any 𝜖 an immersed surface 𝑆 → 𝑀
with principal curvatures bounded in absolute value by 𝜖,
so that 𝑝 ∈ 𝑆 and the normal to 𝑆 at 𝑝 is 𝑣. The argument
has two parts. Let’s fix a 3-manifold 𝑀 and a real number
ℓ > 0. Say that an immersed pair of pants 𝑃 → 𝑀 is good
if the cuff lengths are all closed geodesics of length very
close to ℓ, and if the extrinsic curvature of 𝑃 is very close
to 0 (i.e., it is very nearly totally geodesic). The first part
of the argument uses ergodic theory (technically: exponen-
tial mixing of the frame flow) to demonstrate the existence
of a proliferation of good pants: if ℓ is large enough (de-
pending on 𝑀) then every geodesic 𝛾 of length close to ℓ
is the boundary of some good pair of pants in many ways.
The second part of the argument explains how to glue up
these good pants in such away that the resulting closed sur-
face has extrinsic curvatures very close to 0 and is therefore
𝜋1-injective.

To get good enough estimates to control the distribu-
tion of good pants one needs to know a lot about the frame
flow on a hyperbolic manifold. Negative curvature once
more plays a key role. So this step of the argument de-
pends essentially on knowing that the 3-manifold is hyper-
bolic (or, at least, negatively curved) and therefore builds
on Perelman’s proof of geometrization.
3.2. Right-angled pentagons. Suppose we have a hyper-
bolic 3-manifold 𝑀 and an immersed, 𝜋1-injective quasi-
geodesic surface 𝑆 → 𝑀. How may we find a finite cover in
which a lift of 𝑆 embeds (up to homotopy)? One dimen-
sion lower the analogous question is: given a hyperbolic
surface 𝑆 and an immersed essential loop 𝛾 → 𝑆 (let it be
an immersed simple geodesic for simplicity) how may we
find a finite cover in which a lift of 𝛾 embeds (up to homo-
topy)?

Peter Scott solved this problem in 1978, in the paper
[16] cited above. His argument, on the face of it, has a
rather ad hoc flavor, and depends on the fact that any sur-
face with negative Euler characteristic admits a hyperbolic
metric in which it may be tiled by regular right-angled pen-
tagons. How does this help? Since 𝛾 → 𝑆 is injective, there
is an (infinite index) cover ̂𝑆 of 𝑆 with 𝜋1( ̂𝑆) equal to the
image of𝜋1(𝛾) (which is infinite cyclic) in𝜋1(𝑆). This cover
is topologically an annulus, and 𝛾 lifts to a curve ̂𝛾 ⊂ ̂𝑆
which is homotopic to the core curve of this annulus, so
that after a homotopy it may be taken to be embedded.

The tiling of 𝑆 by right-angled pentagons lifts to a tiling
of ̂𝑆, and we may find a compact convex region 𝑃 ⊂ ̂𝑆,
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containing ̂𝛾, entirely tiled by right-angled pentagons. To
see this, let’s first lift all the way to the universal cover ̃𝑆,
and let ̃𝛾 be the preimage of ̂𝛾 under ̃𝑆 → ̂𝑆, so that ̃𝛾 is a
bi-infinite curve in ̃𝑆 stabilized by the deck group ℤ. The
convex hull ̃𝐶 of ̃𝛾 is the intersection of all the (closed)
half-spaces of ̃𝑆 that contain it. One may obtain a bigger
(but still functorial) convex subset ̃𝑃 by taking the inter-
section of all the (closed) half-spaces of ̃𝑆 containing ̃𝛾
that are tiled perfectly by right-angled pentagons. There
are “enough” such half-spaces that ̃𝑃 and ̃𝐶 are a finite
Hausdorff distance apart; since both ̃𝑃 and ̃𝐶 are evidently
invariant under the deck group, they project to convex sub-
sets 𝑃 and 𝐶 in ̂𝑆 respectively, each of which may be seen
to be compact.

Now, 𝑃 is not a closed surface, but (just as we did in
§ 2.2 in the base step for the inductive proof of hyper-
bolization for Haken manifolds) we may obtain a closed
surface 𝑄 by reflecting in the sides of 𝑃. The surface 𝑄,
like 𝑆, is tiled by right-angled regular pentagons, so their
fundamental groups are commensurable in the group of
isometries of the hyperbolic plane. Thus, one may find a
common finite cover of both 𝑆 and 𝑄 in which some lift
of 𝛾 covers ̂𝛾 in 𝑄 and is therefore embedded.
3.3. RAAGs and cube complexes. Already in Scott’s pa-
per he observed that the argument could be generalized
to a quasiconvex 𝜋1(𝑆) in a 3-manifold group 𝜋1(𝑀) if
one could find a 3-dimensional right-angled hyperbolic
polyhedron 𝑋 for which 𝜋1(𝑀) is commensurable with the
group Γ𝑋 generated by reflections in the sides of 𝑋 .

Unfortunately, 3-manifolds with this property are rare.
One can get further by finding a suitable injection
𝜋1(𝑀) → Γ𝑋 where 𝑋 is a higher-dimensional right-angled
hyperbolic polyhedron, and in fact Ian Agol, Darren Long,
and Alan Reid [3] used this idea to proveGFERF for the fun-
damental groups of the Bianchi manifolds — certain non-
compact finite volume hyperbolic 3-manifolds important
for number theory. But this trick has its limits: finite vol-
ume right-angled hyperbolic polyhedra do not exist in di-
mensions above 12 [4] (compact ones do not exist above
dimension 4).

Having learned since Thurston the profound impor-
tance of hyperbolic geometry for 3-manifold topology,
mathematicians now had to unlearn it. What was ulti-
matelymost important in Scott’s argument about the right-
angled hyperbolic pentagons was not their hyperbolicity
per se, but their right-angledness.

A right-angled Artin group — or RAAG for short — is a
group Γ∆ associated to a finite graph Δ by taking one free
generator for each vertex, and imposing the relations that
two generators commute if and only if the associated ver-
tices share an edge (and no other relations that do not fol-
low from these). Starting around 2000, Dani Wise and his
collaborators developed a program to prove that certain

classes of groups 𝐺 are QCERF by showing that they con-
tain a finite index subgroup 𝐺′ that embeds suitably in a
RAAG.

If Γ∆ is a RAAG then it is the fundamental group of a
cell complex 𝐾∆ which is the union (in a natural way) of
a torus 𝑇𝑘 for each 𝑘-tuple of vertices of Δ that span a
clique. This cell complex may be built in a natural way
from Euclidean cubes, all of side length 1, which are glued
isometrically along their faces. With this metric the uni-
versal cover ̃𝐾∆ enjoys a form of nonpositive curvature ex-
pressed by saying that it is CAT(0) (these letters stand for
Cartan, Alexandrov, and Topogonov, who all proved sig-
nificant theorems in comparison geometry). Distance be-
tween parameterized geodesics in a CAT(0) space is a con-
vex function, and this convexity, together with a prolifera-
tion of totally geodesic separating subspaces (obtained by
gluing together codimension one cubes in the dual com-
plex) lets one simulate Scott’s argument and separate qua-
siconvex subgroups.

Suppose 𝐺 may be exhibited as 𝜋1(𝐾) for some Eu-
clidean cube complex whose universal cover is CAT(0). In
2008 Wise and Frédéric Haglund [5] gave a combinatorial
criterion (called special) for a cube complex 𝐾 to immerse
isometrically in 𝐾∆ for some RAAG Γ∆, thereby realizing
𝐺 as a quasiconvex subgroup of Γ∆. If a finite cover of 𝐾
is special, one says that 𝐾 (and by abuse of notation 𝐺) is
“virtually special”; this is evidently good enough to show
that 𝐺 is QCERF.
3.4. Cubulating 3-manifold groups. All well and good.
But how on Earth to exhibit 𝜋1(𝑀) as 𝜋1(𝐾) for some lo-
cally CAT(0) cube complex?! Rather astonishingly, a cube
complex of exactly the sort we need falls into our laps by
feeding the Kahn–Markovic surfaces into a beautiful con-
struction due to Micah Sage’ev [15].

First let’s work one dimension lower and consider a
proper configuration 𝐿 of lines in the plane. If the lines
are disjoint, 𝐿 is dual to a tree with one edge for each line
in 𝐿 and one vertex for each complementary region. If the
lines cross in general position, 𝐿 is dual to a 2-dimensional
complex whose cells are squares. This complex is not typi-
cally CAT(0); if there are three lines ℓ1, ℓ2, ℓ3 that intersect
in pairs, these intersections give rise to three squares that
share a common vertex with an “atom” of positive curva-
ture, violating the CAT(0) condition. This can be amelio-
rated by going up a dimension: we may fill in the three
squares with a 3-dimensional cube in the obvious way;
and likewise, for every configuration of 𝑛 lines that pair-
wise intersect we may help ourselves to an 𝑛-cube. The re-
sulting complex ̃𝐾 will be CAT(0), and if there is an upper
bound on the size of the cliques in the incidence graph
of 𝐿, it will be finite dimensional. If the configuration 𝐿
is invariant under the action of a group 𝐺, then 𝐺 acts
(combinatorially) on ̃𝐾 and under the right circumstances,
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some finite index subgroup of 𝐺 will act freely with quo-
tient 𝐾.

The Kahn–Markovic construction gives rise to a large
but finite collection of almost totally geodesic immersed
surfaces 𝑆 in a hyperbolic 3-manifold𝑀. Lifting to the uni-
versal cover one obtains a proper collection ̃𝑆 of almost to-
tally geodesic planes in hyperbolic 3-space. Roughly speak-
ing, one may obtain a cube complex ̃𝐾 with one 𝑛-cube for
each 𝑛-tuple of planes in ̃𝑆 thatmutually intersect. Elemen-
tary coarse properties of hyperbolic geometry imply that ̃𝐾
is finite dimensional, and that 𝜋1(𝑀) acts on it effectively
and properly.
3.5. The long goodbye. Thus things stood inMarch 2012:
the VHC was “reduced” to Wise’s conjecture, that ev-
ery locally CAT(0) cube complex 𝐾 with 𝜋1(𝐾) (word)-
hyperbolic was virtually special. In a blog post [20] written
March 6 2012, Henry Wilton wrote that

(Wise’s conjecture is) such a remarkable conjec-
ture that it’s difficult to believe it’s true, but it’s also
a win–win in the sense that either a positive or a
negative answer would be a huge advance in geo-
metric group theory . . . implausible or not, I think
this conjecture is already a major open problem.

In a remarkable development, only six days later Ian
Agol announced a proof of Wise’s conjecture (and, conse-
quently, of the VHC) in a talk at the Institut Henri Poincaré
in Paris. Two weeks later Agol gave lectures outlining the
details of his argument in a workshop at the IHP, and
his preprint (containing an appendix written jointly with
Daniel Groves and JasonManning) was posted to the arXiv
on April 12.

It is beyond the scope of this article to explain the main
ideas of the argument, except to say that one first con-
structs an infinite regular cover ̂𝐾 of 𝐾 in which the “hyper-
planes” (which correspond in a suitable way to the quasi-
convex subgroups to be separated) are compact, two-sided
and embedded, and then one builds a finite cover of 𝐾
“modeled” (in some sense) on ̂𝐾; and that the construction
of ̂𝐾 rests on a certain technical tool in geometric group
theory (hyperbolic Dehn surgery) with origins in hyper-
bolic 3-manifold topology and the work of Thurston.

Combined with work of Wise and previous work of
Agol and others, Agol’s work resolved most of the remain-
ing problems (numbers 15–18) on Thurston’s list, mark-
ing the end of an era in 3-manifold topology.

What determines which questions become central in a
field? What constitutes progress, and how can we recog-
nize it when we see it? Academic research, whatever else it
is, is a social activity, and the forces that shape social activi-
ties are complicated and have an enormous psychological
component. Fashion, value-judgments, familiarity, taste
all play a role.

Agol has been unusually thoughtful about the social
psychology of mathematical practice, sometimes describ-
ing conjectures with which he wrestled over many years
as “friends” whose company he was pleased to spend so
much time with. He writes [2]:

Mathematicians use part of the social wiring of the
brain to engage with mathematical ideas and ob-
jects. I certainly feel like this for myself, where
the figure 8 knot complement plays the role in my
mind that a celebrity (like Bob Dylan) might in
others. I think this helps us engage with abstract
mathematics, which can be socially isolating be-
cause there’s very few that we can communicate
with about these ideas on a regular basis. I don’t
think this is special to mathematics, for example
astronomersmight have a social connection to the
Andromeda Galaxy.

The long and meandering route that led from the reso-
lution of one conjecture (the URP) to another (the VHC)
winds in and out of topology, geometry, combinatorics,
group theory, PDE, and many other fields. Along the
way objects and theories emerged, grew, evolved; seedlings
transplanted to foreign soils became established and bore
brave new fruit. If one could plot progress over time (if
one could even agree on an axis along which tomeasure it)
the graph would be the Devil’s Staircase. Headway, when
it came, came suddenly, like a fire alarm or the finale of
Beethoven’s Fifth Symphony, and caught most of us naked
and napping.

A partial entity-relationship graph of the situation
might look like Figure 4. Is the situation as irreducibly
complex and muddled as the graph suggests, or might
there be some hitherto undreamed of principle that would
untangle the skeins of this picture like one of Haken’s un-
knots and let us really see clear to the bottom of the well?

Wolfgang Haken died in his home in Champaign, Illi-
nois, on October 2, 2022, at the age of 94.
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EARLY CAREER
The Early Career Section offers information and suggestions for graduate students, job seekers, early career academics
of all types, and those who mentor them. Krystal Taylor and Ben Jaye serve as the editors of this section. Next month’s
theme will be Math and the Real World.
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Moving Forward
On Challenges and
Opportunities of
Graduate Advising

Alex Iosevich
1. Introduction
One of the most fulfilling aspects of my career in math-
ematics has been the opportunity to serve as the thesis
advisor for a wonderful group of people over the past 30
years. This includes undergraduate Honors theses, Masters
theses, and PhD dissertations, though in this article I am
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going to focus on doctoral advising as it poses a series of
challenges that are coming into an even sharper focus in re-
cent years. One of the reasons for this is increasing efforts
by the mathematical community to address the issues of
gender and cultural diversity in their ranks. Another is the
effort to keep the PhD degree relevant in the age of uncer-
tain job prospects in academia and increasing opportuni-
ties in the finance, high tech, and big data sectors of indus-
try. In this essay, I shall describe my approach to graduate
advising—the process that goes far beyond the supervision
of the PhD dissertations. I shall also endeavor to describe
some of the challenges and opportunities that have repeat-
edly arisen since I started advising graduate students 23
years ago.

I did not enter the world of graduate advising with a
solid idea of what the process is supposed to be like. As
a graduate student, I was exposed to a wide variety of ad-
vising strategies. My own PhD advisor, Chris Sogge, who
shapedmy views on researchmathematics andmany other
things in profound ways, always emphasized the impor-
tance of independence from the early stages of the edu-
cational process. This approach played into my strengths
as I always viewed mathematics as a creative process that
is much closer to my lifelong interest in reading and writ-
ing poetry than to a purely technical pursuit. As a result,
I developed an independent research program very early
and credit this fact to my survival in this turbulent and un-
certain profession. To this day, I consider developing an
independent perspective an essential part of the develop-
ment of a graduate student. In addition, once I encoun-
tered my own PhD students with a wide variety of back-
grounds, interests, and goals, I came to the conclusion that
every student requires an individual approach in order to
bring out the best in them. This raises the question about
the balance of responsibilities between the advisor and the
advisee and all the complexities that it entails.

2. My Approach to Advising
2.1. The guiding paradigm. When I was a small child,
my grandmother described to me how shoemakers were
trained in the small Jewish shtetl she came from. A fairly
young person would start out by sweeping the floors and
observing the master shoemaker at work. They would
then be given simple tasks to do, like putting the shoes
into boxes or measuring the shoe size of potential clients.
Slowly, over a period of time, the apprentice would be
taught how to cut the materials, create basic designs, and,
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eventually, create their first pair of shoes, first in collabo-
ration with the master, and, ultimately, on their own. Sev-
eral decades later I recalled these stories when I started ad-
vising graduate students and quickly realized that the pro-
cess need not be all that different. While every student
is different and requires a different approach, the appren-
ticeship scheme is the most compelling model I have ever
found to inform my advising process.

In practice, the apprenticeship scheme works as follows.
A typical student starts working with me during their sec-
ond or third year of graduate school, after they have passed
most or all of their preliminary examinations. The first
thing I do is sit down with a student several times over
a period of several days or even weeks to figure out what
types of problems they may be passionate about. Once
the general class of problems is identified, I typically run a
reading course on the background material, at the end of
which the student is given a few more papers to read and
a concrete problem to solve. This first problem is typically
something I have an idea of how to solve, and it forms a
foundation of a basic creditable PhD dissertation. If the
student is able to complete the first stage in a reasonable
amount of time, they are given a second, harder problem,
where they are expected to exhibit a greater degree of inde-
pendence. Strong students who pass the second stage are
set loose on open problems with much more uncertain
outcomes.

Every graduate student I work with is encouraged to de-
velop practical skills like programming, applied statistics,
and basic data analytics techniques. On one hand, this
puts them in a position to make a good living if this is
where their preferences or the vicissitudes of the job mar-
ket take them. Moreover, technology has been playing an
increasing role in my own research, and that of my gradu-
ate students, both due to forays into data science and an
increasing computer experimentation to shed more light
on my theoretical projects.
2.2. The pitfalls of the “sink or swim” approach. One
of many age-old dilemmas in mathematics is whether the
“sink or swim” approach works. Also known as the “sur-
vival of fittest,” or, in the immortal words of Dolph Lund-
gren, “if he dies, he dies!” This paradigm occasionally
pops up in both elite and not-so-elite institutions alike.
Sometimes it works, and sometimes it leads to serious
problems for all involved, with literally everything in be-
tween, but the idea never seems to go away and is proba-
bly destined to be debated forever. For obvious reasons,
the draconian approach is less likely to fail in top gradu-
ate programs, but even there it has been known to lead to
unwarranted complications. Among the many problems I
have with the ”sink or swim” approach to advising is that it
does not, in my opinion, lead to the discovery of the most
productive or talented mathematicians. The background,

psychology, and previous experiences of the individual
play a tremendous role in determining how they respond
to a particular advising style, independent of their math-
ematical ability. In many cases, a student with a con-
siderable amount of talent and drive simply crumbles in
the face of excessive early expectations and insensitive
treatment (see, e.g., [1], [3] and the references contained
therein). Students who have faced hidden or open discrim-
ination due to their gender, race, ethnicity, or LGBTQ+ sta-
tus are statistically particularly vulnerable. Some of my
top students, who have developed into strong and pro-
ductive research mathematicians, may not have survived
in the ”sink or swim” world that still too often pervades
academia.
2.3. Generating ideas. One of the greatest challenges I
have faced as a PhD advisor is getting the students to gen-
erate their own ideas. Some were naturally predisposed
toward creative reasoning, but the point I make to all my
students is that one can significantly improve one’s ability
to come up with new directions through frequent practice.
I ask my students to come to my office with at least two or
three new thoughts, and I stress that it is absolutely fine if
those ideas turn out to be wrong or well-known. I describe
the graduate, or even upper-division undergraduate, expe-
rience to my students as the process of moving from being
a consumer to a creator of mathematical ideas. The degree
of resistance I face in these situations varies from student
to student, but persistence typically pays off and often re-
sults in graduate students developing a well-developed in-
dependent perspective by the time they receive their PhDs.
This serves them very well whether they end up going into
academia or industry.

The key question implicit in the discussion of generat-
ing ideas is, how does one begin this process? A typical
approach is for a student to examine the research papers
they are reading in the area where they are conducting
their investigations and look for alternate directions and
approaches. This is certainly an important part of the pro-
cess, but the point I continually emphasize to students of
all levels is that creative questions can already be asked
about elementary aspects of mathematics going back as far
as high school algebra or even before! In an ideal world,
in which we do not live, mathematics graduate students
would have had years of generating ideas and anticipat-
ing deeper concepts behind them, but the current state of
mathematics education in the US and the lack of support
structures formathematical activities in elementary school,
high school, and sometimes even collegemeans thatmany
rudimentary skills need to be learned later. The good news
is, this can be done successfully, and an important part of
this process is to continually review elementary mathemat-
ics, derive all the basic formulas from scratch, and learn to
be creative with simple concepts.
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2.4. Undergraduate research and outreach. Another
way graduate students can sharpen their skills and improve
their creative processes is by getting involved in supervis-
ing undergraduate research. Universities all over the world
are increasingly recognizing the importance of undergrad-
uate research for all students, not just the most talented
ones, as a way of preparing them in a more realistic fash-
ion for the world that lies beyond the college walls. While
such activities should be organized and run by experienced
faculty, graduate students can contribute tremendously by
assisting the students with the projects, and by helping to
design the various research directions. This process plugs
directly into the creativity theme we have been discussing.
Mathematics-related community outreach can also help by
forcing graduate students to conceptualize theirmathemat-
ical understanding in a way that can be communicated to
people from less-privileged backgrounds who were never
exposed to mathematical ideas in a coherent and system-
atic way. The vertical integration concept implicit in these
recommendations should, in my view, increasingly be-
come the guiding paradigm behind university curricula
(see, e.g., [4]).
2.5. Recruiting graduate students. From the very begin-
ning of my advising experiences, I have been deeply con-
vinced that recruiting makes a tremendous difference in
terms of bringing in quality graduate students. If an un-
dergraduate student has the credentials to get into a PhD
program inmathematics at Princeton, Harvard, MIT, or an-
other school of that level, no amount of recruiting is likely
to persuade them to go to a school of a lower level, but
this encompasses only a small sliver of potential graduate
students. A large number of very talented students remain
after top schools have had their pick, and waiting for these
students to apply to your institution on their own initia-
tive is not the strategy I recommend. The experience of
the University of Missouri math department, which in the
2000s recruited two PhD students, Roman Vershynin and
Svitlana Mayboroda, who have gone on to speak at the In-
ternational Congress of Mathematics, as well as Atanas Ste-
fanov, Milena Stanislavova, Xiaochun Li, Dimitry Bilyk, Pe-
ter Honzig, Roman Shvidkoy, Vlad Yaskin, Doowon Koh,
Krystal Taylor, and a number of others who are now well-
known tenured faculty at strong PhD-granting institutions,
shows that recruitment can fundamentally transform the
level and quality of a mathematics graduate program.

The obvious question is, how does one go about recruit-
ing graduate students? Sending out posters, creating an
easy-to-navigate departmental web page, and bringing in
prospective students for on-site visits are certainly essen-
tial, but one should not stop there. An effective recruit-
ment strategy is not limited to the graduate director and
encompasses as many people in the department as pos-
sible. Virtually every active research mathematician has

numerous friends and acquaintances throughout the
world of mathematics who have regular contact with
strong undergraduate students at their institutions. Con-
tacting these people and asking them to spread the word
about your PhD program can go a long way, but one can
even go further. Speaking to prospective students directly
and getting across your level of enthusiasm for your grad-
uate program and your own research program is a very ef-
fective recruiting tool in my experience. This can be ac-
complished in several different ways. For example, when
a research mathematician gives a seminar or a colloquium
talk, they can request to meet with upper-class mathemat-
ics majors to tell them about graduate studies in general
and their home institution in particular. Another way is
to work with the graduate director to get in touch with the
students who have been accepted to the graduate program
but have not yet made the final decision on whether to
accept.

I cannot emphasize enough that graduate recruitment
is not a zero-sum game. In the process of recruitment, ex-
cellent students who may not have received the encourage-
ment and support that is commensurate with their talent
and accomplishments may be persuaded to pursue their
research dreams. This is especially important with regard
to prospective students who are women or members of
underrepresented groups. One of the most tired, feeble,
and disingenuous excuses often heard in the mathematics
world is that it is difficult or impossible to recruit women
and members of other underrepresented groups at various
levels because there are allegedly so few candidates and ev-
erybody else is trying to recruit them as well. In addition
to lamenting the relative absence of diversity in mathemat-
ics graduate programs, an activity the mathematics world
got exceedingly good at over the decades, we should put in
a much greater effort to do something about it. This effort
must involve every single one of us, and should not just be
delegated to the Diversity and Inclusion administrators at
our home institutions.

3. Conclusion
I believe that effective PhD advising is a multifaceted pro-
cess that is not limited to overseeing the content and struc-
ture of the dissertation. Initial recruitment before, job
placement after, and facilitation of intellectual develop-
ment and psychological support during the PhD years are
all essential components of advising in the modern uni-
versity. In an ideal academic world, in which we do not
live, much better support structures would exist that would
make this process much easier. In the meantime, it is up
to the advisor to guide the student toward filling the exist-
ing gaps in their mathematical background, and facilitat-
ing the creation of a work environment that would allow
the student to succeed. No matter what support structures
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and safeguards are put in place, the PhD advisor is des-
tined to remain the central figure in the development of
their graduate students.
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and Suzanne L. Weekes
Career opportunities for mathematicians in business, gov-
ernment, and industry have never been better. At the 2023
Joint Mathematics Meetings in Boston, MA, the AMS Com-
mittee on the Profession sponsored a panel entitled “Sup-
porting Faculty in Mentoring Students for Careers Beyond
Academia.” The goal of the panel was to provide action-
able advice for faculty who seek to increase their ability to
mentor students in finding nonacademic employment. To
enable this information to reach a wider audience, we of-
fer this interview-style report between our moderator and
panelists.

The Panel
Reed: Welcome! I’m happy to be moderating this discussion
on behalf of the AMS Committee on the Profession. To kick
things off, I’d like each of the panelists to introduce themselves,
briefly mentioning what programs/institutions/activities they’ve
been involved with related to mentoring students for nonaca-
demic careers.

For myself, I spent the majority of my mathematical career
in government and industry, including twenty years at the Na-
tional Security Agency. My last position at NSA was as the chief
of the Mathematics Research Group, which included oversight
of the mathematics hiring process at NSA. Panelists?
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DeVille: I was one of the co-PIs and directors of the PI4
program (Program for Industrial and Interdisciplinary In-
ternships at Illinois) from 2014–2021, and am now the di-
rector of the PhD summer internship program at Institute
for Mathematical and Statistical Innovation (IMSI)—both
programs are aimed at giving PhD students the training
they need to be competitive in nonacademic careers after
graduation.

Emerson: I am a senior data scientist and mathematics
of data science team leader at Pacific Northwest National
Laboratory. I finished my PhD in 2017 and made the tran-
sition out of academia directly after my PhD. I hold two
joint appointments in the Department of Mathematical
Sciences at the University of Texas El Paso and the Depart-
ment of Mathematics at Colorado State University. Addi-
tionally, I am one of the organizers and founders of the
Topology, Algebra, and Geometry in Data Science (TAG-
DS) research community (www.tagds.com).

Garibaldi: Out of graduate school, I followed the tra-
ditional academic career path from postdocs up through
being a full professor. A few years ago, I left academia
to work at CCR La Jolla, a math research institute that is
part of a nonprofit corporation—the AMS calls it a BEGIN1

employer. Most of my experience mentoring students was
during my time as a professor, where I advised undergrad-
uates and PhD students who were interested in nonaca-
demic careers.

Washington: I am the director of the Atlanta University
Center (AUC) Data Science Initiative2 which supports the
development of data science innovations across Clark At-
lanta University, Morehouse College, Morehouse School
of Medicine, and Spelman College. As data science evolves
in the industry space, it is important that ourwork includes
inviting our industry partners to work alongside us to de-
velop data science research, curriculum, and student career
pathways. As an applied mathematician, I enjoy the inter-
play between various sectors to solve problems of societal
interest.

Weekes: In graduate school, I spent a summer work-
ing at IBM; and at WPI, we’ve made solid connections to
industry via our Center for Industrial Mathematics and Sta-
tistics. Our students work on research problems that come
directly from our industry partners. That sort of experience
(for both students and faculty advisors) has been brought
to participants all over the US via the MAA & SIAM PIC
Math3 program. Now, as executive director of the Society
for Industrial and Applied Mathematics, this connection
between academia and industry is core.

1BEGIN stands for “Business, Entrepreneurship, Government, Industry, and
Nonprofit.”
2https://datascience.aucenter.edu/
3https://www.maa.org/programs-and-communities/professional
-development/pic-math

Best Advice
Reed: What’s the best advice you have for faculty on how to
mentor students for careers beyond academia?

DeVille: Let me start by pointing out that it is nei-
ther easy nor natural for most academic mathematicians
to mentor students for careers beyond academia, because
of how we ourselves were trained. I don’t mean for this to
be daunting—it’s more to say that if someone starts in this
direction, and finds it difficult going at the beginning—
this is completely normal. A key point is that academia
and industry are two different worlds: they have different
values and different incentives. The types of skills, habits,
and values that we want to instill in our students are dif-
ferent based on what their lifepaths will be. For a student
going on to an academic career, it makes a lot of sense to
think slowly and deeply about a problem to come up with
the best possible solution; for a student going toward in-
dustry, it can be more important to inculcate breadth and
flexibility. Another note: the topic of a student’s PhD dis-
sertation is often not directly relevant to a student’s career
in industry. Most employers who are hiring math PhDs
want to know that a student can carry out a major research
program; if they’re convinced the student cracked a hard
abstract problem, they often don’t care for the details. So,
it happens that a student writes a very “pure math” thesis,
but still does well in the nonacademic job market because
they have coding skills, soft skills, etc. Also, one last thing:
it is probably not necessary for every PhD advisor to be
good in this space. A lot of the mentoring in this direction
can be done centrally by a small number of faculty (e.g., by
the director of graduate studies or local equivalent, and/or
those faculty with existing experience in this area). As long
as you have a few strong faculty mentors in your program,
you should be fine!

Emerson: One of the most important skills for some-
one to have at a national lab is being able to create a narra-
tive around your work. Challenge your students to explain
their approach and the impact at different levels. Incorpo-
rate literature reviews and analysis for students as part of
their learning experience to quickly assess the quality of
work being done and learn how to reproduce results. Fi-
nally, outside of academia you rarely work alone—being a
part of a team is really important. Have students work in
groups and learn how to handle the types of conflicts that
arise.

Garibaldi: Encourage students to learn diverse sub-
jects. And connect them with resources to prepare for job
interviews—SIAM has online videos about interviewing
and your campus’ Career Center may offer practice inter-
views.

Washington: One technique I like to utilize is to ap-
ply project management techniques within the framework
of a course. This includes not only working in teams

OCTOBER 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1443

https://datascience.aucenter.edu/
https://www.maa.org/programs-and-communities/professional-development/pic-math
https://www.maa.org/programs-and-communities/professional-development/pic-math


Early Career

but also talking about the stages of team formation de-
veloped in the mid-1960s by Bruce W. Tuckman to opti-
mize team functionalities. I also intentionally expose stu-
dents to aspects of professional development in the con-
text of a course. This includes creating a resume, writing
a personal introduction, and developing SMART (Specific,
Measurable, Achievable, Relevant, and Time-Bound) goals.
This allows me to get to know the students better and in
turn, this helps students better define their mathematical
trajectory. In my current role, we have opportunities to en-
gage with data science professionals and we provide guid-
ance on how to network. Incorporating team work along
with professional development as a part of the mathemat-
ical pursuit is beneficial since it is such an important part
of every workplace.

Weekes: I would add that it is important to encourage
your students to pursue internships or to get experience
with industry. You don’t need to have hands-on experi-
ence yourself with this. Your university’s career services
are able to provide help in searching and preparing for in-
ternships. Also, direct students to resources from our pro-
fessional societies about careers; SIAM’s career resources4

are wonderful. Make sure you take a look at our careers
brochure.5 The BIG Math Network6 is an excellent joint
effort with the mission to promote careers in business, in-
dustry and government to students and departments of the
mathematical sciences.

Common Mistakes
Reed: Are there things you’d like to advise faculty to avoid doing
to best support their students interested in nonacademic careers?
What are some common mistakes people make in advising math-
ematicians seeking nonacademic careers?

DeVille: I think the biggest mistake I see both faculty
mentors and students make is assuming that industry is
the “backup plan”; that the “best” students go on to post-
docs and industry is for the ones who “don’t make the
cut”—and a corollary of this is that getting a nonacademic
job is somehow easier. This is a prejudice that is widely
held in academia, and especially in mathematics, in my
experience. One main problem is that many mentors and
students have the mindset that a PhD student should fo-
cus on writing a strong thesis, and then maybe throw in
some coding in year five, and it will all work out. This
is not true—students need to train for their desired ca-
reer throughout the PhD, and this training should be in-
tegrated with their education throughout.

Emerson: I echo many of the sentiments of the other
panelists. Encourage coding early, on real data, to keep
their options open. Don’t only value becoming the world

4https://www.siam.org/careers/resources
5https://www.siam.org/students-education/programs
-initiatives/thinking-of-a-career-in-applied-mathematics
6https://bigmathnetwork.org/

expert in a very niche topic. Many careers outside of
academia, I believe, are served by a “the more you know”
attitude. A broad base builds the best foundation, in my
opinion, for a career beyond academia where flexibility
and curiosity are necessary for longevity.

Garibaldi: I assume no one reading this article would
denigrate the choice to pursue nonacademic careers. Still,
the very nature of how math departments operate enforces
the idea that the people doing mathematics are professors
of mathematics. This message is often transmitted by the
learning materials we provide (“here, read this math pa-
per” written by amath professor) and by telling students to
attend seminars (typically given by professors from math
departments). We would better support our students in-
terested in nonacademic careers by also exhibiting nonaca-
demic mathematical careers as relevant to math.

Washington: When assigning group work, provide
guidance on how to work in a group. There are models,
such as Tuckman’s Model [Tuc65] that can easily be incor-
porated into the class discussion so students understand
how to participate effectively in a team. I have also found
that by defining and assigning each student a role on the
team (lead, recorder, questioner, timekeeper, etc.) we help
students take agency in ways they not have otherwise. Hav-
ing high expectations while also giving students the tools
they need, both mathematical and social, better positions
students to learn and excel.

Weekes: I hear of faculty who discourage their students
from taking internships as it takes them away from their
PhD program. I don’t think that this is fair to the students.
New PhDs are not obliged to become university faculty as
their advisors are, and faculty should respect and support
students’ career goals.

Programming and Data Science
Reed: How do you view computing/programming in conjunc-
tion with preparation for nonacademic careers? What about
statistics and data science?

DeVille: The ability to code is crucial for a student look-
ing to pursue a research industry career, and it is impor-
tant for a student to have a record of this (gold standard:
a GitHub that solves some interesting problems!). That
being said, I don’t think it is necessary for mathematics
PhD programs to revamp their PhD curriculum or courses
to include coding—many campuses have courses or boot-
camps in a variety of languages and contexts, not to men-
tion coding contests, etc. So, motivated students can learn
in this area, but outside of your department. For data sci-
ence, as for coding, there are many resources and oppor-
tunities outside of math. (Of course, if a PhD program
is able and willing to include coding and data science in
their PhD training, that is great! But it is not strictly nec-
essary.) I think it’s also worth pointing out here that one
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thing a student can do during the PhD that will reallymake
their applications more competitive after graduation is an
internship (typically during the summer). A successful in-
ternship (or even better, multiple ones) is one sign to a
potential employer that a student will be able to fit well
into their environment—and typically gives a student one
or more valuable letters and references for the job search.
Students who are interested in industry should be strongly
encouraged to pursue such internships. One worry I have
heard from faculty is that a student’s dissertation research
will go more slowly if they are gone for the summer. I find
that often enough this isn’t the case—a student who works
on something completely different for a while comes back
to their original problem refreshed and ready to make
progress, whereas students who don’t do a second project
can often become discouraged and despondent if all they
ever do is bump their heads into the same brick wall over
and over. . .

Emerson: Use real world data sets! Have them struggle
with “data wrangling” a bit so they get a sense of how real-
world problem solving begins. Also, encourage students
to prepare presentations with no equations. They should
be able to describe what they did and why it matters.

Garibaldi: Include coding and data science organically
in the classes you teach. For example, when you teach a
class in pure mathematics, there are typically homework
exercises that amount to a hand computation. Replac-
ing one of those with a somewhat larger version is often
an easy way to create an entry-level use-a-computer-to-do-
real-math kind of homework problem.

Washington: Coding nowadays is not limited to one
language. Our students are entering a workplace, both in-
side and outside of the academy, where there may be a
high expectation to be able to code in different languages.
I enjoy providing opportunities for students to develop
programming skills. When I taught Calculus III, I utilized
MATLAB to create the 3-dimensional visualizations. I first
did a hands-on, follow along where I engaged the class
in walking through how to code on MATLAB. Then, each
homework assignment included an exercise on creating a
visualization in MATLAB. Throughout the course, I did em-
bed coding and found it to be a fruitful experience as stu-
dents found interesting ways to create the plots. In my cur-
rent role as Director of the AUC Data Science Initiative,
we provide opportunities for all faculty and staff to upskill
in data science and coding and have over 200 participate
in our summer workshops. I am seeing coding become a
meaningful skill across the curriculum from public admin-
istration to chemistry to social work andmathematics, just
to name a few. Having students experience coding in dif-
ferent disciplines, I think, will position students well for
the technology-driven future they will enter.

Weekes: Every student—at the very least every math
student—should get experience programming. Basic sta-
tistics knowledge via a formal class or in the process of a
research experience is also important.

Building Networks with Industry
Reed: What advice do you have for faculty on how to build net-
works with industry? Are there specific conferences we should go
to? How do we meet people in industry, and what can we do to
keep lines of communication open to be able to get information
we should share with our students?

DeVille: Probably, the most valuable connection is
through alumni networks. Keep track of what your PhD
alumni do and encourage current students to get in touch
with them. Alumni who are working at (or, even better,
recruiting for) an academic employer are the absolutely
best resource for students looking for a job in a closely-
related industry. Departments can also have career days
where they invite alumni to speak and give feedback to
students (many organizations like their employees to do
this—if they’re happy with someone, they always want
more candidates just like that person!). Also, don’t forget
your department’s undergraduate alumni; many employ-
ers looking for mathematics BS graduates are also looking
for mathematics PhD graduates. Admittedly, alumni net-
works suffer from a “chicken and egg” problem—what if
you don’t yet have a robust alumni network in your pro-
gram? If your institution has an engineering school, this
can be a valuable resource—many of the same employers
who would hire an EE PhD would hire a Math PhD. More
generally, most campuses have career centers and will have
a lot of contacts at STEM-hiring outfits.

The communication (both up- and down-stream) can
be a challenge. One system which seems to work is if there
is a faculty member in charge of all of this (networking,
establishing recruiting events, etc.). In many departments
this is also handled by the director of graduate studies, or
local equivalent. But be forewarned—this is in itself a full-
time job, and it is important that departments recognize
and reward this work.

Emerson: SIAM conferences are a great place to inter-
face with industrial mathematicians. NeurIPS (Confer-
ence on Neural Information Processing) is also a major
event that draws a mix of mathematically-oriented aca-
demics and industry researchers. TAG-DS (Topology, Alge-
bra, and Geometry in Data Science) is a scientific research
community led by researchers at national labs and faculty
at universities. There are a series of TAG-DS conferences
andworkshops at top data science events that facilitate net-
working between academic, industrial, and government re-
searchers.

Garibaldi: First step is to use the contacts you already
have. Your department has alumni working at companies.
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Talk to them! Most people are flattered when someone
else takes an interest in what they are doing and wants to
learn from what they have learned. You can ask industry
folks to give talks to your students. And if they do, faculty
can attend! The information from the presentation is ore
to be mined for mentoring next year’s students, who may
not benefit from getting to hear the same talk themselves.

Also, when you hear someone in industry talk about
the scientific or technical challenges they face, it is natu-
ral to listen like a mathematician who wants to solve their
problem and focus on the technical details of the problem.
But for mentoring, it is better to pull back your focus and
think also about the person and how they are describing
their challenges, the words they are using, and what that
context says about their greater view of the technical land-
scape. Later on, when talking to students about careers in
industry, you will have a better sense about how people in
that industry view their world.

Washington: I have built many networks with those
in industry via LinkedIn. This is a great way to network
with industry folks and as well as alumni. Some LinkedIn
tips: include an e-mail address that works, a profile that is
updated and matches the resume, and a customized URL.
When engaging with industry, it’s important to get the in-
dustry representatives to engage with faculty, not just stu-
dents. The industry partners will be eager to recruit stu-
dents for jobs but they need to remember that the students
come and go but faculty stay, and can influence many dif-
ferent student cohorts over their careers. If our faculty un-
derstand the expectations from industry about what con-
tent knowledge would position students for success in
these constantly evolving workspaces, this would provide
an opportunity to spice up a course and connect student
learning to future opportunities. I really enjoyed attend-
ing UIDP’s events7 because they focus on strengthening
university-industry partnerships through engagement, re-
search, and other synergies. As we move forward with the
AUC Data Science Initiative, we are working to strengthen
our relationship with our sponsors to build out data sci-
ence with our faculty to create more robust pathways for
our students.

Weekes: Set up an industry advisory board at your de-
partment level. Alumni connections are also very useful.
Have university staff contact alumni and ask if they would
like to visit campus, give a talk, meet with students.

New Opportunities
Reed: In your experience, how is non-academic mathematical
work changing? Are there new opportunities in this area, or
other information, you’d like to make faculty aware of?

Emerson: Research in data science is changing very fast.
The timescales are changing. Outside of academia if an

7https://uidp.org/

idea is going to fail, you want it to fail fast. This concept is
somewhat at odds with the inherently rigorous nature of
mathematics and can be a challenge for students fresh out
of mathematics graduate programs.

Garibaldi: Do your students include their GitHub on
their resumes when they are applying for jobs? Lots of
people do these days, and that is a new thing to me.

Washington: Many companies and nonprofits need
technology development but some may have limited bud-
gets to carry out this work. This is where those in academia
can provide insight and also engage in fun problems. The
AUC Data Science Initiative is partnering with the AUC po-
lice chiefs and the Atlanta police to find data-driven solu-
tions to enhance public safety in our neighborhoods. I am
really excited about this project because of the value added
to the community. By looking both at the university or col-
lege and nearby enterprises, one may be able to find some
interesting mathematical and data science challenges that
could provide great learning experiences for students while
providing societal benefits.

Weekes: Faculty and students should join a profes-
sional society and read the news and newsletters that come
out from these organizations. This is a way that they can
stay updated on the latest and greatest. I mentioned some
resources earlier and would add to that SIAM News.8
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Leaving Academia

Karen Saxe
Some academic friends tell me that my career path has
been “alternative.” In fact, it was all but that for most of
my career.

I completed my PhD; enjoyed a two-year post-doc; then
settled down for 28 years of teaching and leadership at
one institution. At all points in that 30-year run, every-
thing seemed “conventional,” if extremely fortunate. I ap-
preciate that it is hard to land jobs in academia that are
as satisfying and wonderful as mine have been. I am still
surprised that I was able to raise three children, stay mar-
ried, sustain meaningful friendships outside of math, get
tenure, be promoted to professor, and become department
chair. In retrospect, I’ve succeeded in achieving my gradu-
ate school hopes. But it was hard: I worked nonstop at
my job and struggled to be a good mom. I know many of
you are familiar with working all day, then heading home
to prepare dinner; spending the evening with your family
until the kids go to bed, then working again from 10 p.m.
until midnight (or as long as you can manage to stay up
writing lectures, grading, and answering emails).

The career I have now began in 2013, when I served as
the AMS Congressional Fellow. During the academic year
2013–14, I worked for Senator Al Franken in his Washing-
ton, DC, office. I worked on education policy concerns: to
establish a national STEM master teacher corps, to provide
education stability for youth in foster care, to strengthen
connections between community colleges and local indus-
tries, and to improve the net price calculator that higher ed-
ucation institutions must make publicly available. I also
had the opportunity to support Franken’s work on the Sen-
ate Indian Affairs Committee.

One part of that position that I really enjoyed was the
writing. It was mostly of two kinds: (1) background
materials for committee hearings, which included provid-
ing suggestions for questioning witnesses, or (2) drafting
speeches. These speeches were, typically, ones the senator
would give when visiting a high school. After that year, I
returned to my academic job and, honestly, had no idea I
would end up back inWashington! Then in 2015, I learned
that Sam Rankin, my predecessor at the American Mathe-
matical Society, was planning to retire. Now here was a
job I wanted! I began full time with the AMS in January
2017 as director of government relations. I did not apply
for this position because I was trying to leave my academic

Karen Saxe is an associate executive director and director of government rela-
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job—I loved my academic job—but I was wondering what
else I could do, in particular how I could give back to the
math community. Significant volunteer work for profes-
sional societies has always been important to me. As men-
tioned, I love writing, and—for me—writing for different
audiences is a fun challenge. I also enjoy meeting and talk-
ing to people, all sorts of people. And, truth be told, I am
into politics.

Since this essay is part of the Early Career theme, and I
am now toward the end of my career, I will end with some
advice:

1. In an academic job, we think we should do everything
all at once and excellently—publish good mathemat-
ics, be a great teacher, be a department and perhaps
campus leader, be a wonderful partner and parent.
The list goes on (and obviously, some of us only en-
gage in a subset of those activities). But, whatever is
on your list, I encourage you to think of your career as
an arc. You cannot excel in all of these roles at the same
time. You can focus on research for some years, par-
enting for others. Go to your kids’ games and recitals,
but don’t attend every evening event on campus—you
can participate in these later, when your kids are older.
During a sabbatical, focus on research and parenting—
you can develop a new course another time. You don’t
have to be on a major department or campus commit-
tee every year. Some of this, of course, involves letting
go and letting others lead (incidentally, this is gener-
ally best for your department). You can have a messy
house. Be kind to yourself.

2. In academia, many of us strive to land that one job
that we plan to keep and love for our entire work-
ing life. Keep in mind, though, that hardly anyone
outside academia thinks this way. Leaving a job you
knowwell is scary—I know this first hand. Inmy opin-
ion, a university or college administration should be
happy and proud when good faculty members leave
for important work outside of the academy. Higher
education is under fire in this country, and we aca-
demics bear some responsibility for this predicament;
one way to alleviate this is to stop isolating ourselves.

3. Think about what you like to do best, and what sort of
work environment you prefer. I decided I like writing,
I like being with people, I like talking to people out-
side of math about how wonderful and useful math
is and working with them to be comfortable with math
(not necessarily to understand it).

4. Remember that there are many mathematicians (both
with undergraduate and advanced degrees) working
outside academia. Indeed, according to the NSF’s Sur-
vey of Doctorate Recipients, 2021, of the 36,600 PhD
mathematicians and statisticians who reside and are
employed in the US about 59% work in academia.

Another 35% work in the private sector (including
all of us who work for the professional organizations
that support the math community), and roughly 4%
work for the government (local, state, and federal).9

The AMS Congressional Fellowship, and also the AMS
Mass Media Fellowship, are just two of many roads
into “alternative” careers that—as the data show—
engage a large minority of us. Mathematicians who
work outside academia are, I have found, very willing
to talk about their experiences. . . .seek them out!

Karen Saxe
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Disappointment

Danny Calegari
In high school I took part in many math competitions; the
hardest (and therefore to my teenage mind the only ones
that counted) were the competitions relating to the in-
ternational mathematical olympiad (IMO). In Melbourne
there was a program of competition and training that cul-
minated in a nine hour exam spread over two days to deter-
mine the makeup of the Australian IMO team. I remem-
ber very well the first time I took the exam. It was 1987,
and the IMO was to be held that year in Cuba. As I sat
at my carrel in the Morris library, I took the February sun-
light for fortune smiling on me, inspiration spilled liber-
ally from my Pelikano steel nib fountain pen, and I went
home at the end of the second day in a blur of fatigue and
self-congratulation. Six weeks later a pregnant manila en-
velope arrived in the mail. From its girth alone I knew I
had aced the exam and won my rightful spot on the team.
Before even opening the envelope I could see myself in the
green woolen team blazer with the Australian coat of arms

9See Table 12-1 at https://ncses.nsf.gov/pubs/nsf23319.
Danny Calegari is a professor of mathematics at the University of Chicago. His
email address is dannyc@math.uchicago.edu.
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embroidered on the breast pocket, and by the time I found
a letter opener I was shaking hands with Fidel Castro.

The envelope contained. . . sixty-odd sheets of loose-leaf
paper, no invitation, no cover letter: my exam papers,
bloodstained with question marks, lines through para-
graphs, squiggles of uncomprehension, Xs and Os. My
stomach fell. I blushed. In a fraction of a second I rewrote
or recolored dozens of memories and fantasies from the
recent past and future, and became intensely conscious of
and embarassed bymy vanity and foolishness. What I now
find remarkable was the speed and scope ofmy transforma-
tion; the analogy that comes to mind is being struck by a
speeding car.

So how does one deal with disappointment? Freud, in
Civilization and Its Discontents identifies three typical mea-
sures:

powerful deflections, which cause us tomake light
of our misery; substitutive satisfactions, which
diminish it; and intoxicating substances, which
make us insensible to it.

If these are the typical responses, are there any others? Be-
fore trying to answer this it might be helpful first to articu-
late what disappointment actually is, and then to ask what
it’s for. Evidently, disappointment is a form of mental suf-
fering. It is so unpleasant that we can experience it in a
host of physiological dimensions. Profoundmental suffer-
ing involves a complex array of interactions between any
number of processes and subsystems, both conscious and
unconscious, involving both the brain and the limbic sys-
tem. The suffering that arises from disappointment is that
that accompanies disruption: disappointment causes a cer-
tain kind of shake-up or realignment of our worldview and
self-image and consequently of our priorities; this disrup-
tion can be so great that we sometimes emerge from it a
very different person.

According to certain schools of cognitive science (e.g.,
Minsky’s Society of Mind model) the idea of a “self” as a
unified, indivisible entity is an oversimplification; rather
(they suggest) a self is an uneasy federation of simpler sub-
systems (sometimes termed “agents”) with their own local
goals and interests, which are frequently in competition
with one another. Under ordinary circumstances stability
is achieved by a complicated systemof temporary alliances,
detentes, three-way standoffs, and so forth. Our subjective
sense of the unified self is—in itself!—also a source of sta-
bility. Sometimes a dramatic change in (real or perceived)
external circumstances—an unforseen event, an unpleas-
ant discovery—can lead to a cascade of disruptions to this
order. This is the mechanism of disappointment, and why
it is so painful; it is both a crisis and an opportunity—in
Homer Simpson’s inspired terminology, a crisitunity.

Disappointment measures in pain the gap between re-
ality and what we want the world to be. Disappointment

matters. It matters because we don’t actually live in the
real world. We live in our heads, in a mental world of
assumptions, recollections, anticipations, desires and con-
jectures. And even when we do meet reality, it’s a mis-
take to think that what our senses feed us is objective, un-
filtered, unsorted. Rather we operate according to an in-
terrogative protocol—we ask the world questions to con-
firm what we already “know” (or, more accurately: hope),
and only when we get an unpleasant surprise do we take a
closer look. As Proust says,

The real voyage of discovery consists not in seek-
ing new landscapes, but in having new eyes. Hap-
piness is beneficial for the body, but it is grief that
develops the powers of the mind.

In his famous paper, “How not to prove the Poincaré
Conjecture,” John Stallings writes about an adventure in
his mathematical life, how he discovered a proof of the
Poincaré Conjecture but later found it to be mistaken. He
goes so far as to describe this episode as a “sin;” but the sin
was not in the mistake per se, rather it was his resistance to
recognizing it as such. He writes,

There are two points about this incorrect proof
worthy of note . . . (t)he second. . . is that I was un-
able to find flaws in my ‘proof’ for quite a while,
even though the error is very obvious. It was a psy-
chological problem, a blindness, an excitement,
an inhibition of reasoning by an underlying fear
of being wrong. Techniques leading to the aban-
donment of such inhibitions should be cultivated
by every honest mathematician.

Few mathematicians are as honest or as generous as
Stallings in sharing their own stories of disappointment.
This is because disappointment often comes wrapped in
shame, because our goals are inextricable from our per-
sonal and social attachments and relationships. Conven-
tion and social norms dictate that any display of human
weakness or failing is “unprofessional.” We’re not sup-
posed to admit it when we feel stupid, or underappreci-
ated, or jealous, or that we cared somuch about something
that when it didn’t go our way we felt shattered. Tech-
niques leading to the abandonment of such inhibitions
should be cultivated by every honest mathematician.

Disappointment takes many forms; a partial list from
my personal history includes:

(1) being un- or under-acknowledged in a colleague’s pa-
per or talk;

(2) being scooped;
(3) missing out on a job/prize/conference invitation;
(4) having a prospective student work with someone else;
(5) having a potential advisor turn me down as a student;
(6) having a promising line of attack on a problem fail to

pan out;
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Early Career

(7) discovering an error in an amazing proof;
(8) having a paper go unread or a book go unreviewed;
(9) seeing an admired senior colleague behave badly;

(10) realizing that I haven’t lived up to my own standards
of behavior;

(11) discovering that success, when it came, was not all I
hoped it would be.

The last one, perhaps, deserves elaboration. Some acute
disappointments in my career were the result of getting
what I thought I wanted: a paper in a fancy journal; a
job offer; tenure; an invitation to talk at a fancy confer-
ence. I don’t mean to diminish the value of such things
at all, or the challenges (personal or structural) many peo-
ple must overcome to achieve them; much about the way
such “rewards” are distributed in academic culture is un-
fair, often in systematic ways, and it should be the goal of
all of us to point this out and work to change it wherever
we can. I also don’t mean to suggest that success has been
joyless; the opposite is true. Nevertheless it is the case that
sometimes when we get what we think we want, we dis-
cover that these things weren’t what we thought they were,
and (more importantly) that we are not who we though
we were. When disappointment accompanies success it is
worth paying special attention to. If we get what we want
but it doesn’t bring us fulfillment, then what’s really going
on? In my experience, it has only been at the point of my
posing this question that I have acquired insight, and the
agency to really change things or come to terms with them.

It took a month of pain after the manila envelope ar-
rived before curiosity got the better of me and I opened it
again. And a remarkable thing happened. The exam pages:
my answers, the blots, the corrections, the red ink, the com-
ments, were exactly as before. But time and some strange
alchemy of which disappointment itself was the catalyst
had altered their meaning. An actual human being had
taken the time to read my work and share valuable feed-
back with me. My annotated exam was no longer a certifi-
cate of failure, it was a how-to manual: it was about how
to prove an inequality by leveraging the convexity of a clev-
erly chosen auxiliary function, or how to recast a geomet-
ric figure in terms of complex numbers and understand it
with algebra. These math problems weren’t “problems” at
all: they were windows into mathematics itself. And the
manila envelope wasn’t a slap in the face, it was a gift; but
to see it as a gift I had to see it with new eyes. I never got
to Cuba, but I’d taken my first steps on a longer and far
more interesting and rewarding journey that continues to
this day.

ACKNOWLEDGMENT. I would like to thank Kathryn
Kruse for her extensive feedback on and advice about
an early draft of this essay.

Danny Calegari
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Dear Early Career
If I give a talk on work that I haven’t yet finished,
should I worry that someone might use my ideas to
prove my result before I do?

—Concerned
Dear Concerned,

It’s good to hear you have some research progress
you are excited about! If this work is joint with any-
one else, then certainly ask them for their opinion—
this is a slightly touchy subject. It is also likely that
attitudes toward giving talks before a preprint is avail-
able differ from subfield to subfield, and so consult-
ing your mentors is advisable.

With those caveats out of the way, presenting re-
sults before the preprint is available is done pretty rou-
tinely inmathematics. It can be very positive to create
some buzz for a result or let people know it is coming,
and as an early career researcher every opportunity to
present is valuable.

It seems a little unlikely to us that someone in the
audience would merely copy your proof (and if they
did, then your public talk on the topic would likely
establish priority from the perspective of the commu-
nity), but it is plausible that someone could find an
extension of it, or find a simpler proof, in which case
your forthcoming paper might gain an author. If that
possibility does not appeal to you at all, then maybe
it is best to wait for the preprint to appear. (A more
unlikely outcome that cannot be ruled out is some-
one finding a simpler proof and submitting it imme-
diately by themselves. While we think that one could
still publish the original proof in these circumstances,
we have to admit that if this had ever happened to us
then this answer would be very different.)
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We may be a particularly cautious editorial team,
but in the absence of a preprint, our main question to
ourselves in this circumstance is this: Have we really
proved the result, or are there substantial issues that
remain? It can be a bit problematic if one presents a
forthcoming result and no preprint ever appears, as
interested researchers in your field would be left in
limbo. Therefore, we would recommend that before
presenting you have a detailed account of the proofs
that could be circulated (this is a long way from a fin-
ished preprint, but could also help establish priority
if has been circulated to a few trusted people prior to
your talk). Furthermore, if your work solves a prob-
lem with some reputation, then having some discus-
sions with mentors and experts would also be a great
idea before going full steam into a talk.

In our experience, the opportunity that comes
from presenting your ideas outweighs the risks of peo-
ple acting in an unprofessional manner.

—Early Career editors

Have a question that you think would fit into our
Dear Early Career column? Submit it to Taylor.2952
@osu.edu or bjaye3@gatech.edu with the subject
Early Career.

DOI: https://doi.org/10.1090/noti2783
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Wolfgang Haken, 1928–2022
Patrick Callahan, Ilya Kapovich, Marc Lackenby,
Peter Shalen, and Robin Wilson

Introduction

Figure 1.

In the fall of 1947, when
Wolfgang Haken was a 19-
year-old undergraduate at
the University of Kiel, he
took an introductory topol-
ogy course from Karl-Hein-
rich Weise. In this course,
Weise mentioned a num-
ber of famous open prob-
lems in topology, includ-
ing the Unknotting Prob-
lem, the Four Color Prob-
lem, and the Poincaré Con-
jecture. Haken spent his en-
tire career working on these
three problems and their

ramifications; he solved the first two, and, in the case of
the first, showed that the techniques he had developed for
the solution could be applied far beyond the original prob-
lem.

The section by Marc Lackenby and Peter Shalen de-
scribes Haken’s approach to the Unknotting Problem
through his theory of normal surfaces, and the far more
general results which he obtained using this theory and his
closely related theory of hierarchies. This section also gives
an indication of the very diverse ways in which other re-
searchers have exploited these theories, both in 3-manifold
theory and in geometric group theory. The section by
Robin Wilson recounts the fascinating saga of the success-
ful attack on the Four Color Problem by Kenneth Appel

For permission to reprint this article, please contact:

reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2781

and Wolfgang Haken, which was groundbreaking in its ex-
tensive involvement of computers.

In contrast to his spectacular successes with the Unknot-
ting Problem and the Four Color Problem, Haken’s huge
efforts in connection with the Poincaré Conjecture did not
yield a proof. However, as Lackenby and Shalen point
out, in the years following Grigori Perelman’s proof of
William Thurston’s Geometrization Conjecture—of which
the Poincaré Conjecture is a special case—a number of the
most striking consequences of Perelman’s work involved
normal surfaces and hierarchies. This is a further illustra-
tion of the enormous influence that Haken’s ideas have
had on 3-manifold theory.

Haken’s distinctive approach to mathematical research
was described by one of his colleagues at the University of
Illinois Urbana-Champaign:

Mathematicians usually knowwhen they have got-
ten too deep into the forest to proceed any further.
That is the time Haken takes out his penknife and
cuts down the trees one at a time.

Given Haken’s magnificent output, it appears that this
could be a very effective approach. Of course, in order
to succeed with this approach, one had to be Wolfgang
Haken.

Those of us who knew Haken remember him as a won-
derfully kind and generous person with a delightful low-
key sense of humor. These traits come through in Patrick
Callahan’s section about his days as a PhD student under
Haken’s direction. Ilya Kapovich’s biographical section
gives insight into the obstacles that Haken had to over-
come on the way to his phenomenal mathematical suc-
cesses, and into a family legacy that is as impressive as his
mathematical legacy.
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Wolfgang Haken’s Life

Ilya Kapovich
Wolfgang1 Haken2 was born in Berlin on June 21, 1928.
His father was a physicist working for the German Patent
Office and his mother stayed home to take care of the fam-
ily and household. His two older brothers died of scarlet
fever in 1927, andWolfgang grew up as an only child. Dur-
ing his childhood in Berlin, Wolfgang developed an early
interest in mathematics. At the age of 4, he made what
he thought was his first important mathematical discovery:
that counting should start with 0 rather than with 1, and
that 0 is the first natural number. He tried to convince his
father to patent this fact but did not succeed at the time.
Wolfgang’s mother died in August 1939, several days be-
fore the start of World War II, and the family remained in
Berlin for most of the war. In 1944, at the age of 15, Wolf-
gang was drafted to serve in an anti-aircraft battery. He was
soon transferred from Berlin to Dessau and from there to
Soest, where he remained until the end of the war. After
the war, Wolfgang first worked as a farmhand, and passed
a high school GED exam in 1946.

In the summer of 1946, he started his undergraduate
studies at the University of Kiel. At the age of 17, Haken
was the youngest student at Kiel, as the universities in Ger-
many then had a rule not to admit anyone under the age
of 23. Initially, Haken wanted to become a physicist but
his interests gradually changed to mathematics. At the
time, Kiel had only two mathematics faculty members:
a professor of mathematics and a professor of geometry,
which were regarded as different subjects when the uni-
versity was founded in the 17th century. The professor
of mathematics at Kiel was Karl-Heinrich Weise; most of
Haken’s mathematics classes were taught by Weise. In the
Fall of 1947, while Haken was still an undergraduate, he
attended a topology course by Weise. In this course, Weise
stated several famous open problems in topology, includ-
ing the Poincaré Conjecture, the Four Color Problem, and
the Unknotting Problem. This experience marked the start
of Haken’s interest in topology. Remarkably, as was men-
tioned in the Introduction, of the three major mathemati-
cal problems that motivated Haken’s interest in topology,

Ilya Kapovich is a professor of mathematics at Hunter College of CUNY. His
email address is ik535@hunter.cuny.edu.
1With gracious permission from the University of Illinois, this section incorpo-
rates substantial portions of the article by Ilya Kapovich, “Wolfgang Haken: a
biographical sketch,” Illinois J. Math. 60 (2016), no. 1, iii–ix.
2Born Wolfgang Rudolf Günther Haken. He dropped his middle names and
changed his legal name to just “Wolfgang Haken” in 1976, when he became a
US citizen.

Haken eventually solved two—the Unknotting Problem
and the Four Color Problem.

Haken received a pre-diploma (roughly equivalent to
the Bachelor of Science degree) in physics and mathemat-
ics at Kiel in 1948. He then started his doctoral studies
in mathematics at Kiel, with Weise as his thesis advisor.
Haken obtained his doctorate from Kiel in 1953, with
the dissertation entitled “Ein topologischer Satz über die
Einbettung (𝑑−1)-dimensionaler Mannigfaltigkeiten in 𝑑-
dimensionale Mannigfaltigkeiten.”

Hakenmet his future wife, Anna-Irmgard Freiin von Bre-
dow, at Kiel in 1950 where she was also studying mathe-
matics as an undergraduate. They were married in 1953.
In 1959, Anna-Irmgard also received a doctorate in math-
ematics with Weise as her advisor.

After getting his doctorate, Haken obtained a job at
Siemens in Munich as an electrical engineer, where he
worked on designing microwave devices until 1962. The
first three of Wolfgang and Anna-Irmgard’s six children
were born during this period: Armin in 1957, Dorothea
in 1959, and Lippold in 1961.

In 1956, Haken sustained a near-fatal accident while
mountain climbing in the German Alps. He fell more than
30 feet and remained in a coma for several days. The ac-
cident significantly damaged Wolfgang’s foot but did not
dampen his enthusiasm for the outdoors.

While at Munich, Haken continued doing mathemat-
ical research in combinatorial topology. He solved the
long-standing Unknotting Problem by producing an algo-
rithm for deciding whether a knot diagram represents the
trivial knot. The solution of the Unknotting Problem got
Haken’s work noticed by several mathematicians in the
United States. Ralph Fox, a topologist at Princeton, had
his graduate students go over Haken’s proof in detail, and,
somewhat to Fox’s surprise, they found the proof to be cor-
rect.

Bill Boone, a group theorist at the University of Illinois
at Urbana-Champaign (UIUC), also became intrigued by
Haken’s paper. At the time, Boone was working on
topics related to the unsolvability of the word problem
for finitely presented groups, and he understood that
there were close connections between algorithmic prob-
lems in group theory and algorithmic problems in low-
dimensional topology. Since by then it was known that the
word problem for finitely presented groups is, in general,
undecidable, Boone expected the Unknotting Problem to
be undecidable as well. Therefore Haken’s proof came as a
considerable surprise to him. Just six weeks after the pub-
lication of Haken’s 1961 paper [Hak61b] on the Unknot-
ting Problem in Acta Mathematica, Boone invited Haken to
come to UIUC for a year.
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Haken came to Urbana-Champaign with his family in
1962 and spent the 1962–1963 academic year at UIUC
as a visiting professor. When preparing for his year at
UIUC, Mahlon Day, who was the Mathematics Depart-
ment Head, suggested that Haken obtain a US immigrant
visa (which was relatively simple to do at the time). Haken
followed this advice, which made it easier for him to even-
tually settle permanently in the US. During his year at Illi-
nois, Haken applied for and obtained a temporary mem-
bership at the Institute for Advanced Study at Princeton.
He spent two years, 1963–1965, at Princeton. In 1965,
Haken joined the faculty at the Department of Mathemat-
ics at UIUC as a tenured professor. The last three children
ofWolfgang and Anna-Irmgard were born in the US: Agnes
in 1964, Rudolf in 1965, and Armgard in 1968.

In Haken’s paper [Hak61b] and his later papers
[Hak61a,Hak62,Hak68] he went far beyond the Unknot-
ting Problem, making huge inroads into the more general
Equivalence Problem for knots, and the essentially still more
general Homeomorphism Problem for 3-manifolds. In doing
so he introduced the concepts of normal surface, incompress-
ible surface, and hierarchy. All these terms will be explained
in the next section, on knots and 3-manifolds, where an
account of the enormous influence of these concepts—
extending even far beyond Haken’s original applications
of them—will be given. It will be seen that these concepts,
and Haken’s work in this area, are still bearing fruit today.

In the late 1960s, Haken began to work on the Four
Color Problem, which had fascinated him ever since the
1947 topology course by Weise and a subsequent 1948
lecture at Kiel by Heinrich Heesch. In 1976, Haken and
Kenneth Appel (who was also a professor at UIUC then)
proved the Four Color Theorem. Their proof included a
substantial computer-aided component and marked the
first time that a major mathematical result of this level of
importance was solved with the help of a computer.

After an announcement in the Bulletin of the AMS in
1976 [AH76a], the proof was published in 1977 in the Illi-
nois Journal of Mathematics [AH77,AHK77].

Inevitably, the proof generated much discussion and
controversy in the mathematical community. In retro-
spect, the proof was to a large extent responsible for the
birth of computational and experimental mathematics as
significant directions in modern mathematical research.

Shortly after Appel and Haken announced their proof
in 1976, the UIUC Department of Mathematics put the
phrase “Four Colors Suffice” on its official postmark,
which remained in use until the mid-1990s: see Figure 2.

Wolfgang Haken delivered an invited address at the
International Congress of Mathematicians in Helsinki in
1978. In 1979, Haken and Appel shared the Fulkerson
Prize from the American Mathematical Society for their so-
lution of the Four Color Problem.

Figure 2. The “Four Colors Suffice” postmark used by the
UIUC Department of Mathematics after the Appel–Haken
proof.

Haken remained a professor in the UIUC Department
of Mathematics until his retirement in 1998. He was
also a member of the University of Illinois Center for Ad-
vanced Study from 1993 to 1998. While at UIUC, Haken
was a thesis advisor for seven PhD students: Richard
Rempel (1973), Thomas Osgood (1973), Mark Dugopol-
ski (1977), Howard Burkom (1978), Robert Fry (1979),
Patrick Callahan (1994), and Scott Brown (1995).

The “Saturday hike” is a delightful UIUC tradition go-
ing back to 1909 and having a long association with the
mathematics department; the hike was for many years led
by the late Joseph Leo Doob. From the 1960s through
the rest of his life, Wolfgang Haken was a constant partic-
ipant in the Saturday hike, as were many other members
of the Haken clan. Wolfgang’s wife Anna-Irmgard was an
informal leader of the hike from 1993 to 2005, and con-
tinued to come to the hike in subsequent years, while her
health allowed. Anna-Irmgard, the beloved matriarch of
the Haken clan, passed away on April 4, 2017.

In retirement, much of Wolfgang’s scientific interests
concerned thinking about fundamental problems in cos-
mology. He also remained keenly interested in low-
dimensional topology and was extremely pleased to see
the tremendous progress in the field, including Grigori
Perelman’s proof of the Poincaré Conjecture and the proof
of the Virtual Haken Conjecture by Ian Agol and Daniel
Wise. In 2016, the Illinois Journal of Mathematics pub-
lished a special Haken volume honoring Haken’s mathe-
matical contributions and influence. In November 2017,
the UIUC Mathematics Department hosted a Four Color
Fest to celebrate the 40th anniversary of the proof of the
Four Color Theorem by Appel and Haken.

Three of Wolfgang Haken’s six children live in the
Urbana-Champaign area. Rudolf Haken, a renowned mu-
sician and a composer, is a professor of viola in the UIUC
School of Music. Lippold Haken designs electronic musi-
cal instruments and equipment and owns a companyman-
ufacturing a unique “Continuum Fingerboard.” He is also
retired from the position of teaching professor in the De-
partment of Electrical and Computer Engineering at UIUC,
where he conducted research related to sound. Armgard
Haken received BS and MS degrees in biology from UIUC,
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and is currently a research coordinator at the Midwest Big
Data Innovation Hub, housed within the National Center
for Supercomputing Applications at UIUC.

Haken’s eldest son, Armin, obtained a PhD degree in
mathematics from UIUC in 1984, specializing in complex-
ity theory and problems related to theoretical computer
science. He is now a retired software engineer in San Fran-
cisco. Dorothea Blostein, née Haken, received a PhD de-
gree in computer science from UIUC in 1987 and is cur-
rently a professor in the School of Computing at Queen’s
University in Kingston, Ontario. Agnes Debrunner, née
Haken, received a BS degree in animal science from UIUC.
She is a leader in the US underwater hockey community
and lives near Denver, Colorado. In addition to their six
children, Wolfgang and Anna-Irmgard had 13 grandchil-
dren, and the Haken clan continues to grow.

Wolfgang Haken passed away on October 2, 2022, at
the age of 94, in Champaign, Illinois, surrounded by his
family.

Ilya Kapovich

Knots and 3-Manifolds

Marc Lackenby and Peter Shalen
Haken’s first major mathematical achievement was the so-
lution to the Unknotting Problem, which appeared in his
1961 paper [Hak61b]. The problem had first been raised
by Dehn in 1910, and was one of the most fundamental
questions in knot theory.

Knots are just simple closed curves smoothly embed-
ded in 3-dimensional space. A knot is usually represented
by means of a diagram, which is a generic projection to a
plane, with over/under information given at each crossing.
In the Unknotting Problem, one is given a diagram of a

Marc Lackenby is a professor of mathematics at the University of Oxford. His
email address is lackenby@maths.ox.ac.uk.

Peter Shalen is a professor emeritus in the Department of Mathematics, Statis-
tics, and Computer Science at the University of Illinois at Chicago. His email
address is shalen@uic.edu.

knot, and the challenge is to determine whether it is the
trivial knot, in other words whether it can be deformed,
without crossing through itself, into a round circle. What
is required is an algorithm that can provide a completely
reliable answer.

Since the work of Alan Turing in the 1930s, it had been
known that there are some problems that admit no algo-
rithmic solution. Indeed, in his final published paper in
1954, Turing wrote “No systematic method is yet known
by which one can tell whether two knots are the same.” Al-
though Turing did not explicitly say this, it was clear that
he was raising the possibility that this problem might not
be solvable. After some experimentation, it quickly be-
comes clear that the Unknotting Problem is certainly not
straightforward, as it is possible to produce diagrams of the
trivial knot that admit no immediate simplification. An ex-
ample, due to Haken (with a small correction due to Ian
Agol), is given in Figure 3.

Figure 3. A trivial(!) knot.

A round circle in 3-space is the boundary of a disk. In-
deed, this is a characterization of the trivial knot. For if one
were to deform the round circle without passing through
itself forming a knot 𝐾, then one could at the same time
deform the disk. Thus any trivial knot forms the bound-
ary of a smoothly embedded disk in 3-space. Conversely,
if a knot 𝐾 bounds a smoothly embedded disk, then one
can deform the knot within this disk until it is a nearly-
round curve that is visibly unknotted. The challenge, there-
fore, is to decide whether a given knot in 3-space bounds
a smoothly embedded disk. This is called a spanning disk.
Normal surfaces. It is technically convenient to consider
the given knot 𝐾 not as lying in ℝ3, but in its one-point
compactification, the 3-sphere 𝑆3. The reason why this is
helpful is that if we thicken 𝐾 to form an open solid torus
𝑁(𝐾), then the space 𝑆3 ⧵𝑁(𝐾), which is called the exterior
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of the knot 𝐾, is compact. The exterior is a 3-manifold
with boundary3, which means that it is locally modeled
on the closed upper-half space ℝ3

+. If 𝐾 is a trivial knot,
a spanning disk for 𝐾 can be chosen so that it intersects
the exterior 𝑀 of 𝐾 in an “essential” disk 𝐷. To say that 𝐷
is essential means that it is properly embedded in the sense
that 𝐷 ∩ 𝜕𝑀 = 𝜕𝐷, and is not boundary-parallel—i.e., is not
obtained from a disk in 𝜕𝑀 by pushing the interior of the
disk into the interior of 𝑀. The Unknotting Problem is
then reduced to determining whether the exterior of a knot
contains an essential disk.

Haken’s approach to this problem used the notion of a
“normal surface.” Normal surfaces had already appeared
in the work of Kneser in the 1930s to prove results about
spheres in 3-manifolds, but Haken developed a systematic
theory of such surfaces and recognized their huge power
as a tool for addressing algorithmic questions.

The context for normal surface theory is a triangulation
of a given 3-manifold 𝑀 (with boundary), which is just a
description of𝑀 as a collection of tetrahedra with some of
their faces glued in pairs. A triangulation of the exterior of
a knot 𝐾 can easily be built from a given diagram of 𝐾. If a
compact 3-manifold with boundary contains an essential
disk, one can consider how such a disk intersects the tetra-
hedra of the triangulation. By suitably modifying the disk,
one can always arrange that it intersects each tetrahedron
in a collection of triangles and quadrilaterals, as shown in
Figure 4. A properly embedded surface which meets the
tetrahedra in this way is said to be normal. (In fact, Haken
used an alternative formulation of normal surface theory,
using handle structures rather than triangulations, but we
will focus on the triangulated version here.)

Triangle Quadrilateral

Figure 4. Components of intersection of a normal surface
with a tetrahedron.

Thus, the Unknotting Problem reduces to the question
of whether the exterior of 𝐾 contains an essential disk

3The manifolds we consider will in fact be smooth or piecewise linear, as will
their submanifolds. In three dimensions, the transition between smooth and
piecewise linear structures on a manifold is well-understood and elementary,
and contains no surprises.

which is a normal surface. This does not immediately
solve the problem, as there may well be infinitely many
normal surfaces in a given triangulation. However, Haken
was able to show that one only needs to check a finite list of
possible normal surfaces. Hismethodwas to encode a nor-
mal surface by combinatorial data in the following way. In
each tetrahedron, there are four possible types of normal
triangles and three types of normal quadrilaterals. Thus, if
there are 𝑡 tetrahedra, then a normal surface 𝑆 determines a
vector (𝑆)whose entries are 7𝑡 non-negative integers, called
coordinates, that count the number of triangles and quadri-
laterals of each type; the vector (𝑆) determines the surface
𝑆 up to a harmless equivalence relation. Haken observed
that (𝑆) satisfies some simple restrictions. One restriction
is that, within each tetrahedron, there can be at most one
type of quadrilateral, as otherwise the surface could not
be embedded. Thus there are 3𝑡 possibilities for the set
of types of quadrilaterals that appear in a given surface.
When one has fixed such a set, 2𝑡 of the coordinates are
constrained to equal 0. The other restriction is that when
two tetrahedra are glued along a face 𝐹, then the require-
ment that the triangles and quadrilaterals in the adjacent
tetrahedra patch together correctly along 𝐹 imposes three
linear constraints on (𝑆). It turns out that these two sets
of constraints are sufficient as well as necessary for an ele-
ment of ℕ7𝑡 to be the vector of a normal surface. Thus the
set 𝔛 consisting of all vectors of normal surfaces is a union
of 3𝑡 “cones” in ℕ7𝑡, each of which is defined by a system
of linear equations with integer coefficients. In particular,
if 𝑆1 and 𝑆2 are normal surfaces such that (𝑆1) and (𝑆2) lie
in the same cone, we may define the sum 𝑆 of 𝑆1 and 𝑆2 by
(𝑆) = (𝑆1) + (𝑆2).

From the description of 𝔛 as a finite union of cones,
Haken deduced, by very general arguments about solu-
tions to systems of integer linear equations, that𝔛 contains
a finite set of “fundamental” vectors such that every vector
in 𝔛 is a non-negative integer linear combination of fun-
damental vectors. Furthermore, the fundamental vectors
can be found algorithmically from the equations; the sur-
faces corresponding to fundamental vectors are also said
to be fundamental. Using a topological interpretation of
the sum of two surfaces, Haken was able to show that if
some surface is an essential disk, then some fundamental
surface is an essential disk. Thus, one can decide whether
a knot is the trivial knot, by going through each of the fun-
damental surfaces and checking whether any of them is an
essential disk.

This was a brilliant and elegant solution to the Unknot-
ting Problem.
Incompressible surfaces, hierarchies, and the Homeo-
morphism Problem. After solving the Unknotting Prob-
lem in [Hak61b], Haken went on to the more general
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problem, highlighted by Turing, of deciding whether two
knots are equivalent, in the sense that one can be de-
formed into the other without crossing through itself. This
Knot Equivalence Problem was a much greater challenge.

Just as a trivial knot bounds a spanning disk in 𝑆3, a
general knot 𝐾 always bounds a compact, connected, ori-
entable surface in 𝑆3, called a Seifert surface. Compact ori-
entable surfaces are classified up to homeomorphism by
two numerical invariants: their number of boundary com-
ponents (which in this case is 1) and their genus (which
is their number of “handles”). Necessarily, when a knot is
non-trivial, the genus of any of its Seifert surfaces is greater
than zero.

Not all Seifert surfaces are interesting. For example, one
can modify a given Seifert surface by adding a large num-
ber of handles in a tiny neighborhood of a point. In order
to focus on surfaces that really reflect the topological struc-
ture of a given 3-manifold (such as a knot exterior), Haken
introduced the notion of an “incompressible surface.” A
compressing disk for a properly embedded surface 𝑆 in a 3-
manifold𝑀 is defined to be a disk 𝐷 contained in the inte-
rior of 𝑀 with 𝐷 ∩ 𝑆 = 𝜕𝐷, such that the boundary of 𝐷 is
not “trivial” in the sense that it already bounds a disk in 𝑆.
The significance of this notion is that a compressing disk
for 𝑆 can be used to modify 𝑆 by the operation shown in
Figure 5 below, called a compression, which will produce a
surface that is “simpler” than 𝑆 in a useful sense.

S

D

Figure 5. A compression.

For example, if 𝑆 is connected and has connected
boundary, like the surfaces in a knot exterior arising from
Seifert surfaces, a surface obtained from 𝑆 by a compres-
sion will have a component having the same boundary as
𝑆 but having smaller genus.

We may define an incompressible surface in a compact,
orientable 3-manifold 𝑀 to be a properly embedded ori-
entable 2-manifold 𝑆 in𝑀 which is not boundary-parallel,
is not a 2-sphere bounding a ball, and has no compress-
ing disks. For example, if for a given knot 𝐾 we choose
a Seifert surface 𝐹 whose genus is minimal among all
Seifert surfaces for𝐾, the properly embedded surface in the

exterior of 𝐾 that arises from 𝐹 will be incompressible.
This minimal genus is classically called the genus of 𝐾.

Any incompressible surface can be isotoped (i.e., de-
formed through a continuous family of embedded sur-
faces) to a normal surface. Using this fact, it is possible
to use Haken’s method of fundamental normal surfaces to
find the genus of a knot algorithmically. However, this
does not solve the Knot Equivalence Problem, because
there are infinitely many inequivalent knots of any given
positive genus.

Haken dealt with this issue by introducing a completely
new idea in [Hak62]: the notion of a “hierarchy.” Sup-
pose that one starts with a 3-manifold with boundary 𝑀1,
for example the exterior of a given knot. One provides
an incompressible surface 𝑆1 in 𝑀1. Then one removes an
open regular neighborhood of 𝑆1 from𝑀1, forming a new
3-manifold with boundary, called𝑀2 say. Then in𝑀2, one
finds a new properly embedded incompressible surface 𝑆2,
one removes an open regular neighborhood of that, and
so on. If the process terminates, in the sense that for some
𝑛 the 3-manifold 𝑀𝑛 is a disjoint union of 3-balls, then
the manifolds 𝑀1, … ,𝑀𝑛 are said to constitute a hierarchy
for 𝑀1.

Haken proved, making strong use of normal surface the-
ory, that every knot exterior has a hierarchy; one can take
the surface 𝑆1 to be the incompressible surface that arises
from a minimal-genus Seifert surface. But what he proved
is far more general: a compact, orientable 3-manifold 𝑀
with non-empty boundary always admits a hierarchy, pro-
vided that𝑀 is irreducible, in the sense that it is connected
and that every 2-sphere in 𝑀 bounds a 3-ball. Every knot
exterior is irreducible. What is even more important is
that, thanks to a result known as the prime decomposi-
tion theorem [Hem04]4, most questions about arbitrary
compact, orientable 3-manifolds can be reduced to the spe-
cial case of irreducible manifolds, so that irreducibility is
not a serious restriction. (The prime decomposition theo-
rem is often attributed to Kneser and Milnor, but Milnor’s
part had been done independently by Haken in his paper
[Hak61a].)

The version of Haken’s theorem on the existence of hi-
erarchies that we have mentioned includes the hypothe-
sis that the manifold 𝑀 has non-empty boundary. But if
an irreducible, orientable 3-manifold 𝑀 is closed, i.e., is
compact and has no boundary, and if 𝑀 contains some
(necessarily closed) incompressible surface, the theorem
immediately implies that 𝑀 has a hierarchy.

The great thing about hierarchies is that they permit
the use of inductive methods. One can view the manifolds

4To keep the number of references under control, and to benefit non-expert read-
ers who want to learn more, we will often cite texts and survey articles that con-
tain references to the original papers.
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further down the hierarchy as “simpler” than the original
one, and one can often use our knowledge of the sim-
pler manifolds to establish information about the origi-
nal manifold. Haken’s theorem on the existence of hier-
archies has turned out to be a tremendously powerful tool
in 3-manifold theory, as we shall explain in more detail
later. For this reason, a compact, orientable, irreducible 3-
manifold 𝑀 that satisfies the hypothesis of the theorem—
that either 𝜕𝑀 ≠ ∅, or 𝑀 is closed and contains an incom-
pressible surface— is now called a Haken manifold, a term
introduced by William Jaco. A sufficient condition for a
closed irreducible manifold 𝑀 to be a Haken manifold is
that its first betti number dim𝐻1(𝑀;ℚ) be strictly positive.

Haken used hierarchies in [Hak62] and [Hak68] to
provide a solution to the Homeomorphism Problem for
Haken manifolds, and the very closely related Equivalence
Problem for knots, with some exceptions. He was able to
show that a Haken manifold can be recovered from infor-
mation about the surfaces in a hierarchy and the way that
they glue together. Thus, one can reformulate the Home-
omorphism Problem, by asking whether the two given
Haken manifolds admit hierarchies that use the same sur-
faces glued together in the same way. This is useful, since
the translation into a question about surfaces permitted
Haken to use the theory of normal surfaces that he devel-
oped for the Unknotting Problem.

By 1968, the only case of these problems with which
Haken could not deal was the case of “fibered 3-manifolds”
or “fibered knots.” A 3-manifold is said to be fibered if
it can be obtained from a product 𝐹 × [0, 1], where 𝐹
is a 2-manifold, by gluing 𝐹 × {0} to 𝐹 × {1} by some
homeomorphism. Fibered manifolds can be thought of
as Haken manifolds with particularly simple hierarchies;
from a slightly fancier point of view, they are 3-manifolds
that admit locally trivial fibrations over a circle. A knot is
fibered if its exterior is fibered. In the late 1970s, Geoffrey
Hemion (see [Lac22]) succeeded in solving the Homeo-
morphism Problem for fibered manifolds, using quite dif-
ferent methods from Haken’s. This is a neat example of
how two different approaches to a problem can perfectly
complement each other.

Haken’s proof was both lengthy and delicate, and in
many places, his argument was sketchy. Indeed, it was
not until 2003 that Sergei Matveev gave a full account of
Haken’s proof, filling in many of the details and dealing
with some of the cases that Haken had omitted. (See
[Lac22].) While this was an important contribution, it
confirmed the essential correctness of Haken’s work in this
area, which constitutes a stunning achievement.

In the decades following Haken and Hemion’s solu-
tion to the Homeomorphism Problem for Haken mani-
folds, William Jaco, Hyam Rubinstein and others further

illustrated the power of Haken’s methods by extending
them to other kinds of 3-manifolds. A particularly strik-
ing example, developed through the combined efforts of
Rubinstein and Abigail Thompson, is an algorithm to de-
termine whether a triangulated 3-manifold is homeomor-
phic to the 3-sphere. This is a long way from the theory
of hierarchies that was developed by Haken, since the 3-
sphere is known not to contain any closed embedded ori-
entable incompressible surfaces. Thus, there is no obvious
surface to place into normal form. Instead, Rubinstein and
Thompson used “almost normal” surfaces, which are em-
bedded surfaces that intersect each tetrahedron of the tri-
angulation in a collection of triangles and quadrilaterals,
except in exactly one tetrahedron, where exactly one piece
is not a triangle or quadrilateral, but is an “octagon” in a
suitable sense. They were able to show that the 3-sphere
could be detected by searching for normal and almost nor-
mal spheres, and using Haken’s method of encoding nor-
mal surfaces by vectors satisfying linear constraints. For
an account of these developments, with further references,
see [Lac22].
Normal surfaces and the fundamental group. Remark-
ably, while Haken was developing his ideas about incom-
pressible and normal surfaces in the early and middle
1960s, other researchers, notably David Epstein and John
Stallings, were working with incompressible surfaces from
a radically different point of view. Rather than thinking
about algorithms, which were the focus of Haken’s work,
these researchers were concerned with the very classical
question of the extent to which the algebraic invariants of
a 3-manifold determine its topological type. Their results
depended strongly on work by Christos Papakyriakopou-
los from the 1950s, which implies that a connected ori-
entable incompressible surface 𝐹 in a connected orientable
3-manifold𝑀 is 𝜋1-injective in the sense that the inclusion
homomorphism from 𝜋1(𝐹) to 𝜋1(𝑀) is injective. This is
a powerful tool for studying the way that the fundamen-
tal group of a 3-manifold controls its topological struc-
ture. Perhaps the most celebrated result from this period
is Stallings’s fibration theorem, which implies that a com-
pact, orientable, irreducible 3-manifold is fibered if and
only if its fundamental group admits a homomorphism
onto ℤ with a finitely generated kernel.

It was apparently Friedhelm Waldhausen who recog-
nized the connection between these two very different
strains of research involving incompressible surfaces. He
exploited the connection to prove a series of extraordinary
theorems, one of which implies—among other things—
that two closed Haken manifolds are homeomorphic if
their fundamental groups are isomorphic. Needless to say,
his proofs involved a great many ingenious ideas, but it
seems fair to say that the main tools that he used are the
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ingredients in the proof of the Stallings fibration theorem
on the one hand, and Haken’s result on the existence of
hierarchies on the other.

A good reference for these developments is [Hem04].
The interaction between the existence of hierarchies and

the 𝜋1-injectivity of incompressible surfaces led to an ex-
plosion of work on the topological structure of Haken
manifolds. The so-called characteristic submanifold the-
ory was developed by Klaus Johannson [Joh79] and, inde-
pendently, by William Jaco and Peter Shalen [JS79]; the
two approaches were quite different, but the use of hierar-
chies, and of the 𝜋1-injectivity of incompressible surfaces,
was ubiquitous in each. Rather than attempting to explain
the characteristic submanifold theory here, we shall em-
phasize one by-product of the theory: if 𝑀 is a Haken
manifold, which for simplicity we will take to be closed,
then there is a canonical (possibly empty) system of in-
compressible tori in 𝑀, and the components of the sub-
manifold obtained by splitting 𝑀 along these tori have
nice properties.

Just how nice these “pieces” of𝑀 are was later revealed
by William Thurston’s geometrization theorem [Mor84]:
the interior of each piece admits a geometric structure, lo-
cally modeled on a 3-dimensional homogeneous space.
There are several different homogeneous spaces that arise
in this context; one is Euclidean 3-space, and another is
hyperbolic 3-space, the non-Euclidean space discovered by
Gauss, Bolyai and Lobachevski. Of the various classes of
locally homogeneous manifolds, those modeled on hy-
perbolic spaces are by far the richest. Indeed, the deep
part of Thurston’s result was a characterization of those
Haken manifolds that admit a hyperbolic structure. And
his proof of this revolutionary result, whose influence on 3-
manifold theory is still being felt, was an induction on the
length of a hierarchy, in which the induction step makes
crucial use of 𝜋1-injectivity.

Whereas the use of hierarchies in the work that we have
been describing followed the same basic pattern as their
use in Waldhausen’s work, other developments in the late
20th century involved unexpected twists in the application
of Haken’s ideas. David Gabai discovered a very surpris-
ing refinement of the notion of a hierarchy, called a su-
tured manifold hierarchy, which turned out to be the key
to solving a number of previously intractable problems
in 3-manifold theory (see [Sch90]). William Floyd and
Ulrich Oertel showed that much of normal surface the-
ory can be reinterpreted in terms of geometric objects in
a 3-manifold called branched surfaces; their work eluci-
dated the geometric meaning of normal surfaces. Oertel
and Allen Hatcher, working in the context of branched
surfaces, initiated the study of 2-dimensional measured
laminations in 3-manifolds; these are generalizations of

normal surfaces given by solutions of the normal sur-
face equations in which the coordinates are real numbers
rather than integers. John Morgan and Peter Shalen used
incompressible measured laminations in their work on
actions of 3-manifold groups on real trees, which gave a
new perspective on one of the main steps in Thurston’s
geometrization theorem. (The expository article [MS85]
gives references for both the Floyd–Oertel paper and the
Morgan–Shalen papers.)

Before Waldhausen’s work, it is unclear to what extent
people whose work used incompressible surfaces from the
perspective of algebraic topology were aware of the con-
nection with Haken’s work. Haken himself seems to have
been quite unaware of the connection. One of the au-
thors of this section, Peter Shalen, was astonished when
Haken told him that, before seeing Waldhausen’s paper,
it had never occurred to him that incompressible surfaces
might have anything to do with fundamental groups. Hav-
ing first encountered Haken’s work through Waldhausen’s
papers, Shalen’s own perspective was that incompressible
surfaces were important precisely because of their connec-
tion with fundamental groups. After thinking it over, he
realized that this difference in perspective is itself a reflec-
tion of the power and versatility of normal surface theory.
Its role in the algorithmic side of 3-manifold topology is
very different from its role in the side of the subject involv-
ing algebraic invariants and geometric structures, and yet
it is central to both.
Recent developments. Both aspects of the theory of nor-
mal surfaces and hierarchies have continued to flourish,
although not in the way that might have been predicted.
Three-manifold theory has taken quite unexpected direc-
tions because of a huge development in 2002–2003.

We have mentioned that Thurston’s proof of his ge-
ometrization theorem for Haken manifolds was based on
an induction on the length of a hierarchy. Thurston con-
jectured an extension of his theorem to arbitrary compact
3-manifolds, which includes the Poincaré Conjecture as
a special case. (The Poincaré Conjecture, which asserts
that every compact, simply connected 3-manifold without
boundary is homeomorphic to 𝑆3, was one of the three
problems that Haken was introduced to in Weise’s lecture.
It remained one of the most significant unsolved prob-
lems in topology throughout the twentieth century, and
in particular, it resisted Haken’s considerable efforts to
prove it.) Grigori Perelman’s proof of this conjecture of
Thurston’s was perhaps the most important breakthrough
in the history of the subject. Perelman used radically differ-
ent techniques from Thurston’s, based on work by Richard
Hamilton (see [Mor09]), and his proof did not involve hi-
erarchies or normal surfaces. However, far from render-
ing the ideas of hierarchies or normal surfaces obsolete,
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Perelman’s work opened vast new opportunities for ex-
ploiting these ideas of Haken’s.

A spectacular example of how the use of hierarchies in-
teracts with geometrization was provided by the so-called
virtual Haken conjecture and virtual fibering conjecture.
These were established by Ian Agol as the culmination of
a program developed by Daniel Wise, and building on
work by Jeremy Kahn and Vladimir Markovic. (Agol’s pa-
per [Ago13] provides references to the relevant papers by
Wise and Kahn-Markovic.) The virtual Haken conjecture,
first hinted at by Waldhausen, asserts that every closed ir-
reducible 3-manifold with infinite fundamental group is
finitely covered by a Haken manifold. The virtual fiber-
ing conjecture, first speculated about by Thurston (and so
strong that it was once widely considered implausible),
asserts that every hyperbolic 3-manifold which is closed
(or even has finite volume) is finitely covered by a fibered
manifold. Wise’s program is very largely group-theoretical,
and his and Agol’s results have major group-theoretical
implications beyond 3-manifold theory. The point to be
stressed here is that a group-theoretical counterpart of the
notion of a hierarchy is central to the program. Thus we
see the ideas that Haken developed to study knots and 3-
manifolds bearing fruit in a wider context, as well as being
central to the most remarkable recent developments in 3-
manifold theory.

Another remarkable interaction between Haken’s work
and geometrization involves the Homeomorphism Prob-
lem. Gregory Kuperberg, using Perelman’s theorem as a
starting point, has written down a completely general so-
lution to the Homeomorphism Problem for 3-manifolds,
which he says is essentially due to Thurston and Robert
Riley (both of whom assumed the geometrization conjec-
ture). This solution does not involve normal surface the-
ory. However, by combining geometrization with normal
surface theory, Kuperberg has established a much stronger
result: that the Homeomorphism Problem is solvable by
an algorithm with execution time bounded by a tower of
exponentials. (See [Lac22] for an account of this work.)
Thus we see Haken’s ideas being applied in ever stronger
ways to the problems for which he first designed them.

Marc Lackenby Peter Shalen

The Four Color Theorem

Robin Wilson
The Four Color Theorem states:

The regions of every plane map can be colored with just
four colors so that neighboring regions receive different
colors.

First posed as a problem by Francis Guthrie in 1852, it was
not until 1976 that the theorem was proved, by Wolfgang
Haken and Kenneth Appel of UIUC. Their proof was one
of the earliest to make substantial use of a computer.

In 1879, it was shown that it is sufficient to consider
cubic maps, where exactly three regions meet at each inter-
section. In the same year, Alfred Kempe claimed a proof
that was widely accepted until a fatal flaw was exposed in
1890. Kempe’s paper, although incorrect, contained sev-
eral ideas that would resurface in the eventual proof.

Over the next 50 years, it gradually became clear that
the problem splits into two parts. In the following, a con-
figuration of ring-size 𝑘 is a collection of regions surrounded
by an external ring of 𝑘 regions: see Figure 6.

Figure 6. A configuration with ring-size 14.

Unavoidable sets of configurations: Kempe proved that ev-
ery cubic map must contain at least one region bounded
by at most five edges: a digon, triangle, quadrilateral, or
pentagon. Any set of configurations (such as these four) is
unavoidable if every cubic map must contain at least one of
them.

Reducible configurations: A configuration is reducible if
any coloring of the surrounding ring can be extended to
the interior regions, either directly or after interchanging
pairs of colors (known as Kempe-interchanges). Note that
no reducible configuration can appear in a minimal coun-
terexample to the Four Color Theorem.

Robin Wilson is a professor emeritus in the Department of Mathematics at The
Open University. His email address is robin.wilson@open.ac.uk.
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Kempe proved that digons, triangles, and quadrilater-
als are reducible, but failed to do so for pentagons. In
1904, Paul Wernicke replaced the pentagon by two adja-
cent pentagons and a pentagon adjacent to a hexagon, giv-
ing a new unavoidable set, and this result was further ex-
tended by Philip Franklin in 1922, and by Henri Lebesgue
(of Lebesgue integral fame) in 1940.

In 1913, George Birkhoff gave a systematic treatment of
reducible configurations, showing that every set of config-
urations with ring-size up to 5 (other than the pentagon) is
reducible, and proving the reducibility of a particular con-
figuration of four pentagons with ring-size 6, known as the
Birkhoff diamond: see Figure 7.

Figure 7. The Birkhoff diamond.

Several mathematicians then built on these ideas, ob-
taining many reducible configurations. In particular,
Franklin introduced new ones in a counting argument
which proved that every cubic map with up to 25 regions
can be 4-colored. By 1940, this number had increased to
35.

Further details on, and references for, these early devel-
opments and those described below can be found in the
author’s book Four Colors Suffice [Wil14]; the quotations
by Haken and others are taken from an article by Donald
MacKenzie [Mac99] much of which was based on unpub-
lished interviews that were conducted in 1994.
Enter Heesch and Haken. Much of this work was piece-
meal, with attempts to find unavoidable sets and reducible
configurations being largely independent of each other. It
was not until the 1940s that Heinrich Heesch entered the
fray. Heesch had contributed to the solution of the 18th of
Hilbert’s celebrated problems, and around 1935 became
interested in map coloring. He realized that to prove the
Four Color Theorem, it was enough to find an unavoidable
set of reducible configurations: every map must include at
least one of them, but none can appear in a minimal coun-
terexample.

In the late 1940s, Heesch lectured on his findings at the
University of Kiel, and in 1948 one student who attended
was Wolfgang Haken, who was studying mathematics, phi-
losophy, and physics, and who had been aware of the Four
Color Problem since hearing about it in Weise’s topology

course. Haken later recalled Heesch’s lecture, much of
which he did not understand at the time, and remembered
Heesch’s claim that theremight be some 10,000 cases to be
investigated.

Over the next 20 years, Haken solved the Unknotting
Problem, and moved to the University of Illinois Urbana-
Champaign, where he did much of his fundamental work
on the Equivalence Problem for knots and the Homeo-
morphism Problem for 3-manifolds. During this period
he also spent much time on the Poincaré Conjecture. In
1966, unable to complete a proof of this conjecture, he be-
gan thinking about the Four Color Problem. He contacted
Heesch, who was still working on the problem and had
discovered thousands of reducible configurations.

Unavoidable sets were still rather scarce, and in order
to produce them, Heesch invented his method of discharg-
ing (as it was later named by Haken). Here, to investigate
whether certain configurations form an unavoidable set,
he assumed the contrary. He then assigned a “charge” of
6 − 𝑘 to each 𝑘-sided region; it then follows from Euler’s
polyhedron formula that the total charge over the whole
map is positive. He next attempted to move these charges
around the map in such a way that no charge was created
or destroyed; this is called discharging the map. In many
cases this could be done so that every region received a
non-positive charge. This contradiction confirmed that the
given configurations did indeed form an unavoidable set.

Heesch also contributed to the theory of reducible con-
figurations, and defined a configuration to be 𝐷-reducible
if every coloring of the surrounding ring can be extended
to the interior regions (either directly or after Kempe-
interchanges of colors), and to be 𝐶-reducible if this can be
carried out after the configuration had been simplified in
some appropriate way. His aim was to develop systematic
methods for generating reducible configurations, looking
at both 𝐷-reducible and 𝐶-reducible cases. If a configura-
tion was not 𝐷-reducible, he frequently saw how to mod-
ify it so as to determine its 𝐶-reducibility, and in this way
he could restrict his attention to a smaller number of pos-
sible colorings. Over the years he developed an uncanny
knack of recognizing reducible configurations with at least
80 percent accuracy: as Haken remarked:

What fascinated me most was that Heesch looked
at the configuration, and he said either “No, there
is no chance: that cannot be reducible” or “But
this one: that is certainly reducible.”

Haken invited Heesch to lecture at UIUC, and asked
whether computers might help in the examination of
large numbers of configurations. Heesch had already ob-
tained the help of a mathematics graduate who developed
a method for testing 𝐷-reducibility that was sufficiently
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routine to be implemented on a computer, even though
this might take a long time.

The complexity of a configuration can be measured by
its ring-size; for example, the Birkhoff diamond has ring-
size 6 and there are 31 essentially different colorings of
the surrounding regions to consider, but for configurations
with ring-size 14 there are nearly 200,000 colorings. Larger
ring-sizes were way beyond the capacity of computers of
the time.

Haken bid to the University of Illinois for time on a new
supercomputer whose construction was nearing comple-
tion, but it was not yet ready for use. Eventually, they were
referred to the Atomic Energy Commission’s Brookhaven
laboratory in Long Island, where there was a Cray Control
Data 6600 machine, the most powerful machine of its day,
which could test configurations of up to ring-size 14.

In 1970, Heesch sent Haken the results of a new dis-
charging experiment which, if applied to a general map,
would yield about 8900 “bad” configurations extending up
to ring-size 18, in which some regions would still have pos-
itive charge. Haken, however, was pessimistic about deal-
ing with so many configurations, especially since several
were fairly large. For some time, he had felt that the com-
plexity of the problem would be substantially simplified
by better discharging methods. By restricting his attention
to maps without hexagons or heptagons, he obtained a
much simpler procedure and communicated his findings
to Heesch; it is at this stage that Haken began to contribute
to the eventual solution of the problem.

Impressed by Haken’s findings, Heesch invited Haken
to collaborate with him, and in 1971 sent him three “ob-
stacles” whose presence seemed to prevent configurations
from being reducible—a 4-legger region adjoining four con-
secutive regions of the surrounding ring, a 3-legger articula-
tion region adjoining three surrounding regions that are not
all adjacent, and a hanging 5-5 pair of adjacent pentagons
that adjoin a single region inside the surrounding ring: see
Figure 8.

Figure 8. Heesch’s obstacles to reducibility.

But by now, Haken was changing his approach. Un-
like everyone else whose objective seemed to be to
collect reducible configurations by the hundreds before

packaging them into an unavoidable set, Haken’s primary
motivation was to aim directly for an unavoidable set. In
order to avoid wasting expensive computer time checking
configurations that would eventually be of no interest, this
set was to contain only configurations that were likely to be
reducible—in particular, they should contain none of the
obstacles. Any configuration that subsequently proved not
to be reducible could then be dealt with individually. As
he later commented:

If you want to improve something, you should not
improve that part which is already in good shape.
The weakest point is always the one you should
improve. This is a very simple answer to why we
got it and not the others.

By this time, most workers on the Four Color Problem
were using the “dual formulation” of coloring the vertices
of the corresponding graph. In particular, Heesch devised
a useful notation for representing regions by appropriate
symbols so that they can be easily distinguished, such as •
for pentagons, ⋅ for hexagons, ∘ for heptagons, and ∇ for
nonagons.
Enter Appel. With little knowledge of computing, Wolf-
gang Haken considered giving up the problem until more
powerful machines had become available to deal with the
massive calculations that would clearly be necessary. In-
formed that his ideas could not be programmed, he an-
nounced:

The computer experts have told me that it is not
possible to go on like that. But right now I’m quit-
ting. I consider this to be the point to which and
not beyond one can go without a computer.

Attending this lecture was his colleague Kenneth Appel,
a computer programmer with much practical experience.
Afterward, Appel told Haken that he considered the ex-
perts’ view to be nonsense, and offered to work on im-
plementing the discharging procedures. Haken was de-
lighted to accept Appel’s offer, and they decided to concen-
trate their search on unavoidable sets, without taking time
to check the configurations for reducibility; in particular,
they focused on “geographically good configurations” that
contain neither of Heesch’s first two obstacles, and would
check for reducibility when an entire unavoidable set had
been constructed.

Their first exploratory computer runs provided much
useful information, but the computer output was enor-
mous, with some configurations appearing many times;
they would clearly need to keep such duplications under
control if the eventual list were to be manageable. Fortu-
nately, the computer program had run in just a few hours,
and so they could experiment as often as necessary. Any
changes to the program were easily implemented and the
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Figure 9. Wolfgang Haken and Kenneth Appel.

paper stacks of outputs of later runs were much reduced in
thickness; eventually they would come down to a fraction
of an inch.

From then on, they continually modified the discharg-
ing algorithm or the computer program so that the pro-
gram grew while the output shrank. This two-way dialog
with the computer continued, as problems were sorted out
and new ones arose. Within six months of experimenting
and improving their procedures, they realized that their
method for producing a finite unavoidable set of geograph-
ically good configurations in reasonable time was feasible.

In early 1975, they introduced the third of Heesch’s ob-
stacles; this inevitably involved changes in procedure, but
was carried out successfully with only a doubling in the
size of the unavoidable set.

As soon as it seemed that they could probably find an
obstacle-free unavoidable set of configurations which were
likely to be reducible, they started the massive detailed
check for reducibility. Inevitably, a few “rogue” reducible
configurations would appear in the list, but their hope was
that these would be relatively few in number.

In mid-1974, realizing that they needed help with the
reducibility programs, they had enlisted the help of John
Koch, a graduate student, to work on the 𝐶-reducibility of
configurations. Appel and Haken were particularly inter-
ested in two types of modification that were relatively easy
to implement, and Koch discovered that most of his con-
figurations were fortunately of these types.

By early 1976, Haken and Appel could work on the
final details of the discharging procedure. To do this,
they sought “problem configurations” and immediately

Figure 10. Some of Haken and Appel’s configurations.

tested them for reducibility—this could usually be done
fairly quickly. In the event, the final process involved
487 discharging rules, requiring the investigation by hand
of about 10,000 neighborhoods of regions with positive
charge and the reducibility testing by computer of some
2000 configurations. All configurations were of ring-size
14 or less.

The last few months were extremely heavy on computer
time, but Appel, Haken, and Koch were fortunate. Few in-
stitutions would have given them 1200 hours on the com-
puter, but the university’s computer center was very sup-
portive, and in March 1976 a powerful new machine was
bought by the university’s administrators. This proved to
be so powerful that everything proceeded far more quickly
than they had expected, saving them much time on the re-
ducibility testing. Meanwhile, with the help of Haken’s
daughter Dorothea, they spent months of exhausting and
stressful effort working through the 2000 or so configura-
tions that would eventually form the unavoidable set.

Suddenly by late June, almost before they realized what
was happening, the entire job was finished: the Hakens
had completed the construction of the unavoidable set.
Within two days Appel tested the final configurations for
reducibility, and celebrated their achievement by announc-
ing on the department’s blackboard:

Modulo careful checking it appears that four col-
ors suffice.

By this time, Haken and Appel knew that they were safe:
even if a few configurations proved to be irreducible, there
was more than enough self-correction in the system for
them to be quickly replaced: no single faulty configura-
tion could destroy the entire edifice. In fact, their system
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included so much self-correction that they effectively had
many thousands of proofs of the Four Color Theorem, in-
stead of just one!

Armed with this confidence, they went public. On July
22, 1976, they formally informed their colleagues and sent
complete preprints to everyone in the field. One recipi-
ent was Bill Tutte, who waxed eloquent, comparing their
achievement with the slaying of a fabled Norwegian sea
monster:

Wolfgang Haken
Smote the Kraken
One! Two! Three! Four!
Quoth he: “The monster is no more.”

They quickly wrote short reports for the Bulletin of the
American Mathematical Society [AH76a] and Discrete Math-
ematics [AH76b], but decided to submit their full solution
to the Illinois Journal of Mathematics, partly because they
wanted it to appear locally, but mainly so that they could
suggest suitable referees. By December they were able to
refine the proof and prepare it for publication. The result
substantially improved on the rough-and-ready preprint
they had sent out in July: in particular, their preprint
had contained duplications and configurations contained
within others, and by eliminating these they reduced their
original list of 1936 reducible configurations to 1482.

Their solution appeared in two parts in the December
1977 issue of the Illinois Journal. Part I [AH77] onDischarg-
ing outlined the overall strategy of their proof, while Part
II [AHK77] on Reducibility, written with John Koch, listed
the entire set and described the computer implementation.
These were supplemented by microfiche containing 450
pages of further diagrams and detailed explanations.

Wolfgang Haken and Kenneth Appel had achieved their
goal: the Four Color Theorem was proved.
Aftermath. The Appel–Haken proof was greeted with
enthusiasm—a longstanding problem had at last been
solved—but also with skepticism, great disappointment,
or outright rejection. Their extensive use of computers was
widely criticized, and raised philosophical questions as to
whether a proof is valid if it cannot be checked by hand.
At a Joint AMS-MAA Summer meeting in Toronto a lecture
by Haken to a capacity audience received only polite ap-
plause, and when explaining their proof to mathematics
departments, its authors were often made to feel unwel-
come; in one case, they were even barred from meeting
graduate students for having introduced totally inappropri-
ate methods into mathematics. Since then, with the pas-
sage of time, the use of computers in mathematical proof
has become more widespread.

Inevitably, there were typos in their paper, and also ami-
nor error that needed two weeks for Haken to correct, but

the proof emerged largely unscathed. Haken and Appel
wrote several further papers on the subject, including one
in 1986 in The Mathematical Intelligencer discussing such
purported errors. In 1989, they followed this with a hefty
tome [AH89], published by the AMS, which was entitled
Every Planar Map is Four Colorable. This gave further details
and included a printed version of their earlier microfiche.

In 1994, Neil Robertson, Daniel Sanders, Paul Seymour,
and Robin Thomas took amore systematic approach to the
problem. Using essentially Appel and Haken’s method,
they produced an unavoidable set of 633 configurations,
reducing the number of discharging rules from 487 to just
32. Interestingly, they chose to use computers in both the
unavoidability and reducibility parts of their proof, believ-
ing that such an approach was more reliable than hand
calculation. Their proof could be externally verified on
a home computer in just a few hours. Shortly after this,
Robin Thomas wrote an article in the AMS Notices linking
the Four Color Theorem to the divisibility of integers, the
algebra of 3-dimensional vectors, and results on matrices
and tensors.

Two further events are worthy of mention. Because 𝐷-
reducible configurations are simpler to deal with than 𝐶-
reducible ones, John P. Steinberger gave a proof in 2008
that was based on only the former; it involved 2832 con-
figurations with ring-size up to 16 and used 42 discharging
rules. Meanwhile, in 2004, the French computer scientist
Georges Gonthier had provided a fully machine-checked
proof of the theorem, which was a formal language im-
plementation and machine verification of the approach of
Robertson and his coworkers.

But for graph theorists this was by no means the end of
the line, as the Four Color Theorem is just one special in-
stance of some much harder problems; these include find-
ing proofs for Hadwiger’s conjecture and the five-flow con-
jecture, and on these problems good progress has already
been made. With these in mind, we leave our final poetic
musings to Bill Tutte:

The Four Color Theorem is the tip of the iceberg,
the thin end of the wedge, and the first cuckoo of
Spring.

Robin Wilson
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Haken as Thesis Advisor

Patrick Callahan
I was one of Haken’s last PhD students, completing my
degree in 1994, a few years before his retirement.

When I started graduate school inmathematics in 1989,
theUniversity of Illinois Urbana-Champaignwas (and still
is) one of the largest graduatemath programs in theUnited
States. There were almost 300 graduate students in the
mathematics department and almost one hundred of us
were first-year students. With over 70 faculty members,
finding a good advisor was an important step for all grad-
uate students and UIUC offered many choices. I decided
to meet one on one with every mathematics faculty who
was involved in topology, algebra, or number theory. Two
rules of thumb that were shared among students seeking
advisors were: look for recent, successful graduates com-
pleting and finding positions and learn who their advisor
was, and look for faculty that were currently active and
well-networked in their field. Despite this, I ended up
choosing Wolfgang Haken who had not had a graduate
student in almost 20 years and had not published or par-
ticipated in conferences in quite some time. Many people
thought working with Haken would be a risky choice.

When I met with Haken he told me that he was very
excited about the new developments in 3-manifolds and
knot theory but that he was not currently active in the
field. However, he made me an interesting offer. He had
recently been nominated as a member of the University of
Illinois Center for Advanced Study, which included an an-
nual travel stipend. He was not up for much travel, so he
said he would be my advisor if he could send me to inter-
esting topology meetings about which I would report back
to him. This was an incredible arrangement that I gladly
accepted. I was fortunate as a first-year graduate student
to be able to travel and meet all the amazing researchers
in the field. I was sent to meetings in Israel, France, and
across the United States.

It was an exciting time for low-dimensional topology.
Three-manifolds and knot theory had spawned a large ac-
tive research community, which was often surprised when
I introduced myself as Haken’s student since there had not
been any such students in a good many years. But Haken’s
work was foundational, and Haken manifolds were a criti-
cal player in the Geometrization Conjecture. I would re-
turn from these conferences and report to Haken what
current progress was happening in the field. He would

Patrick Callahan is the CEO of Math ANEX and Callahan Consulting. His
email address is callahan.web@gmail.com.

always pause for a long time and then say something like
“Ja ja. . . that is most interesting,” then go silent again for
another long pause and then tell me to continue recount-
ing what I learned at the conference.

Haken was an atypical advisor. Although he had an of-
fice, we would rarely meet there. Rather, there were two
somewhat unusual places he liked to work, and when I
wanted to meet with him, I would go searching for him in
those places. The first unusual location was in an empty
classroom in the basement of Altgeld Hall, usually with
the lights off. Many times he would not have any paper
or anything with him. He would just be sitting in a dark
basement in deep thought. The other unique location I
would look for him was almost the opposite. He would
often sit in the loud and crowded student union and be
deep in thought surrounded by hordes of noisy students.

Although often taciturn, Haken would sometimes share
anecdotes about his life and work. I recall him telling
me that during World War II there was a paper shortage
so he would take down propaganda posters and write on
the back of them to do his research. He would talk about
the controversies around the solution to the Four Color
Theorem. Some mathematicians thought that the use of a
computer could not be trusted or considered a valid proof.
Even though 20 years had elapsed, Haken continuedmany
correspondences regarding the Four Color Theorem. He
would regularly get letters sent by professionals and ama-
teurs alike claiming to have found some new clever proof.
Haken would take the time to read all of them and send
back careful and encouraging feedback. I remember him
reading a handwritten letter claiming a new proof, around
fifty pages long, for which he found an “unrepairable” er-
ror on the 48th page. I asked himwhy he still read all these
letters and he replied, “If this person had made it a little
further without an error they might have really discovered
something. You never know.” Haken said that the field
had a responsibility to read plausible claims carefully and
not dismiss them just because the authors lacked the pro-
fessional academic credentials.

Conversations with Haken had a slow pace. He would
talk slowly and carefully and there were often long pauses.
I once thought that this was because English was not his
native language, but a German graduate student informed
me that Haken was the same way when conversing in Ger-
man. Haken was one of the most careful thinkers I have
ever met. He paid prodigious attention to details. One
of my fond memories regarding details was when I sub-
mitted my dissertation. I, perhaps pretentiously, thought
it seemed like a good idea to start Chapter 1 with an epi-
graph in the original Greek from Aeschylus’ Agamemnon. I
do not know classical Greek and had made an error when
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copying it. When Haken returned my draft, he had cor-
rected the quote, in classical Greek.

I recently pulled out a copy of my dissertation. I found
the acknowledgement:

I would like to thank my advisor, Professor Wolf-
gang Haken, for being the exact type of advisor I
needed, and for his support and confidence in me.

I cannot speak to what it was like having Haken as an advi-
sor in the 1970s in the heyday of the Four Color Theorem,
but in the 1990s, Haken was indeed the exact type of advi-
sor I needed. He was endlessly curious, and provided the
means for me to see the world and be part of a vibrant
community of researchers in low-dimensional topology.
In some small sense I was his eyes and ears at this stage in
his career. Haken was also very hands off in that he never
gave me a specific problem to do nor did he tell me what
I should work on. He didn’t even discourage me when I
spent a year working on the Lens Space Conjecture, a spe-
cial case of the Geometrization Conjecture which was then
still open and was notorious for its difficulty. He always
had an appetite for big unsolved problems. Haken was
very patient and carefully critiqued my many unsuccessful
attempts. He was in no hurry. He told me that being a
mathematician is mostly about having ideas that fail over
and over again, only rarely having one actually work. He
encouraged me not to shy away from big problems and to
keep looking at and thinking about things differently: to
keep having ideas. That was just the advisor I needed.

Patrick Callahan
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BOOK REVIEW

The Tiling Book
Reviewed by Keiko Kawamuro

The Tiling Book
An Introduction to the Mathematical
Theory of Tilings

By Colin Adams. American
Mathematical Society, 2022,
298 pp. https://bookstore
.ams.org/mbk-142

Colin Adams’s book, The Tiling
Book, is the most colorful math
book I have ever seen. First of
all, the cover attracts our eyes as
it is covered with bright red, or-

ange, and yellow lightning bolt shapes. Sooner or later I
noticed it is a tiling of the plane!

Once I opened the book, I saw 310 figures and pho-
tos listed. Many of them were illustrated by Adams us-
ing Adobe Illustrator. Some of them are photos taken
by Adams, including his private collection of vintage Kim-
berly Clark toilet paper, as seen in Figure 1. On the toilet
paper a Penrose rhombic tiling is creased. The episode of
the toilet paper (p.191) is interesting. Unfortunately, pro-
duction of the toilet paper was stopped after Sir Roger Pen-
rose sued the company.

Perhaps for a typical mathematician a tiling means the
so-called regular tilings (as seen in Figure 2) and the usual
subway tile. The book contains all kinds of exotic tilings
beyond my imagination. I was fascinated by Casey Mann
and his students’ counterintuitive tiling.

This book is fun to read. Readers do not need to be
tile otaku or kitchen-bathroom designers. The book is

Keiko Kawamuro is a professor of mathematics at the University of Iowa. Her
email address is keiko-kawamuro@uiowa.edu.
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Figure 1. Toilet paper with Penrose tiling.

Figure 2. Tilings with regular polygons.

accessible for general people who love math. As a math-
ematician studying low-dimensional topology including
knots and braids, I had never studied tilings before.

While its target audience may be undergraduate and
graduate students, I expect amotivated and interested high
school student could read this book. Chapter 0 (12 pages
with 8 figures) provides the background that is needed for
the entire book and is a friendly introduction to point-set
topology and group theory. I read this book seminar-style
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Book Review

with five undergraduate students at the University of Iowa
and one high school student from Iowa City. Some of
them in fact had no previous experience in the material
in Chapter 0, but we all enjoyed the book.

The book contains numerous projects suitable for un-
dergraduates to do either independently or in a group. By
reading proofs of theorems in the book, students will be
excited to see how concepts recently learned in analysis or
abstract algebra courses are actually applied.

For instance, in Section 2.6, the Bolzano–Weierstrauss
theorem taught in an introductory analysis course, is used
to prove the extension theorem. Each section also con-
tains open problems for researchers and graduate students.
I can imagine (partially) solving some of those would
make an excellent PhD thesis. I want to emphasize that
only small advanced training is required to understand the
problems, as the background and motivation of the prob-
lems are included together with appropriate references.

The Appendix of the book can be useful for children
and their teachers. In the Appendix, Adams teaches us how
to create our own tilings. Now we have an idea how the
bright tiling of the book cover was created. Inspired by his
method, I recently taught 3rd and 4th graders a 40-minute
origami tile-making course.

Adams uses colors all over the book not only for illus-
trations but also in narratives. It is a clever idea that he
highlights definitions in green, lemmas and theorems in
orange, open problems/questions in blue, and projects in
red. Glancing at the orange highlights, readers can see that
there are only one or two theorems per section, which en-
ables them to focus on what is most important in the sec-
tion. In addition, almost every definition and theorem
comeswith concrete examples and figures that I found very
helpful.

1. Chapter 1
Chapter 1 starts with a detailed introduction of isometries
of a plane and moves into symmetries. If a tiling admits
translational symmetries all of which are parallel then its
symmetry group is called a Frieze group. A periodic tiling is
a tiling whose symmetry group possesses at least two non-
parallel translational isometries. These symmetry groups
are called the wallpaper groups. Adams presents the com-
plete list of 7 Frieze groups and 17 wallpaper groups along
with illustrations of tilings whose symmetry groups are
those groups. See Figure 3 for examples.

A convenient feature of Adams’s illustrations is that
symmetry data are embedded in the tiling pictures. For
example, a line of reflection is a solid red line and the
center of a 3-fold rotation is a hollow triangle. In addi-
tion to the International Union of Crystallography nota-
tion, John Conway’s orbifold notation is provided for each
of the 24 symmetry group types. The orbifold notation
records the translation/rotation/reflection/glide reflection

Figure 3. Illustrations of one of the Frieze groups (left) and
one of the wallpaper groups (right).

symmetry by a finite word in ∘, ∗, 𝚡, and positive integers.
For example, (3 ∗ 3) in Figure 3 is the orbifold notation for
the symmetry group of the tiling. Conway came up a way
to assign a certain rational number to each letter in the
word and proved an amazing theorem: The orbifold no-
tation symbols add up to exactly 2 if and only if the orb-
ifold notation corresponds to an actual symmetry group
of a tiling. In fact for each of the 24 tilings, you can enjoy
staring at the image, identifying its orbifold notation and
verifying that the sum is exactly 2.

2. Chapter 2
In Chapter 2, Adams shows various kinds of tilings by
polygons. An edge-to-edge tiling by regular polygons is
called a uniform tiling if all vertices have the same type. Us-
ing elementary computations, Adams shows that there are
11 such uniform tilings, which included the three regular
tilings; see Figure 4. The numerical notation under each il-
lustration describes the vertex type. For example, (4.6.12)
means a 4-gon, a 6-gon and a 12-gon are meeting at a ver-
tex with this cyclic order. The fact was originally published
by Johannes Kepler in 1619.

The second kind is called Laves tilings, as seen in Fig-
ure 5; a monohedral tiling by a polygon (no need to be
regular type) is called a Laves tiling if at every vertex an-
gles between adjacent edges are equal (2𝜋/𝑛 for some 𝑛).
Adams shows us there are 11 Laves tilings, which also in-
cludes the three regular tilings. Adams explains why it is
not a coincidence that the number 11 shows up in both
uniform tilings and Laves tilings.

After describing random tilings, a general study of peri-
odic tilings is given. The periodicity theorem (2.14) states
that if a set of polygonal prototiles (called a protoset) ad-
mits an edge-to-edge tiling with a translational symmetry
then the same protoset admits a periodic tiling. This state-
ment connects the Frieze groups and the wallpaper groups
as follows. A polygonal protoset that generates a tiling
with Frieze group symmetry must also generate a tiling
with wallpaper group symmetry.
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Figure 4. The 11 uniform tilings, where the two instances of
(34.6) are equivalent via reflection.

The chapter ends with discussion of the problem:
Which convex polygons tile? The answer is given: Any con-
vex polygon with seven or more sides cannot tile the plane.
In the hexagon case, Karl Reinhardt showed that there are
exactly three families of hexagons that can tile the plane,
as we see in Figure 6. As for pentagons, there are exactly 15
families that can tile the plane. This result involves at least
ten people including Karl Reinhardt, Richard Kerschner,
Martin Garner, Richard James, Marjorie Rice, Rolf Stein,
Casey Mann, Jennifer McLoud-Mann, David Von Derau,
and Michäel Rao. As a corollary, every monohedral tiling
by a convex polygon is a periodic tiling.

3. Chapter 3
In Chapter 3, aperiodic protosets are studied. By defini-
tion, every tiling generated by an aperiodic protoset is non-
translational.

The substitution method is a method to create non-
translational tilings. Adams provides the chair reptile ex-
ample (see Figure 7) and the pinwheel tiling example.
It’s interesting that these examples somehow give me the
wrong impression that they have translational symmetry.
The Robinson aperiodic protoset, the Penrose aperiodic
protosets, and the Taylor-Socolar hexagonal tile generate
non-translational tilings.

I was attracted to the two aperiodic protosets by Pen-
rose discussed in Section 3.4. As seen in Figure 8, the first

Figure 5. The 11 Laves tilings, where the two instances of
[34.6] are equivalent via reflection.

protoset consists of a kite and a dart where 𝜏 = 1+√5
2

and
𝜃 = 𝜋/5. The second protoset consists of two rhombi. This
is the protoset generating the pattern of the toilet paper
mentioned earlier. It was a fine surprise to learn that these
kite, dart, and two rhombi shapes can be decomposed
into two types of triangles. Adams applies the substitu-
tion method to these triangles and proves aperiodicity of
the two Penrose protosets. The fact 𝜏2−𝜏−1 = 0 also plays
an essential role in the proof.

4. Chapter 4
In Chapter 4, Adams discusses tilings of the sphere 𝑆2, the
hyperbolic plane (Poincaré disk)ℍ2, the Euclidean 3-space
𝔼3, and more general spaces. This chapter starts with an
introduction to non-Euclidean geometries for beginners.
Basic comparisons of the three geometries 𝔼2, 𝑆2, and ℍ2

are presented with detailed studies of triangles and compu-
tations of distances. Adams also explains isometries care-
fully. Classification of isometries of ℍ2 is nicely contrasted
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Figure 6. The three families of hexagons that can tile the
plane.

Figure 7. The chair reptile example.

with that of 𝔼2. There are five types: rotation, translation,
reflection, glide reflection, and parabolic isometry. The
fifth one is unique because it does not have analogy from
Euclidean or spherical geometries.

Recall (Lemma 1.12) that every isometry of 𝔼2 is a com-
position of at most three reflections about lines. Similarly,

Figure 8. The kite and dart protoset and the two rhombi
protoset.

every isometry of 𝔼3 is a composition of at most four re-
flections about planes. A new type of isometry is called a
screw motion, which is a composition of four reflections.
4.1. Hyperbolic tilings. Adams shows us five differences
between tilings of 𝔼2 and tilings of ℍ2. For example, for
integers 𝑝, 𝑞 ≥ 3, there is a regular tiling of ℍ2 by regular 𝑝-
gons such that 𝑞 tiles meet at a vertex if and only if

1
𝑝
+ 1

𝑞
<

1
2
. This was a nice surprise to me. A picture of tiling by 7-

gons three of which meet at each vertex (𝑝 = 7 and 𝑞 = 3,
so

1
7
+ 1

3
= 10

21
< 1

2
) can be seen in Figure 9, which looks

like the surface of a sink full of bubbles. This chapter also
contains the more familiar example of the tiling by 8-gons
meeting four to a vertex (𝑝 = 8 and 𝑞 = 4), which is the
universal covering space of a genus 2 hyperbolic surface.

Figure 9. A tiling of ℍ2 by 7-gons.

Two recent research results that highlight differences be-
tween Euclidean tilings and hyperbolic tilings are also in-
troduced here. One is on prototiles for strongly aperiodic
tilings and the other is on the realization of arbitrary high
Heesch number.
4.2. Tiling of 𝔼3. Tilings of Euclidean 3-space has appli-
cation to the study of crystals and quasicrystals. A simple
way to construct a tiling of 𝔼3 from one of 𝔼2 is by thick-
ening.

The cubical tiling is the only regular tiling of 𝔼3. A sim-
ple warm-up exercise is left to readers to show that the reg-
ular tetrahedron or the regular octahedron cannot tile 𝔼3.
In Figure 10, Adams shows a non-face-to-face tiling of 𝔼3
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Figure 10. A tiling of 𝔼3 that is non-face-to-face.

by a nonconvex prototile that looks like a precious rock
in a science museum. The 3D illustration made by Adams
is painted with 4 colors and helps us imagine the compli-
cated structure.

The section ends with the Schmitt-Conway-Danzer ape-
riodic prototile of 𝔼3 that doesn’t admit any ℤ-action. This
shows a clear contrast between 𝔼3 and 𝔼2. There is no such
prototile found for 𝔼2.
4.3. Knotted tilings. So far, every prototile is topologi-
cally a disk or a ball. We can get rid of this restriction
and consider a prototile topologically to be a genus 𝑔 han-
dlebody. In this case, tiles possibly link together. Adams
shows us six examples. He starts with a genus 1 prototile
with no linking, as in Figure 11. The most impressive ex-
ample that blewme awaywas a trefoil knot in the prototile,
as seen in Figure 12.

Figure 11. A genus 1 prototile with no linking.

Figure 12. The trefoil knot in the prototile.

4.4. 3-manifolds. The last section of the book provides a
bridge to the study of covering spaces, which is an impor-
tant topic taught in algebraic topology courses, from the
viewpoint of tilings.

Starting with dimension 2, Adams shows us how to ob-
tain infinitelymany distinct tori fromparallelogram tilings
of the plane 𝔼2. We say that 𝔼2 covers a torus. Depend-
ing on the corner angles and the edge length ratio of the
parallelogram, the resulting torus has different metrics. A
rectangular tiling also can yield a Klein bottle.

Increasing the dimension from 2 to 3, Adams discusses
compact orientable 3-manifolds that result from tilings of
Euclidean 3-space 𝔼3. Six compact 3-manifolds are explic-
itly defined by identifying faces of cubes and hexagonal
prisms. Adams says: “Surprisingly, there are a total of
only six such 3-manifolds, including the 3-torus. If the
universe if compact and orientable . . . and Euclidean, then
our universe must be one of these six possibilities.” At the
very end we see compact orientable 3-manifolds including
the Poincarémanifold and the Seifert-Webermanifold that
come from tilings of the 3-sphere 𝑆3 and the hyperbolic 3-
space ℍ3, respectively.

5. Conclusion
In his book, Adams provides many fantastic hiking paths
suitable for a wide range of readers. The paths are all walk-
able, and there is no need to bring ropes or carabiners.
The hiking paths containmany scenic points where we can
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take rest and see interesting tilings. Occasionally along the
path, the dimension leaps from 2 to 3. A hiker might no-
tice that the metric system changes from Euclidean to hy-
perbolic. The paths are open-ended with the possibility
that a hiker constructs a brand new path to a new scenic
point.

Keiko Kawamuro

Credits

Figures 1–7 and Figure 8 (left) are courtesy of Colin Adams.
Figure 8 (right) is from Branko Grunbaum and G.C. Shep-

hard, Tilings and Patterns, Second edition, Dover Publica-
tions, Inc., 2016. Reprinted with permission.

Figure 9 is by Tomruen. Licensed under CC-BY-SA 3.0.
Figure 10 was created by John Petrucci.
Figures 11 and 12 are courtesy of Colin Adams.
Author photo is courtesy of Kazumi Noguchi.
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The Price of Cake: And 99 Other
Classic Mathematical Riddles
By Clément Deslandes
and Guillaume Deslandes.
The MIT Press, 2023, 215 pp.

I suspect many mathematicians
have a long history of solving puz-
zles. There is a distinctively satis-
fyingmoment when a puzzle that
has challenged your mind for a
minute, an hour, a day, or a week
is solved. The recent publication

The Price of Cake contains 100 inviting and irresistible
mathematical riddles and puzzles. The book is ordered
not by mathematical knowledge required but by the com-
plexity of solutions, and it contains both familiar and un-
common riddles.

The puzzles make use of the pigeonhole principle, bino-
mial coefficients, equivalence relations, bijections, permu-
tations, induction, congruences, binary expansions, and
probability. I expect that many readers could solve the rid-
dles without formal training inmathematics. However, be-
ing familiar with these topics provides an advantage, and
so there is a brief section at the end of the book that covers
the mathematical themes.

I found great fun in the riddles “A Kangaroo on a Stair-
case,” “The Rats and the Bottles,” and “Linking the Edges.”
I think this book would be a great addition to your per-
sonal collection of riddles and would be useful when con-
sidering puzzles for a math club meeting. As the supple-
mentary mathematics material in the book points to spe-
cific riddles, you could even use some of the riddles to en-
hance your teaching of one of the covered topics.

This Bookshelf was prepared by Notices Associate Editor Emily J. Olson.

Appearance of a book in the Notices Bookshelf does not represent an endorse-
ment by the Notices or by the AMS.

Suggestions for the Bookshelf can be sent to notices-booklist@ams.org.
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For the Recorde: A Welsh History
of Mathematical Greats
By Gareth Ffowc Roberts.
University of Wales Press, 2023,
160 pp.

While this is a history of mathe-
matics book, its focus is unique:
Welsh mathematicians who lived
during the period from the 16th
to 20th century, along with de-
scriptions of prominent locations
in Wales at the time. The narra-

tive is lively and offers enough variety to hold a reader’s
attention, including tales of scandals and mathematicians’
travels outside of Wales as well as stories of familiar (non-
Welsh) mathematical people and places, such as Pythago-
ras and Gauss. I was delighted to find that puzzles are
sprinkled throughout the text, though some take the form
of short mathematical calculations rather than puzzles. In
addition, the author includes enough personal anecdotes
that the book is part memoir.

The title of the book refers to the Welsh mathemati-
cian who used the first known instance of the equals sign,
Robert Recorde. The book reveals other “mathematical
firsts” credited to Welsh mathematicians; for instance, it
details the first mathematician to use 𝜋 to represent the
ratio of the circumference to the diameter of a circle and
the development of the first insurance policies and their
associated mathematics.

This book will be of interest to mathematicians who ap-
preciate learning historical tidbits for their own enjoyment
or to include in their courses. It could supplement a his-
tory of mathematics course or provide extra historical con-
text in other math courses. This book is a welcome addi-
tion to historical literature not only because it informs the
community about mathematical greats from Wales, but
also because it adds to the growing inventory ofmathemat-
ical contributions from a diverse group of people. This was
a fun read that I think many mathematicians would enjoy.
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Knots, Links and Their
Invariants: An Elementary
Course in Contemporary
Knot Theory
By A. B. Sossinsky.
STML/101, 2023, 129 pp.

This new addition to the Stu-
dentMathematical Library is an
excellent concise introduction
to knot theory and some of
its associated algebra and topol-
ogy. It is written clearly and

simply, and well illustrated with many figures. The book
is quite short, though not without demands on the reader.
It is based on a course given online to participants in the
Math in Moscow program and, because of the format of
the course, the book contains rather frequent exercises for
the reader, some of which are significant steps in proofs.
However, a reader prepared to put in the work will be well
rewarded. The exercises are interesting and not too diffi-
cult for undergraduates, and they lead the reader to some
of the most important and useful knot invariants via sur-
prisingly elementarymethods—certainlymore elementary
than those usedwhen the invariants were originally discov-
ered.

As the book amply illustrates, knot theory is a topic that
is easy to approach through elementary, easily visualized,
combinatorial arguments. Yet it is also able to grow in
many directions due to its connections with algebra, ge-
ometry, topology, and even physics. There can be no bet-
ter example of “seeing the (mathematical) world in a grain
of sand.”

Lecture 1 begins with some examples of knots, defined
as equivalence classes of simple polygons in ℝ3, and intro-
duces the three Reidemeister moves, which underlie most

John Stillwell is a professor emeritus at the University of San Francisco. His
email address is stillwell@usfca.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2787

of the invariance proofs in the lectures that follow. Lecture
2 introduces the Conway polynomial, a variant of the clas-
sical Alexander polynomial which is well-suited to illus-
trate the inductive construction of invariants via skein rela-
tions (unlike Alexander’s construction via covering spaces
and homology). Skein relations are also the key to the
treatment of the Jones polynomial and theVassiliev invariants,
which come up next.

The proof of the invariance of the Conway polynomial
is only sketched, with some parts left as exercises, but
proofs are more complete in Lectures 5 and 6, where we
come to the more powerful Jones polynomial. The even
more powerful Vassiliev invariants are the subject of Lec-
tures 9, 10, and 11. These too are treated in a mostly
elementary manner, and their nonelementary aspect—
involving Kontsevich integrals—is nicely explained in Lec-
ture 11. To my knowledge, the Vassiliev material was previ-
ously unavailable in a book for undergraduates, so Sossin-
sky’s book is unique for this reason alone.

Most of the “meat” of this book is in the lectures on the
knot polynomials and Vassiliev invariants; however, these
are interspersed with very attractive informal sketches of re-
lated material on knots, braids, and other topics in topol-
ogy and algebra. Also included is Lecture 13 on the history
of knot theory, which mentions all the main contributors
to the subject.

Altogether, this book is ideal for self-study by under-
graduates with an interest in topology. It is proof that
“old school” methods of topology—concrete, visual, and
elementary—are still more than capable of providing in-
sight into classical problems.
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1. Introduction
In the summer of 2021, the Puerto Rico Association of
Criminal Defense Lawyers (PRACDL) submitted a brief
to the US Supreme Court in the case Rodríguez-Rivera
vs. USA. At issue was whether a certain class of drug con-
spiracy crimes should be considered “controlled substance
offenses,” a status which can carry enhanced sentences.
Drug conspiracy charges implicate multiple defendants
and carry a low burden of evidence required to obtain a
conviction against alleged coconspirators. PRACDL’s brief
argued that prosecution in drug conspiracy cases reflected
discrimination and disparate impact along axes of race,
ethnicity, and class. The brief was supported by analysis
from the Institute for the Quantitative Study of Inclusion,
Diversity, and Equity (QSIDE), including work by present
authors Manuchehr Aminian and Philip Chodrow. Work-
ing in close dialogue with lawyers at PRACDL, the QSIDE
team wrote parsers to extract information from unstruc-
tured docket data, combined these results with geographic
census data, and tested hypotheses that conspiracy charges
disproportionately took place in areas of Puerto Rico im-
pacted by poverty, unemployment, and low rates of educa-
tion.

DOI: https://doi.org/10.1090/noti2773
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This work with PRACDL is a small entry in a growing
body of scholarship in data science for social justice (DS4SJ).1

This area has received growing attention in several over-
lapping professional communities, including mathemat-
ics, statistics, and computer science. Our focus in this arti-
cle is how members of the mathematical community can
learn, practice, and support this burgeoning area of schol-
arship and activism.

We highlight ways that DS4SJ work can both appeal
to and challenge trained mathematicians. Scholars who
pursue DS4SJ may look forward to positive outcomes for
served communities, new research questions, new profes-
sional connections outside the academy, and opportuni-
ties to connect their identity or values to their scholarly
work. Realizing these benefits, however, requires con-
fronting a range of challenges and risks. First, impact is
never guaranteed. In the PRACDL case, for example, the
petition to the court was ultimately denied without com-
ment. Furthermore, the process of justice data science calls
on skills in which many of us are untrained. Realizing im-
pact beyond the ivory tower requires engagement beyond
the ivory tower, with affected populations, domain experts,
and decision-makers. When this work is pursued without
sufficient attention to the needs of impacted communi-
ties, the results can fail as both scholarship and activism.
Attentive engagement with nonscholarly collaborators is
a skill which is often not taught in mathematics training
programs, perhaps because it is not viewed as “mathemat-
ical.” Finally, researchers who take on justice data science
work must naturally keep an eye on how it aligns with
their needs for advancement in their institutions and pro-
fessional communities.

Our overall aim is to help scholars who wish to begin
or deepen their engagement with DS4SJ work, and advo-
cate to the broadermathematics community that this work
should be valued and supported. Our core arguments are:

(a). Members of the mathematical community, broadly
construed, have contributions to make toward social
justice causes through both scholarship and peda-
gogy.

(b). Making these contributions requires us to engage with
collaborators and partners outside the academy, in-
cluding impacted communities, policy makers, and
others who contribute experience, knowledge, and
power beyond our own.

(c). Data science work supporting social justice can indeed
be a scholarly, scientific endeavor, which should be
supported by mathematical institutions at all levels.

In Section 2 we define data science for social justice
(DS4SJ), construing this work broadly to include a wide

1We also use the phrase justice data science interchangeably to refer to the
same scholarly area.

range of computational, mathematical, and qualitative
work. We compare and contrast DS4SJ to related bodies of
work, including data science for social good and academic
data science of human behavior. Based on our definition,
we propose a set of four guiding principles for the practice
of DS4SJ. These principles describe work that actively en-
gages community members and decision-makers; is aware
of its own limitations; intentionally aims to divest from
privilege; and grapples with the systemic nature of oppres-
sion. We continue in Section 3 with discussion of some
features of recent and ongoing work in DS4SJ. We espe-
cially focus on considerations for early-career scholars con-
sidering greater involvement this work in either research or
pedagogy. We also highlight benefits for departments that
make a commitment to supporting this work. In Section 4,
we illustrate the practice of DS4SJ with a series of vignettes
in which early-career scholars describe their work in DS4SJ
and its impact on their growth in the broad mathematical
community. We conclude in Section 5 with a reflection
and discussion on the outlook for future work.

2. Data Science for Social Justice
We take an intentionally broad view of data science, re-
ferring to the wide set of practices, methods, and activi-
ties that support the use of data to gain insight and guide
action. This includes standard steps in the data analy-
sis pipeline, such as data collection, exploration, visual-
ization, modeling, and communication. We also delib-
erately include an expansive range of other activities, in-
cluding: formulation of mathematical models, develop-
ment of data analysis and learning algorithms; qualitative
research that contextualizes analysis; and deployment of
publicly-facing data products such as visualizations and
dashboards. In this broad view, data science work takes
in many academic disciplines. It is not restricted to de-
partments of statistics, mathematics, or computer science;
it is indeed not restricted to STEM fields at all. That said,
while our view of data science is broad, our focus in this
article is primarily on how the mathematical community
can engage with data science work. For this reason, our dis-
cussion largely centers on activities and practices in which
mathematical training is relevant.

We frame data science for social justice within our broad
construal of data science as a whole.

Definition. Data science for social justice (DS4SJ) is data
scientific work (broadly construed) that actively challenges
systems of inequity and concretely supports the liberation
of oppressed and marginalized communities.2

2Forms of oppression and marginalization include but are not limited to racism,
colonialism, classism, sexism, homophobia, transphobia, and ableism.
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DS4SJ acknowledges that some groups of people have
been historically oppressed, marginalized, and disenfran-
chised, and aims to rectify these harms. It does not neces-
sarily aspire to benefit “society as a whole,” but specifically
aims to correct injustice. DS4SJ is therefore distinct from
data science for social good, a phrase that often refers to any
data scientific work with net positive social impact. Work
featured by the organization named Data Science For So-
cial Good, for example, includes efforts toward sustainabil-
ity, efficient public infrastructure, and reduction of politi-
cal corruption. These are general social goods which ben-
efit large segments of the world’s population. Social jus-
tice applications also benefit populations, but are distinc-
tive in their explicit focus on the needs of oppressed and
marginalized communities harmed by historical wrongs.
We emphasize that this distinction, though important, is
also porous. Many social good projects also have social
justice elements; for example, the improvement of pub-
lic infrastructure may have an especially large impact on
communities that have been historically underserved by
that infrastructure. Similarly, justice efforts that rectify sys-
tematic wrongs may be appropriately viewed as promot-
ing broader social good. While it is important to distin-
guish these aims and scopes, we emphasize that neither
precludes the other.

DS4SJ is also importantly related to work on bias and
harm in large-scalemachine learning systems. Recent work
has shown that many of these models contain significant
biases against members of marginalized identity groups.
These effects are often intersectional: in a famous study by
Buolamwini and Gebru [4], facial recognition algorithms
performed worse on Black women than they did on ei-
ther Black men or white women, with the faces of white
men being recognized most reliably. Contributors to bias
in machine learning models include underrepresentation
of marginalized identities or overrepresentation of oppres-
sive stereotypes in training data; use of flawed proxy vari-
ables for measuring predictive accuracy; or failure to con-
sider the role of an automated system in social and his-
torical context. With the growing prevalence of machine
learning models in personal technology, hiring, policing,
and healthcare, the stakes for designing nondiscriminatory
systems at mass scales are extremely high. We view work
toward fair machine learning as DS4SJ: it is data science
that challenges systems of inequity and supports the liber-
ation of oppressed and marginalized communities. This
is especially true when the work influences the design and
assessment of deployed, large-scale systems. That said, the
majority of this work is carried out in the computer science
community rather than the mathematics community and
is therefore outside our scope. We therefore refer the inter-
ested reader to Mehran et al. [9] for a survey of recent work

in bias and fairness inmachine learning, including concep-
tual foundations, empirical findings, and proposed meth-
ods for reducing algorithmic discrimination in a range of
machine learning tasks.

Finally, we distinguish DS4SJ as a specific subset of
the broad academic area of data science and modeling
of social systems. This large and growing area includes
work in applied mathematics, computational social sci-
ence, physics, network science, computer science, and al-
lied fields. Some of this work may indeed actively support
the liberation of oppressed and marginalized communi-
ties, thereby constituting DS4SJ. Other work—perhaps the
majority—in this area has as its primary goals the further-
ing of quantitative insight into social systems within the
scholarly community. An example of the latter kind of
work is mathematical analysis of dynamical models of so-
cial phenomena, such as segregation or opinion polariza-
tion. The long-term impact of such work may be primarily
localized in scholarly publications, and may not inform
activism, policy, or other mechanisms that affect the lives
of those who are not professional researchers. We empha-
size that our aim is not to disparage this body of work,
and indeed, several of the present authors maintain active
research agendas in this broad area.

In summary, our focus here—data science for social jus-
tice in the mathematical community—overlaps with but
is distinct from data science efforts toward broader social
good; research on fairness in machine learning; and the
quantitative modeling of social systems.
2.1. The process of DS4SJ. Many of us in the mathemat-
ical community are accustomed to measuring the success
of our research program in units of theorems, experiments,
papers, venues, or citations. The processes by which we
conduct our research are often optimized toward these
measures. Data science for social justice measures its suc-
cess in terms of impact on the lives of oppressed and
marginalized peoples. This focus requires that we pursue
the work in ways likely to realize impact, while also mini-
mizing risk of unintended harm. The process of this work
may therefore look very different from the process ofmuch
other mathematical scholarship. We propose a series of
four guiding principles for the process of DS4SJ, inspired
by the writing of Federico Ardila-Mantilla’s writing in the
AMS Notices [2].

Principle 1 (Collaboration). DS4SJ requires partnership
with community members and decision-makers in order to re-
alize intended impact and minimize unintended harm.

Principle 1 reflects two simple facts. First, as mathemati-
cians, we are often inexperienced in conceiving, pursuing,
or applying our work outside of academic or industrial re-
search environments. We often lack relevant training in
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social science, policy, or activism. We therefore often need
collaboration to execute projects and build skills. Second,
work that supports a communitymust be guided by careful
engagement with that community in order to understand
the needs we aim to meet. We identify at least three impor-
tant elements of effective collaboration for DS4SJ:

• Perspective allows us to understand the needs of the
people we aim to serve and helps us carry out our work
without causing unintended harm.

• Process helps direct the workwithmethods that respect
the community, and in directions that are responsive
to community perspective with results that will sup-
port future action.

• Power makes it possible to actually carry out the inter-
vention informed by our data scientific work.

Perspective is an especially important element of collab-
oration, as it helps us understand the needs of the com-
munities we serve. The best way to build this perspective
is through partnership with the community itself. This is ul-
timately the only reliable way to understand the needs of
its members and whether they want what we are able to
offer; perspective from other scholars or outside experts
can inform only insofar as it is grounded in community
engagement. The slogan “Nothing about us without us,”
popularized in English by South African disability activists,
offers a concise maxim.

A recent effort at the Institute for Mathematical and Sta-
tistical Innovation (IMSI) illustrates these forms of collab-
oration. A working group led by author Carrie Diaz Eaton
worked in partnership with Nuevas Voces, a leadership
program by the Woonasquaucket River Watershed Coun-
cil (WRWC), for residents of a low-income, immigrant
and multilingual community in Providence, Rhode Island.
This collaboration offered perspective by helping the work-
ing group understand community needs through the in-
sights of Nuevas Voces, who expressed a need to call at-
tention to the flooding of neighborhoods along the water-
shed induced by ongoing climate change. The collabora-
tive process involved meeting in impacted neighborhoods,
conducting interviews in Spanish, and offering support to
community members from Nuevas Voces and the WRWC
to guide the work as it progressed. Maintaining collabora-
tion through the implementation phase invested the work
with power to make an impact. The primary deliverable of
the intervention with Nuevas Voces was a geospatial dash-
board which incorporates not only flooding information
but also community resources and stories. Nuevas Voces
and WRWC have committed to integrating these tools into
their own organizations in order to support their missions.

Principle 2 (Critical Reflection). DS4SJ requires critical re-
flection on one’s own identity, position, and privilege, and on
the role these play in one’s scholarly practice.

We use “critical” in the sense of critical theory: a criti-
cal perspective is one which views structures of power and
privilege with skepticism, and aims toward a more equi-
table, free, and just society [6]. Principle 2 asks us to
reflect on the identities and privileges we inhabit, with
a special eye toward how these identities and privileges
may tacitly inform our work. Many members of the broad
mathematical community inhabit multiple forms of pro-
fessional privilege. Our profession is culturally respected,
often commands above-average salaries, and does not usu-
ally place us at risk of physical harm. Mathematical ways of
knowing are popularly (and often dangerously) viewed as
epistemically privileged: piercing, infallible, and not sub-
ject to dispute. Many of us in academia have the luxury
of measuring deadlines in units of months or years, rather
than days or hours. When projects “don’t work out,” they
can often be safely dropped in favor of new ones. Addi-
tionally, a disproportionate number of professional math-
ematicians benefit from white and male privilege.

It is important to acknowledge and grapple with priv-
ilege when aspiring toward justice work of any form, in-
cluding DS4SJ. For example, how do we reconcile the typi-
cal pace of mathematical research with the fact that, as au-
thor Nathan Alexander frequently emphasizes, people are
dying from systemic forms of injustice? Thework of interro-
gating our privileges and understanding how they inform
our professional practice is challenging, but there are some
aspects of mathematical training that support mathemati-
cians in this work. Privilege can be viewed as a collective
social assumption about who deserves freedom, respect,
and resources. Assumptions, in the form of theoretical ax-
ioms or modeling inputs, are pervasive in mathematical
practice. As mathematicians, we are trained in the funda-
mental skill of articulating assumptions, questioning their
applicability, and deriving their consequences. These are
exactly the skills that support critical reflection, if they can
be turned inward. Author Quindel Jonesmodels reflection
of the effects of her own identity and positionality on her
scholarly work in her vignette in Section 4.

Principle 3 (Interrogation of Privilege). DS4SJ asks the re-
searcher to work actively to interrogate and see past their own
privilege.

As discussed under Principle 2, mathematicians often
benefit from several forms of systemic privilege, often
based on a combination of identity, the social prestige of
their profession, and scientific ways of knowing. These
forms of privilege can be obstacles to effective DS4SJ work,
especially in regard to effective partnership with collabora-
tors from communities that may be very different from our
own (Principle 1). Seeing past our privilege therefore in-
volves epistemic humility: the active centering of ways of
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knowing other than our own. Learning community needs
may require that we heed diverse forms of knowledge, such
as community narrative, individual experiences, or com-
mon wisdom from other professions. Insisting on the pri-
macy of mathematical or scientific ways of knowing over
the ways of our served communities is likely to result in
failure to synthesize necessary information about commu-
nity needs or ways to meet them. This can in turn lead to
failure to realize intended impact, or even in unintended
harm.

In his vignette in Section 4, Andrés R. Vindas Meléndez
discusses how his trajectory into DS4SJ as a theoretical
mathematician has been aided by awareness of the privi-
lege of academic mathematics and his willingness to en-
gage with other scholarly communities.

Principle 4 (Systemic Perspective). DS4SJ requires a critical
systemic perspective: a critical awareness of how systems of
power operate to privilege some and oppress others.

Many mathematicians use sophisticated tools to study
the function of complex and interrelated systems in do-
mains ranging from biology to engineering to human so-
ciety. Systems thinking is a fundamental skill in justice-
oriented data work as well, and informs the technical tools
we deploy. For example, there is extensive mathemati-
cal theory describing mechanisms for fairly distributing re-
sources, but this theory usually lacks a description of his-
torical and present systemic forces of oppression. Recti-
fying this oppression requires more than fair division of
resources; it also requires active work against these sys-
temic forces. In her vignette in Section 4, Heather Zinn
Brooks discusses how taking a systemic perspective on the
mathematics community can inform data-driven studies
of gender representation in mathematical subfields. In
some cases, it may also be possible to explicitly model so-
cial processes that contribute to disparity. Modeling the
social processes of police use-of-force, for example, may
ultimately provide insight on how to stop disproportion-
ate police killings of unarmed Black people [15].

3. Challenges and Opportunities in DS4SJ
Justice data science addresses a wide range of problems
both within and beyond academia. We roughly divide this
work into three overlapping categories.

• Data Accessibility: Ida B. Wells famously wrote that
“the way to right wrongs is to shine the light of truth
on them.” Some justice data science work aims sim-
ply to make new kinds of information available and
interpretable to new audiences. Examples include ef-
forts to compile accessible, online databases of police
violence, federal judicial sentencing, and cultural rep-
resentation.

• Analysis and Critique: In some cases, the simple pre-
sentation of data in an easily accessible format may be
enough to motivate action. In other cases, the sheer
quantity of data and the need to account for multi-
ple factors requires explicit, formal data analysis. This
analysis can sometimes support controlled or causal
claims about the magnitude or impact of bias, and
may be published in scholarly journals. In this con-
text, it is important to emphasize that the mere avail-
ability of evidence or analysis is often insufficient to
change minds or spur change.

• Implementation: Impact is ultimately the axis along
which justice work, including data science, is mea-
sured. Successful DS4SJ work either achieves impact
directly through action or supports follow-up efforts
by others. In some cases, it may suffice to bring anal-
ysis and critique in front of the right parties; for ex-
ample, work identifying the racial impact of political
gerrymandering is analysis and critique, and can con-
tribute toward its intended impact when presented as
arguments in court cases. Other examples include the
deployment of predictive or decision-making mod-
els aimed at explicit equity goals, such as predict-
ing police misbehavior, landlord exploitation, judi-
cial decision-making, or corporate tax abuse. Data
scientists and mathematicians, as engaged human be-
ings, also have opportunities to engage in direct action
in support of their chosen causes, including commu-
nity organizing, attendance at protests, and participa-
tion in mutual aid societies.

3.1. Getting involved with DS4SJ. We hope that some
of our readers are considering whether to engage in or
indirectly support work in data science for social justice.
We now highlight some of the reasons why this may be
appealing for scholars in mathematics and allied fields.
There are a wide range of benefits, including active re-
search prospects, ways to engage undergraduates in the
classroom, and opportunities to recruit junior collabora-
tors for research projects.

Justice data science work can motivate the develop-
ment of new mathematics, data scientific techniques, and
methodological perspectives. One well-known example
is the development of methods for detecting and quanti-
fying racial bias in electoral maps by defining null distri-
butions on spaces of districting schemes using techniques
from metric geometry and using Markov-chain algorithms
to sample from them [3]. This body of work has produced
analysis and critique in the form of papers quantifying
racial bias in existing political maps. There have also been
impacts from engagement with power partnerships, with
researchers collaborating with state governments and con-
tributing to amicus briefs before the US Supreme Court.
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There are also opportunities for methodological ad-
vancements in applied statistics, optimization, and net-
work science. Pierson et al. [10], for example, develop
novel, highly-scalable statistical tests for detecting racial
bias in large-scale datasets of police behavior. Problems
inspired by equitable access to schools, grocery stores, and
polling places in urban infrastructure networks have led
to the development of novel algorithms for editing graph
edges to influence diffusion dynamics [11]. A growing
body of work uses network-based and statistical methods
to quantify gendered inequalities in citation, promotion,
and retention across academic disciplines [14]. In her vi-
gnette below, author Heather Zinn Brooks describes ongo-
ing related work in mathematics. As author Andrés R. Vin-
das Meléndez writes in his own vignette, the urgency of so-
cial justice applications have helped him both develop an
interest in data science techniques and begin to reflect on
whether combinatorics, his primary area of research train-
ing, might have useful applications toward justice causes.

An orientation toward social justice offers benefits for
pedagogy inmathematics, data science, statistics, and com-
puter science. Real-world topics related to issues of in-
justice and inequity are fruitful sources of problems and
examples [7]. Beyond simply furnishing problems, how-
ever, justice orientations can support mathematics instruc-
tors in welcoming, engaging, and retaining students in un-
dergraduate STEM majors/minors, and higher education
more generally. Justice orientations can be especially use-
ful for engaging students who have been historically ex-
cluded from or oppressed or marginalized within tradi-
tional classrooms. Connecting classroom content to
“prosocial communal outcomes” is a recommendation of
a recent report focused on improving the persistence of
marginalized students in STEM disciplines [5].

It is important to note that justice-oriented pedagogy
presents challenges for both students and instructors, and
can be harmful to students if cases are presented in a de-
meaning or tokenizing way. There is potential for harm if
instructors incorporate examples that do not promote pos-
itive student identity or which fail to acknowledge diversity
of experience within cultures and identities [8].

Effective justice-oriented pedagogy seeks to advance
students’ critical consciousness–their ability to challenge
what is framed as normal, whose interests are served by
that framing, how system structures are reified, and inwhat
ways they could, potentially, be different. Such pedagogy
not only welcomes students who have been historically
marginalized in classroom spaces, but also challenges all
students to grow as justice-oriented systems thinkers. For
example, author Nathan Alexander uses a justice orienta-
tion in his introductory statistics classroom when framing
the topic of ethical research and data use. The Institutional

Review Board (IRB) system was formed in part due to the
revelation of the medical abuse of almost 400 Black men
in the Tuskegee Syphilis Study. Themodern IRB review sys-
tem aims to prevent future such flagrant breaches of med-
ical ethics. This, however, does not fully address the di-
mensions of structural racism in the practice of medical
research; even today, Black principal investigators are less
likely to have grant proposals funded by the National Insti-
tutes of Health. These considerations are not only context
for the modern practice of statistics and data-informed re-
search, but they are also opportunities to practice core tech-
nical course content. Students can study and evaluate, for
example, the methods underlying recent findings that the
Tuskegee study is still shortening the lives of Black men by
sowing justified mistrust in medical institutions [1].

These are challenging topics to navigate without tok-
enizing or otherwise harming students. Doing so requires
instructors to show vulnerability, humility, and authentic
willingness to learn with students in a community built on
mutual respect, openness, and collective critical reflection.
The reward is an opportunity for students to develop tech-
nical skills and critical awareness in tandem, each reinforc-
ing the other.

Similarly, students at all levels are often excited to work
on research projects that involve justice work. Undergrad-
uates are increasingly involved in and committed to social
justice and are drawn to research experiences with obvious
real-world applications [12]. As author Ariana Mendible
describes in her vignette below, her early research projects
with justice focus have receivedmuch higher than expected
interest from prospective research students at her institu-
tion. This may be in part due to the accessibility of these
projects. DS4SJ work often has lower technical barrier
to entry when compared to many other problems in aca-
demicmathematics, making it possible to involve students
across a greater range of experiences and academic back-
grounds at earlier stages in their academic careers. Stu-
dents’ personal experiences and interests can also be ex-
plicit assets in the pursuit of DS4SJ research projects, es-
pecially when they are members of the communities who
stand to be impacted by the work.

Finally, we emphasize that DS4SJ work places distinc-
tive demands on researchers and instructors, and is there-
fore not necessarily for everyone. First, scholars may rea-
sonably have motivations and interests that are not fully
aligned with DS4SJ work. DS4SJ work measures itself first
and foremost on positive impact for marginalized or op-
pressed peoples. Scholars pursuing this work therefore
need both an orientation toward concrete outcomes and
a willingness to devote time toward realizing those out-
comes. This in turn requires time to cultivate critical per-
spective, engage carefully with communities, and develop
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nontechnical skills. We have nothing but respect for schol-
ars who reflect on the demands of DS4SJ and decide to
pursue other paths. Second, we acknowledge that profes-
sional incentives in many institutions and societies may
not encourage DS4SJ work. For example, some depart-
ments may not recognize DS4SJ scholarship as being “suf-
ficiently mathematical” to warrant promotion or recogni-
tion, ormay view justice-oriented content in the classroom
as a distraction. Scholars cannot be expected to commit to
this work if they feel it endangers their prospects for ad-
vancement in their departments, institutions, or commu-
nities.
3.2. DS4SJ and the math community. We therefore call
on departments, institutions, and professional communi-
ties to support work in DS4SJ. Fortunately, DS4SJ work is
aligned with the stated goals of many of these entities, im-
plying both opportunity and incentive to support these
efforts. The AMS Statement on Equity, Diversity, and In-
clusion states our shared goal of a community that is di-
verse, respectful, accessible, and inclusive. We are still far
from this goal in 2023. Academic mathematics still has
not reached proportional representation or equity of op-
portunity along the lines of gender and race. Many depart-
ments struggle to recruit and retain minoritized trainees
and faculty. Active support of justice data science may be
able to contribute to these goals. Based on interviews con-
ducted with underrepresented racial minority students in
US STEM graduate programs, Tran [13] recommends that
departments seeking to retain underrepresented minority
students should legitimize and expand research that has
direct applications for social justice. Illustrating this effect,
author Quindel Jones discusses in her vignette below how
the opportunity to use mathematical models to improve
health outcomes for Black women has been a motivating
thread in her career trajectory. Jones highlights how the
presence of a growing community of mathematical schol-
ars focused on data science and social justice has promoted
her scholarship, enabled her to learn from mentors who
shared some of her identities, and connect with collabora-
tors who share her interests. Support of justice data science
by departments, research institutions, and professional or-
ganizations can not only promote scholarship that stands
on its own merits, but also further our shared mission to-
ward a more equitable, diverse, and inclusive mathematics
profession. We discuss concrete ways that departments, in-
stitutes, and societies can support DS4SJ in Section 5.

4. Experiences in DS4SJ
In this section, we highlight the experiences of several
pretenure mathematicians in their diverse engagements
with data science for social justice. Their stories offer
examples of how the principles of DS4SJ described in

Section 2.1 can be implemented, and how the benefits
and challenges of this work have influenced their trajecto-
ries. Ariana Mendible discusses how collaboration has im-
pacted and improved her DS4SJ work (Principle 1). Quin-
del Jones provides a critical reflection of identity and po-
sitionality on scholarship (Principle 2). Andrés R. Vin-
das Meléndez interrogates the privilege and challenges of
doing DS4SJ work as a theoretical mathematician (Prin-
ciple 3). Heather Zinn Brooks highlights the importance
of taking a systemic perspective on research work in DS4SJ
(Principle 4). Their experiences highlight the roles of iden-
tity, belonging, and justice orientation in the trajectories of
early-career scholars working in science for social justice.
Ariana Mendible, Seattle University. I recently returned to
my alma mater, an institution with a strong commitment
to justice, as an assistant professor of mathematics. I recog-
nize the privilege of this position, offering the freedom to
work on unfunded problems that align with my personal
values. Pivoting my research to DS4SJ has offered fruitful
research collaborations that promise meaningful impact
within and outside of academia.

My work as a codirector of QSIDE’s Small Town Police
Accountability (SToPA) research lab has shown me the ea-
gerness of rising scholars to engage with DS4SJ. We have
worked together to tackle tasks like optical character recog-
nition and topic modeling with the goal of empowering
small towns to access and understand data from their po-
lice departments. The impact and urgency of these prob-
lems invites a broad audience to participate in research, in-
cluding students who may not otherwise have envisioned
themselves as researchers.

Sociologists, lawyers, and activists participating in our
lab efforts enrich our perspectives beyond our mathe-
matical and technical expertise. Importantly, collabora-
tion with community leaders guarantees direct and ef-
fective change from our work. Conversations with one
town’s racial justice and police reform group provided
town-specific history and helped narrow our focus to the
most impactful questions. Community members have ex-
pressed enthusiasm that our quantitative work will further
empower them to reform their local police departments.
We hope that their enthusiasm will help our work inform
community decision-making and realize its intended im-
pact beyond the ivory tower.

My long-term goal is to continue building a research
program that invites students to work on problems that are
meaningful to them and their communities. I believe that
this program will not only enact my values, but ultimately
strengthen my academic career.
Quindel Jones, Virginia Commonwealth University. I am a
queer Black woman born and raised in Jackson, Missis-
sippi, a part of the American South.
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While I initially took to dance and writing, my mother’s
affinity for numbers engaged my mathematical curiosity.
My own affinity grew as community summer enrichment
programs kept me engaged. Throughout high school and
college, there were opportunities for me to use mathemat-
ics in my personal life and learn from people who looked
like or cared about me. I graduated from Jackson State
University, one of six historically Black colleges and uni-
versities (HBCUs) in the state, under the guidance of Dr.
Jana Talley, whom I met in the I.C.STEM program at Jack-
son State when I was in high school.

I am currently a doctoral candidate in applied mathe-
matics with a concentration in mathematical biology at
Virginia Commonwealth University. Since entering gradu-
ate school, my professional mission has been to use math-
ematics to improve the lives of people that look like me—
especially Black women. In my dissertation project, I am
developing a dynamical model of pain levels during sickle
cell disease, a disease that disproportionately affects Black
people. We start with self-report data of patient pain, col-
lected by a member of our interdisciplinary team. We use
this data to fit an ordinary differential equation (ODE)
model of a patient’s pain profile over time. This model
is already informing the data collection strategies for the
next round of our study. Long-term, we hope to embed
our model in a wearable app. We hope for patients to be
able to log their sleep and pain self-reports, and from these
receive warnings about likely upcoming pain crises. Pa-
tients could use these warnings to seek prophylactic care
or medication.

As I continue on my mathematics journey, I am discov-
ering more and more ways in which mathematics can be
applied to address inequities. With my own life having
been shaped by inequity due to my marginalized identity
in US society, I am thrilled that there’s an active commu-
nity centered on math and data science for social justice.
Connecting with this community in venues like the recent
program at ICERM has been formative experiences in my
mathematical career. These programs and their leaders
have helped me see myself and my concerns as important.
Part ofmy excitement formy future as a researcher is know-
ing that socially impactful mathematical work exists, and
that there is a growing community of collaborators with
whom to do it.
Andrés R. Vindas Meléndez, UC Berkeley. My mathemati-
cal work is mainly in combinatorics. I have always found
value in this work from meaningful interactions with col-
laborators and the joy of mathematical discovery.

I had my “formal” introduction to data science for
social justice at a recent ICERM program on this topic.
I began working with a number of collaborators to ad-
dress a deceptively simple question: who or what is a

mathematician? Narrow definitions based on job titles
or institutional affiliations can be precise, but can also
be used to implicitly or explicitly exclude people from
the discipline. In a recent preprint, we examined some
of the tensions in several formulations of what it means
to be a mathematician, including those based on self-
identification, activities, and qualifications. For fu-
ture work, we aim to design a survey of mathematicians
(broadly construed) across a wide range of institutions,
personal identities, job titles, and areas of scholarly and
pedagogical interest. We will study these data using tech-
niques like text analysis and clustering to extract qualita-
tive insight from survey participant responses. From this
work, we hope to deepen our understanding of the iden-
tities and needs of mathematicians in order to support in-
terventions at multiple levels to increase the participation
of marginalized or underrepresented groups.

My interest in the topic of who is considered a math-
ematician, and who is welcomed in our community, is
informed by my own identity and experience. My iden-
tities as a queer, chronically ill, first-generation, Latinx
mathematician have shaped my own experience in aca-
demic mathematics, including both successes and strug-
gles. I now benefit from privilege in my study and work
and well-resourced institutions. My experiences navigat-
ingmy career so far highlight the need for spaces that allow
marginalized people to feel welcomed, comfortable, and
supported in the mathematics community.

As someone whose training is primarily in theoretical
math, I sometimes feel that I do not have much to con-
tribute to DS4SJ. I remind myself that this work requires
diverse experience and expertise and my own identities of-
fer important perspective on critical questions. What is
missing from our survey efforts? What identities might be
overlooked or mischaracterized by our approach? What
voices are centered in extant literature? Whose voices are
neglected?

Recently, I have been developing my technical data sci-
ence skills. At my current institution, I am participating in
workshops on Python, R, data visualization, and text anal-
ysis as a means to build my skills for my research projects.
Furthermore, I have joined the Digital Humanities Work-
ing Group, which allows me to have interdisciplinary con-
versations and reflect on the social prestige thatmathemati-
cians carry.
Heather Zinn Brooks, Harvey Mudd College. My identities
as a woman and a first-generation college student have im-
pacted my career trajectory and inspired my involvement
in research in data science and social justice. Growing
up, I didn’t know that “mathematician” was a real job ti-
tle. As a student, I struggled to see myself as a mathemati-
cian because of the lack of role models who shared these
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identities. Now that I have the privilege to carry the title of
“professor of mathematics,” one of my motivations for be-
coming involved in work in DS4SJ is to give back to (and
improve) a community that has benefited me. I recognize
that my positionality as a white, cisgendered, able-bodied
individual has contributed towardmy positive experiences
in the mathematics community. My interest in creating in-
clusive mathematical spaces has led me to a recent project
modeling female gender representation in mathematical
subfields and institutions. In this project, my collabora-
tors and I use a data set compiled from the Mathemat-
ics Genealogy Project (MGP), combined with algorithmi-
cally inferred binary gender from names. This data has
important limitations. Binary categories are imperfect rep-
resentations of gender, an inherently nonbinary facet of
identity. Furthermore, gender is not determined by name
or appearance. We assume that misgendering takes place
in our data set, and we view our results as at most esti-
mates of macroscopic trends. Within these limitations,
our goal is to build understanding of how some subfields
and institutions have reached relatively high levels of fe-
male gender representation, while others remain strongly
male-dominated.

We study the roles of homophily and prestige as mech-
anisms supporting or inhibiting female gender represen-
tation in mathematics. A centerpiece of our work is the
development of data-informed branching process models
for replicating features found in real data. We use ma-
chine learning techniques to highlight useful predictors in
the data and inform the model mechanisms. In addition
to these technical contributions, a long-term aim is to de-
velop actionable strategies to supportmore inclusivemath-
ematical spaces.

My formal training in applied dynamical systems and
mathematical biology has allowed me to connect this mo-
tivation into my research in meaningful ways and has chal-
lenged me to adopt a systemic perspective on the way
our mathematical community functions. Personal iden-
tity characteristics, institutional prestige, and perceptions
of and the microcultures within mathematical subfields
are all salient features that impact the way our commu-
nity looks, feels, and operates. This systemic perspective
allows my collaborators and me to interrogate the MGP
data to highlight, explore, and understand the impact of
these features.

My primary motivation for engaging in justice-oriented
data science work is to fight systemic injustice and oppres-
sion. My involvement in this work has also inspired new
scholarship, provided a source of joy in my research career,
and allowed me to connect my identity to my mathemati-
cal pursuits.

5. Outlook
We have argued that many members of the mathemati-
cal community can, if they choose, further justice work
through the reflective, critical practice of data science. We
have highlighted some of the benefits for scholars, espe-
cially early-career mathematicians: DS4SJ allows scholars
to do work with concrete impact, to relate their identities
to their work, to find inspiration for new technical prob-
lems, and to connect with their students inside and outside
the classroom. There are communities emerging to sup-
port this growing subdiscipline, foster collaborations, and
build critical expertise. We close with some suggestions for
individuals, departments, and institutions to nurture work
in this burgeoning area.

While individual motivation may spark engagement in
DS4JS scholarship, departments, institutions, and profes-
sional societies must offer active support for this schol-
arship to be successful. This is especially pertinent con-
sidering that a large portion of the work in DS4SJ is be-
ing spearheaded by early-career mathematicians, includ-
ing untenured professors, industry professionals, post-
docs, and students. Since many of these scholars lack ca-
reer stability, it is important that institutions align incen-
tives so that these scholars can be confident in their ability
to advance their careers while pursuing justice work. At
all levels, DS4JS work must be structurally and financially
supported to sustain scholarship in this field.

Academic institutions can support justice-oriented
scholars at all career stages. Departments can support fac-
ulty in their teaching endeavors by encouraging the devel-
opment of new courses at the intersection of mathemat-
ics, data science, and social justice. Programs can provide
training to undergraduate and graduate students and fa-
cilitate opportunities for community collaborations. Hir-
ing committees can revise rubrics to explicitly place value
on justice-oriented work, which may be particularly im-
portant in searches related to applied data science. In
retention, promotion, and tenure decisions, work must
be understood and valued appropriately. For many de-
partments, this necessitates broadening the perspective
on what constitutes evidence of scholarship in this area,
including both publications and evidence of impact of
the scholar’s work outside academic venues. In order to
meaningfully support justice-focused scientific work, de-
partments must formally recognize its value in training
and evaluative processes at all levels.

The structural support of institutes and professional so-
cieties is also critical to furthering this growing subfield
of mathematics. As with any subfield, workshops and
conferences are critical for disseminating work, generat-
ing new ideas, and creating and maintaining connections
among scholars. Such events can be especially impactful
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for early-career scholars aiming to make connections and
jump-start their scholarship. The Summer 2022 program
on “Data Science and Social Justice: Networks, Policy, and
Education” at ICERM, at which the present authors began
this article, is just one example of a growing number of
research community spaces.

Simply making venues available for workshops and col-
laborations is, however, not sufficient. Adequate, equi-
table funding is necessary for diverse researchers and com-
munity members to fully participate in partnership. Pro-
viding this funding may challenge traditional institutions.
Some examples of funding to support equitable participa-
tion include travel for community participants (not just
researchers); upfront financial support to graduate student
researchers for travel and meals; and financial support for
childcare or partner travel. Measures like these enable
the full participation of individuals for whom the typical
financial and time costs of workshop participation may
be especially heavy. We therefore encourage reflection
and creativity on the part of institutes and other funded
projects to design funding which supports equitable par-
ticipation in DS4SJ work.

Professional societies can further research and innova-
tion by forming and supporting professional communi-
ties formathematicians working inDS4SJ. Messaging from
these societies is a powerful and important tool for build-
ing respect and professional legitimacy for justice data sci-
entists and the scholarship they create. Such messaging
also helps scholarly reviewers understand the nature of
DS4SJ research, which this article aims to inform.

The intersection of data science and social justice work
represents an exciting opportunity for mathematical scien-
tists to work toward a more just and equitable future, both
within our own community and beyond. We hope that
this article can promote the growth and success of data sci-
ence for social justice.

Author Positionality
The authors of this manuscript represent a diverse range
of identities, experiences, and voices within the mathe-
matical community. Our views on data science and so-
cial justice are necessarily shaped by our experiences of
both marginalization and privilege. Many of us embody
marginalized identities along axes of race, ethnicity, gen-
der, and sexuality. For some of us, our interest in justice
work is informed by a passion to combat forms of oppres-
sion that we ourselves have experienced. We also acknowl-
edge that many of us occupy positions of privilege within
the mathematical community, including job security, ac-
cess to research funding, and recognition within our pro-
fessional communities. We also acknowledge the consid-
erable privilege represented by the invited opportunity to

share our perspectives in the Notices. We look forward to
continuing both our learning and our work toward justice.
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Machine-Human
Collaborations Accelerate
Math Research
Susan D’Agostino

One might think that earning a Fields Medal would quiet
any mathematician’s nagging doubts about their proof-
writing abilities moving forward. But soon after Peter
Scholze earned the 2018 award,1 he questioned one part
of the proof of the liquid vector space theorem he co-
authored with Dustin Clausen. With humility, Scholze
reached out to the math community.

“I spent much of 2019 obsessed with the proof of this
theorem, almost going crazy over it,” Scholze wrote on the
Xena Project blog2 in December 2020 about a black box of
functional analysis contained within the proof. “I think
nobody else has dared to look at the details of this, and so
I still have some small lingering doubts. . . . this may be
my most important theorem to date . . . Better be sure it’s
correct.”

Indeed, Adam Topaz, assistant professor of mathemat-
ics at the University of Alberta, confessed with nervous

Susan D’Agostino is a mathematician and Spencer Journalism Fellow at
Columbia University. She may be reached through her website: https://
www.susandagostino.com.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2780
1https://www.britannica.com/science/Fields-Medal
2https://xenaproject.wordpress.com/2020/12/05/liquid-tensor
-experiment/

laughter that he and his study group had skipped the proof
of the theorem when they read the work in 2020.

“He’s a very convincing person,” Topaz said during a
talk at the February 2023 Machine Assisted Proofs confer-
ence3 held at UCLA’s Institute for Pure and Applied Math-
ematics. “If he says something is true, people tend to trust
him.”

That’s why Scholze and a team led by Johan Commelin
of the University of Freiburg in Germany launched a large,
collaborative project to verify the proof with the free, open-
source, Lean Proof Assistant. The community-driven soft-
ware was developed4 principally by Leonardo de Moura
when he was at Microsoft Research and is supported by a
mathematical library built by the Lean community. Topaz
and other mathematicians and computer scientists joined
Commelin’s effort. By May 2021, they hit their first tar-
get, and by July 2022, they completed the project, which
required 98,000 lines of code, according to Topaz.

“I find it absolutely insane that interactive proof assis-
tants are now at the level that, within a very reasonable
time span, they can formally verify difficult original re-
search,” Scholze wrote on his blog.

3https://www.ipam.ucla.edu/programs/workshops/machine
-assisted-proofs/?tab=schedule
4https://leanprover-community.github.io/
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Carefully checking the proof would have been a “non-
starter” without the machine assistance, Topaz said. As a
bonus to finding and fixing some inaccuracies and verify-
ing the proof of the main theorem, Topaz reported that
the group also proved some auxiliary statements, answered
some questions from Scholze’s notes, and filled some gaps
in Lean’s mathematics library, specifically in homological
algebra, topology, and category theory.

“It was really a human project, not a robot project,”
Topaz said.

Since late 2022, academe has been abuzz with talk
of ChatGPT, GPT-4, and other AI writing tools that may
change research and college writing. But the mathematics
community is also grappling with disruption, as evidenced
by human-machine collaborations in writing proofs of dif-
ficult theorems at the cutting edge of research mathemat-
ics. Machines not only verify mathematical results that
humans discover but helpmathematicians reason, explore
new ideas, and even learn new mathematics.

Automated and Interactive Methods
Formal methods, a subfield of computer science, uses tech-
niques based in computational logic to assist with mathe-
matical reasoning, according to Jeremy Avigad, professor
of philosophy and mathematical science at Carnegie Mel-
lon University. Within the subfield, there are automated
methods and interactive methods. Broadly speaking, in
the former, a human asks a question, pushes a button, and
gets an answer—or an “I don’t know,” which can leave the
mathematician stuck. In the latter, the user works with the
computer to explore or check reasoning. That leaves room
for possibility.

“It’s early and we’re still figuring out what the technol-
ogy can do,” Avigad said. “But there’s a lot of promise and
a lot of excitement.”

When a mathematician works with an interactive proof
assistant, they might “teach” it about a new area of math-
ematics by entering the basic definitions and theorems.
They might later “ask” the machine what it knows about
these objects. When formalizing a proof, they will try to
get the computer to determine whether something follows
from previous statements, providing more information if
necessary. In this way, machines and humans collaborate
to fill in details and nudge the effort toward rigor.

But distinguishing between automated and interactive
methods is something of a false dichotomy, according to
Avigad.

“Even if you’re doing math interactively, you want to
automate the tedious parts as much as possible,” Avigad
said. “And even if you’re using automation, whenever you
try something that doesn’t work, you make a change and
try again. So, the two sides of the field kind of grow to-
gether.”

Michael Kinyon, professor of mathematics at the Uni-
versity of Denver, also blurs this boundary when using the
tools. That is, he uses automatic theorem provers, but he
uses them as proof assistants. The work has shifted his ap-
proach to research questions.

“Wemay be a little quicker, for example, to try out some-
thing using the software first before sitting and staring off
into space and trying to figure it out on their own,” Kinyon
said. “There’s more of a willingness to be experimental in
the early stages of these things.”

That computers “think” differently than humans facili-
tates the discovery process for humans, according to some.

“That breaks us out of our patterns and deepens our un-
derstanding,” Jordan Ellenberg, professor of mathematics
at the University of Wisconsin, said. “You can think of for-
malization as teaching a mathematical idea to a machine,
and the machine’s ‘mind’ is very different from ours.” In
2016, Ellenberg and Dion Gijswijt, professor of mathemat-
ics at the Delft University of Technology in the Nether-
lands, solved the cap set conjecture, a result that was later
published5 in the Annals of Mathematics.

Later, in 2019, mathematician Sander Dahmen and
computer scientists Johannes Hölzl and Robert Lewis—all
from Vrije Universiteit Amsterdam—used the Lean theo-
rem prover to formalize6 the proof of Ellenberg and Gi-
jswijt’s theorem. The authors deemed the combinatorial
background necessary to formalize the proof as “less in-
timidating” than proofs from other math subfields. This
formalization work provided some reassurance that, un-
der favorable circumstances, one could computer-check a
recent paper from the Annals of Mathematics. But a vanish-
ingly small proportion of papers in this esteemed journal
include short proofs with “less intimidating” prerequisites.
Enthusiasts can hope that the software will improve over
time.

On Elegance
Some may wonder whether machines reduce proofs to
computations. But such reductionism is not at the heart of
this work, according to Heather Macbeth, assistant profes-
sor of mathematics at Fordham University. That’s because
humans write proofs for understanding, and a computa-
tion may not offer that.

“You may think that when you move from paper to the
computer, we throw [beauty] out the window, that we have
decided that we’re going to embrace function over form,
and we’re really going to move to a world in which what
matters is getting the proof done,” Macbeth said. “That’s
not the case.” (Macbeth spoke at the Institute for Pure and
Applied Mathematics conference.)

5https://annals.math.princeton.edu/2017/185-1/p08
6https://drops.dagstuhl.de/opus/volltexte/2019/11070/
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Macbeth has spent three years writing thousands of
lines of Lean code in an effort to formalize proofs. For
two years, she has also collaborated with others to main-
tain the Lean mathematical library. In this role, she has
reviewed thousands of lines of code written by others to
assess whether the code can be improved and to ensure
that it fits with the rest of the library.

“Some of it, I felt, was really beautiful, and some of it I
haven’t,” Macbeth said. “Almost all principles for writing
good mathematics on paper extend to the corresponding
principles in formal mathematics.”

Arguments contained within automated proofs do not
always mimic patterns of human thought, according to
Macbeth.

“There is such a thing as a good proof that, nonetheless,
is not exactly the proof a human would have thought of,”
Macbeth said. Humans, she observed, in an attempt to be
efficient, may prune a search space at various steps in the
search for a proof. A machine, however, may check more
cases, including those that initially may have seemed less
than promising.

“This is really a question about where there are differ-
ences and why those differences are interesting,” Macbeth
said.

Also, some proofs gain elegance during formalization.
Thomas Browning and Patrick Lutz, both mathematics
graduate students at the University of California, Berke-
ley, undertook an effort to formalize Galois theory—a sub-
field many already deem elegant. But at one point in their
work, they needed to work with arbitrary finite sequences,
which are not among Lean’s strengths, according to Brown-
ing and Lutz. So, they found a workaround.

“This maneuver is mostly just a way to avoid having to
deal with certain types of arguments that don’t work very
smoothly in Lean,” Browning and Lutz wrote in their pa-
per. “But it does have the added benefit that some standard
proofs become simpler when rewritten using this new in-
duction principle.”

An Accelerating Trend
Decades ago, machine-assisted proofs were viewed as
fringe projects by mainstream mathematicians, according
to Josef Urban, a distinguished researcher at the Czech In-
stitute of Informatics, Robotics, and Cybernetics in Prague.

“High-profilemathematicians said that people like Tom
Hales were wasting their talent by doing the proof of the
Kepler conjecture formally,” Urban said of the mathemati-
cian who, after responding to frustrations with the usual
refereeing process, offered a machine-verified proof. “That
really changed in the last 15 years, thanks especially to
Hales.”

To be sure, machine assisted proofs still have naysay-
ers, including Michael Harris, professor of mathematics at

Columbia University. Mathematicians who use theorem
provers must learn to code and express problems in terms
computers understand, which reduces time spent doing
math.

“By the time I’ve reframed my question into a form that
could fit into this technology, I would have solved the
problem myself,” Harris told7 Quanta Magazine.

Doron Zeilberger, professor of mathematics at Rutgers
University, is also not a fan, though his distaste begins with
human-written proofs and extends to machine-assisted
proofs.

“We don’t need more ‘formal versions’ of human-
generated mathematics,” Zeilberger wrote on his blog8

last year, while noting his appreciation for the pioneering
work of Avigad and others. “Formalizing known proofs is
not unlike Pig-Latin. Once you have done it a couple of
times, it is no fun anymore. While it is both intellectually
and technically challenging, or else such brilliant people
would not engage in it, these people are wasting their tal-
ents.”

“Indeed, our silicon servants, soon to become our mas-
ters, can be used much more fruitfully,” Zeilberger contin-
ues. “Coq [another interactive theorem prover] and Lean
continue the pernicious Greek tradition, that introduced
the axiomatic method and made mathematics a deductive,
logic-centric science.”

But those views appear to go against the artificial-
intelligence headwinds that appear to be driving society
in the current moment, including the math community.

Kevin Buzzard, professor of pure mathematics at Im-
perial College London, gave9 a talk, “The Rise of Formal-
ism in Mathematics,” at the 2022 International Congress
of Mathematicians. There, he dubbed the mood not “the
beginning of the end” but the “beginning of the begin-
ning.” In his view, mathematical researchers’ jobs are not
at risk. Machines, however, will increasingly help humans
prove mathematical theorems not only by working out ex-
amples but also with reasoning. Computers will also help
humans find proofs or counterexamples in databases, con-
struct simple proofs, and generally make it easier for hu-
mans to learn mathematics, according to Buzzard.

The conference circuit appears to support this claim. In
addition to the machine-assisted proofs conference at the
Institute for Pure and Applied Mathematics held in Feb-
ruary, other respected institutions are devoting time and
space this year for mathematicians to gather and discuss
this accelerating trend.

In May, the Banff International Research Station
for Mathematical Innovation and Discovery hosted a

7https://www.quantamagazine.org/how-close-are-computers-to
-automating-mathematical-reasoning-20200827/
8https://sites.math.rutgers.edu/~zeilberg/Opinion184.html
9https://www.youtube.com/watch?v=SEID4XYFN7o
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Formalization of Cohomology Theories workshop10 that
brought together formalization experts and subject mat-
ter experts to make strides towards cutting-edge research.
In June, the Simons Laufer Mathematical Sciences Insti-
tute introduced graduate students to the technology and
ideas behind it in a Formalization of Mathematics sum-
mer graduate school program.11 In July, MIT’s Lorentz Cen-
ter held a Machine-Checked Mathematics workshop12 tar-
geting mathematicians who have heard about, but not yet
tried, the technology.

Outside of the United States, in June, the University of
Copenhagen offered a masterclass13 called Formalisation
of Mathematics to build on the Scholtz’s liquid tensor ex-
periment. In July, the Lorentz Center in the Netherlands
offered14 Machine-checked Mathematics, a week-long in-
troductory workshop for interested mathematicians in-
tended to spur collaboration. Also in the summer, the
Hausdorff Research Institute for Mathematics offered a
program,15 Prospects of Formal Mathematics, to provide
a forum for experts and junior researchers to gather, col-
laborate, and “interface them better with the mathemat-
ical mainstream.” The same institution offered16 a week-
long lecture series,17 Formal Mathematics and Computer-
Assisted Proving, in September. Many more may be found
on the Lean Community website.18 Also, Lean is not the
only interactive theorem prover. Other systems include
Coq, Isabelle/HOL, HOL Light, Agda, cubical Agda, Meta-
math, and Mizar, according to Buzzard.

“They digitized music—CD, MP3—but at the time no-
body foresaw the consequences—Napster, Spotify,” Buz-
zard said during his talk. “We’re digitizing mathematics,
and I believe this will inevitably change mathematics. You
are welcome to join us.”

10https://www.birs.ca/events/2023/5-day-workshops/23w5124
11https://www.msri.org/summer_schools/1021
12https://www.lorentzcenter.nl/machine-checked-mathematics
.html
13https://www.math.ku.dk/english/calendar/events
/formalisation-of-mathematics/
14https://www.lorentzcenter.nl/machine-checked-mathematics
.html
15https://www.him.uni-bonn.de/programs/future-programs
/future-trimester-programs/prospects-of-formal-mathematics
/description/
16https://www.hsm.uni-bonn.de/events/hsm-schools/formal2023
/description/
17https://www.hsm.uni-bonn.de/events/hsm-schools/formal2023
/description/
18https://leanprover-community.github.io/events.html
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SHORT STORIES

The Beauty of Roots
John C. Baez, J. Daniel Christensen,

and Sam Derbyshire

Figure 1. Roots of all polynomials of degree 23 whose
coefficients are ±1. The brightness shows the number of
roots per pixel.

One of the charms of mathematics is that simple rules
can generate complex and fascinating patterns, which raise

John C. Baez is a professor of mathematics at UC Riverside. His email address
is john.baez@ucr.edu.
J. Daniel Christensen is a professor of mathematics at the University of Western
Ontario. His email address is jdc@uwo.ca.
Sam Derbyshire is a Haskell consultant at Well-Typed. His email address is sam
@well-typed.com.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2789

questions whose answers require profound thought. For
example, if we plot the roots of all polynomials of degree
23 whose coefficients are all 1 or −1, we get an astounding
picture, shown in Figure 1.

More generally, define a Littlewood polynomial to be a

polynomial 𝑝(𝑧) = ∑𝑑
𝑖=0 𝑎𝑖𝑧𝑖 with each coefficient 𝑎𝑖 equal

to 1 or −1. Let 𝐗𝑛 be the set of complex numbers that
are roots of some Littlewood polynomial with 𝑛 nonzero
terms (and thus degree 𝑛 − 1). The 4-fold symmetry of
Figure 1 comes from the fact that if 𝑧 ∈ 𝐗𝑛 so are −𝑧 and 𝑧.
The set 𝐗𝑛 is also invariant under the map 𝑧 ↦ 1/𝑧, since
if 𝑧 is the root of some Littlewood polynomial then 1/𝑧
is a root of the polynomial with coefficients listed in the
reverse order.

It turns out to be easier to study the set

𝐗 =
∞

⋃
𝑛=1

𝐗𝑛 = {𝑧 ∈ ℂ|𝑧 is the root of some

Littlewood polynomial} .

If 𝑛 divides 𝑚 then 𝐗𝑛 ⊆ 𝐗𝑚, so 𝐗𝑛 for a highly divisible
number 𝑛 can serve as an approximation to 𝐗, and this is
why we drew 𝐗24.

Some general properties of 𝐗 are understood. It is easy
to show that 𝐗 is contained in the annulus 1/2 < |𝑧| < 2.
On the other hand, Thierry Bousch showed [2] that the
closure of 𝐗 contains the annulus 2−1/4 ≤ |𝑧| ≤ 21/4. This
means that the holes near roots of unity visible in the sets
𝐗𝑛 must eventually fill in as we take the union over all
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Figure 2. The region of 𝐗24 near the point 𝑧 = 1
2
𝑒𝑖/5.

𝑛. More surprisingly, Bousch showed in 1993 that the clo-
sure 𝐗 is connected and locally path-connected [3]. It is
worth comparing the work of Odlyzko and Poonen [7],
who previously showed similar result for roots of polyno-
mials whose coefficients are all 0 or 1.

The big challenge is to understand the diverse, compli-
cated and beautiful patterns that appear in different re-
gions of the set 𝐗. There are websites that let you explore
and zoom into this set online [4, 5, 8]. Different regions
raise different questions.

For example, what is creating the fractal patterns in
Figure 2 and elsewhere? An anonymous contributor sug-
gested a fascinating line of attack which was further devel-
oped by Greg Egan [5]. Define two functions from the
complex plane to itself, depending on a complex param-
eter 𝑞:

𝑓+𝑞(𝑧) = 1 + 𝑞𝑧, 𝑓−𝑞(𝑧) = 1 − 𝑞𝑧.

When |𝑞| < 1 these are both contraction mappings, so by
a theorem of Hutchinson [6] there is a unique nonempty
compact set 𝐷𝑞 ⊆ ℂ with

𝐷𝑞 = 𝑓+𝑞(𝐷𝑞) ∪ 𝑓−𝑞(𝐷𝑞).

We call this set a dragon, or the 𝐪-dragon to be specific.
And it seems that for |𝑞| < 1, the portion of the set 𝐗 in a
small neighborhood of the point 𝑞 tends to look like a rotated
version of 𝐷𝑞.

Figure 3 shows some examples. To precisely describe
what is going on, much less prove it, would take real work.
We invite the reader to try. A heuristic explanation is
known, which can serve as a starting point [1, 5]. Bousch
[3] has also proved this related result:

Theorem. For 𝑞 ∈ ℂ with |𝑞| < 1, we have 𝑞 ∈ 𝐗 if and only
if 0 ∈ 𝐷𝑞. When this holds, the set 𝐷𝑞 is connected.

Figure 3. Top: the set 𝐗 near 𝑞 = 0.594 + 0.254𝑖 at left, and the
set 𝐷𝑞 at right. Bottom: the set 𝐗 near 𝑞 = 0.375453 + 0.544825𝑖
at left, and the set 𝐷𝑞 at right.
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John C. Baez J. Daniel
Christensen

Reach out to our audience through direct mail.
Our list of mathematicians and other scientists is
the richest source of successful prominent
researchers and educators you’ll fi nd anywhere.
With our help, you can mail to heads of departments, 
or any of 63 groups of math specialists. Best of all,
our lists are updated daily!
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Joint Prizes and Awards
2024 MOS–AMS  
Fulkerson Prize
The Fulkerson Prize Committee invites nominations for 
the Delbert Ray Fulkerson Prize, sponsored jointly by the 
Mathematical Optimization Society (MOS) and the Amer-
ican Mathematical Society (AMS). Up to three awards of 
US$1,500 each are presented at each (triennial) Interna-
tional Symposium of the MOS. The Fulkerson Prize is for 
outstanding papers in the area of discrete mathematics. The 
prize will be awarded at the 25th International Symposium 
on Mathematical Programming to be held in Montreal, 
Canada, in the summer of 2024.

Eligible papers should represent the final publication 
of the main result(s) and should have been published 
in a recognized journal or in a comparable, well-refereed 
volume intended to publish final publications only, during 
the six calendar years preceding the year of the Symposium 
(thus, from January 2018 through December 2023). The 
prizes will be given for single papers, not series of papers 
or books, and in the event of joint authorship the prize 
will be divided.

The term “discrete mathematics” is interpreted broadly 
and is intended to include graph theory, networks, mathe-
matical programming, applied combinatorics, applications 
of discrete mathematics to computer science, and related 
subjects. While research work in these areas is usually not 
far removed from practical applications, the judging of 
papers will be based only on their mathematical quality 
and significance.

Previous winners of the Fulkerson Prize are listed here: 
www.mathopt.org/?nav=fulkerson#winners.

Further information about the Fulkerson Prize can 
be found at www.mathopt.org/?nav=fulkerson and 
https://www.ams.org/fulkerson-prize.

AMS Prizes and Awards
I. Martin Isaacs Prize  
for Excellence in 
Mathematical Writing
The I. Martin Isaacs Prize is awarded for excellence in writ-
ing of a research article published in a primary journal of 
the AMS in the past two years.

About this Prize
The prize focuses on the attributes of excellent writing, 
including clarity, grace, and accessibility; the quality of the 
research is implied by the article’s publication in a primary 
journal and is not a criterion for this prize.

Professor Isaacs is the author of several graduate-level 
textbooks and of about 200 research papers on finite 
groups and their characters, with special emphasis on 
groups—such as solvable groups—that have an abundance 
of normal subgroups. He is a Fellow of the American Math-
ematical Society, and received teaching awards from the 
University of Wisconsin and from the School of Engineer-
ing at the University of Wisconsin. He is especially proud 
of his 29 successful PhD students.

Next Prize: January 2025

Nomination Period: The deadline is March 31, 2024.

Nomination Procedure: www.ams.org/isaacs-prize

Nominations with supporting information should be 
submitted online. Nominations should include a letter of 
nomination, a short description of the work that is the basis 
of the nomination, and a complete bibliographic citation 
for the article being nominated.
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The Fulkerson Prize Committee consists of
 • Julia Böttcher (London School of Economics), 

MOS Representative
 • Rosa Orellana (Dartmouth College), AMS Repre-

sentative
 • Dan Spielman (Yale University), Chair and MOS 

Representative

Please send your nominations (including reference to the 
nominated article and an evaluation of the work) by Feb-
ruary 15, 2024 to the chair of the committee:
Professor Daniel Spielman
Email: daniel.spielman@yale.edu

American Mathematical Society 
Policy on a Welcoming Environment
(as adopted by the January 2015 AMS Council and modified by the January 2019 AMS Council)

The AMS strives to ensure that participants in its activities enjoy 
a welcoming environment. In all its activities, the AMS seeks to 
foster an atmosphere that encourages the free expression and ex-
change of ideas. The AMS supports equality of opportunity and 
treatment for all participants, regardless of gender, gender identity 
or expression, race, color, national or ethnic origin, religion or 
religious belief, age, marital status, sexual orientation, disabilities, 
veteran status, or immigration status.

Harassment is a form of misconduct that undermines the integrity 
of AMS activities and mission.

The AMS will make every effort to maintain an environment that 
is free of harassment, even though it does not control the behav-
ior of third parties. A commitment to a welcoming environment is

expected of all attendees at AMS activities, including mathe-
maticians, students, guests, staff, contractors and exhibitors, 
and participants in scientific sessions and social events. To 
this end, the AMS will include a statement concerning its ex-
pectations towards maintaining a welcoming environment in 
registration materials for all its meetings, and has put in place 
a mechanism for reporting violations. Violations may be re-
ported confidentially and anonymously to 855.282.5703 or at  
www.mathsociety.ethicspoint.com. The reporting mechanism 
ensures the respect of privacy while alerting the AMS to the sit-
uation.

For AMS policy statements concerning discrimination and harass-
ment, see the AMS Anti-Harassment Policy.

Questions about this welcoming environment policy should be  
directed to the AMS Secretary.



POSITION
The Trustees of the American Mathematical Society invite applications for the position of Executive Director of the Society. The Executive Director has the 
opportunity to strongly influence all activities of the Society, as well as the responsibility of overseeing a large and diverse spectrum of people, programs, 
and publications. The desired starting date is February 1, 2024.

DUTIES AND TERMS OF APPOINTMENT
The American Mathematical Society, founded in 1888 to further the in-
terests of mathematical research and scholarship, serves the national and 
international community through its publications, meetings, advocacy, 
and other programs. The AMS promotes mathematical research and its 
communication and uses; encourages and promotes the transmission of 
mathematical understanding and skills; supports mathematical education 
at all levels; advances the status of the profession of mathematics, encour-
aging and facilitating the full participation of all individuals; and fosters 
an awareness and appreciation of mathematics and its connections to oth-
er disciplines and everyday life.
These aims are pursued mainly through an active portfolio of programs, 
publications, meetings, conferences, and advocacy. The Society is a major 
publisher of mathematical books and journals, including MathSciNet®, an 
organizer of numerous meetings and conferences each year, and a sponsor 
of grants and training programs. The Society’s headquarters are located in 
Providence, Rhode Island, and the Executive Director is based there. The 
society also maintains a print shop in Pawtucket, Rhode Island; an office 
in Washington, DC, that houses the Office of Government Relations and 
the Office of Equity, Diversity, and Inclusion; and an office in Ann Arbor, 
Michigan, that publishes MathSciNet.

The Executive Director is the principal executive officer of the Society and 
is responsible for the execution and administration of the policies of the 
Society as approved by the Board of Trustees and by the Council. The Exec-
utive Director is a full-time employee of the Society and is responsible for 
the operation of the Society’s offices in Providence, and Pawtucket, RI; Ann 
Arbor, MI; and Washington, DC. The Executive Director attends meetings 
of the Board of Trustees, the Council, and the Executive Committee, is an 
ex-officio (nonvoting) member of the policy committees of the Society, 
and is often called upon to represent the Society in its dealings with other 
scientific and scholarly bodies.
The Society employs a staff of over 200 in the four offices. The directors of 
the various divisions report directly to the Executive Director. Information 
about the operations and finances of the Society can be found in its Annu-
al Reports, available at www.ams.org/annual-reports.
The Executive Director is appointed by and serves at the pleasure of the 
Trustees. The terms of appointment, salary, and benefits will be consistent 
with the nature and responsibilities of the position and will be determined 
by mutual agreement between the Trustees and the prospective appointee.

DESIRED QUALIFICATIONS
The successful candidate must be a leader, and we seek candidates who additionally have as many as possible of the following:
• A doctoral degree (or equivalent) in mathematics or a closely related 

field.
• Substantial experience and demonstrated visibility as a professional 

mathematician in academic, industrial, or governmental employment, 
with success in obtaining and administering grants.

• Extensive knowledge of the Society, the mathematics profession, and 
related disciplines and organizations, with a thorough understanding 
of the mission that guides the Society.

• Excellent communication skills, both written and oral, and an enthu-
siasm for public outreach.

• Demonstrated sustained commitment to diverse, inclusive, and equi-
table organizational environments and substantial experience in ad-
vancing equity, diversity, and inclusion priorities in the mathematical 
community.

• Demonstrated leadership ability supported by strong organizational 
and managerial skills.

• Familiarity with the mathematical community and its needs, and an 
ability to work effectively with mathematicians and nonmathemati-
cians.

• Strong interest in engaging in fundraising and enjoyment of social in-
teractions.

APPLICATIONS PROCESS
A search committee co-chaired by Joseph Silverman (joseph_silverman@brown.edu) and Bryna Kra (kra@math.northwestern.edu) has been 
formed to seek and review applications. All communication with the committee will be held in confidence. Suggestions of suitable candidates are 
most welcome.
Applicants should submit a CV and a letter of interest on MathJobs. The letter should be at most four pages, explaining your interest in being the 
Executive Director of the AMS and why you consider yourself to be a compelling candidate. The majority of the letter should discuss your major 
accomplishments and experiences that illustrate your leadership philosophy and address the desired qualifications for the position. Applications 
received by September 15, 2023 will receive full consideration.

POSITION AVAILABLE

Executive Director
AMERICAN MATHEMATICAL SOCIETY

The AMS supports equality of opportunity and treatment 
for all participants, regardless of gender, gender identity or 
expression, race, color, national or ethnic origin, religion 
or religious belief, age, marital status, sexual orientation, 
disabilities, veteran status, or immigration status.
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Call for Suggestions
2024 Election
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YOUR SUGGESTIONS ARE WANTED BY:

the Nominating Committee, for the following contested
seats in the 2024 AMS elections:

vice president, trustee, and five members at large
of the Council.

Deadline for suggestions: November 1, 2023

the president, for the following contested seats in the
2024 AMS elections:

three members of the Nominating Committee and
two members of the Editorial Boards Committee.

Deadline for suggestions: January 31, 2024

the Editorial Boards Committee, for appointments to
various editorial boards of AMS publications.

Deadline for suggestions: Can be submitted any time

Send your suggestions for any of the above to:
Boris Hasselblatt, Secretary
American Mathematical Society
201 Charles Street
Providence, RI 02904-2213, USA
secretary@ams.org
or submit them online at www.ams.org/committee-nominate
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Applications Open for 

AMS CONGRESSIONAL 
FELLOWSHIP 2024–2025

Apply your mathematics knowledge toward solutions
to societal problems.
The American Mathematical Society will sponsor a Congressional Fellow from
September 2024 through August 2025.

The Fellow will spend the year working on the staff of either a member of
Congress or a congressional committee, working in legislative and policy
areas requiring scienti� c and technical input.

The Fellow brings his/her/their technical background and external
perspective to the decision-making process in Congress. Prospective Fellows
must be cognizant of and demonstrate sensitivity toward political and
social issues and have a strong interest in applying personal knowledge
toward solutions to societal problems.

Now in its 19th year, the AMS Congressional Fellowship provides a unique
public policy learning experience, and demonstrates the value of science–
government interaction. The program includes an orientation on
congressional and executive branch operations, and a year-long seminar
series on issues involving science, technology, and public policy.

Applicants must have a PhD or an equivalent doctoral-level degree in the mathematical sciences by the application deadline
(February 1, 2024). Applicants must be US citizens. Federal employees are not eligible.

The Fellowship stipend is US$100,479 for the Fellowship period, with additional allowances for relocation and professional 
travel, as well as a contribution toward health insurance.

Applicants must submit a statement expressing interest and quali� cations for the AMS Congressional Fellowship as well as a cur-
rent curriculum vitae. Candidates should have three letters of recommendation sent to the AMS by the February 1, 2024 deadline.

For more information and to apply, please go to www.ams.org/ams-congressional-fellowship.

Deadline for receipt of applications:  February 1, 2024

“Every day on the Hill is new 
and exciting! Whether I am 

writing press releases, synthesizing 
complicated ideas into one-pagers, or 

meeting infl uential individuals, I learn 
something new every day. “

—Duncan Wright, 
AMS Congressional
Fellow 2022–2023

Learn more at the
JMM 2024 session on DC-based 
Policy and Communications 
Opportunities to be held
Friday, January 5, 2024
at 4:30 p.m.

2023



How to Throw a Math Party
for 500 People

Elaine Beebe

In April 2023, 564 people flocked to the University of
Cincinnati (UC) to immerse themselves in math at the
American Mathematical Society’s spring meeting for the
central section.

They represented 42 US states and the District of
Columbia. Other guests traveled from Canada (seven),
Japan (three), and Haiti, Mexico, and Sweden (one each).

“I heard from so many participants, many of whom
hadn’t traveled much in recent years, how important
this opportunity to reconnect with colleagues was,” said
AMS Associate Secretary for the Central Section Betsy Sto-
vall, professor of mathematics, University of Wisconsin-
Madison. As one of four AMS associate secretaries, Stovall
plans two sectional meetings per year.

During two weekend days, 468 speakers presented 481
abstracts. Thirty special sessions were composed of 102
sub-sessions. Two contributed paper sessions were held,
and four invited addresses took place.

“As a conference host, I’m just in shock at how much
went on in the span of a single weekend,” said Michael
Goldberg, UC math department chair and professor.
“Then again, I’ve never thrown a party for 500 people be-
fore.”

“Fantastic weekend indeed,” said Eyvindur Ari Pals-
son, associate professor of mathematics at Virginia Tech,
who organized a special session and presented research in
Cincinnati.

We asked Palsson, Stovall, Goldberg, and other behind-
the-scenes players for their advice to prospective hosts of
sectional meetings. Here’s what they had to say.

Elaine Beebe is the communication and outreach content specialist at the Amer-
ican Mathematical Society. Her email address is exb@ams.org.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2769

Plan Ahead
Due to the COVID-19 pandemic, UC waited four years to
host the spring sectional meeting it had begun to organize
in 2019.

“Typically, the AMS chooses a location for its meetings
about 18 months to two years in advance. In our case we
arranged in 2019 to hold the 2021 Spring Central Sectional
meeting at the University of Cincinnati,” Goldberg said.

About one year in advance, the AMS visits a meeting
location to confirm the suitability of the configuration of
classrooms, auditoriums, public space, and facilities. Sto-
vall and her checklist got plans moving.

“I have a questionnaire that I go through with the local
organizers,” the associate secretary said. “This helps them
think about what reservations and other advance planning
they might need to do ahead of time—for instance, to en-
sure accessible facilities. And it also helps the AMS com-
municate to all of the meeting participants what facilities
are available, what to expect in terms of A/V equipment,
etc.”

“I’d really encourage departments that are considering
hosting a sectional to go for it, because they bring a lot to
the mathematical community and give the department a
chance to shape that,” Stovall said. A sectional meeting
“brings a great deal of scientific activity to the host depart-
ment and creates opportunities for local mathematicians
to organize sessions, give talks, and attend talks without
having to travel,” she said.

“I think these meetings can seem really daunting for
departments because of the scale, but the AMS meetings
staff is able to provide a lot of logistical assistance, and the
model of having lots of special sessions means the work
is more distributed than at a regular conference,” Stovall
added.

Palsson and Krystal Taylor of Ohio State University,
friends since graduate school, assembled the AMS Special
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Session “Interface of Geometric Measure Theory and Har-
monic Analysis” in seven months. Creating the special ses-
sion was a natural progression after Taylor, associate pro-
fessor of mathematics, was selected to deliver an invited
address.

First, Taylor and Palsson brainstormed the precise
theme and title of the session. “Once this was decided,
we identified and reached out to potential speakers related
to this theme with an emphasis on highlighting a diverse
group of speakers from a range of institutions and career
stages,” Palsson said.

“Speakers who accepted submitted their talk title and
abstract in February. Once we knew the precise topics, we
organized the schedule accordingly, to group thematic ar-
eas,” he said.

“Eyvi put together a list of old friends combined with
many new faces,” Taylor said. “He mixed in some unex-
pected names from tangential areas, but people catered
their talks to the name of the session and the crowd so
it really worked.”

Stovall agreed. “This session was at the interface of
a few different areas—harmonic analysis, combinatorics,
and geometric measure theory—and, as such, brings to-
gether people who might not normally go to the same
conferences,” she said. “It also had a great mix of early-
career researchers and those who are further along in their
careers.”

Considering your own special session? “I’d encourage
potential organizers to go for it and just submit a session
proposal,” Stovall said. “I especially encourage organizers
to plan ahead for a diverse lineup of speakers, along many
axes, and to think about including both familiar faces
and also those who might not be invited so frequently to
speak.”

Form a Team
“The AMS has a detailed checklist of what needs to be in
place for a sectionalmeeting,” Goldberg said. “My role has
been to connect the dots between what’s on that checklist
and what resources—locations, people, services—are avail-
able on our campus.”

Math department business manager Nancy Diemler
spearheaded logistics. A sign on Diemler’s office door
reads “UC Mental Health Champion,” which means she
has trained in methods to support student, faculty, and
staff mental health. Diemler proved to be invaluable dur-
ing the sectional, from managing student workers to coor-
dinating camera crews, dining with luminaries to clearing
classrooms of forgotten items after the meeting (because
someone had to). That weekend, she made sure to have
available 50 gallons of regular coffee, eight gallons of de-
caf coffee, and five gallons of hot water for tea.

UCMath Professor Robert Buckingham, whose research
focuses on the asymptotic analysis of problems from
probability and differential equations, took the lead on
fundraising andmanaging the budget for themeeting. The
team pitched in to publicize the meeting in the math de-
partment and around the university, advertising the AMS
Einstein Public Lecture to the broader community.

During the meeting, Goldberg said he hoped “to be just
another one of the 500 participants, talking and listening
to people at the forefront of mathematical research.” But
if anything came up, Diemler had him on speed-dial.

Have a Plan B
Nathaniel Whitaker, interim dean of the College of Nat-
ural Sciences at the University of Massachusetts Amherst,
arrived in Cincinnati the day before he was to deliver the
Einstein Public Lecture.

That was the only part of his day’s travel plan to be exe-
cuted seamlessly.

Flights were delayed. Changing planes in Detroit might
have stranded Whitaker, a numerical analyst who devel-
ops algorithms to solve physical and biological problems
described by differential equations.

Upon learning that his midday connecting flight was
canceled, Whitaker decided to rent a car and drive the
four hours from Detroit to Cincinnati. He arrived an hour
before his dinner reservation, tired, but cheerful and un-
flapped.

Flexibility is key, Palsson said. “We had a speaker whose
flight was canceled, so they didn’t make it to Cincinnati
until after their talk, but due to cancellations from other
speakers, we were able to fit in the latecomer later in the
day.”

That was BrianMcDonald of theUniversity of Rochester,
who presented his 8:30 a.m. paper, “Paths and cycles in
distance graphs over finite fields,” at 4:30 p.m. No one in
the classroom appeared troubled by this rearrangement.

Clone Yourself?
“Needing to be several places at once is a big part of the
AMS meeting experience,” Goldberg observed.

“Besides the special session I was involved with organiz-
ing, there were somewhere between three and six others I
would have enjoyed attending at the same time. In fact,
one of my co-organizers had to duck out for a while so he
could go present a talk in another session,” the UC math
chair said. “I presented a talk in another session too, but
by some miracle there wasn’t a time conflict.”

Palsson and Taylor suggested sharing the workload of
session organizing. “It would have been easier if we had
just one or two more organizers,” Taylor said. “I was run-
ning back and forth to pump for my baby and to attend
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some other sessions, and a lot of responsibility fell on
Eyvi’s shoulders.”

“As a participant, the meeting was wildly successful, but
too short to do everything,” Goldberg said. “There were
a few hiccups as always—one speaker had to cancel due
to a missed flight connection, the room A/V liked some
input types better than others—but the show went on as
it’s supposed to.”

During two days in April, Goldberg accomplished quite
a bit. He met with several collaborators he hadn’t seen
in person for a long time, to plan out their next research
projects. He caught up with a friend he hadn’t seen in 20
years.

He met a potential future collaborator, who had devel-
oped an entirely new tool kit for solving some research
problems where Goldberg has always gotten stuck.

He also attended “about a dozen and a half talks” cov-
ering different research topics in analysis and differential
equations. Goldberg attended plenary talks and learned
about connections between numerical analysis and alge-
braic topology which he “never would have suspected.”

And he presented a talk on his favorite research problem
and was asked a lot of good questions: “most of which,”
Goldberg said, “I can’t completely answer. Yet.”
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AMS Updates

Maddock Named AMS Interim
Executive Director
Lucy Maddock was appointed interim executive director
of the American Mathematical Society (AMS) as of July 1,
2023. Maddock is chief financial officer (CFO) and asso-
ciate executive director for finance and administration at
the AMS.

“We’re delighted that Lucy Maddock has agreed to serve
as interim executive director of the American Mathemati-
cal Society, continuing her outstanding business decision-
making leadership for the past three years at the AMS,” said
Bryna Kra, AMS president.

Maddock began her term as interim executive direc-
tor serving alongside Executive Director Catherine Roberts,
who transitioned into an advisory role before leaving the
AMS at the end of August 2023. Upon the installation of
a new AMS executive director, Maddock will resume her
role of CFO.

“Lucy has served as a senior leader in organizations for
more than two decades,” said Joseph Silverman, chair of
the AMS board of trustees. “We will look to this extensive
experience to inform and guide the AMS through the tran-
sitions of the coming months.”

A key member of the AMS senior leadership team, Mad-
dock has been responsible for maintaining the organiza-
tion’s overall fiscal health, helping to establish financial
targets and assessing the results. As the AMS’s primary fi-
nancial advisor, she has managed the processes and proce-
dures to ensure an audit-ready position and has overseen
contract creation, management, and compliance. Mad-
dock’s duties include supervising the fiscal department and
the directors of human resources and of facilities and pur-
chasing at the AMS.

“I am honored to be appointed interim executive di-
rector,” Maddock said. “I look forward to continuing the
work of the AMS to serve the entire mathematical commu-
nity. Catherine Roberts positioned the AMS for a thriving
future in many ways.”

—AMS Communications

DOI: https://doi.org/10.1090/noti2788

Call Issued for 2025 MRC
Organizer Proposals
The Mathematics Research Communities (MRC) program
of the American Mathematical Society (AMS) is accepting
organizer proposals for the 2025 summer conferences. We
seek proposals focusing in any area of pure, applied, or in-
terdisciplinary mathematics, as well as proposals focused
on problems of relevance in the business, entrepreneur-
ship, government, industry, and nonprofit (BEGIN) are-
nas.

The MRC program is aimed at jumpstarting collabo-
rative groups of early-career researchers in new, rapidly
evolving areas of mathematics and its applications. Cen-
tral to the program are four summer conferences organized
by teams of investigators who can engage early-career in-
dividuals in hands-on research and guide them in devel-
oping as professionals. We are looking for creative pro-
posals that involve groups of 20 or 40 early-career mathe-
maticians for an intensive week of collaborative problem-
solving, research, and professional development.

Full proposals are due November 30, 2023. For more
information, please refer to the document called “How to
Develop a Proposal” at http://www.ams.org/programs
/research-communities/mrc-proposals-25.

—AMS Programs

Math Matters in Supreme
Court Case
Mathematics, gerrymandering, and voting rights were at
the heart of a June 2023 decision by the US Supreme Court
that the Alabama legislature drew congressional maps that
minimized Black voting power in the state.

“In considering redistricting in Alabama, the Supreme
Court received several amici briefs and examined alternate
maps submitted by mathematical scientists,” said Karen
Saxe, AMS associate executive director and director of gov-
ernment relations. In the trial, a crucial brief submitted
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by three computational redistricting experts explained that
the number of possible Alabama districtingmaps is atmin-
imum in the “trillion trillions.”

The 112-page decision regularly cited Moon Duchin, a
Tufts University geometer, and Kosuke Imai, a Harvard
University professor with joint appointments in the de-
partments of government and statistics. Duchin’s name
was mentioned 46 times, in such contexts as this footnote:
“After all, as Duchin explained, any map produced in a
deliberately race-predominant manner would necessarily
emerge at some point in a random, race-neutral process.”

Duchin and Imai helped write the 2018 AMS Policy
Statement on Drawing Voting Districts and Partisan Ger-
rymandering, which the AMS coauthored with the Amer-
ican Statistical Association. Read the full policy state-
ment at https://www.ams.org/about-us/governance
/policy-statements/gerrymandering.

“That statement notes that modern mathematical, sta-
tistical, and computing methods can be used to identify
district plans that give one of the parties an unfair advan-
tage in elections,” Saxe said. “It is very good to see these
methods being presented in court cases, and—specifically
and currently--being referred to in the SCOTUS June ruling
that Alabama maps likely diluted Black votes.”

To read more about how mathematicians are working
to end gerrymandering, download a 2022 article from
Notices of the AMS at https://www.ams.org/journals
/notices/202204/rnoti-p616.pdf.

—AMS Communications

Deaths of AMS Members
Robert D. Bechtel, of Denver, Colorado, died on May 13,
2018. Born on April 2, 1931, he was a member of the So-
ciety for 57 years.

Richard Body, of Canada, died on April 5, 2022. Born
on August 2, 1946, he was a member of the Society for 1
year.

Mary V. Connolly, of South Bend, Indiana, died on June
15, 2023. Born on November 1, 1939, she was a member
of the Society for 54 years.

Carl C. Ganser, of Vineyard Haven, Massachusetts, died
on April 15, 2021. Born on August 7, 1934, he was a mem-
ber of the Society for 59 years.

Jay R. Goldman, of Cambridge, Massachusetts, died on
August 13, 2022. Born on August 2, 1940, he was a mem-
ber of the Society for 60 years.

Patricia Clark Kenschaft, of Montclair, New Jersey, died
on November 20, 2022. Born on March 25, 1940, she was
a member of the Society for 58 years.

Ronald M. Mathsen, of Wausau, Wisconsin, died on Au-
gust 10, 2022. Born on October 6, 1938, he was a member
of the Society for 58 years.

Bengt C. H. Nagel, of Sweden, died on September 21,
2016. Born on January 17, 1927, he was a member of the
Society for 34 years.

L. Raphael Patton, of Moraga, California, died on De-
cember 6, 2021. Born on January 14, 1942, he was a mem-
ber of the Society for 48 years.

Alan H. Schoen, of Carbondale, Illinois, died on July
26, 2023. Born on December 11, 1924, he was a member
of the Society for 42 years.

Herbert A. Steinberg, of Armonk, New York, died on
July 28, 2023. Born on September 19, 1929, hewas amem-
ber of the Society for 71 years.

Michael Voichick, of Madison, Wisconsin, died on July
1, 2021. Born on May 28, 1934, he was a member of the
Society for 60 years.

D.Wales, of Pasadena, California, died on July 17, 2023.
Born on July 31, 1939, he was a member of the Society for
61 years.

Kenneth G. Whyburn, of Atherton, California, died on
June 19, 2022. Born on September 3, 1944, he was amem-
ber of the Society for 57 years.

Dorothy W. Wolfe, of Haverford, Pennsylvania, died on
April 5, 2023. Born on August 20, 1920, she was amember
of the Society for 60 years.
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Mathematics People

Lieb Wins 2023 Kyoto Prize
Elliott H. Lieb, professor emeritus at Princeton University,
won the 2023 Kyoto Prize in Basic Sciences.

According to a press release, Lieb “is one of the in-
tellectual giants in the field of mathematical sciences.
. . . Primarily through his achievements in many-body
physics, [Lieb] established a foundation for mathematical
research in fields such as physics, chemistry, and quan-
tum information science. His contributions to the devel-
opment of mathematical analysis are significant as well.”

“I am deeply honored to have been selected for the Ky-
oto Prize,” Lieb said. “Its founder, Dr. Kazuo Inamori, and
I share not only a birth year but also a philosophy that has
guided my activities in research and education.”

Established in 1984 by the Inamori Foundation, the Ky-
oto Prize is an international award to ”individuals who
have contributed significantly to the scientific, cultural,
and spiritual betterment of humankind.” The prize annu-
ally honors an individual in the fields of advanced tech-
nology, arts and philosophy, and basic sciences (which in-
cludes pure mathematics in a five-year cycle).

Lieb will receive the prize, which includes a diploma, a
medal made of twenty-carat gold, and a cash award of 100
million yen (approximately US $700,000), at a ceremony
in Kyoto, Japan, on November 10, 2023.

“It is especially gratifying to see my work in mathemat-
ics and physics recognized in a city that played an impor-
tant role in my cultural and scientific life,” Lieb added. “It
was in Kyoto in 1956 that I wrote my first postdoctoral pa-
per and where my immersion in Japanese culture made a
profound and continuing impact on my life.”

A life member of the American Mathematical Society,
Lieb joined the AMS in 1969 and was named to its inaugu-
ral class of fellows in 2013.

—AMS Communications

DOI: https://doi.org/10.1090/noti2790

Drinfeld, Yau Receive 2023 Shaw
Prize in Mathematical Sciences
The Shaw Prize in Mathematical Sciences was awarded to-
day in equal shares to Vladimir Drinfeld of the Univer-
sity of Chicago and Shing-Tung Yau of Tsinghua University.
Drinfeld and Yau were recognized for their contributions
related to mathematical physics, to arithmetic geometry,
to differential geometry, and to Kähler geometry, accord-
ing to the prize citation.

Drinfeld, the Harry Pratt Judson Distinguished Service
Professor of Mathematics at UChicago, received a PhD
from Moscow State University in 1978. He was appointed
assistant professor at Bashkir State University in 1978 and
lecturer at Kharkov State University in 1980. Drinfeld then
served as research fellow at B. Verkin Institute for Low Tem-
perature Physics and Engineering from 1981 to 1998. He
has been a professor ofmathematics at Chicago since 1998.
Drinfeld is amember of the American Academy of Arts and
Sciences and a fellow of the Academy of Sciences, Ukraine.

Yau is currently director of the Yau Mathematical Sci-
ences Center at Tsinghua University. He received a PhD
in 1971 from the University of California, Berkeley. Yau
was a member (1971–1972) and professor (1980–1984)
of the Institute for Advanced Study (IAS) at Princeton and
assistant professor (1972–1974) at the State University of
New York at Stony Brook. Yau joined Stanford University,
where he was successively associate professor and full pro-
fessor (1974–1979). In 1984, Yaumoved to the University
of California at San Diego as professor (1984–1987). He
then joinedHarvardUniversity, where he has been a distin-
guished professor (from 1987), director of the Institute of
Mathematical Sciences (from 1994) and also professor in
the Department of Physics (from 2013), becoming emer-
itus in 2022. Yau has been a distinguished professor-at-
large at the Chinese University of Hong Kong since 2003.
He is a member of the Chinese Academy of Sciences, the
US National Academy of Sciences, and the American Acad-
emy of Arts and Sciences, and an inaugural fellow and
member of the AMS.
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In its twentieth year, the Shaw Prize consists of the an-
nual naming of laureates in astronomy, life science and
medicine, and mathematical sciences. Each prize bears a
monetary award of US $1.2 million. Laureates will receive
their awards at a presentation ceremony scheduled for No-
vember 12, 2023, in Hong Kong.

—Shaw Prize press release

MAA Welcomes New Director
of Project NExT
Christine Kelley, University of Nebraska-Lincoln (UNL)
mathematics professor, joined the Mathematical Associ-
ation of America (MAA) as the new director of the pro-
fessional development program MAA Project NExT (New
Experiences in Teaching).

Launched in 1994, MAA Project NExT addresses all as-
pects of an academic career: improving the teaching and
learning of mathematics, engaging in research and schol-
arship, identifying interesting service opportunities, partic-
ipating in professional activities, and creating a network
of peers and mentors. More than 1,700 fellows from a
wide variety of institutions have participated in this hall-
mark program of the MAA: the world’s largest community
of mathematicians, students, and enthusiasts.

Kelley participated in Project NExT in 2008–2009 as an
early-career facultymember. “Project NExT taughtme how
to think critically about teaching, exposed me to diverse
teachingmethods, and gaveme practical tools and training
to succeed as a new faculty member in mathematics,” she
said. “Moreover, it gave me an instant community and a
sense of belonging in the field.”

Kelley joined the AMS in 2010. She also is a member
of AWM, MAA, SIAM, and IEEE (Information Theory Soci-
ety).

—Mathematical Association of America
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Explore more titles at
bookstore.ams.org/stml

New and
Best-Selling Titles

from the
Student Mathematical Library

Explore original topics and engaging
approaches to modern mathematics

Finite Fields,
with Applications
to Combinatorics
Kannan Soundararajan,
Stanford University, CA

Volume 99; 2022; 170 pages;
Softcover; ISBN: 978-1-4704-6930-6;
All individuals US$47.20;
Order code STML/99

Random Explorations
Gregory F. Lawler, University
of Chicago, IL

Volume 98; 2022; 199 pages;
Softcover; ISBN: 978-1-4704-6766-1;
All individuals US$47.20;
Order code STML/98

An Invitation to
Pursuit-Evasion Games
and Graph Theory
Anthony Bonato, Toronto 
Metropolitan University,
ON, Canada

Volume 97; 2022; 254 pages;
Softcover; ISBN: 978-1-4704-6763-0;
All individuals US$47.20;
Order code STML/97
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ILLINOIS

University of Chicago—Assistant Professor

Position Description
The University of Chicago Department of Mathematics 
invites applications for the position of Assistant Professor. 
Successful candidates are typically two to four years past 
the PhD. These positions are intended for mathemati-
cians whose work has been of outstandingly high caliber. 
Appointees are expected to have the potential to become 
leading figures in their fields. The appointment is generally 
for four years, with the possibility for renewal. The teaching 
obligation is up to three one-quarter courses per year.

Applicants are strongly encouraged to include additional 
information related to their teaching experience, such as 
evaluations from courses previously taught, as well as an 
AMS cover sheet. If you have applied for an NSF Mathe-
matical Sciences Postdoctoral Fellowship, please include 
that information in your application, and let us know how 
you plan to use it if awarded. Questions may be directed 
to matwimberly@uchicago.edu. We will begin screening 
applications on October 1, 2023. Screening will continue 
until all available positions are filled.

Qualifications
Completion of a PhD in mathematics or a closely related 
field is required at the time of appointment.

Application Instructions
Required materials are: (a) a cover letter, (b) a curriculum 
vitae, (c) three or more letters of reference, at least one of 
which addresses teaching ability, (d) a description of pre-
vious research and plans for future mathematical research 
and (e) a teaching statement.

Applications must be submitted online through 
https://www.mathjobs.org/jobs/list/22662.

Equal Employment Opportunity Statement
All University departments and institutes are charged with 
building a faculty from a diversity of backgrounds and with 
diverse viewpoints; with cultivating an inclusive commu-
nity that values freedom of expression; and with welcoming 
and supporting all their members.

We seek a diverse pool of applicants who wish to join 
an academic community that places the highest value on 
rigorous inquiry and encourages diverse perspectives, ex-
periences, groups of individuals, and ideas to inform and 
stimulate intellectual challenge, engagement, and exchange. 
The University’s Statements on Diversity are at https:// 
provost.uchicago.edu/statements-diversity.

The University of Chicago is an Affirmative Action/Equal 
Opportunity/Disabled/Veterans Employer and does not 
discriminate on the basis of race, color, religion, sex, sexual 
orientation, gender identity, national or ethnic origin, age, 
status as an individual with a disability, protected veteran 
status, genetic information, or other protected classes under 
the law. For additional information please see the Univer-
sity’s Notice of Nondiscrimination.
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stimulate intellectual challenge, engagement, and exchange. 
The University’s Statements on Diversity are at https://
provost.uchicago.edu/statements-diversity.

The University of Chicago is an Affirmative Action/Equal 
Opportunity/Disabled/Veterans Employer and does not 
discriminate on the basis of race, color, religion, sex, sexual 
orientation, gender identity, national or ethnic origin, age, 
status as an individual with a disability, protected veteran 
status, genetic information, or other protected classes 
under the law. For additional information please see the 
University’s Notice of Nondiscrimination: https://www 
.uchicago.edu/non-discrimination.

Job seekers in need of a reasonable accommodation 
to complete the application process should call 773-834-
3988 or email equalopportunity@uchicago.edu with 
their request.
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NEW JERSEY

The Mathematics Department of Rutgers University– 
New Brunswick invites applications for 
the following positions which may be 

available starting September 2024.

Tenure Stream Faculty:
Contingent upon the availability of funding, the depart-
ment plans to hire a named chair at the Full Professor 
level, and to also hire at the level of tenure-track Assistant 
Professor with a particular emphasis in the areas of algebra, 
algebraic geometry, number theory, discrete mathematics, 
and data science. However, all exceptional candidates at 
any level will be considered.

Candidates must have a PhD and have a strong record 
of research accomplishments in mathematics as well as 
effective teaching. More details on the search, including 
priority areas, can be found in the forthcoming Rutgers 
University–New Brunswick ad listing on mathjobs.org. 
The normal teaching load for research-active faculty is 2–1.

Review of applications begins November 1, 2023; appli-
cations after that date may be considered if the positions 
have not been filled.

Hill and Other Assistant Professorships:
The Hill Assistant Professorship is a three-year non-tenure-
track, nonrenewable, postdoctoral appointment. These po-
sitions carry a teaching load of 2–1 for research. Contingent 
upon funding, we will be offering one or more of these 
positions. Other postdoctoral positions of varying dura-
tion and teaching loads may also be available. Candidates 
should have received a PhD and show outstanding promise 
of research ability in pure or applied mathematics, as well 
as a capacity for effective teaching. Review of applications 
begins December 1, 2023; applications after that date may 
be considered if the positions have not been filled.

Job seekers in need of a reasonable accommodation 
to complete the application process should call 773-834-
3988 or email equalopportunity@uchicago.edu with 
their request.

10

University of Chicago—L.E. Dickson Instructor

Position Description
The University of Chicago Department of Mathematics 
invites applications for the position of L.E. Dickson Instruc-
tor. This is open to mathematicians who have recently com-
pleted or will soon complete a doctorate in mathematics or 
a closely related field, and whose work shows remarkable 
promise in mathematical research. The initial appointment 
is for a term of up to three years. The teaching obligation is 
generally four one-quarter courses per year. If you are two 
or more years post PhD, we encourage you to apply for 
our Assistant Professor position as well at https://www 
.mathjobs.org/jobs/list/22662.

Applicants are strongly encouraged to include additional 
information related to their teaching experience, such as 
evaluations from courses previously taught, as well as an 
AMS cover sheet. If you have applied for an NSF Mathe-
matical Sciences Postdoctoral Fellowship, please include 
that information in your application, and let us know how 
you plan to use it if awarded. Questions may be directed 
to matwimberly@uchicago.edu. We will begin screening 
applications on October 1, 2023. Screening will continue 
until all available positions are filled.

Qualifications
Completion of all requirements for a PhD in mathematics 
or a closely related field is required at the time of appoint-
ment.

Application Instructions
Required materials are: (a) a cover letter, (b) a curriculum 
vitae, (c) three or more letters of reference, at least one of 
which addresses teaching ability, (d) a description of pre-
vious research and plans for future mathematical research 
and (e) a teaching statement.

Applications must be submitted online through 
https://www.mathjobs.org/jobs/list/22661.

Equal Employment Opportunity Statement
All University departments and institutes are charged with 
building a faculty from a diversity of backgrounds and with 
diverse viewpoints; with cultivating an inclusive commu-
nity that values freedom of expression; and with welcoming 
and supporting all their members.

We seek a diverse pool of applicants who wish to join 
an academic community that places the highest value on 
rigorous inquiry and encourages diverse perspectives, ex-
periences, groups of individuals, and ideas to inform and 

https://www.mathjobs.org/jobs/list/22662
https://www.mathjobs.org/jobs/list/22662
https://www.uchicago.edu/non-discrimination
https://www.uchicago.edu/non-discrimination
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Teaching Faculty:
Teaching Instructor or Assistant/Associate Teaching Pro-
fessor in Mathematics. Contingent upon the availability of 
funding we may have one or more renewable non-tenure-
track teaching positions at the level of Teaching Instructor, 
with the possibility of appointment at a higher level (As-
sistant or Associate Teaching Professor) for exceptionally 
well-qualified candidates.

This position has a teaching load of 4–4 (four under-
graduate courses in each of the fall and spring semesters), 
with possible teaching reductions for administrative, ad-
vising, or other departmental duties. Applicants should 
normally have received a PhD and show outstanding 
evidence of teaching at the undergraduate level. Please see 
our posting on mathjobs.org.

Application Procedure:
The positions will be posted at mathjobs.org by this fall 
under Rutgers–New Brunswick.

An applicant should complete the application at  
mathjobs.org. In addition to the mathjobs application, 
for each position for which you apply, you must also 
complete a basic employment application on the Rutgers 
employment website. The mathjobs listing for each posi-
tion includes a link to this basic application.

Rutgers, the State University of New Jersey, is an Equal 
Opportunity / Affirmative Action Employer. Qualified ap-
plicants will be considered for employment without regard 
to race, creed, color, religion, sex, sexual orientation, gender 
identity or expression, national origin, disability status, 
genetic information, protected veteran status, military 
service, or any other category protected by law. As an insti-
tution, we value diversity of background and opinion, and 
prohibit discrimination or harassment on the basis of any 
legally protected class in the areas of hiring, recruitment, 
promotion, transfer, demotion, training, compensation, 
pay, fringe benefits, layoff, termination or any other terms 
and conditions of employment.

11

NEW YORK

Director, Engineering Student Success Program

The Albert Nerken School of Engineering of The Cooper 
Union invites applications for a non-tenure track staff po-
sition to be the inaugural director of a new engineering stu-
dent success program. Candidates with strong backgrounds 
in mathematics are particularly encouraged to apply. For a 
complete description, please visit our website: https:// 
cooper.edu/work/employment-opportunities 
/director-engineering-student-success-program.

8

RHODE ISLAND

Brown University—Mathematics Department

J. D. Tamarkin Assistant Professorship: One or more three-
year non-tenured nonrenewable appointments, beginning 
July 1, 2024. The teaching load is one course one semester, 
and two courses the other semester and consists of courses 
of more than routine interest. Candidates are required to 
have received a PhD degree or equivalent by the start of 
their appointment, and they may have up to three years 
of prior academic and/or postdoctoral research experi-
ence. Applicants should have a strong research potential, 
demonstrated excellence in teaching, and a commitment to 
building a diverse and inclusive community in Mathemat-
ics. Field of research should be consonant with the current 
research interests of the department.

For full consideration, applicants must submit a curric-
ulum vitae, an AMS Standard Cover Sheet, at least three 
letters of recommendation primarily focused on research, 
and one letter addressing teaching by November 17, 2023. 
Applicants are required to identify a Brown faculty member 
with similar research interests. The cover letter should ad-
dress the applicant’s commitment to diversity in terms of 
teaching, research, and activities in the math community, 
OR applicants may attach a diversity statement if desired. 
(Later applications will be reviewed to the extent possible.)

Please submit all application materials online at http://
www.mathjobs.org.

As an EEO/AA employer, Brown University provides 
equal opportunity and prohibits discrimination, harass-
ment and retaliation based upon a person’s race, color, re-
ligion, sex, age, national or ethnic origin, disability, veteran 
status, sexual orientation, gender identity, gender expres-
sion, or any other characteristic protected under applicable 
law, and caste, which is protected by our University policies.

13

TEXAS

Baylor University  
Postdoctoral Fellow, Mathematics

Baylor University seeks a postdoctoral fellow in Mathe-
matics to start in August 2024. Details for this position 
can be found at https://www.mathjobs.org/jobs 
/list/22670. Applications must be completed and re-
ceived by November 26, 2023.

This position is on a renewable twelve-month contract 
potentially leading to a maximum appointment of three 
years. Special consideration will be given to applicants with 
interests aligned with areas of research in the department 
that include algebra, analysis, applied/computational 
mathematics, differential equations, mathematical physics, 

https://cooper.edu/work/employment-opportunities/director-engineering-student-success-program
https://cooper.edu/work/employment-opportunities/director-engineering-student-success-program
https://cooper.edu/work/employment-opportunities/director-engineering-student-success-program
https://www.mathjobs.org/jobs/list/22670
https://www.mathjobs.org/jobs/list/22670
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research and teaching, and a DEI statement addressing past 
and potential contributions to an inclusive educational 
environment through research, teaching, and service. 
Application packets should be submitted electronically 
to https://www.mathjobs.org/jobs/list/22690. We 
require three to four letters of recommendation, at least one 
of which must discuss the applicant's teaching experiences, 
capabilities, and potential, sent to the above URL. To ensure 
full consideration, application packets must be received by 
November 1, 2023. Applications will be accepted until the 
position is filled. The University of Wisconsin–Madison is 
an Affirmative Action, Equal Opportunity Employer and 
encourages applications from women and minorities. 
Unless confidentiality is requested in writing, information 
regarding the applicants must be released upon request. Fi-
nalists cannot be guaranteed confidentiality. A background 
check will be required prior to employment.

12

AUSTRIA

Assistant Professor (tenure-track) and 
Professor (tenured) positions in Mathematics

The Institute of Science and Technology Austria invites 
applications for several open positions in all areas of 
mathematics.

We offer:
 • Thriving international and interdisciplinary research 

environment with English as the working language 
 • Highly competitive salary and generous start-up 

package, ensuring you have the resources necessary to 
establish and lead a successful research group

 • Guaranteed annual base funding including dedicated 
funding for PhD students and postdocs, enabling you 
to build up a dynamic research team

 • International graduate school with highly selective ad-
missions criteria and a comprehensive educational pro-
gram, training the next generation of scientific leaders

 • PhD program with a unique blend of interdisciplinary 
coursework and research group rotations, attracting 
scholars from diverse international backgrounds 

 • Light teaching load, entirely at the level of graduate 
students

 • Support for acquiring third-party funds
 • Tailored leadership program designed to enhance your 

professional development
 • Collaborative atmosphere that promotes interaction, 

knowledge sharing, and interdisciplinary collaborations 
among research groups

 • Employee Assistance Program, providing support to 
help you maintain a healthy work-life balance

 • Dual-career support, advising your spouse or partner 
on finding local career opportunities

numerical analysis, representation theory, and topology, 
with potential interdisciplinary applications.

Located in Waco, Texas, Baylor University is the oldest 
college in Texas. With a population of around 21,000 stu-
dents, Baylor is one of the top universities in the nation, 
having just been named an R1 institution by the Carnegie 
Classification in 2022. Baylor is also on the honor roll of 
the “Great Colleges to Work For” from The Chronicle of 
Higher Education, Baylor offers competitive salaries and 
benefits while giving faculty and staff the chance to live in 
one of the fastest-growing parts of the state. Our strategic 
plan, Illuminate Forward, guides the University as we con-
tinue to live up to Baylor’s mission of educating men and 
women for worldwide leadership and service by integrating 
academic excellence and Christian commitment within a 
caring community.

Baylor University is a private not-for-profit university 
affiliated with the Baptist General Convention of Texas. 
As an Affirmative Action/Equal Opportunity employer, 
Baylor is committed to compliance with all applicable 
anti-discrimination laws, including those regarding age, 
race, color, sex, national origin, pregnancy status, military 
service, genetic information, and disability. As a religious 
educational institution, Baylor is lawfully permitted to con-
sider an applicant’s religion as a selection criterion. Baylor 
encourages women, minorities, veterans, and individuals 
with disabilities to apply.

9

WISCONSIN

University of Wisconsin–Madison 
Department of Mathematics

The Department of Mathematics at UW–Madison is ac-
cepting applications for faculty positions beginning August 
19, 2024, subject to budgetary approval. Rank will be as 
assistant professor (tenure-track), associate professor (ten-
ured), or in exceptional cases, professor (tenured). All areas 
of mathematics will be considered. PhD in mathematics 
or related field is required prior to start of appointment. 
Faculty members are expected to contribute to the re-
search, teaching, and service missions of the department.  
Appointment with tenure requires evidence of excellence 
in scholarly research, teaching, and service. Candidates 
for a tenure-track position should exhibit evidence of 
outstanding research potential, normally including signif-
icant contributions beyond the doctoral dissertation. The 
teaching responsibility is two courses per academic year, 
including both undergraduate- and graduate-level courses, 
and a strong commitment to excellence in instruction is 
also expected. An application packet should include a 
completed AMS Standard Cover Sheet, a curriculum vitae 
that includes a publication list, and brief descriptions of 
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 • Childcare facilities on campus (for children aged 3 
months till primary school age)

 • Diverse and inclusive working environment, commit-
ted to equal employment opportunities

 • Close proximity to Vienna, consistently ranked among 
the most liveable cities worldwide, offering a wealth of 
cultural and recreational opportunities
Assistant professors receive independent group leader 

positions with an initial contract of six years, at the end of 
which they are reviewed by international peers. A positive 
evaluation leads to promotion to the tenured professor 
position.

Tenured positions are open to distinguished scientists 
with several years of experience leading research groups.

ISTA (www.ista.ac.at) is an international institute 
dedicated to basic research and graduate education in the 
natural, mathematical, and computational sciences.

At ISTA, we promote a diverse and inclusive working 
environment and are committed to the principle of equal 
employment opportunity for all applicants, free of discrim-
ination. We strongly encourage individuals from underrep-
resented groups to apply. 

Take the next step in your academic career and apply 
at: www.ista.ac.at/jobs/faculty/.

The closing date for applications is October 25, 2023.

7
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November 2023, Softcover, ISBN: 978-1-4704-7436-2, 
LC 2023012887, 2020 Mathematics Subject Classification: 
13–01, 13D02, 13D07, 13D45, 13H10, List US$89, AMS 
members US$71.20, MAA members US$80.10, Order code 
GSM/234.S

bookstore.ams.org/gsm-234-s

Commutative Algebra
Andrea Ferretti

This book provides an intro-
duction to classical methods in 
commutative algebra and their 
applications to number theory, 
algebraic geometry, and com-
putational algebra. The use of 
number theory as a motivating 
theme throughout the book pro-
vides a rich and interesting con-
text for the material covered. In 

addition, many results are reinterpreted from a geometric 
perspective, providing further insight and motivation for 
the study of commutative algebra.

The content covers the classical theory of Noetherian 
rings, including primary decomposition and dimension 
theory, topological methods such as completions, compu-
tational techniques, local methods and multiplicity theory, 
as well as some topics of a more arithmetic nature, includ-
ing the theory of Dedekind rings, lattice embeddings, and 
Witt vectors. Homological methods appear in the author’s 
sequel, Homological Methods in Commutative Algebra.

Overall, this book is an excellent resource for advanced 
undergraduates and beginning graduate students in alge-
bra or number theory. It is also suitable for students in 
neighboring fields such as algebraic geometry who wish to 
develop a strong foundation in commutative algebra. Some 
parts of the book may be useful to supplement undergrad-
uate courses in number theory, computational algebra or 
algebraic geometry. The clear and detailed presentation, 
the inclusion of computational techniques and arithmetic 
topics, and the numerous exercises make it a valuable ad-
dition to any library.

Algebra and 
Algebraic Geometry

Homological Methods 
in Commutative Algebra
Andrea Ferretti

This book develops the machin-
ery of homological algebra and 
its applications to commutative 
rings and modules. It assumes 
familiarity with basic commu-
tative algebra, for example, as 
covered in the author’s book, 
Commutative Algebra.

The first part of the book is an 
elementary but thorough exposition of the concepts of ho-
mological algebra, starting from categorical language up to 
the construction of derived functors and spectral sequences. 
A full proof of the celebrated Freyd-Mitchell theorem on 
the embeddings of small Abelian categories is included.

The second part of the book is devoted to the applica-
tion of these techniques in commutative algebra through 
the study of projective, injective, and flat modules, the 
construction of explicit resolutions via the Koszul com-
plex, and the properties of regular sequences. The theory 
is then used to understand the properties of regular rings, 
Cohen-Macaulay rings and modules, Gorenstein rings and 
complete intersections.

Overall, this book is a valuable resource for anyone 
interested in learning about homological algebra and its 
applications in commutative algebra. The clear and thor-
ough presentation of the material, along with the many 
examples and exercises of varying difficulty, make it an ex-
cellent choice for self-study or as a reference for researchers.

Graduate Studies in Mathematics, Volume 234
November 2023, approximately 413 pages, Hardcover, 
ISBN: 978-1-4704-7128-6, LC 2023012887, 2020 Mathe-
matics Subject Classification: 13–01, 13D02, 13D07, 13D45, 
13H10, List US$135, AMS members US$108, MAA mem-
bers US$121.50, Order code GSM/234

bookstore.ams.org/gsm-234

GRADUATE STUDIES
IN MATHEMATICS 234

Homological 
Methods in 
Commutative 
Algebra 
 

Andrea Ferretti

GRADUATE STUDIES
IN MATHEMATICS 233

Commutative
Algebra 
 

Andrea Ferretti

http://bookstore.ams.org/gsm-234
http://bookstore.ams.org/gsm-234-s


NEW BOOKS

1518    NOtices Of the AmericAN mAthemAticAl sOciety VOlume 70, Number 9

This item will also be of interest to those working in mathematical 
physics and probability and statistics.

Mathematical Surveys and Monographs, Volume 274
October 2023, 491 pages, Softcover, ISBN: 978-1-4704-
7345-7, LC 2023014083, 2020 Mathematics Subject Clas-
sification: 65J20, 62D05; 65R32, 78A50, 94A20, 86A22, 
List US$129, AMS members US$103.20, MAA members 
US$116.10, Order code SURV/274

bookstore.ams.org/surv-274

3D Printing 
in Mathematics
Maria Trnkova, University of Cal-
ifornia, Davis, CA, and Andrew 
Yarmola, Princeton University, 
NJ, Editors

This volume is based on lectures 
delivered at the 2022 AMS Short 
Course “3D Printing: Challenges 
and Applications” held virtually 
from January 3–4, 2022.

Access to 3D printing facilities 
is quickly becoming ubiquitous across college campuses. 
However, while equipment training is readily available, 
the process of taking a mathematical idea and making 
it into a printable model presents a big hurdle for most 
mathematicians. Additionally, there are still many open 
questions around what objects are possible to print, how 
to design algorithms for doing so, and what kinds of ge-
ometries have desired kinematic properties. This volume 
is focused on the process and applications of 3D printing 
for mathematical education, research, and visualization, 
alongside a discussion of the challenges and open mathe-
matical problems that arise in the design and algorithmic 
aspects of 3D printing.

The articles in this volume are focused on two main 
topics. The first is to make a bridge between mathemati-
cal ideas and 3D visualization. The second is to describe 
methods and techniques for including 3D printing in math-
ematical education at different levels—from pedagogy to 
research and from demonstrations to individual projects. 
We hope to establish the groundwork for engaged academic 
discourse on the intersections between mathematics, 3D 
printing and education.

Proceedings of Symposia in Applied Mathematics, Vol-
ume 79
November 2023, approximately 226 pages, Softcover, 
ISBN: 978-1-4704-6916-0, LC 2023022844, 2020 Mathe-
matics Subject Classification: 00A66, 97D40, 97N80, 97U60; 
54C40, 14E20, 97I60, 14–04, 46E25, 20C20, 97D60, 
List US$129, AMS members US$103.20, MAA members 
US$116.10, Order code PSAPM/79

bookstore.ams.org/psapm-79

Graduate Studies in Mathematics, Volume 233
November 2023, 373 pages, Hardcover, ISBN: 978-1-4704-
7127-9, LC 2023012824, 2020 Mathematics Subject Classifi-
cation: 13–01, 11R04, 13P99, 11–01, 14A10, List US$135, 
AMS members US$108, MAA members US$121.50, Order 
code GSM/233

bookstore.ams.org/gsm-233

November 2023, 373 pages, Softcover, ISBN: 978-1-4704-
7434-8, LC 2023012824, 2020 Mathematics Subject Classi-
fication: 13–01, 11R04, 13P99, 11–01, 14A10, List US$89, 
AMS members US$71.20, MAA members US$80.10, Order 
code GSM/233.S

bookstore.ams.org/gsm-233-s

Applications
Recovery Methodologies: 
Regularization 
and Sampling
Willi Freeden, University of Kai-
serslautern, Germany, and M. Zu-
hair Nashed, University of Central 
Florida, Orlando, FL

The goal of this book is to in-
troduce the reader to methodol-
ogies in recovery problems for 
objects, such as functions and 
signals, from partial or indirect 

information. The recovery of objects from a set of data 
demands key solvers of inverse and sampling problems. 
Until recently, connections between the mathematical 
areas of inverse problems and sampling were rather tenu-
ous. However, advances in several areas of mathematical 
research have revealed deep common threads between 
them, which proves that there is a serious need for a uni-
fying description of the underlying mathematical ideas 
and concepts. Freeden and Nashed present an integrated 
approach to resolution methodologies from the perspective 
of both these areas.

Researchers in sampling theory will benefit from learn-
ing about inverse problems and regularization methods, 
while specialists in inverse problems will gain a better un-
derstanding of the point of view of sampling concepts. This 
book requires some basic knowledge of functional analysis, 
Fourier theory, geometric number theory, constructive 
approximation, and special function theory. By avoiding 
extreme technicalities and elaborate proof techniques, it is 
an accessible resource for students and researchers not only 
from applied mathematics, but also from all branches of 
engineering and science.

Volume 79

3D Printing
in Mathematics
Maria Trnkova
Andrew Yarmola
Editors Mathematical

Surveys
and 

Monographs

Volume 274

Recovery 
Methodologies: 
Regularization 
and Sampling

Willi Freeden
M. Zuhair Nashed

http://bookstore.ams.org/gsm-233
http://bookstore.ams.org/gsm-233-s
http://bookstore.ams.org/psapm-79
http://bookstore.ams.org/surv-274
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New in Memoirs 
of the AMS
Algebra and 
Algebraic Geometry
Eigenfunctions of Transfer Operators and 
Automorphic Forms for Hecke Triangle Groups 
of Infinite Covolume
Roelof Bruggeman, Universiteit Utrecht, The Netherlands, 
and Anke Dorothea Pohl, University of Bremen, Germany

Memoirs of the American Mathematical Society, Volume 
287, Number 1423
July 2023, 172 pages, Softcover, ISBN: 978-1-4704-6545-
2, 2020 Mathematics Subject Classification: 11F12, 11F67, 
37C30; 30F35, 37D40, 11F72, List US$85, AMS mem-
bers US$68, MAA members US$76.50, Order code 
MEMO/287/1423

bookstore.ams.org/memo-287-1423

Automorphism Orbits and 
Element Orders in Finite Groups: 
Almost-Solubility and the Monster
Alexander Bors, Carleton University, Ottawa, Canada, The 
University of Western Australia, Crawley, Australia, and Radon 
Institute for Computational and Applied Mathematics, Linz, 
Austria, Michael Giudici, The University of Western Australia, 
Crawley, Australia, and Cheryl E. Praeger, The University of 
Western Australia, Crawley, Australia

Memoirs of the American Mathematical Society, Volume 
287, Number 1427
July 2023, 95 pages, Softcover, ISBN: 978-1-4704-6544-5, 
2020 Mathematics Subject Classification: 20D60; 20D05, 
20D45, List US$85, AMS members US$68, MAA members 
US$76.50, Order code MEMO/287/1427

bookstore.ams.org/memo-287-1427

Analysis
Convexity of Singular Affine Structures and 
Toric-Focus Integrable Hamiltonian Systems
Tudor S. Ratiu, Shanghai Jiao Tong University, China, Uni-
versité Genève, Switzerland, and Ecole Polytechnique Fédérale 
de Lausanne, Switzerland, Christophe Wacheux, Overflood, 
Lille, France, and Nguyen Tien Zung, Université Paul Sabat-
ier, Toulouse, France

Geometry and Topology
Ricci Solitons in 
Low Dimensions
Bennett Chow, University of Cal-
ifornia, San Diego, La Jolla, CA

Ricci flow is an exciting subject 
of mathematics with diverse ap-
plications in geometry, topology, 
and other fields. It employs a 
heat-type equation to smooth 
an initial Riemannian metric 
on a manifold. The formation 
of singularities in the manifold’s 

topology and geometry is a desirable outcome. Upon closer 
examination, these singularities often reveal intriguing 
structures known as Ricci solitons.

This introductory book focuses on Ricci solitons, shed-
ding light on their role in understanding singularity forma-
tion in Ricci flow and formulating surgery-based Ricci flow, 
which holds potential applications in topology. Notably 
successful in dimension 3, the book narrows its scope to 
low dimensions: 2 and 3, where the theory of Ricci solitons 
is well established. A comprehensive discussion of this the-
ory is provided, while also establishing the groundwork for 
exploring Ricci solitons in higher dimensions.

A particularly exciting area of study involves the po-
tential applications of Ricci flow in comprehending the 
topology of 4-dimensional smooth manifolds. Geared 
towards graduate students who have completed a one-se-
mester course on Riemannian geometry, this book serves as 
an ideal resource for related courses or seminars centered 
on Ricci solitons.

Graduate Studies in Mathematics, Volume 235
October 2023, 339 pages, Hardcover, ISBN: 978-1-4704-
7428-7, 2020 Mathematics Subject Classification: 53E20, 
53E10, 53E30, 58J05, 58J35, 58J60, 57K30, 57M50, 30F20, 
30F45, List US$135, AMS members US$108, MAA mem-
bers US$121.50, Order code GSM/235

bookstore.ams.org/gsm-235

October 2023, 339 pages, Softcover, ISBN: 978-1-4704-
7523-9, 2020 Mathematics Subject Classification: 53E20, 
53E10, 53E30, 58J05, 58J35, 58J60, 57K30, 57M50, 30F20, 
30F45, List US$89, AMS members US$71.20, MAA mem-
bers US$80.10, Order code GSM/235.S

bookstore.ams.org/gsm-235-s

GRADUATE STUDIES
IN MATHEMATICS 235

Ricci Solitons in
Low Dimensions 
 

Bennett Chow

http://bookstore.ams.org/gsm-235-s
http://bookstore.ams.org/gsm-235
http://bookstore.ams.org/memo-287-1427
http://bookstore.ams.org/memo-287-1423
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This item will also be of interest to those working in geometry 
and topology.

Memoirs of the American Mathematical Society, Volume 
287, Number 1424
July 2023, 89 pages, Softcover, ISBN: 978-1-4704-6439-
4, 2020 Mathematics Subject Classification: 37J35, 53A15, 
52A01, List US$85, AMS members US$68, MAA members 
US$76.50, Order code MEMO/287/1424

bookstore.ams.org/memo-287-1424

Nilspace Factors for General Uniformity 
Seminorms, Cubic Exchangeability and Limits
Pablo Candela, Universidad Autónoma de Madrid, Spain, 
and Ciudad Universitaria de Cantoblanco, Madrid, Spain, and 
Balázs Szegedy, MTA Alfréd Rényi Institute of Mathematics, 
Budapest, Hungary

This item will also be of interest to those working in probability 
and statistics.

Memoirs of the American Mathematical Society, Volume 
287, Number 1425
July 2023, 101 pages, Softcover, ISBN: 978-1-4704-6548-
3, 2020 Mathematics Subject Classification: 37Axx, 37A15, 
60–XX, 60Bxx; 11B30, List US$85, AMS members US$68, 
MAA members US$76.50, Order code MEMO/287/1425

bookstore.ams.org/memo-287-1425

Embeddings of Decomposition Spaces
Felix Voigtlaender, Catholic University of Eichstätt-Ingolstadt, 
Germany

Memoirs of the American Mathematical Society, Volume 
287, Number 1426
July 2023, 253 pages, Softcover, ISBN: 978-1-4704-5990-
1, 2020 Mathematics Subject Classification: 42B35, 46E15, 
46E35, List US$85, AMS members US$68, MAA members 
US$76.50, Order code MEMO/287/1426

bookstore.ams.org/memo-287-1426

Number Theory
Overlapping Iterated Function Systems from 
the Perspective of Metric Number  Theory
Simon Baker, University of Birmingham, United Kingdom

This item will also be of interest to those working in analysis.

Memoirs of the American Mathematical Society, Volume 
287, Number 1428
July 2023, 95 pages, Softcover, ISBN: 978-1-4704-6440-
0, 2020 Mathematics Subject Classification: 11K60, 28A80, 
37C45, List US$85, AMS members US$68, MAA members 
US$76.50, Order code MEMO/287/1428

bookstore.ams.org/memo-287-1428

New AMS-Distributed 
Publications
Analysis

Projections, Multipliers 
and Decomposable 
Maps on Noncommutative 
Lp-Spaces
Cédric Arhancet, Alibi, France, 
and Christoph Kriegler, Uni-
versité Clermont Auvergne, Cler-
mont-Ferrand, France

The authors introduce a non-
commutative analogue of the 
absolute value of a regular op-
erator acting on a noncommuta-

tive Lp-space. They equally prove that two classical operator 
norms, the regular norm and the decomposable norm, are 
identical.

The authors also describe precisely the regular norm of 
several classes of regular multipliers. This includes Schur 
multipliers and Fourier multipliers on some unimodu-
lar locally compact groups that can be approximated by 
discrete groups in various senses. A main ingredient is to 
show the existence of a bounded projection from the space 
of completely bounded Lp operators onto the subspace of 
Schur or Fourier multipliers, preserving complete positivity.

On the other hand, the authors show the existence of 
bounded Fourier multipliers that cannot be approximated 
by regular operators, on large classes of locally compact 
groups, including all infinite abelian locally compact 
groups. The authors finish by introducing a general pro-
cedure for proving positive results on self-adjoint con-
tractively decomposable Fourier multipliers, beyond the 
amenable case.

This item will also be of interest to those working in number 
theory.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Mémoires de la Société Mathématique de France, Num-
ber 177
July 2023, 186 pages, Softcover, ISBN: 978-2-85629-971-
5, 2020 Mathematics Subject Classification: 46L51, 46L07, 
43A07, 43A22, 43A30, 43A35, 43A40, 46L52, 47L25, 
43A15, List US$65, AMS members US$52, Order code 
SMFMEM/177

bookstore.ams.org/smfmem-177

http://bookstore.ams.org/memo-287-1424
http://bookstore.ams.org/memo-287-1425
http://bookstore.ams.org/memo-287-1426
http://bookstore.ams.org/memo-287-1428
http://bookstore.ams.org/smfmem-177
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curves intercepted by 2-dimensional spheres. It could also 
be a domain with a fractal (or partially fractal) boundary. 
Under appropriate geometric assumptions, essentially the 
existence of doubling measures on Ω and ∂Ω with appropri-
ate size conditions. The authors construct a class of second 
order degenerate elliptic operators L adapted to the geome-
try, and establish key estimates of elliptic theory associated 
to those operators. This includes boundary Poincaré and 
Harnack inequalities, maximum principle, and Hölder 
continuity of solutions at the boundary.

This item will also be of interest to those working in differential 
equations and probability and statistics.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 442
July 2023, 139 pages, Softcover, ISBN: 978-2-85629-974-
6, 2020 Mathematics Subject Classification: 28A15, 28A25, 
31B05, 31B25, 35J25, 42B37, 35J70, List US$65, AMS 
members US$52, Order code AST/442

bookstore.ams.org/ast-442

Differential Equations
Sheaves and 
Symplectic Geometry 
of Cotangent Bundles
Stéphane Guillermou, Labora-
toire de Mathématiques Jean Leray, 
Nantes, France

The aim of this paper is to apply 
the microlocal theory of sheaves 
of Kashiwara-Schapira to the 
symplectic geometry of cotan-
gent bundles, following ideas of 
Nadler-Zaslow and Tamarkin.

The author recalls the main notions and results of the 
microlocal theory of sheaves, in particular the microsupport 
of sheaves. The microsupport of a sheaf F on a manifold M 
is a closed conic subset of the cotangent bundle T*M which 
indicates in which directions we can modify a given open 
subset of M without modifying the cohomology of F on this 
subset. An important theorem of Kashiwara-Schapira says 
that the microsupport is coisotropic, and recent works of 
Nadler-Zaslow and Tamarkin study in the other direction 
the sheaves which have for microsupport a given Lagrang-
ian submanifold A, obtaining information on A in this way.

Nadler and Zaslow made the link with the Fukaya cate-
gory, but Tamarkin only made use of the microlocal sheaf 
theory. The author moves in this direction and recovers sev-
eral results of symplectic geometry with the help of sheaves. 

Conductive Homogeneity 
of Compact Metric Spaces 
and Construction 
of p-Energy
Jun Kigami, Kyoto University, 
Japan

In the ordinary theory of Sobolev 
spaces on domains of ℝn, the 
p-energy is defined as the integral 
of |∇ f|p. In this book, the au-
thor tries to construct a p-energy 
on compact metric spaces as a 

scaling limit of discrete p-energies on a series of graphs 
approximating the original space. In conclusion, the author 
proposes a notion called conductive homogeneity under 
which one can construct a reasonable p-energy if p is greater 
than the Ahlfors regular conformal dimension of the space. 
In particular, if p=2, then he constructs a local regular Dir-
ichlet form and shows that the heat kernel associated with 
the Dirichlet form satisfies upper and lower sub-Gaussian 
type heat kernel estimates. As examples of conductively 
homogeneous spaces, the author presents new classes of 
square-based, self-similar sets and rationally ramified Sier-
piński crosses, where no diffusions were constructed before.

This item will also be of interest to those working in probability 
and statistics.

A publication of the European Mathematical Society (EMS). Distributed 
within the Americas by the American Mathematical Society.

Memoirs of the European Mathematical Society, Volume 
5
July 2023, 138 pages, Softcover, ISBN: 978-3-98547-056-
3, 2020 Mathematics Subject Classification: 46E36; 31E05, 
28A80, 31C45, 31C25, 30L10, List US$75, AMS members 
US$60, Order code EMSMEM/5

bookstore.ams.org/emsmem-5

Elliptic Theory in 
Domains with Boundaries 
of Mixed Dimension
Guy David, Université Par-
is-Saclay, Orsay, France, Joseph 
Feneuil, Mathematical Sciences 
Institute, Australian National 
University, Acton, Australia, and 
Svitlana Mayboroda, School of 
Mathematics, University of Minne-
sota, Minneapolis, Minnesota

Take an open domain Ω⊂ℝn  
whose boundary may be composed of pieces of different 
dimensions. For instance, Ω can be a ball on ℝ3, minus 
one of its diameters D, or a so-called saw-tooth domain, 
with a boundary consisting of pieces of 1-dimensional 

http://bookstore.ams.org/emsmem-5
http://bookstore.ams.org/ast-442
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of work in the history of mathematics. The program was 
complemented by five public lectures, several exhibitions, 
and 62 minisymposia with about 1000 contributions, 
spread over all areas of mathematics. A number of panel 
discussions and meetings were organized, covering a variety 
of issues ranging from the future of mathematical publish-
ing and the role of the ERC to increase public awareness 
of mathematics.

These proceedings provide a permanent record of cur-
rent mathematics of highest quality by presenting extended 
versions of seven plenary, six prize, and 14 invited lectures 
as well as 11 lectures from minisymposia keynote speakers, 
all of which were delivered during the Congress.

July 2023, 982 pages, Hardcover, ISBN: 978-3-98547-051-8, 
2020 Mathematics Subject Classification: 00B25, List US$159, 
AMS members US$127.20, Order code EMSEMC/2021

bookstore.ams.org/emsemc-2021

Number Theory
Topics in Statistical 
Mechanics
Cédric Boutillier, Sorbonne Uni-
versité, Paris, France, Béatrice de 
Tilière, Université Paris Dauphine, 
Paris, France, and Kilian Raschel, 
Laboratoire Angevin de Recher-
che en Mathématiques, Université 
d’Angers, Angers, France, Editors

This volume provides an over-
view of the “États de la recher-
che on Statistical Mechanics,” 

organized by the French Mathematical Society, which took 
place at the Institut Henri Poincaré (Paris) in 2018. It was 
a successful event bringing together 125 mathematicians, 
ranging from master students to young and confirmed 
researchers. There were four mini courses by Francesco Car-
avenna; Hugo Duminil-Copin; Thierry Bodineau, Isabelle 
Gallagher, and Laure Saint-Raymond; and Vincent Vargas. 
These were complemented by 13 research talks, altogether 
giving an overview of a wide number of models of statis-
tical mechanics, including the Ising model, Potts model, 
percolation, perfect gases, Coulomb gases, particle systems, 
kinetically constrained spin models, and the dimer model.

This volume contains an introduction with a summary 
of the four mini courses and of all the talks. The heart of 
this publication consists of five original contributions 
by Djalil Chafaï, Ewain Gwynne, Nina Holden, and Xin 
Sun; Arnaud Le Ny; Sébastien Ott, and Yvan Velenik; Rémi 
Rhodes and Vincent Vargas.

In particular, the author explains how we can recover the 
Gromov nonsqueezing theorem, the Gromov-Eliashberg 
rigidity theorem, and the existence of graph selectors. The 
author also proves a three cusps conjecture of Arnol’d about 
curves on the sphere. In the last sections, the author recovers 
more recent results on the topology of exact Lagrangian 
submanifolds of cotangent bundles.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 440
July 2023, 274 pages, Softcover, ISBN: 978-2-85629-972-
2, 2020 Mathematics Subject Classification: 18F20, 35A27, 
53D12, List US$81, AMS members US$64.80, Order code 
AST/440

bookstore.ams.org/ast-440

General Interest
European Congress 
of Mathematics
Portorož, June 20–26, 2021
Ademir Hujdurović , University 
of Primorska, Koper, Slovenia, Kla-
vdija Kutnar, University of Pri-
morska, Koper, Slovenia, Dragan 
Marušič , University of Primorska, 
Koper, Slovenia, Štefko Miklavič , 
University of Primorska, Koper, Slo-
venia, Tomaž Pisanski, University 
of Primorska, Koper, Slovenia, and 
Primož Šparl, University of Pri-
morska, Koper, Slovenia, Editors

The European Congress of Mathematics, held every four 
years, is a well-established major international mathe-
matical event. Following those in Paris (1992), Budapest 
(1996), Barcelona (2000), Stockholm (2004), Amsterdam 
(2008), Kraków (2012), and Berlin (2016), the Eighth 
European Congress of Mathematics (8ECM) took place 
in Portorož, Slovenia, June 20–26, 2021, with about 1700 
participants from all over the world, mostly online due to 
the COVID pandemic.

Ten plenary and thirty invited lectures along with the 
special Abel and Hirzebruch lectures formed the core of 
the program. As in all the previous EMS congresses, ten 
outstanding young mathematicians received the EMS prizes 
in recognition of their research achievements. In addition, 
two more prizes were awarded: The Felix Klein Prize for a 
remarkable solution of an industrial problem and the Otto 
Neugebauer Prize for a highly original and influential piece 

http://bookstore.ams.org/ast-440
http://bookstore.ams.org/emsemc-2021
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A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Panoramas et Synthèses, Number 59
July 2023, 230 pages, Softcover, ISBN: 978-2-85629-970-
8, 2020 Mathematics Subject Classification: 15B52, 28A80, 
60K35, 81T40, 82B20, 82B27, 82B44, 82C05, 82B40, List 
US$81, AMS members US$64.80, Order code PASY/59

bookstore.ams.org/pasy-59

Probability and Statistics

Brownian Structure in 
the KPZ Fixed Point
Jacob Calvert, University of Cal-
ifornia, Berkeley, CA, Alan Ham-
mond, University of California, 
Berkeley, CA, and Milind Hegde, 
Columbia University, New York, 
NY

Many models of one-dimen-
sional local random growth are 
expected to lie in the Kardar-Pa-
risi-Zhang (KPZ) universality 

class. For such a model, the interface profile in the long 
time limit is expected—and proved for a few integrable 
models—to be, when viewed in appropriately scaled coor-
dinates, up to a parabolic shift, the Airy2 process A :ℝ→ℝ. 
This process may be embedded via the Robinson-Schen-
sted-Knuth correspondence as the uppermost curve in an 
ℕ-indexed system of random continuous curves, the Airy 
line ensemble.

Among the authors’ principal results is the assertion that 
the Airy2 process enjoys a very strong similarity to Brownian 
motion (of rate two) on unit-order intervals.

The authors’ technique of proof harnesses a probabi-
listic resampling or Brownian Gibbs property satisfied by 
the Airy line ensemble after parabolic shift, and this book 
develops Brownian Gibbs analysis of this ensemble begun 
in the work of Corwin and Hammond (2014) and pursued 
by Hammond (2019).

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 441
July 2023, 119 pages, Softcover, ISBN: 978-2-85629-973-
9, 2020 Mathematics Subject Classification: 82C22, 82B23, 
60H15, List US$57, AMS members US$45.60, Order code 
AST/441

bookstore.ams.org/ast-441

Search better
Use our improved search feature and browse with ease! Better locate
the subject, title, or author that you are searching for.
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The AMS strives to ensure that participants in its activities 
enjoy a welcoming environment. Please see our full Policy 

on a Welcoming Environment at https://www.ams 
.org/welcoming-environment-policy.

The Meetings and Conferences section of the Notices gives 
information on all AMS meetings and conferences ap-
proved by press time for this issue. Please refer to the page 
numbers cited on this page for more detailed information 
on each event. Paid meeting registration is required to submit 
an abstract to a sectional meeting.

Invited Speakers and Special Sessions are listed as soon 
as they are approved by the cognizant program committee; 
the codes listed are needed for electronic abstract sub-
mission. For some meetings the list may be incomplete. 
Information in this issue may be dated. 

The most up-to-date meeting and conference informa-
tion can be found online at www.ams.org/meetings.

Important Information About AMS Meetings: Potential 
organizers, speakers, and hosts should refer to https://
www.ams.org/meetings/meetings-general for general 
information regarding participation in AMS meetings and 
conferences.

Abstracts: Speakers should submit abstracts on the 
easy-to-use interactive Web form. No knowledge of LaTeX 
is necessary to submit an electronic form, although those 
who use LaTeX may submit abstracts with such coding, and 
all math displays and similarly coded material (such as ac-
cent marks in text) must be typeset in LaTeX. Visit www.ams 
.org/cgi-bin/abstracts/abstract.pl. Questions 
about abstracts may be sent to abs-info@ams.org. Close 
attention should be paid to specified deadlines in this issue. 
Unfortunately, late abstracts cannot be accommodated.

Associate Secretaries of the AMS
Central Section: Betsy Stovall, University of Wisconsin–
Madison, 480 Lincoln Drive, Madison, WI 53706; email: 
stovall@math.wisc.edu; telephone: (608) 262-2933.

Eastern Section: Steven H. Weintraub, Department of 
Mathematics, Lehigh University, Bethlehem, PA 18015-
3174; email: steve.weintraub@lehigh.edu; telephone: 
(610) 758-3717.

Southeastern Section: Brian D. Boe, Department of Math-
ematics, University of Georgia, 220 D W Brooks Drive, 
Athens, GA 30602-7403; email: brian@math.uga.edu; 
telephone: (706) 542-2547.

Western Section: Michelle Manes, University of Hawaii, 
Department of Mathematics, 2565 McCarthy Mall, Keller 
401A, Honolulu, HI 96822; email: mamanes@hawaii.edu; 
telephone: (808) 956-4679.

http://www.ams.org/cgi-bin/abstracts/abstract.pl
http://www.ams.org/cgi-bin/abstracts/abstract.pl
https://www.ams.org/welcoming-environment-policy
https://www.ams.org/welcoming-environment-policy
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Meetings & Conferences 
of the AMS

IMPORTANT information regarding meetings programs: AMS Sectional Meeting programs do not appear in the print 
version of the Notices. However, comprehensive and continually updated meeting and program information with links 
to the abstract for each talk can be found on the AMS website. See https://www.ams.org/meetings. 

Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL.

New: Sectional Meetings Require Registration to Submit Abstracts. In an effort to spread the cost of the sectional 
meetings more equitably among all who attend and hence help keep registration fees low, starting with the 2020 fall 
sectional meetings, you must be registered for a sectional meeting in order to submit an abstract for that meeting. 
You will be prompted to register on the Abstracts Submission Page. In the event that your abstract is not accepted or 
you have to cancel your participation in the program due to unforeseen circumstances, your registration fee will be 
reimbursed.
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Buffalo, New York
University at Buffalo (SUNY)

September 9–10, 2023
Saturday – Sunday

Meeting #1188
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 44, Issue 3

Deadlines
For organizers: Expired
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Jennifer Balakrishnan, Boston University, Mordell’s Conjecture: One Century Later.
Sigal Gottlieb, University of Massachusetts, Dartmouth, Developing High Order, Efficient, and Stable Time-Evolution 

Methods Using a Time-Filtering Approach.
Sam Payne, UT Austin, Motivic Structures in the Cohomology of Moduli Spaces of Curves.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Automorphic Forms and L Functions, Xiaoqing Li and Joseph A Hundley, University at Buffalo, SUNY.
Building Bridges Between F1-Geometry, Combinatorics and Representation Theory, Jaiung Jun, SUNY New Paltz, Chris Ep-

polito, The University of the South, and Alexander Sistko, Manhattan College.
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Combinatorial and Categorical Techniques in Representation Theory, Nicholas Davidson, College of Charleston, Robert 
Muth, Duquesne University, Tianyuan Xu, Haverford College, and Jieru Zhu, Université Catholique de Louvain.

Difference and Differential Equations: Modeling, Analysis, and Applications to Mathematical Biology, Nhu N. Nguyen and 
Mustafa R Kulenovic, University of Rhode Island.

Ergodic Theory of Group Actions, Hanfeng Li, SUNY at Buffalo, and Jintao Deng, University of Waterloo.
Financial Mathematics, Maxim Bichuch, University at Buffalo, and Zachary Feinstein, Stevens Institute of Technology.
From Classical to Quantum Low-Dimensional Topology, Adam S Sikora, University At Buffalo, SUNY, Roman Aranda, 

Binghamton University, and William W. Menasco, University at Buffalo.
Gauge Theory and Low-Dimensional Topology, Cagatay Kutluhan, University at Buffalo, Paul M. N. Feehan, Rutgers Uni-

versity, New Brunswick, Thomas Gibbs Leness, Florida International University, and Francesco Lin, Columbia University.
Geometry of Groups and Spaces, Johanna Mangahas, University at Buffalo, Joel Louwsma, Niagara University, and Jenya 

Sapir, Binghamton University.
Geometry, Physics and Representation Theory, Jie Ren, SUNY Buffalo.
Homological Aspects of p-adic Groups and Automorphic Representations, Karol Koziol, Baruch College, CUNY, and Anan-

tharam Raghuram, Fordham University.
Inverse Problems in Science and Engineering, Sedar Ngoma, SUNY Geneseo.
Nonlinear Partial Differential Equations in Fluids and Waves, Qingtian Zhang, West Virginia University, and Ming Chen, 

University of Pittsburgh.
Nonlinear Wave Equations and Integrable Systems, Gino Biondini and Alexander Chernyavsky, SUNY Buffalo.
Probability, Combinatorics, and Statistical Mechanics, Douglas Rizzolo, University of Delaware, and Noah Forman, Mc-

Master University.
Recent Advances in Numerical Methods for Fluid Dynamics and Their Applications, Daozhi Han, The State University of 

New York at Buffalo, Guosheng Fu, University of Notre Dame, and Jia Zhao, Binghamton University.
Recent Advances in Water Waves: Theory and Numerics, Sergey Dyachenko, University at Buffalo, and Alexander 

Chernyavsky, SUNY Buffalo.
Recent Developments in Operator Algebras and Quantum Information Theory, Priyanga Ganesan, University of California 

San Diego, Samuel Harris, Northern Arizona University, and Ivan G. Todorov, University of Delaware.
Recent Trends in Spectral Graph Theory, Michael Tait, Villanova University, and Shahla Nasserasr and Brendan Rooney, 

Rochester Institute of Technology.
Representation Theory and Flag Varieties, Yiqiang Li, SUNY At Buffalo, and Changlong Zhong, SUNY Albany.
Topics in Combinatorics and Graph Theory, Rong Luo and Kevin G. Milans, West Virginia University, and Guangming 

Jing, University of West Virginia.

Contributed Paper Sessions
AMS Contributed Paper Session, Steven H Weintraub, Lehigh University.

Omaha, Nebraska
Creighton University

October 7–8, 2023
Saturday – Sunday

Meeting #1189
Central Section
Associate Secretary for the AMS: Betsy Stovall

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 44, Issue 4

Deadlines
For organizers: To be announced
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Lydia Bieri, University of Michigan, The Mathematics of Gravitational Waves.
Aaron J Pollack, UC San Diego, Exceptional groups and their modular forms.
Christopher Schafhauser, University of Nebraska–Lincoln, Classification of amenable operator algebras.
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Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advances in Graph Theory and Combinatorics I, Bernard Lidický and Steve Butler, Iowa State University.
Advances in Operator Algebras I, Christopher Schafhauser, University of Nebraska–Lincoln, and Ionut Chifan, Uni-

versity of Iowa.
Analytic Number Theory and Related fields I, Vorrapan Chandee and Xiannan Li, Kansas State University, and Micah B. 

Milinovich, University of Mississippi.
Applied Knot Theory I, Isabel K. Darcy, University of Iowa, and Eric Rawdon, University of St. Thomas.
Automorphic Forms, their Arithmetic, and their Applications I, Aaron J Pollack, UC San Diego, and Spencer Leslie, Boston 

College.
Commutative Algebra, Differential Operators, and Singularities I, Uli Walther, Purdue University, Claudia Miller, Syracuse 

University, and Vaibhav Pandey, Purdue University.
Commutative Algebra i, Thomas Marley, University of Nebraska-Lincoln, and Eloísa Grifo, University of Nebraska-Lin-

coln.
Discrete, Algebraic, and Topological Methods in Mathematical Biology I, Alexander B Kunin, Creighton University.
Enumerative Combinatorics I, Seok Hyun Byun, Clemson University, Tri Lai, University of Nebraska, and Svetlana 

Poznanovic, Clemson University.
Foliations, Flows, and Groups I, Ying Hu, University of Nebraska Omaha, and Michael Landry, Washington University 

in Saint Louis.
Harmonic Analysis in the Midwest I, Betsy Stovall, University of Wisconsin-Madison, and Terence L. J. Harris, Cornell 

University.
Homotopy Theory I, Prasit Bhattacharya, New Mexico State University, Agnes Beaudry, University of Colorado Boulder, 

and Zhouli Xu, University of California, San Diego.
Interactions of Floer Homologies, Contact Structures, and Symplectic Structures I, Robert DeYeso III and Joseph Breen, 

University of Iowa.
Mathematical Modeling and Analysis in Ecology and Epidemiology I, Yu Jin, University of Nebraska-Lincoln, Shuwen Xue, 

Northern Illinois University, and Chayu Yang, University of Nebraska-Lioncoln.
Nonlinear PDE and Free Boundary Problems I, William Myers Feldman, University of Utah, and Fernando Charro, 

Wayne State University.
Progress in Nonlinear Waves I, David M. Ambrose, Drexel University.
Recent Development in Advanced Numerical Methods for Partial Differential Equations I, Mahboub Baccouch, University 

of Nebraska At Omaha.
Recent Developments in Theory and Computation of Nonlocal Models I, Anh Vo and Scott Hootman-Ng, University of 

Nebraska-Lincoln, and Animesh Biswas, University of Nebraska Lincoln.
Topology of 3- and 4-Manifolds !, Alexander Zupan, University of Nebraska-Lincoln, Roman Aranda, Binghamton Uni-

versity, and David Auckly, Kansas State University.
Varieties with Unexpected Hypersurfaces, Geproci Sets and their Interactions I, Brian Harbourne, University of Nebraska, 

and Juan C. Migliore, University of Notre Dame.

Mobile, Alabama
University of South Alabama

October 13–15, 2023
Friday – Sunday

Meeting #1190
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 44, Issue 4

Deadlines
For organizers: Expired
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtg 
/sectional.html.
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Invited Addresses
Theresa Anderson, Carnegie Mellon, Number theory and friends: a mathematical journey.
Laura Ann Miller, University of Arizona, Flows around some soft corals.
Cornelius Pillen, University of South Alabama, Lifting to tilting: modular representations of algebraic groups and their 

Frobenius kernels.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advances in Extremal Combinatorics, Joseph Guy Briggs, Auburn University, and Chris Cox, Iowa State University.
Analysis, Computation, and Applications of Stochastic Models, Yukun Li, University of Central Florida, Feng Bao, Florida 

State University, Xiaobing Henry Feng, The University of Tennessee, Junshan Lin, Auburn University, and Liet Anh Vo, 
University of Illinois, Chicago.

Categorical Representations, Quantum Algebra, and Related Topics, Arik Wilbert, University of South Alabama, Mee Seong 
Im, United States Naval Academy, Annapolis, and Bach Nguyen, Xavier University of Louisiana.

Combinatorics and Geometry Related to Representation Theory, Markus Hunziker and William Erickson, Baylor University.
Cyberinfrastructure for Mathematics Research & Instruction, Steven Craig Clontz, University of South Alabama, and Tien 

Chih, Oxford College of Emory University.
Discrete Geometry and Geometric Optimization, Andras Bezdek, Auburn University, Auburn AL, Ferenc Fodor, University 

of Szeged, and Woden Kusner, University of Georgia, Athens GA.
Dynamics and Equilibria of Energies, Ryan Matzke, Technische Universität Graz, and Liudmyla Kryvonos, Vanderbilt 

University.
Dynamics of Fluids, I. Kukavica, University of Southern California, Dallas Albritton, Princeton University, and Wojciech 

S. Ozanski, Florida State University.
Ergodic Theory and Dynamical Systems, Mrinal Kanti Roychowdhury, School of Mathematical and Statistical Sciences, 

University of Texas Rio Grande Valley, and Joanna Furno, University of South Alabama.
Experimental Mathematics in Number Theory and Combinatorics, Armin Straub, University of South Alabama, Brandt 

Kronholm, University of Texas Rio Grande Valley, and Luis A. Medina, University of Puerto Rico.
Extremal and Probabilistic Combinatorics, Sean English, University of North Carolina Wilmington, and Emily Heath, 

Iowa State University.
Mathematical Modeling of Problems in Biological Fluid Dynamics, Laura Ann Miller, University of Arizona, and Nick 

Battista, The College of New Jersey.
New Directions in Noncommutative Algebras and Representation Theory, Jonas T. Hartwig, Iowa State University, and Erich 

C. Jauch, University of Wisconsin - Eau Claire.
Number Theory and Friends, Robert James Lemke Oliver, Tufts University, Theresa Anderson, Carnegie Mellon, Ayla 

Gafni, University of Mississippi, and Edna Luo Jones, Duke University.
Recent Advances in Low-dimensional and Quantum Topology, Christine Lee, Texas State University, and Scott Carter, 

University of South Alabama.
Recent Developments in Graph Theory, Andrei Bogdan Pavelescu, University of South Alabama, and Kenneth Roblee, 

Troy University.
Recent Progress in Numerical Methods for PDEs, Muhammad Mohebujjaman, Texas A&M International University, Leo 

Rebholz, Clemson University, and Mengying Xiao, University of West Florida.
Representation Theory of Finite and Algebraic Groups, Daniel K. Nakano, University of Georgia, Pramod N. Achar, Lou-

isiana State University, and Jonathan R. Kujawa, University of Oklahoma.
Rings, Monoids, and Factorization, Jim Coykendall, Clemson University, and Scott Chapman, Sam Houston State Uni-

versity.
Theory and Application of Parabolic PDEs, Wenxian Shen and Yuming Paul Zhang, Auburn University.
Topics in Harmonic Analysis and Partial Differential Equations, Jiuyi Zhu and Phuc Cong Nguyen, Louisiana State University.

Contributed Paper Sessions
AMS Contributed Paper Session, Brian D. Boe, University of Georgia.
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Tallahassee, Florida
Florida State University in Tallahassee

March 23–24, 2024
Saturday – Sunday

Meeting #1193
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe, University 
of Georgia

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 2

Deadlines
For organizers: Expired
For abstracts: January 23, 2024

Washington, District of Columbia
Howard University

April 6–7, 2024
Saturday – Sunday

Meeting #1194
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 2

Deadlines
For organizers: September 5, 2023
For abstracts: February 13, 2024

Milwaukee, Wisconsin
University of Wisconsin- Milwaukee

April 20–21, 2024
Saturday – Sunday

Meeting #1195
Central Section
Associate Secretary for the AMS: Betsy Stovall

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 2

Deadlines
For organizers: September 19, 2023
For abstracts: February 20, 2024

San Francisco, California
San Francisco State University

May 4–5, 2024
Saturday – Sunday

Meeting #1196
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: Not applicable
Issue of Abstracts: Volume 45, Issue 3

Deadlines
For organizers: October 4, 2023
For abstracts: March 12, 2024

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.
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Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Recent Advances in Differential Geometry, Zhiqin Lu, University of California, Shoo Seto and Bogdan Suceavă , California 
State University, Fullerton, and Lihan Wang, California State University, Long Beach.

Palermo, Italy
July 23–26, 2024

Tuesday – Friday

Associate Secretary for the AMS: Brian D. Boe
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

San Antonio, Texas
University of Texas, San Antonio

September 14–15, 2024
Saturday – Sunday

Meeting #1198
Central Section
Associate Secretary for the AMS: Betsy Stovall

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 3

Deadlines
For organizers: February 13, 2024
For abstracts: July 23, 2024

Savannah, Georgia
Georgia Southern University, Savannah

October 5–6, 2024
Saturday – Sunday

Meeting #1199
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe, University 
of Georgia

Program first available on AMS website: To be announced

Issue of Abstracts: Volume 45, Issue 4

Deadlines

For organizers: March 5, 2024

For abstracts: August 13, 2024

Albany, New York
State University of New York at Albany

October 19–20, 2024
Saturday – Sunday

Meeting #1200
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub, 
Lehigh University

Program first available on AMS website: To be announced

Issue of Abstracts: Volume 45, Issue 4

Deadlines

For organizers: March 19, 2024

For abstracts: August 27, 2024
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Riverside, California
University of California, Riverside

October 26–27, 2024
Saturday – Sunday

Meeting #1201
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: Not applicable
Issue of Abstracts: Volume 45, Issue 4

Deadlines
For organizers: March 26, 2024
For abstracts: September 3, 2024

Auckland, New Zealand
December 9–13, 2024
Monday – Friday
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Seattle, Washington
Washington State Convention Center and the Sheraton Seattle Hotel

January 8–11, 2025
Wednesday – Saturday
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Hartford, Connecticut
Connecticut Convention Center and Hartford Marriott Downtown

April 5–6, 2025
Saturday – Sunday
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Washington, District of Columbia
Walter E. Washington Convention Center and Marriott Marquis Washington DC

January 4–7, 2026
Sunday – Wednesday
Associate Secretary for the AMS: Betsy Stovall
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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Moscone North/South, Moscone Center,  
San Francisco, CA
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2024
San Francisco  •  January 3–6
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San Francisco, CA
Moscone North/South, Moscone Center

January 3–6, 2024
Wednesday – Saturday

Meeting #1192
This meeting includes the annual meetings of the AMS, Amer-
ican Institute of Mathematics (AIM), American Statistical 
Association (ASA), Association for Women in Mathematics 
(AWM), and National Association of Mathematicians (NAM), 
winter meeting of Association for Symbolic Logic (ASL), and 
sessions/events by them and Centre de Recherches Mathéma-
tiques—Pacific Institute for the Mathematical Sciences—
Atlantic Association for Research in Mathematical Sciences 
(CRM-PIMS-AARMS), Consortium for Mathematics and its 
Applications (COMAP), International Linear Algebra Society 
(ILAS), Julia Robinson Mathematics Festival (JRMF), Pi Mu 

Epsilon (PME), Pro Mathematica Arte (PMA), The Simons 
Laufer Mathematical Sciences Institute (SLMath), formerly 
Mathematical Sciences Research Institute (MSRI), Society 
for Industrial and Applied Mathematics (SIAM), Spectra, 
and Transforming Post-Secondary Education in Mathematics 
(TPSE).

Associate Secretary for the AMS: Michelle Ann Manes
Program first available on AMS website: To be announced 
Issue of Abstracts: Volume 45, Issue 1 

Deadlines
For organizers: Expired
For abstracts: September 12, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/national.html.

Welcome to JMM 2024! Reimagined by 16 (and counting!) partners and again happening in person, this largest annual 
mathematics gathering in the world offers you a broad range of addresses, sessions, posters, presentations, panels, 
exhibits, minicourses, professional enhancement programs, and social gatherings.

Expect to learn, to celebrate mathematics and mathematicians, and to build and renew relationships.
The reimagined Joint Mathematics Meetings feature new organizations, disciplines, participants, and programming 

to advance research, pedagogy, inclusion, career opportunities, the arts, recreation, and more.
Scientific exploration and discovery remain at the heart of JMM 2024. Leaf through the robust offerings on the fol-

lowing pages to find how JMM partners (listed below) have poured their collective energy into this gathering. Prepare 
to come together to connect and collaborate. At JMM 2024, we will learn from each other. We will see old friends, and 
we will make new ones. Stay tuned for JMM updates via social media and www.jointmathematicsmeetings.org. 
We can't wait to see you January 3–6 in San Francisco!

Best regards,

Boris Hasselblatt, Secretary of the AMS

As of press time, these are the 16 organizations that have joined forces to organize the JMM:
 • American Institute of Mathematics
 • American Mathematical Society
 • American Statistical Association
 • Association for Symbolic Logic
 • Association for Women in Mathematics
 • Centre de Recherches Mathématiques—Pacific 

Institute for the Mathematical Sciences—Atlantic 
Association for Research in Mathematical Sciences

 • Consortium for Mathematics and its Applications
 • International Linear Algebra Society

 • Julia Robinson Mathematics Festival
 • National Association of Mathematicians
 • Pi Mu Epsilon
 • Pro Mathematica Arte
 • Simons Laufer Mathematical Sciences Institute/MSRI
 • Society for Industrial and Applied Mathematics
 • Spectra, the Association for LGBTQ+ Mathematicians
 • Transforming Post-Secondary Education 
in Mathematics
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Joint Invited Addresses
Maria Chudnovsky, Princeton University, What Makes a Problem Hard? (MAA-AMS-SIAM Gerald and Judith Porter 

Public Lecture).
Anne Schilling, University of California, Davis, The Ubiquity of Crystal Bases (AWM-AMS Noether Lecture).
Peter Winkler, Dartmouth College, Permutons (AAAS-AMS Invited Address).
Kamuela E. Yong, University of Hawaii West Oahu, When Mathematicians Don't Count (MAA-SIAM-AMS Hrabowski-

Gates-Tapia-McBay Lecture).

AMS Invited Addresses
Ruth Charney, Brandeis University, From Braid Groups to Artin Groups (AMS Retiring Presidential Address).
Daniel Erman, University of Wisconsin-Madison, Title to be announced.
Suzanne Marie Lenhart, University of Tennessee/Knoxville, Natural System Management: A Mathematician’s Perspective 

(AMS Josiah Willard Gibbs Lecture).
Ankur Moitra, Massachusetts Institute of Technology, Learning from Dynamics (von Neumann Lecture).
Kimberly Sellers, Georgetown University, Dispersed Methods for Handling Dispersed Count Data.
Terence Tao, UCLA, Machine Assisted Proof (AMS Colloquium Lecture I).
Terence Tao, UCLA, Machine Assisted Proof (AMS Colloquium Lecture II).
Terence Tao, UCLA, Machine Assisted Proof (AMS Colloquium Lecture III).
John Urschel, MIT, Title to be announced (AMS Erdős Lecture for Students).
Suzanne L. Weekes, SIAM, Title to be announced (AMS Lecture on Education).
Melanie Matchett Wood, Harvard University, An Application of Probability Theory for Group to 3-Manifolds (AMS Maryam 

Mirzakhani Lecture).

Invited Addresses of Other JMM Partners
Katherine Ensor, Rice University, Celebrating Statistical Foundations Driving 21st-Century Innovation (ASA Invited Address).
Stephan Ramon Garcia, Pomona College, Title to be announced (ILAS Invited Address).
Sylvester James Gates, Jr, Clark Leadership Chair in Science, University of Maryland; past president of American 

Physical Society, National Medal of Science, What Challenges Does Data Science Present to Mathematics Education? (TPSE 
Invited Address).

Trachette Jackson, University of Michigan, Mobilizing Mathematics for the Fight Against Cancer (PME J. Sutherland 
Frame Lecture).

Joni Teräväinen, University of Turku, Title to be announced (AIM Alexanderson Award Lecture).
Matthew Harrison-Trainor, UIC, The Complexity of Classifying Topological Spaces (ASL Invited Address).
Åsa Hirvonen, University of Helsinki, Games for Measuring Distances Between Metric Structures (ASL Invited Address).
François Loeser, Institut Universitaire de France, Sorbonne, Model Theory and Non-Archimedean Geometry (ASL Invited 

Address).
Toby Meadows, University of California Irvine, A Moderate Foundational Argument for the Generic Multiverse (ASL Invited 

Address).
Dima Sinapova, Rutgers University, Combinatorial Principles at Successors of Singular Cardinals (ASL Invited Address).
Sławomir Solecki, Cornell University, Descriptive Set Theory and Generic Measure Preserving Transformations (ASL Invited 

Address).
Mariana Vicaria, University of California, Los Angeles, Model Theory of Valued Fields (ASL Invited Address).
Henri Darmon, McGill University, Title to be announced (CRM-PIMS-AARMS Invited Address).
Mariel Vazquez, UC Davis, Title to be announced (SIAM Invited Address).
Shelly M. Jones, Central Connecticut State University, Title to be announced (NAM Claytor-Woodard Address).
Ranthony A.C. Edmonds, Duke University, Hidden Figures Revealed (NAM Cox-Talbot Address).

Joint Prize Session
Join the JMM 2024 Partners in celebrating the achievements of a selection of their prize and award winners at 4:30 p.m. 
PST on Wednesday. All participants are invited and encouraged to attend.
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Special Sessions of the JMM
If you are volunteering to speak in a Special Session, you should submit your abstract as early as possible via the abstract submission 
form found at www.jointmathematicsmeetings.org/meetings/abstracts/abstract.pl?type=jmm.

American Institute for Mathematics Special Sessions
AIM Special Session Associated with the Alexanderson Award and Lecture (Code: AIMSS2A), Joni Teräväinen, University of 

Turku, Terence Tao, UCLA, Kasia Matomäki, University of Turku, Maksym Radziwill, California Institute of Technology, 
and Tamar Ziegler, Hebrew University.

Equivariant Techniques in Stable Homotopy Theory (Code: AIMSS4A), Michael A. Hill, UCLA, and Anna Marie Bohmann, 
Vanderbilt University.

Graphs and Matrices (Code: AIMSS5A), Mary Flagg, University of St. Thomas, and Bryan A Curtis, Iowa State University. 
Little School Dynamics: Cool Research by Researchers at PUIs (Code: AIMSS1A), Kimberly Ayers, California State University, 

San Marcos, Ami Radunskaya, Pomona College, Andy Parrish, Eastern Illinois University, David M. McClendon, Ferris 
State University, and Han Li, Wesleyan University.

Math Circle Activities as a Gateway Into Research (Code: AIMSS3A), Jeffrey Musyt, Slippery Rock University, Lauren L 
Rose, Bard College, Tom G. Stojsavljevic, Beloit College, Nick Rauh, Julia Robinson Math Festivals, Edward Charles 
Keppelmann, University of Nevada Reno, Allison Henrich, Seattle University, Violeta Vasilevska, Utah Valley University, 
and Gabriella A. Pinter, University of Wisconsin, Milwaukee.

American Mathematical Society Special Sessions
Some sessions are cosponsored with other organizations. These are noted within the parenthesis at the end of each 
listing, where applicable.

Advances in Analysis, PDE’s and Related Applications (Code: SS 50A), Tepper L. Gill, Howard University, E. Kwessi, Trinity 
University, and Henok Mawi, Howard University (Washington, DC, US).

Advances in Coding Theory (Code: SS 13A), Emily McMillon, Rice University, Christine Ann Kelley, University of Ne-
braska-Lincoln, Tefjol Pllaha, University of Nebraska-Lincoln, and Mary Wootters, Stanford University.

Algebraic Approaches to Mathematical Biology (Code: SS 71A), Nicolette Meshkat, Santa Clara University, Cash Bortner, 
California State University, Stanislaus, and Anne Shiu, Texas A&M University.

Algebraic Structures in Knot Theory (Code: SS 69A), Sam Nelson, Claremont McKenna College, and Neslihan Gügümcu, 
Izmir Institute of Technology in Turkey.

AMS-AWM Special Session for Women and Gender Minorities in Symplectic and Contact Geometry and Topology (Code: SS 
46A), Sarah Blackwell, Max Planck Institute for Mathematics, Luya Wang, University of California, Berkeley, and Nicole 
Magill, Cornell University (AMS-AWM).

Analysis and Differential Equations at Undergraduate Institutions (Code: SS 24A), Evan Randles, Colby College, and Lisa 
Naples, Macalester College.

Applications of Extremal Graph Theory to Network Design (Code: SS 91A), Kelly Isham, Colgate University, and Laura 
Monroe, Los Alamos National Laboratory.

Applications of Hypercomplex Analysis (Code: SS 3A), Mihaela B. Vajiac, Chapman University, Daniel Alpay, Chapman 
University, and Paula Cerejeiras, University of Aveiro, Portugal.

Applied Topology Beyond Persistence Diagrams (Code: SS 61A), Nikolas Schonsheck, University of Delaware, Lori 
Ziegelmeier, Macalester College, Gregory Henselman-Petrusek, University of Oxford, and Chad Giusti, Oregon State 
University.

Applied Topology: Theory, Algorithms, and Applications (Code: SS 35A), Woojin Kim, Duke University, Johnathan Bush, 
University of Florida, Alex McCleary, Ohio State University, Sarah Percival, Michigan State University, and Iris Yoon, 
University of Oxford.

Arithmetic Geometry with a View toward Computation (Code: SS 81A), David Lowry-Duda, ICERM/Brown University, 
Barinder Banwait, Boston University, Shiva Chidambaram, Massachusetts Institute of Technology, Juanita Duque-Rosero, 
Boston University, Brendan Hassett, ICERM/Brown University, and Ciaran Schembri, Dartmouth College.

Bridging Applied and Quantitative Topology (Code: SS 62A), Henry Adams, University of Florida, and Ling Zhou, The 
Ohio State University.

Coding Theory for Modern Applications (Code: SS 74A), Rafael D’Oliveira, Clemson University, Hiram H. Lopez, Cleve-
land State University, and Allison Beemer, University of Wisconsin-Eau Claire.

Combinatorial Insights into Algebraic Geometry (Code: SS 73A), Javier Gonzalez Anaya, UC Riverside.
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Combinatorial Perspectives on Algebraic Curves and their Moduli (Code: SS 17A), Sam Payne, UT Austin, Melody Chan, 
Brown University, Hannah K. Larson, Harvard University and UC Berkeley, and Siddarth Kannan, Brown University.

Combinatorics for Science (Code: SS 52A), Stephen J. Young, Bill Kay, and Sinan Aksoy, Pacific Northwest National 
Laboratory.

Commutative Algebra and Algebraic Geometry (associated with Invited Address by Daniel Erman) (Code: SS 98A), Daniel 
Erman, University of Wisconsin-Madison, and Aleksandra C. Sobieska, University of Wisconsin-Madison.

Complex Analysis, Operator Theory, and Real Algebraic Geometry (Code: SS 42A), J. E. Pascoe, Drexel University, Kelly 
Bickel, Bucknell University, and Ryan K. Tully-Doyle, Cal Poly SLO.

Complex Social Systems (a Mathematics Research Communities session) I (Code: SS 104A), Ekaterina Landgren, University 
of Colorado, Boulder, Cara Sulyok, Lewis University, Casey Lynn Johnson, UCLA, Molly Lynch, Hollins University, and 
Rebecca Hardenbrook, Dartmouth College.

Computable Mathematics: A Special Session Dedicated to Martin D. Davis (Code: SS 1A), Valentina S. Harizanov, George 
Washington University, Alexandra Shlapentokh, East Carolina University, and Wesley Calvert, Southern Illinois University.

Computational Biomedicine: Methods - Models - Applications (Code: SS 7A), Nektarios A. Valous, Center for Quantitative 
Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Germany, Anna Konstorum, Center for 
Computing Sciences, Institute for Defense Analyses, Heiko Enderling, Department of Integrated Mathematical Oncology, 
H. Lee Moffitt Cancer Center & Research Institute, Tampa, and Dirk Jäger, Center for Quantitative Analysis of Molecular 
and Cellular Biosystems (Bioquant), Heidelberg University, Germany.

Computational Techniques to Study the Geometry of the Shape Space (Code: SS 97A), Shira Faigenbaum-Golovin, Duke 
University, Shan Shan, University of Southern Denmark, and Ingrid Daubechies, Duke University.

Covering Systems of the Integers and Their Applications (Code: SS 41A), Joshua Harrington, Cedar Crest College, Tony 
Wing Hong Wong, Kutztown University of Pennsylvania, and Matthew Litman, University of California, Davis.

Cryptography and Related Fields (Code: SS 86A), Ryann Cartor, Clemson University, Angela Robinson, NIST, and Daniel 
Everett Martin, Clemson University.

Derived Categories, Arithmetic, and Geometry (a Mathematics Research Communities session) I (Code: SS 105A), Anirban 
Bhaduri, University of South Carolina, Gabriel Dorfsman-Hopkins, St. Lawrence University, Patrick Lank, University 
of South Carolina, and Peter McDonald, University of Utah.

Developing Students’ Technical Communication Skills through Mathematics Courses (Code: SS 36A), Michelle L. Ghrist, 
Gonzaga University, Timothy P. Chartier, Davidson College, Maila B. Hallare, US Air Force Academy, and Denise Taunton 
Reid, Valdosta State University.

Diffusive Systems in the Natural Sciences (Code: SS 88A), Francesca Bernardi, Worcester Polytechnic Institute, and Owen 
Lewis, University of New Mexico.

Discrete Homotopy Theory (Code: SS 25A), Krzysztof R. Kapulkin, University of Western Ontario, Anton Dochtermann, 
Texas State University, and Antonio Rieser, CONACYT-CIMAT.

Dynamical Systems Modeling for Biological and Social Systems (Code: SS 75A), Daniel Brendan Cooney, University of Penn-
sylvania, Chadi M. Saad-Roy, University of California, Berkeley, and Chris M. Heggerud, University of California, Davis.

Dynamics and Management in Disease or Ecological Models (associated with Gibbs Lecture by Suzanne Lenhart) (Code: SS 
100A), Suzanne Lenhart, University of Tennessee, Knoxville, Christina Edholm, Scripps College, and Wandi Ding, 
Middle Tennessee State University.

Dynamics and Regularity of PDEs (Code: SS 32A), Zongyuan Li, Rutgers University, Weinan Wang, University of Arizona, 
Xueying Yu, University of Washington, and Zhiyuan Zhang, Northeastern University.

Epistemologies of the South and the Mathematics of Indigenous Peoples (Code: SS 77A), María Del Carmen Bonilla Tumi-
alán, National University of Education Enrique Guzman y Valle, Wilfredo Vidal Alangui, University of the Philippines 
Baguio, and Domingo Yojcom Rocché, Center for Scientific and Cultural Research.

Ergodic Theory, Symbolic Dynamics, and Related Topics (Code: SS 10A), Andrew T. Dykstra, Hamilton College, and Shrey 
Sanadhya, Ben Gurion University of the Negev, Israel.

Ethics in the Mathematics Classroom (Code: SS 6A), Victor Piercey, Ferris State University, and Catherine Buell, Fitch-
burg State University.

Explicit Computation with Stacks (a Mathematics Research Communities session) I (Code: SS 103A), Santiago Arango, Emory 
University, Jonathan Richard Love, CRM Montreal, and Sameera Vemulapalli, Princeton University.

Exploring Spatial Ecology via Reaction Diffusion Models: New Insights and Solutions (Code: SS 20A), Jerome Goddard II, 
Auburn University Montgomery, and Ratnasingham Shivaji, University of North Carolina Greensboro.

Extremal and Probabilistic Combinatorics (Code: SS 15A), Sam Spiro, Rutgers University, and Corrine Yap, Georgia 
Institute of Technology
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Geometric Analysis in Several Complex Variables (Code: SS 9A), Ming Xiao, University of California, San Diego, Bernhard 
Lamel, Texas A&M University at Qatar, and Nordine Mir, Texas A&M University at Qatar.

Geometric Group Theory (Associated with the AMS Retiring Presidential Address) (Code: SS 38A), Kasia Jankiewicz, Uni-
versity of California Santa Cruz, Edgar A. Bering, San José State University, Marion Campisi, San José State University, 
and Tim Hsu and Giang Le, San José State University.

Geometry and Symmetry in Differential Equations, Control, and Applications (Code: SS 93A), Taylor Joseph Klotz and 
George Wilkens, University of Hawai‘i.

Geometry and Topology of High-Dimensional Biomedical Data (Code: SS 67A), Smita Krishnaswamy, Yale University, Dhan-
anjay Bhaskar, Yale University, Bastian Rieck, Technical University of Munich, and Guy Wolf, Université de Montréal.

Group Actions in Commutative Algebra (Code: SS 51A), Alessandra Costantini, Oklahoma State University, Alexandra 
Seceleanu, University of Nebraska-Lincoln, and Andras Lorincz, University of Oklahoma.

Hamiltonian Systems and Celestial Mechanics (Code: SS 23A), Zhifu Xie, The University of Southern Mississippi, and 
Ernesto Pérez-Chavela, ITAM.

Harmonic Analysis, Geometry Measure Theory, and Fractals (Code: SS 54A), Kyle Hambrook, San Jose State University, 
Chun-Kit Lai, San Francisco State University, and Caleb Marshall, University of British Columbia.

History of Mathematics (Code: SS 89A), Adrian Rice, Randolph-Macon College, Sloan Evans Despeaux, Western Car-
olina University, Deborah Kent, University of St. Andrews, and Jemma Lorenat, Pitzer College.

Homological Techniques in Noncommutative Algebra (Code: SS 48A), Robert Won, George Washington University, Ellen 
E. Kirkman, Wake Forest University, and James J. Zhang, University of Washington.

Homotopy Theory (Code: SS 47A), Krzysztof R. Kapulkin, University of Western Ontario, Daniel K. Dugger, University 
of Oregon, Jonathan Beardsley, University of Nevada, Reno, and Thomas Brazelton, University of Pennsylvania.

Ideal and Factorization Theory in Rings and Semigroups (Code: SS 4A), Scott Chapman, Sam Houston State University, 
and Alfred Geroldinger, University of Graz.

Informal Learning, Identity, and Attitudes in Mathematics (Code: SS 44A), Sergey Grigorian, Mayra Ortiz, Xiaohui Wang, 
and Aaron Wilson, University of Texas Rio Grande Valley.

Integer Partitions, Arc Spaces and Vertex Operators (Code: SS 59A), Hussein Mourtada, Université Paris Cité, and Andrew 
R. Linshaw, University of Denver.

Interplay Between Matrix Theory and Markov Systems: Applications to Queueing Systems and of Duality Theory (Code: SS 
58A), Alan Krinik and Randall J. Swift, California State Polytechnic University, Pomona.

Issues, Challenges and Innovations in Instruction of Linear Algebra (Code: SS 96A), Feroz Siddique, University of Wiscon-
sin-Eau Claire, and Ashish K. Srivastava, Saint Louis University.

Joint Meetings Registration (Code: REGSAT), Radmila Sazdanovic, NC State University (Joint).
Knots, Skein Modules, and Categorification (Code: SS 66A), Rhea Palak Bakshi, ETH Institute for Theoretical Studies, 

Zurich, Sujoy Mukherjee, University of Denver, and Jozef Henryk Przytycki, George Washington University.
Large Random Permutations (affiliated with AAAS-AMS Invited Address by Peter Winkler) (Code: SS 101A), Peter Winkler, 

Dartmouth College, and Jacopo Borga, Stanford University.
Loeb Measure after 50 Years (Code: SS 12A), Yeneng Sun, National University of Singapore, Robert M. Anderson, UC 

Berkeley, and Matt Insall, Missouri University of Science and Technology.
Looking Forward and Back: Common Core State Standards in Mathematics (CCSSM), 12 Years Later (Code: SS 85A), Younhee 

Lee, Southern Connecticut State University, James Alvarez, University of Texas Arlington, Ekaterina Fuchs, City College 
of San Francisco, Tyler Kloefkorn, American Mathematical Society, Yvonne Lai, University of Nebraska-Lincoln, and 
Carl Olimb, Augustana University.

Mathematical Modeling and Simulation of Biomolecular Systems (Code: SS 79A), Zhen Chao, Western Washington Uni-
versity, and Jiahui Chen, University of Arkansas.

Mathematical Modeling of Nucleic Acid Structures (Code: SS 70A), Pengyu Liu, University of California, Davis, Van Pham, 
University of South Florida, and Svetlana Poznanovic, Clemson University.

Mathematical Physics and Future Directions (Code: SS 34A), Shanna Dobson, University of California, Riverside, Tep-
per L. Gill, Howard University, Michael Anthony Maroun, University of California, Riverside, and Lance W. Nielsen, 
Creighton University.

Mathematics and Philosophy (Code: SS 53A), Tom Morley, Georgia Tech, and Bonnie Gold, Monmouth University.
Mathematics and Quantum (Code: SS 82A), Kaifeng Bu and Arthur M. Jaffe, Harvard, Sui Tang, UCSB, and Jonathan 

Weitsman, Northeastern University.
Mathematics and the Arts (Code: SS 76A), Karl Kattchee, University of Wisconsin-La Crosse, Doug Norton, Villanova 

University, and Anil Venkatesh, Adelphi University.
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Mathematics of Computer Vision (Code: SS 94A), Timothy Duff and Max Lieblich, University of Washington.
Mathematics of DNA and RNA (Code: SS 87A), Marek Kimmel, Rice University, Chris McCarthy, BMCC, City University 

of New York, and Johannes Familton, Borough of Manhattan Community College, CUNY.
Metric Dimension of Graphs and Related Topics (Code: SS 18A), Briana Foster-Greenwood, Cal Poly Pomona, and Chris-

tine Uhl, St. Bonaventure University.
Metric Geometry and Topology (Code: SS 33A), Christine M. Escher, Oregon State University, and Catherine Searle, 

Wichita State University.
Mock Modular forms, Physics, and Applications (Code: SS 40A), Amanda Folsom, Amherst College, Terry Gannon, Uni-

versity of Alberta, and Larry Rolen, Vanderbilt University.
Modeling Complex Adaptive Systems in Life and Social Sciences (Code: SS 57A), Yun Kang and Theophilus Kwofie, Arizona 

State University, and Sabrina H. Streipert, University of Pittsburgh.
Modeling to Motivate the Teaching of the Mathematics of Differential Equations (Code: SS 21A), Brian Winkel, SIMIODE, 

Kyle T. Allaire, Worcester State University, Maila B. Hallare, US Air Force Academy, Yanping Ma, Loyola Marymount 
University, and Lisa Naples, Macalester College.

Modelling with Copulas: Discrete vs Continuous Dependent Data (Code: SS 19A), Martial Longla, University of Mississippi, 
and Isidore Seraphin Ngongo, University of Yaounde I.

Modern Developments in the Theory of Configuration Spaces (Code: SS 31A), Christin Bibby, Louisiana State University, 
and Nir Gadish, University of Michigan.

Modular Tensor Categories and TQFTs beyond the Finite and Semisimple (Code: SS 27A), Colleen Delaney, UC Berkeley, 
and Nathan Geer, Utah State University.

Navigating the Benefits and Challenges of Mentoring Students in Data-Driven Undergraduate Research Projects (Code: SS 
64A), Vinodh Kumar Chellamuthu, Utah Tech University, and Xiaoxia Xie, Idaho State University.

New Faces in Operator Theory and Function Theory (Code: SS 37A), Michael R Pilla, Ball State University, and William 
Thomas Ross, University of Richmond.

Nonlinear Dynamics in Human Systems: Insights from Social and Biological Perspectives (Code: SS 95A), Armando Roldan, 
University of Central Florida, and Thomas Dombrowski, Moffitt Cancer Center.

Number Theory in Memory of Kevin James (Code: SS 39A), Jim L. Brown, Occidental College, and Felice Manganiello, 
Clemson University.

Numerical Analysis, Spectral Graph Theory, Orthogonal Polynomials, and Quantum Algorithms (Code: SS 92A), Anastasiia 
Minenkova, University of Hartford, and Gamal Mograby, University of Cincinnati.

On Topological and Algebraic Approaches for Optimization (Code: SS 80A), Ali Mohammad Nezhad, Carnegie Mellon 
University.

Partition Theory and q-Series (Code: SS 30A), William Jonathan Keith, Michigan Technological University, Brandt 
Kronholm, University of Texas Rio Grande Valley, and Dennis Eichhorn, University of California, Irvine.

Polymath Jr REU Student Research (Code: SS 106A), Steven Joel Miller, Williams College, and Alexandra Seceleanu, 
University of Nebraska-Lincoln.

Principles, Spatial Reasoning, and Science in First-Year Calculus (Code: SS 16A), Yat Sun Poon and Catherine Lussier, 
University of California, Riverside, and Bryan Carrillo, Saddleback College.

Quantitative Justice (Code: NAMSS1A), Ron Buckmire, Occidental College, Omayra Ortega, Sonoma State University, 
and Robin Wilson, California State Polytechnic University, Pomona (NAM-SIAM-AMS).

Quaternions (Code: SS 49A), Chris McCarthy, BMCC, City University of New York, Johannes Familton, Borough of 
Manhattan Community College, CUNY, and Terrence Richard Blackman, Medgar Evers Community College, CUNY.

Recent Advances in Mathematical Models of Diseases: Analysis and Computation (Code: SS 22A), Najat Ziyadi and Jemal 
S. Mohammed-Awel, Morgan State University.

Recent Advances in Stochastic Differential Equation Theory and its Applications in Modeling Biological Systems (Code: SS 
72A), Tuan A. Phan, IMCI, University of Idaho, Nhu N. Nguyen, University of Rhode Island, and Jianjun P. Tian, New 
Mexico State University.

Recent Developments in Commutative Algebra (Code: SS 45A), Austyn Simpson and Alapan Mukhopadhyay, University 
of Michigan, and Thomas Marion Polstra, University of Virginia.

Recent Developments in Numerical Methods for PDEs and Applications (Code: SS 2A), Chunmei Wang, University of Flor-
ida, Long Chen, UC Irvine, Shuhao Cao, University of Missouri-Kansas City, and Haizhao Yang, University of Maryland 
College Park.

Recent Developments on Markoff Triples (Code: SS 68A), Elena Fuchs, UC Davis, and Daniel Everett Martin, Clemson 
University
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Recent Progress in Inference and Sampling (Associated with AMS Invited Address by Ankur Moitra) (Code: SS 99A), Ankur 
Moitra, Massachusetts Institute of Technology, and Sitan Chen, Harvard University.

Research in Mathematics by Undergraduates and Students in Post-Baccalaureate Programs (Code: SS 29A), Darren A. Narayan, 
Rochester Institute of Technology, John C. Wierman, Johns Hopkins University, Mark Daniel Ward, Purdue University, 
Khang Duc Tran, California State University, Fresno, and Christopher O’Neill, San Diego State University.

Research Presentations by Math Alliance Scholar Doctorates (Code: SS 84A), Teresa Martines, University of Texas, Austin, 
and David Goldberg, Math Alliance/Purdue University.

Ricci Curvatures of Graphs and Applications to Data Science (a Mathematics Research Communities session) I (Code: SS 102A), 
Aleyah Dawkins, George Mason University, Xavier Ramos Olive, Smith College, Zhaiming Shen, University of Georgia, 
David Harry Richman, University of Washington, and Michael G Rawson, PNNL.

Serious Recreational Mathematics (Code: SS 8A), Erik Demaine, Massachusetts Institute of Technology, Robert A. Hearn, 
H3 Labs, and Tomas Rokicki, California.

Solvable Lattice Models and their Applications Associated with the Noether Lecture (Code: SS 43A), Amol Aggarwal, Co-
lumbia, Benjamin Brubaker, University of Minnesota-Twin Cities, Daniel Bump, Stanford University, Andrew Hardt, 
Stanford University, Slava Naprienko, Stanford University and University of North Carolina, Leonid Petrov, University 
of Virginia, and Anne Schilling, University of California, Davis.

Spectral Methods in Quantum Systems (Code: SS 26A), Matthew Powell, Georgia Institute of Technology, and Wencai 
Liu, Texas A&M University.

Structure-preserving Algorithms, Analysis and Simulations for Differential Equations (Code: SS 5A), Brian E. Moore, Uni-
versity of Central Florida, and Qin Sheng, Baylor University.

The EDGE (Enhancing Diversity in Graduate Education) Program: Pure and Applied Talks by Women Math Warriors (Code: 
SS 11A), Quiyana Murphy, Virginia Tech, Sofia Rose Martinez Alberga, Purdue University, Kelly Buch, Austin Peay State 
University, and Alexis Hardesty, Texas Tech University.

The Mathematics of Decisions, Elections, and Games (Code: SS 60A), David McCune, William Jewell College, Michael A. 
Jones, Mathematical Reviews | AMS, and Jennifer M. Wilson, Eugene Lang College, The New School.

Theoretical and Numerical Aspects of Nonlocal Models (Code: SS 63A), Nicole Buczkowski, Worcester Polytechnic Insti-
tute, Christian Alexander Glusa, Sandia National Laboratories, and Animesh Biswas, University of Nebraska Lincoln.

Theta Correspondence (Code: SS 56A), Edmund Karasiewicz and Petar Bakic, University of Utah.
The Teaching and Learning of Undergraduate Ordinary Differential Equations (Code: SS 14A), Viktoria Savatorova, Central 

Connecticut State University, Chris Goodrich, The University of New South Wales, Itai Seggev, Wolfram Research, Beverly 
H. West, Cornell University, and Maila B. Hallare, US Air Force Academy.

Thresholds in Random Structures (Code: SS 78A), Will Perkins, Georgia Tech.
Topics in Combinatorics and Graph Theory (Code: SS 90A), Cory Palmer, University of Montana, Neal Bushaw, Virginia 

Commonwealth University, and Anastasia Halfpap, University of Montana.
Topics in Equivariant Algebra (Code: SS 65A), Ben Spitz, University of California Los Angeles, and Christy Hazel and 

Michael A. Hill, UCLA.
Undergraduate Research Activities in Mathematical and Computational Biology (Code: SS 55A), Timothy D. Comar, Bene-

dictine University, and Anne E. Yust, University of Pittsburgh.
Using 3D-Printed and Other Digitally-Fabricated Objects in the Mathematics Classroom (Code: SS 83A), Shelby Stanhope, 

US Air Force Academy, Paul E. Seeburger, Monroe Community College, and Stepan Paul, North Carolina State University.
Water Waves (Code: SS 28A), Anastassiya Semenova and Bernard Deconinck, University of Washington, John Carter, 

Seattle University, and Eleanor Devin Byrnes, University of Washington.

Association for Symbolic Logic Special Sessions
Descriptive Methods in Dynamics, Combinatorics, and Large Scale Geometry (Code: ASLSS1A), Jenna Zomback, Williams 

College, and Forte Shinko, UCLA.

Association for Women in Mathematics Special Sessions
EvenQuads Live and In-person: The Honorees and the Games (Code: AWMSS2A), sarah-marie belcastro, Mathematical 

Staircase, Inc., Sherli Koshy-Chenthittayil, Touro University Nevada, Oscar Vega, California State University, Fresno, 
Monica D. Morales-Hernandez, Adelphi University, Linda McGuire, Muhlenberg College, and Denise A. Rangel Tracy, 
Fairleigh Dickinson University.

Mathematics in the Literary Arts and Pedagogy in Creative Settings (Code: AWMSS4A), Shanna Dobson, University of 
California, Riverside, and Claudia Maria Schmidt, California State University.
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Recent Developments in Harmonic Analysis (Code: AWMSS1A), Betsy Stovall, University of Wisconsin-Madison, and 
Sarah E. Tammen, Massachusetts Institute of Technology.

Women in Mathematical Biology (Code: AWMSS3A), Christina Edholm, Scripps College, Lihong Zhao, University of 
California, Merced, and Lale Asik, University of the Incarnate Word.

Consortium for Mathematics and its Applications Special Sessions
Math Modeling Contests: What They Are, How They Benefit, What They Did – Discussions with the Students and Advisors 

(Code: COMAPSS1A), Jack A. Picciuto, COMAP, and Kayla Blyman, Saint Martin’s University.

International Linear Algebra Society Special Sessions
Generalized Numerical Ranges and Related Topics (Code: ILASSS2A), Tin-Yau Tam and Pan-Shun Lau, University of 

Nevada, Reno.
Graphs and Matrices (Code: ILASSS1A), Jane Breen, Ontario Tech University, and Stephen Kirkland, University of 

Manitoba.
Innovative and Effective Ways to Teach Linear Algebra (Code: ILASSS6A), David M. Strong, Pepperdine University, and 

Sepideh Stewart, University of Oklahoma.
Linear algebra, matrix theory, and its applications (Code: ILASSS3A), Stephan Ramon Garcia, Pomona College.
Sign-pattern Matrices and Their Applications (Code: ILASSS4A), Bryan L. Shader, University of Wyoming, and Minerva 

Catral, Xavier University.
Spectral and combinatorial problems for nonnegative matrices and their generalizations (Code: ILASSS5A), Pietro Paparella, 

University of Washington Bothell, and Michael J. Tsatsomeros, Washington State University.

National Association of Mathematicians Special Sessions
NAM-SIAM-AMS Special Session on Quantitative Justice (Code: NAMSS1A), Ron Buckmire, Occidental College, Omayra 

Ortega, Sonoma State University, and Robin Wilson, Loyola Marymount University (NAM-SIAM-AMS).

The Simons Laufer Mathematical Sciences Institute (SLMath), formerly MSRI Special Sessions  
African Diaspora Joint Mathematics Working Groups (ADJOINT) (Code: SLMSS1A), Caleb Ashley, Boston College, and 

Anisah Nabilah Nu’Man, Spelman College.
Summer Research in Mathematics (SRiM): Recent Trends in Nonlinear Boundary Value Problems (Code: SLMSS3A), Maya 

Chhetri, UNC Greensboro, Elliott Zachary Hollifield, University of North Carolina at Pembroke, and Nsoki Mavinga, 
Swarthmore College.

The MSRI Undergraduate Program (MSRI-UP) (Code: SLMSS2A), Maria Mercedes Franco, Queensborough Community 
College-CUNY.

National Science Foundation Special Sessions
NSF Special Session Exploring Funding Opportunities in the Division of Mathematical Sciences (Code: NSFSS1A), Elizabeth 

Wilmer, NSF, and Junping Wang, National Science Foundation.
NSF Special Session on Outcomes and Innovations from NSF Undergraduate Education Programs in the Mathematical Sciences 

(Code: NSFED), Michael Ferrara, National Science Foundation.

Pro Mathematica Arte Special Sessions
BSM Special Session: Mathematical Research in Budapest for Students and Faculty (Code: PMASS1A), Kristina Cole Garrett, 

St. Olaf College.

Society for Industrial and Applied Mathematics Minisymposia
SIAM Minisymposium on Computational Mathematics and the Power Grid (Code: SIAM5A), Todd Munson, Argonne Na-

tional Laboratory.
SIAM Minisymposium on Current Advances in Modeling and Simulation to Uncover the Complexity of Disease Dynamics (Code: 

SIAM3A), Naveen K. Vaidya, San Diego State University, and Elissa Schwartz, Washington State University.
SIAM Minisymposium on Mathematical Methods in Computer Vision and Image Analysis (Code: SIAM6A), Andreas Mang, 

University of Houston.
SIAM Minisymposium on Mathematical Modeling of Complex Materials Systems (Code: SIAM2A), Maria G Emelianenko, 

George Mason University.
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SIAM Minisymposium on Mathematics of Bacterial Viruses: From Virus Discovery to Mathematical Principles (Code: SIAM1A), 
Javier Arsuaga, University of California, Davis, Carme Calderer, University of Minnesota, and Ami Bhatt, Stanford 
University.

SIAM Minisymposium on Recent Developments in the Analysis and Control of Partial Differential Equations Arising in Fluid 
and Fluid-Structure Interactive Dynamics (Code: SIAM7A), George Avalos, University of Nebraska-Lincoln, and Pelin Guven 
Geredeli, Iowa State University.

SIAM Minisymposium on Scientific Machine Learning to Advance Modeling and Decision Support (Code: SIAM4A), Erin 
Acquesta, Sandia National Laboratories, Timo Bremer, Lawrence Livermore National Laboratories, and Joseph Hart, 
Sandia National Laboratories.

SIAM ED Session on Artificial Intelligence and its Uses in Mathematical Education, Research, and Automation in the Industry 
(Code: SIAM8A), Kathleen Kavanagh, Clarkson University, Alvaro Ortiz Lugo, Georgia Gwinnett College, and Sergio 
Molina, University of Cincinnati.

NAM-SIAM-AMS Special Session on Quantitative Justice (Code: NAMSS1A), Ron Buckmire, Occidental College, Omayra 
Ortega, Sonoma State University, and Robin Wilson, Loyola Marymount University (NAM-SIAM-AMS).

SPECTRA Special Sessions
Research by LGBTQ+ Mathematicians (Code: SPECTSS1A), Devavrat Dabke, Princeton University, Joseph Nakao, 

Swarthmore College, and Michael A. Hill, UCLA.

Contributed Paper Sessions of the JMM

AMS Contributed Paper Sessions
There will be sessions of ten-minute contributed talks. Although an individual may present only one contributed paper at 
a meeting, any combination of joint authorship may be accepted, provided no individual speaks more than once on the 
contributed paper program. Contributed papers will be grouped together by related subject classifications into sessions.

ASL Contributed Paper Sessions
ASL Contributed Paper Session (Code: ASLCP1A), David Reed Solomon, University of Connecticut.

COMAP Contributed Paper Sessions
COMAP Contributed Paper Session: Integrating Modeling into Established Courses (Code: COMAPCP1A), Kayla Blyman, 

Saint Martin’s University.

NAM Contributed Paper Sessions
NAM Haynes-Granville-Browne Session of Presentations by Recent Doctoral Recipients (Code: NAMCPA), Aris Winger, Geor-

gia Gwinnett College, Torina D. Lewis, American Mathematical Society, and Omayra Ortega, Sonoma State University.

PME Contributed Paper Sessions
PME Contributed Session on Research by Undergraduates (Code: PMECP1), Thomas Wakefield, Youngstown State Uni-

versity, and Jennifer Beineke, Western New England University. 

TPSE Contributed Paper Sessions
TPSE Contributed Paper Session on Using Institutional and National Data Sources to Recruit, Retain and Support a Diverse 

Population of Mathematics Students (Code: TPSECP1A), Rick Cleary, Babson College, and Mitchel T. Keller, University of 
Wisconsin-Madison.

Submission of Abstracts for JMM Sessions
Authors must submit abstracts of talks through the JMM abstract submission site.1 Simply follow the step-by-step instruc-
tions through to completion, until you receive confirmation of your successful submission. No submission is complete 
until you receive this confirmation. The deadline for all submissions is September 12, 2023. Late papers cannot be ac-
commodated. Please email meet@ams.org if you have questions.

1https://meetings.ams.org/math/jmm2024/cfp.cgi
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Programs of JMM Partners
Please see complete descriptions of these sessions on the JMM website.

American Mathematical Society

AMS Poster Session
AMS-PME Student Poster Session, organized by Chad Awtrey, Samford University, and Frank Patane, Samford University; 
Friday, 12–1:30 p.m. and 3:30–5:00 p.m. These sessions provide a venue for undergraduate students to deliver poster 
presentations based on original research; presentations that are purely expository in nature are not appropriate for these 
sessions. First-year graduate students are eligible to present if their research was completed while they were still under-
graduates. High school students are eligible to present if their research was conducted under the supervision of a faculty 
member at a post-secondary institution. Presenters need not be members of any particular mathematics or honorary society.

Participants should submit an abstract through the JMM abstract submission portal by September 26. Questions re-
garding this session should be directed to Chad Awtrey, cawtrey@samford.edu or Frank Patane, fpatane@samford.edu.

AMS Panels
Please see complete descriptions of these sessions on the JMM website.

AMS Committee on Education Panel Discussion, organized by Terrence Blackman, Medger Evans College, Michael Dorff, 
Brigham Young University, William Yslas Velez, University of Arizona, and Erica Walker, Ontario Institute for Studies 
in Education; Thursday, 1:00–2:30 p.m. The moderator and panelists are to be announced. This panel is sponsored by 
the AMS Committee on Education.

AMS Committee on the Profession Panel Discussion: Building a Successful Research Career in Mathematics, organized by Edray 
Herber Goins, Pomona College, and Pamela E. Harris, University of Wisconsin at Milwaukee; Wednesday, 1:00–2:30 
p.m. The moderator for this panel is Edray Herber Goins, Pomona College. Panelists are Priyam Patel, University of 
Utah, Abbey Bourdon, Wake Forest University, and Henok Mawi, Howard University. This panel is sponsored by the 
AMS Committee on the Profession.

AMS Committee on Science Policy Panel Discussion, organized by Gunnar Carlsson, Stanford University, Duane Cooper, 
Morehouse College, Carla Cotwright-Williams, US Department of Defense, Fern Hunt, National Institute of Standards 
and Technology, and Jerry McNerney, US Congressman, retired; Friday, 2:30–4:00 p.m. The moderator and panelists are 
to be announced. This panel is sponsored by the Committee on Science Policy.

AMS Workshops
Please see complete descriptions of these sessions on the JMM website.

2024 AMS Workshop for Department Chairs and Leaders. This annual one-day workshop for department chairs, leaders, 
and prospective leaders will be held on Tuesday, January 2, 2024, 9:00 a.m.–3:00 p.m., the day before the JMM begins.

The workshop will provide opportunities to share experiences with issues and trends that have an impact on math 
department chairs, math departments, and colleges and universities. Workshop topics could include, but are not limited 
to, resources, handling stress (students, staff, and faculty), curriculum, and instructional delivery. The organizers expect 
the workshop to help build a community of leaders who can continue to exchange ideas and offer each other support 
and advice.

Registration for this workshop will include breakfast and lunch. More details about registration and associated fees 
will be available on the workshop web page.2 Please send questions to chairsworkshop@ams.org.

Other AMS Events
Please see complete descriptions of these sessions on the JMM website.

Council, Time and location to be announced.
Business Meeting, Time and location to be announced.
MAA-SIAM-AMS Hrabowski-Gates-Tapia-McBay Session, organized jointly by the Mathematical Association of America, 

Society for Industrial and Applied Mathematics, and the American Mathematical Society; Friday, 9:00–10:30 a.m. This 
year the session will consist of a lecture from 9:00–9:50 a.m. given by Kamuela Yong, University of Hawaii–West Oahu, 
Title to be announced, and a short panel discussion, Title to be announced, from 9:50–10:30 a.m. Panelists to be announced.

Career Fair, Thursday, 8:30–10:30 a.m. The AMS Career Fair is an opportunity for mathematically trained job seekers 
at various phases of education and experience—undergraduates, graduate students, postdocs, and others—to interact in 

2https://www.ams.org/chairsworkshop
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person with employers in Business, Entrepreneurship, Government, Industry, and Nonprofit (BEGIN). This event is job 
seekers’ chance to discover how their mathematical training makes them strong candidates for BEGIN jobs.

Recruiters can represent their companies or organizations and connect with potential employees. For US$180/$0 AMS 
Corporate Member, recruiters will be provided with a table for print materials, where they will also be welcome to engage 
personally with interested BEGIN job seekers.

Information is available here: https://www.ams.org/career-fair.
Graduate School Fair, Friday, 8:30–10:30 a.m. This event is undergraduate and master’s students’ chance for one-stop 

shopping in the graduate school market. January is a great time for college juniors to learn more about applying to grad-
uate school, and seniors may still be able to refine their search. Meet representatives from mathematical sciences graduate 
programs from universities all over the United States. At JMM 2023, over 300 students engaged with representatives from 
more than 60 graduate programs.

Colleges and universities that offer graduate programs in the mathematical sciences are invited to exhibit at this event. 
For US$200/$140 AMS Institutional Member, program representatives will be provided with a table on which to display 
posters and printed materials, and where they will be able to speak directly with interested students.

Information is available here: https://www.ams.org/gradfair.
Current Events Bulletin, organized by David Eisenbud, Mathematical Sciences Research Institute; Friday, 2:00–6:00 p.m.

AMS Travel Grants
PUI Faculty Travel Grants. The AMS is excited to offer an opportunity for faculty at primarily undergraduate institu-

tions (PUI) to apply for funding to support attendance at the JMM. Grant funds can be used to offset expenses for travel, 
registration, lodging, and meals. One advantage of this funding is that it can be used to support participation in the Chairs’ 
Workshop. Additional information can be found here: https://www.ams.org/puifac-tg.

Graduate Student Travel Grants. With funding from the AMS Next Generation Fund, the AMS will be accepting ap-
plications for partial travel support for graduate students attending the JMM in San Francisco, CA, January 3–6, 2024. 
While the AMS encourages students’ institutions to match the award, matching is not required.

Applications will be accepted ONLY from doctoral students in mathematics who are in their last year of study; applicants 
must not have received their doctoral degrees before the travel takes place but must expect to receive their degrees within 
twelve months of the JMM. No student shall receive a grant more than once. Information can be found here: https://
www.ams.org/emp-student-JMM.

Undergraduate Student Travel Grants. With support from the National Science Foundation and an anonymous donor, 
the AMS is offering travel support to a limited number of undergraduate students who are presenting in the following 
JMM sessions: Pi Mu Epsilon Undergraduate Poster Session, AMS-SIAM Special Session on Research in Mathematics by 
Undergraduates and Students in Post-baccalaureate Programs, and Other Special or Contributed Sessions at the JMM in 
San Francisco, CA, January 3–6, 2024.

Awards will help undergraduate students defray travel expenses associated with JMM participation. Applications are 
especially encouraged from students from groups that have been underrepresented in the mathematical sciences and from 
those with financial need. Additional information can be found here: https://www.ams.org/undergrad-tg.

Please also see the section on Child Care Grants.

American Association for the Advancement of Science
The AAAS-AMS Invited Address will be given by Peter Winkler, Dartmouth College, Permutons; Friday, 4:45 p.m.

American Institute for Mathematics
Please see complete descriptions of these sessions on the JMM website.

AIM has several AIM Special Sessions. A full list of these sessions can be found under the heading AIM Special Sessions 
above; a joint AMS-AIM Special Session is included.

AIM will host a reception; please see the listing in the Social Events section of the announcement.

American Statistical Association
The ASA Invited Address will be given by Kathy Ensor, Rice University, Celebrating Statistical Foundations Driving 21st-Cen-

tury Innovation.
ASA will host a reception; please see the listing in the Social Events section of the announcement.

Association for Symbolic Logic 
Please see complete descriptions of these sessions on the JMM website.
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Association for Symbolic Logic Tutorial, Parts I & II, organized by Solomon Reed, ASL; Wednesday, 9:00–10:00 a.m and 
1:00–2:00 p.m. The speaker for these tutorial sessions is to be announced.

The ASL Invited Address program will take place on Friday and Saturday. The program will include invited addresses 
by Åsa Hirvonen, University of Helsinki, Dima Sinapova, Rutgers University, François Loeser, Institute Universitaire de 
France, Sorbonne, Mariana Vicaria, University of California, Los Angeles, Matthew Harrison-Trainor, UIC, Sławomir 
Solecki, Cornell University, and Toby Meadows, University of California Irvine.

ASL will also host an ASL Contributed Paper Session on Friday afternoon and two ASL Special Sessions on Thursday; 
more information on these sessions can be found under the heading Association for Symbolic Logic Special Sessions above.

Association for Women in Mathematics
Please see complete descriptions of these sessions on the JMM website.

AWM Panel: Celebrating Academic Pivots in Mathematics; Friday, 1:00–2:30 p.m. Panel moderator and panelists are to 
be announced.

Business Meeting, organized by Darla Kremer, Association for Women in Mathematics; Time and location to be an-
nounced.

The AWM-AMS Noether Lecture will be delivered on Thursday at 9:45 a.m. by Anne Schilling, University of California, 
Davis, The Ubiquity of Crystal Bases.

AWM Workshop Poster Presentations and Reception, Friday, 4:00–5:30 p.m. AWM will conduct its workshop poster presen-
tations by women graduate students. This session is open to all JMM attendees. AWM seeks volunteers to serve as mentors 
for workshop participants. If you are interested, please contact the AWM office at awm@awm-math.org.

Association for Women in Mathematics Reception and Award Presentation, Friday, 5:00-6:30 p.m. Please see the listing in 
the Social Events section of the announcement.

AWM Workshop: Women in Operator Theory, organized by Catherine A. Beneteau, University of South Florida, and 
Asuman Aksoy, Claremont McKenna College; Saturday, 8:00 a.m.–12:00 p.m. and 1:00–5:00 p.m. A Poster Session for 
graduate students and recent PhDs will be held in conjunction with the workshop on Friday. Updated information about 
the workshop is available at www.awm-math.org.

AWM also has a number of AWM Special Sessions. A full list of these sessions can be found under the heading AWM 
Special Sessions above.

Consortium for Mathematics and its Applications 
Please see complete descriptions of these sessions on the JMM website.

COMAP Workshop on Modeling for Educators: Integrate Modeling into Your Classroom, organized by Michelle Isenhour, 
Consortium for Mathematics and Its Applications, Victor Piercey, Ferris State University, and Daniel Teague, North 
Carolina School of Science and Mathematics; Saturday, 1:00 p.m.–5:00 p.m.

COMAP Contributed Paper Session: Integrating Modeling into Established Courses I and II, organized by Kayla Blyman, Saint 
Martin’s University, Keith Erickson, Georgia Gwinnett College, Marie Meyer, Lewis University, and Katherine Pinzon, 
Georgia Gwinnett College; Thursday, 8:00 a.m.–12:00 p.m. and 1:00–5:00 p.m.

COMAP Panel on Math Modeling Contests: Trends, Topics, and Tips, organized by Kayla Blyman, Saint Martin’s University; 
Friday, 3:00–4:30 p.m.

COMAP also has a COMAP Special Session. More information on this session can be found under the heading Con-
sortium for Mathematics and its Applications Special Sessions.

International Linear Algebra Society 
The ILAS Invited Address will be given by Stephan Ramon Garcia, Pomona College, Title to be announced.
ILAS also has a number of ILAS Special Sessions. A full list of these sessions can be found under the heading ILAS 

Special Sessions above.

Julia Robinson Mathematics Festival
Please see complete descriptions of these sessions on the JMM website.

Julia Robinson Math Festival, organized by Daniel Kline, Julia Robinson Mathematics Festival; Saturday, 9:00 a.m–12:00 
p.m.

The Simons Laufer Mathematical Sciences Institute (SLMath), formerly MSRI
Please see complete descriptions of these sessions on the JMM website.
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NAM/MSRI/SLMath Film Presentation: World Premiere of George Csicsery’s film “Journeys of Black Mathematicians: Part 
1” and Panel Discussion, organized by Omayra Ortega, Sonoma State University, Johnny Houston, Elizabeth City State 
University, Jenn Murawski, MSRI/SLMath, and George Csicsery, Zala Films; Saturday, 11:30 a.m.–1:00 p.m. Moderator 
and panelists to be announced.

MSRI/SLMath has a number of MSRI/SLMath Special Sessions. A full list of these sessions can be found under the 
heading The Simons Laufer Mathematical Sciences Institute (SLMath), formerly MSRI Special Sessions.

MSRI/SLMath will host a reception; please see the listing in the Social Events section of the announcement.

National Association of Mathematicians
Please see complete descriptions of these sessions on the JMM website.

The Haynes-Granville-Browne Session of Presentations by Recent Doctoral Recipients in the Mathematical Sciences organized 
by Aris Winger, Georgia Gwinnett College, Torina Lewis, American Mathematical Society, and Omayra Ortega, Sonoma 
State University; Thursday, 8:00 a.m.–12:00 p.m.

The Cox-Talbot Address, Ranthony A.C. Edmonds, Duke University, Hidden Figures Revealed, organized by Aris Winger, 
Georgia Gwinnett College, Torina Lewis, American Mathematical Society, and Omayra Ortega, Sonoma State University; 
Friday, 7:45–8:45 p.m., after the banquet. See details about the banquet on Friday in the Social Events section.

NAM/MSRI/SLMath Film Presentation: World Premiere of George Csicsery’s film “Journeys of Black Mathematicians: Part 
1” and Panel Discussion, organized by Omayra Ortega, Sonoma State University, Johnny Houston, Elizabeth City State 
University, Jenn Murawski, MSRI/SLMath, and George Csicsery, Zala Films; Saturday, 11:30 a.m.–1:00 p.m. Moderator 
and panelists to be announced.

The NAM Business Meeting will take place on Saturday, 10:00–11:00 a.m.
NAM Claytor-Woodard Lecture, Shelly M. Jones, Central Connecticut State University, Title to be announced, organized 

by Aris Winger, Georgia Gwinnett College, Torina Lewis, American Mathematical Society, and Omayra Ortega, Sonoma 
State University; Thursday, 2:15–3:20 p.m.

Pi Mu Epsilon
Please see complete descriptions of these sessions on the JMM website.

Pi Mu Epsilon Contributed Sessions on Research by Undergraduates, organized by Thomas Wakefield, Youngstown State 
University, and Jennifer Beineke, Western New England University; Thursday, 1:00–5:00 p.m. and Friday, 8:00 a.m.–12:00 
p.m.

The PME J. Sutherland Frame Lecture will be delivered on Friday at 2:15 p.m. by Trachette Jackson, University of Mich-
igan, Mobilizing Mathematics for the Fight Against Cancer.

AMS-PME Student Poster Session, organized by Chad Awtrey, Samford University, and Frank Patane, Samford University; 
Friday, 12:00–1:30 p.m. and 3:30–5:00 p.m. These sessions feature research done by undergraduate students. First-year 
graduate students are eligible to present if their research was completed while they were still undergraduates. Research 
by high school students can be accepted if the research was conducted under the supervision of a faculty member at a 
post-secondary institution.

Appropriate content for a poster includes, but is not limited to, a new result, a new proof of a known result, a new 
mathematical model, an innovative solution to a Putnam problem, or a method of solution to an applied problem. Purely 
expository material is not appropriate for this session.

Participants should submit an abstract through the JMM abstract submission portal by September 26. Questions re-
garding this session should be directed to Chad Awtrey, cawtrey@samford.edu or Frank Patane, fpatane@samford.edu.

PME Panel: What Every Student Should Know about the JMM, organized by Jennifer Beineke, Western New England Uni-
versity, Stephanie Edwards, Hope College, and Thomas Wakefield, Youngstown State University; Wednesday, 1:00–2:30 
p.m. and Thursday, 10:30 a.m.–12:00 p.m. This panel is sponsored by Pi Mu Epsilon.

Pro Mathematica Arte
Please see complete descriptions of these sessions on the JMM website.

The PMA program includes a Budapest Semesters in Math Special Session. Information on this session can be found 
under the heading Pro Mathematica Arte Special Sessions above.

PMA will also host a reception for BSM Alumni. Please see the listing in the Social Events section of the announcement.

Society for Industrial and Applied Mathematics
Please see complete descriptions of these sessions on the JMM website.



JMM 2024

1548    Notices of the AmericAN mAthemAticAl society Volume 70, Number 9

SIAM Minisymposia for JMM 2024 will take place Wednesday–Saturday. There are 8 Minisymposia. A full list of these 
sessions can be found under the heading Society for Industrial and Applied Mathematics Minisymposia above.

The SIAM Invited Address will be delivered by Mariel Vazquez, University of California, Davis, Title to be announced; 
Thursday, 11:10 a.m.

SIAM Panel on Business-Industry-Government Careers for Mathematicians, organized by Nessy Tania, Pfizer; Thursday, 
8:30–10:00 a.m. Panelists to be announced.

MAA-SIAM-AMS Hrabowski-Gates-Tapia-McBay Session, organized jointly by the Mathematical Association of America, 
Society for Industrial and Applied Mathematics, and the American Mathematical Society; Friday, 9:00–10:30 am. This 
year the session will consist of a lecture from 9:00–9:50 a.m. given by Kamuela E. Yong, University of Hawaii West Oahu, 
Title to be announced, and a short panel discussion, Title to be announced, from 9:50–10:30 a.m. Panelists to be announced. 

MAA-AMS-SIAM Gerald and Judith Porter Public Lecture will be given by Maria Chudnovsky, Princeton University, Title 
to be announced; Saturday, 3:30 p.m.

SIAM will also host a reception; please see the listing in the Social Events section of the announcement.

Association for LGBTQ+ Mathematicians (Spectra)
Please see complete descriptions of these sessions on the JMM website.

Spectra Lavender Lecture, Speaker and title to be announced; Thursday, 8:30 a.m. The Spectra Lavender Lecture honors 
LGBTQ+ mathematicians who have made significant contributions to the mathematical sciences, mathematical education, 
or the mathematical community at large.

Spectra Business Meeting, organized by Devavrat Dabke, Princeton University, Time and location to be announced
Spectra Workshop: Creating an Inclusive Undergraduate Mathematics Curriculum, organized by Devavrat Dabke, Princeton 

University; Thursday, 1:00–5:00 p.m.
Spectra will also host a reception; please see the listing in the Social Events section of the announcement.
Spectra also has a Spectra Special Session on the program; a listing of this session can be found under the heading 

Spectra Special Sessions.

Transforming Post-Secondary Education in Mathematics
Please see complete descriptions of these sessions on the JMM website.

TPSE Invited Address will be delivered on Friday at 11:00 a.m. by Sylvester James Gates, Jr, Clark Leadership Chair in 
Science, University of Maryland; past president of American Physical Society, National Medal of Science, What Challenges 
Does Data Science Present to Mathematics Education?

TPSE Panel on Grading for Active Learning & Department Change, organized by Katherine Stevenson, CSU Northridge, 
Rachel Weir, Allegheny College, Scott Wolpert, University of Maryland and TPSE Math, and Stan Yoshinobu, University 
of Toronto; Thursday, 1:00–2:30 p.m.

TPSE Panel on Developing Innovative Upper Division Pathways in Mathematics: Strategies for Enrollment and Inclusion, 
organized by Oscar Vega, California State University, Fresno, and Padmanabhan Seshaiyer, George Mason University; 
Thursday, 3:00–4:30 p.m.

JMM Sessions and Events 

Professional Enhancement Programs (PEP)
Professional Enhancement Programs (PEP) are open only to persons who register for the Joint Meetings and pay the 
Joint Meetings registration fee in addition to the appropriate PEP fee. The AMS reserves the right to cancel any PEP that is 
undersubscribed. Participants should read the descriptions of each PEP thoroughly as some require participants to bring 
their own laptops and special software; laptops will not be provided in any PEP. The enrollment in each PEP is limited 
to 45; the cost is US$125 per program for the member rate (AIM, AMS, AWM, ASA, NAM, or SIAM) and US$175 for the 
nonmember rate.

Please see complete descriptions of these JMM Professional Enhancement Programs (PEP) on the JMM website.
Professional Enhancement Program (PEP) 1: Visualizing Projective Geometry Through Photographs and Perspective Draw-

ings, presented by Annalisa Crannell, Franklin & Marshall College, and Fumiko Futamura, Southwestern University; Part 
A, Wednesday, 1:00–3:00 p.m., and Part B, Thursday, 1:00–3:00 p.m.
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Professional Enhancement Program (PEP) 2: GitHub for Mathematicians, presented by Steven Clontz, University of 
South Alabama; Part A, Wednesday, 1:00–3:00 p.m., and Part B, Thursday, 1:00–3:00 p.m.

Professional Enhancement Program (PEP) 3: Changing Math Department Culture: Embracing Servingness, presented by 
Ben Ford, Sonoma State University, Rochelle Gutiérrez, University of Illinois, Brigitte Lahme, Sonoma State University, 
Luis Leyva, Vanderbilt-Peabody College, Omayra Ortega, Sonoma State University, and Aris Winger, Georgia Gwinnett 
College; Part A, Friday, 9:00–11:00 a.m., and Part B, Saturday, 1:00–3:00 p.m.

Professional Enhancement Program (PEP) 4: Becoming a Math JEDI: Working for Justice, Equity, Diversity, and Inclusion, 
presented by Michael Dorff, TPSE Math, Brigham Young University, Abbe Herzig, TPSE Math, and Aris Winger, Georgia 
Gwinnett College; Part A, Friday, 1:00–3:00 p.m., and Part B, Saturday, 9:00–11:00 a.m.

Professional Enhancement Program (PEP) 5: Development of Mathematics Programs for Workforce Preparation, presented 
by Rick Cleary, Babson College, and Chris Malone, Winona State University; Part A, Thursday, 1:00–3:00 p.m., and Part 
B, Friday, 1:00–3:00 p.m.

Professional Enhancement Program (PEP) 6: Skills and Tools for Communicating your Research to the Public, Policymakers, 
and Future Funders, presented by Sadie Witkowski, Institute for Mathematical and Statistical Innovation, University of 
Chicago, and Sam Hansen, Acmescience/University of Michigan, Ann Arbor; Part A, Wednesday, 9:00–11:00 a.m., and 
Part B, Thursday, 9:00–11:00 a.m.

Professional Enhancement Program (PEP) 7: Effective Technical Advocacy: How to Talk About Mathematics so Policymak-
ers will Hear you, presented by Audrey Malagon, Virginia Wesleyan University, and Stephanie Singer, Hatfield School of 
Government, Portland State University and Campaign Scientific; Part A, Friday, 9:00–11:00 a.m., and Part B, Saturday, 
9:00–11:00 a.m.

Professional Enhancement Program (PEP) 8: Shaping Thoughtful Conversations on the Past and Future of Data, presented 
by Jemma Lorenat, Pitzer College, and Deborah Kent, University of St. Andrews; Part A, Wednesday, 9:00–11:00 a.m., 
and Part B, Thursday, 9:00–11:00 a.m.

Professional Enhancement Program (PEP) 9: Developing Learning Activities for Multivariable Calculus using CalcPlot3D 
and 3D-Printed Surfaces, presented by Paul Seeburger, Monroe Community College, Shelby Stanhope, Air Force Academy, 
and Stepan Paul, North Carolina State University; Part A, Friday, 9:00–11:00 a.m., and Part B, Saturday, 9:00–11:00 a.m.

JMM Panels
Please see complete descriptions of these sessions on the JMM website.

JMM Panel: Cal-Bridge: Building Bridges and Diversifying Mathematics, organized by Suzanne Sindi, University of Cali-
fornia, Merced; Saturday, 2:00–3:30 p.m.

JMM Panel: Regional Math Alliances: Activities and Formation of Regional Groups to Support the Goals of the National Math 
Alliance, organized by Teresa Martines, University of Texas, Austin; Friday, 8:30–10:00 a.m.

JMM Panel: The Future of Graduate Mathematics Textbooks, organized by Ravi Vakil, Stanford University; Thursday, 10:30 
a.m.–12:00 p.m.

JMM Panel: Decolonizing Mathematics, organized by Tarik Aougab, Haverford College; Wednesday, 3:00–4:30 p.m.

JMM Workshops
Please see complete descriptions of these sessions on the JMM website.

JMM Workshop on Leveraging Research-Based Instruction in Introductory Proofs Courses, organized by Rachel Arnold, Vir-
ginia Tech; Friday, 1:00–2:30 p.m.

JMM Workshop on Teaching Student-Centered Mathematics: Active Learning & the Learning Assistant Model, organized by 
Katherine Johnson, Florida Gulf Coast University; Wednesday, 3:00–4:30 p.m.

JMM Workshop: Building Conceptual Understanding of Multivariable Calculus using 3D Visualization in CalcPlot3D and 
3D-Printed Surfaces, organized by Shelby Stanhope, US Air Force Academy, Paul Seeburger, Monroe Community College, 
and Stepan Paul, North Carolina State University; Wednesday, 10:30 a.m.–12:00 p.m.

Programs of Other Organizations
This section includes scientific sessions. Several organizations or special groups are having receptions or other social 
events. Please see the Social Events section of this announcement for those details.

Please see complete descriptions of these sessions on the JMM website.
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National Science Foundation (NSF)
The NSF will be represented in several sessions and events taking place at the 2024 JMM.

NSF Special Session on Outcomes and Innovations from NSF Undergraduate Education Programs in the Mathematical Sciences, 
organized by Michael Ferrara, Division of Undergraduate Education, National Science Foundation.

NSF Special Session: Exploring Funding Opportunities in the Division of Mathematical Sciences, organized by Elizabeth 
Wilmer and Junping Wang, Division of Mathematical Sciences, National Science Foundation. This interactive session 
will provide information on a range of DMS programs and offer advice on submitting effective proposals. DMS program 
officers will be available to answer questions.

MAA Project NExT
MAA Project NExT Workshop, Details to be announced.
MAA Project NExT Lecture on Teaching, Details to be announced.
MAA Project NExT Reception, Details to be announced.

Special Interest Groups of the MAA (SIGMAA)
Please see complete descriptions of these sessions on the JMM website.
SIGMAA on the Philosophy of Mathematics

SIGMAA on the Philosophy of Mathematics Guest Lecture, Title to be announced will be delivered on Friday at 5:30 p.m. 
by Arezoo Islami, San Francisco State University, organized by Bonnie Gold, Monmouth University, and Kevin Iga, 
Pepperdine University.

Sessions for Students
Please see complete descriptions of these sessions on the JMM website.

PME Panel: What Every Student Should Know about the JMM, organized by Jennifer Beineke, Western New England 
University, Stephanie Edwards, Hope College, and Tom Wakefield, Youngstown State University; Wednesday, 1:00–2:30 
p.m. and Thursday, 10:30 a.m.–12:00 p.m. This panel is sponsored by Pi Mu Epsilon.

Grad School Fair, Thursday, 3:30–5:00 p.m. Sponsored by the AMS.
AMS-PME Student Poster Session, organized by Chad Awtrey, Samford University, and Frank Patane, Samford University; 

Friday, 12:00–1:30 p.m. and 3:30–5:00 p.m. These sessions feature research done by undergraduate students. First-year 
graduate students are eligible to present if their research was completed while they were still undergraduates. Research 
by high school students can be accepted if the research was conducted under the supervision of a faculty member at a 
post-secondary institution.

Appropriate content for a poster includes, but is not limited to, a new result, a new proof of a known result, a new 
mathematical model, an innovative solution to a Putnam problem, or a method of solution to an applied problem. Purely 
expository material is not appropriate for this session.

Participants should submit an abstract through the JMM abstract submission portal by September 26. Questions re-
garding this session should be directed to Chad Awtrey, cawtrey@samford.edu or Frank Patane, fpatane@samford.edu.

Career Fair, Thursday, 8:30–10:30 a.m. The AMS Career Fair is an opportunity for mathematically trained job seekers 
at various phases of education and experience—undergraduates, graduate students, postdocs, and others—to interact in 
person with employers in Business, Entrepreneurship, Government, Industry, and Nonprofit (BEGIN). This event is job 
seekers’ chance to discover how their mathematical training makes them strong candidates for BEGIN jobs.

Other Events
The Mathematical Art Exhibit is organized by Robert Fathauer, Tessellations Company, and Nathan Selikoff, Digital 
Awakening Studios, and supported by the Bridges Organization. A popular feature at the Joint Mathematics Meetings, 
this exhibition provides a break in your day.

On display will be works in various media by artists who are inspired by mathematics and by mathematicians who use 
visual art to express their love of mathematics. Topology, fractals, polyhedra, and tiling are some of the ideas at play here. 
Do not miss this unique opportunity for a different perspective on mathematics. The exhibition will be located inside 
the Joint Mathematics Exhibits and open during exhibit hours. 

Submissions will accepted online from September 15 through October 15 at http://gallery.bridgesmathart.org/.
For questions about the Mathematical Art Exhibition, please contact Robert Fathauer at tessellations@cox.net.
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Exhibits
The Joint Mathematics Meetings Exhibits include the country’s leading scientific publishers, professional organizations, 
companies that offer mathematics-enrichment products and services, computer hardware and software companies, and 
the Mathematical Art Exhibit. It will be open to all registered participants on Wednesday (starting with the Grand Opening 
Reception) 6:00–8:30 p.m., on Thursday and Friday 9:00 a.m.–5:00 p.m., and Saturday 9:00 a.m.–2:00 p.m. See more 
details on the JMM website.

Welcoming Environment Policy
The AMS strives to ensure that participants in the JMM, including exhibitors, enjoy a welcoming environment. In all its 
activities, the AMS seeks to foster an atmosphere that encourages free expression and exchange of ideas. The AMS supports 
equality of opportunity and treatment for all participants, regardless of gender, gender identity or expression, race, color, 
national or ethnic origin, religion or religious belief, age, marital status, sexual orientation, disabilities, veteran status, 
or immigration status.

Harassment is a form of misconduct that undermines the integrity of the AMS, their activities and missions.
The AMS will make every effort to maintain an environment that is free of harassment, even though it does not control 

the behavior of third parties. A commitment to a welcoming environment is expected of all participants of JMM activities, 
including mathematicians, students, guests, staff, contractors and exhibitors, and participants in scientific sessions and 
social events. To this end, the AMS will include a statement concerning its expectations towards maintaining a welcoming 
environment in registration materials for the JMM and has put in place a mechanism for reporting violations. Violations 
may be reported confidentially and anonymously to 855-282-5703 or at www.mathsociety.ethicspoint.com. The 
reporting mechanism ensures the respect of privacy while alerting the AMS to the situation.

Assistance may also be sought from any staff or volunteer member wearing a MathSafe badge. Learn more about the 
MathSafe program.3 Violations may also be brought to the attention of the AMS Director of Meetings & Conferences at 
the registration desk during the meeting.

MathSafe
MathSafe is a program by and for the mathematical community to support safe and welcoming meetings. MathSafe 
volunteers will be available at the JMM to listen to and guide participants who experience harassing behavior. Volunteers 
will be identifiable by their MathSafe buttons. See more details on the JMM website.

How to Reserve Hotel Rooms
See details about hotels and how to reserve a room on the JMM website.

Importance of Staying in an Official JMM Hotel
The importance of reserving a room at one of the official JMM hotels cannot be stressed enough. The AMS makes every 
effort to keep participants’ expenses at the meeting as low as possible and a lot of work and effort goes into negotiating 
the most affordable hotel rates. When a participant registers for the meeting and reserves a room at an official JMM hotel, 
they are helping to support not only JMM 2024, but future JMMs as well.

Reserving a Room
Participants are encouraged to register for the JMM in order to reserve hotel rooms at the JMM rates. If a participant needs 
to reserve a hotel room before they are registered for the JMM, they should contact the Mathematics Meetings Services 
Bureau (MMSB) at mmsb@ams.org or 1-800-321-4267 (ext. 4094 or ext. 4144) for further instructions.

Special rates have been negotiated exclusively for this meeting at the following hotels: San Francisco Marriott Marquis, 
Hilton San Francisco Union Square, Marriott Union Square, Hotel Spero San Francisco, Hotel Abri, Galleria Park Hotel, 
and The Barnes Hotel. See details on these hotels and more details on the JMM website.

3https://www.jointmathematicsmeetings.org/jmm-mathsafe
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Reservations must be made through the MMSB. The hotels will not be able to accept reservations directly until after 
December 11, 2023. At that time, rooms and rates will be based on availability. Any rooms reserved directly with the 
hotels after December 11, 2023, will be subject to higher rates.

A link to the JMM 2024 hotel reservation portal will be included in the confirmations of registrations sent by email. 
If a participant needs the link sent directly to them, they should send a request to mmsb@ams.org. If any participant has 
difficulty reserving a hotel room, they should send email to mmsb@ams.org for assistance.

Any participant who needs to reserve a hotel room and does not have a credit card to guarantee it should send email 
to mmsb@ams.org for further instructions. If a check is being used to guarantee a room, the reservation and check must 
be received by the MMSB no later than November 30, 2023.

Miscellaneous
Please see details about audio-visual equipment; email services; information distribution; local information; the JMM 
Broadcasting, Photographing, and Videotaping Policy; and telephone messages on the JMM website.

Child Care Grants
Please see details about how to apply for child care grants on the JMM website.

Registration Information
Everyone is welcome at the JMM. The American Mathematical Society (AMS) encourages all participants to register for 
the JMM. The importance of registering for the meeting cannot be overemphasized. Paying a registration fee helps to 
support a wide range of activities associated with planning, organizing, and executing the meetings.

All participants who wish to attend sessions are expected to register for the JMM and should be prepared to show 
their badges, if requested. Badges are required to enter the Exhibits and the AMS Employment Center. The Mathematics 
Meetings Service Bureau (MMSB) is the official registration and housing bureau for the meeting and will be available to 
assist you with your registration and housing arrangements.

Cancellation Policy
100% of fees paid will be issued for cancellations of any registrations, including the PEP programs and banquet tickets, 
up to November 6, 2023. 50% refunds will be issued for any cancellations after that date up to December 27, 2023. No 
refunds can be issued for any cancellations after December 27, 2023. To cancel any registration, send an email to mmsb@
ams.org. 

Deadlines
Register by December 20, 2023, midnight EST to be eligible for discounted registration fees. After this date, registration 
will continue through the end of the meeting, but increased fees will apply. Updates and corrections received too late to be 
included in the program books will be included in the online program on the JMM website and in the JMM Mobile App. 

Registration for PEPs: Online registration will turn off for PEPs after January 2. After that, registration for a PEP can 
only be done in person at a cashier station, through January 3. Registration will close after January 3 for the PEPs. 

Registration for NAM Banquet: Online registration will turn off for the NAM banquet after December 27. After that, 
registration for the banquet can only be done in person at a cashier station, through January 3. Registration for the ban-
quet will close after January 3.  

Please see detailed information about registration fees and categories on the JMM 2024 website under Registration Fees.4

Register for the Meeting
Registration can only be done online until Tuesday, January 2 when the registration desk opens at the meeting. At that 
date, you can either register online or in person. Paper registration forms are no longer available for online registration. 
To register for the meeting online, go to the online registration form and choose “Register.” You will be asked to enter 

4https://www.jointmathematicsmeetings.org/2300_regfees
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your email address and to sign in with your personal AMS web account. If you do not have an AMS web account, you 
will need to create one. After you have signed in, proceed with completing the registration form.  

VISA, MasterCard, Discover, and American Express are the only methods of payment accepted for registrations and 
charges to credit cards will be made in US funds. Registration acknowledgments will be sent to the email addresses provided. 

See details on how to register at https://www.jointmathematicsmeetings.org/meetings/national 
/jmm2024/2300_reg. 

Special Registration Codes
To allow for easy tracking of registrations for participants that belong to certain groups and are attending the meeting 
solely to participate in those groups, a registration code will be sent to them to register. See details at https://www 
.jointmathematicsmeetings.org/meetings/national/jmm2024/2300_reg.

Joint Mathematics Meetings Registration Fees (all fees in US$)
Registration Category (see definitions below) By Dec. 20 (midnight EST) After Dec. 20
Member of AIM, AMS, AWM, ASA, NAM, or SIAM ...........................................US$411..................................... US$541
Nonmember .............................................................................................................. 652............................................ 832
Graduate Student ........................................................................................................ 92............................................ 108
Undergraduate Student ............................................................................................... 92............................................ 108
High School Student ................................................................................................... 92............................................ 108
Unemployed ................................................................................................................ 92............................................ 108
Retired .......................................................................................................................... 92............................................ 108
Developing Country Participant ................................................................................ 92............................................ 108
High School Teacher ................................................................................................... 92............................................ 108
Librarian ...................................................................................................................... 92............................................ 108
One-day Only—Member (AIM, AMS, AWM, ASA, NAM, or SIAM) ......................N/A............................................ 294
One-day Only—Nonmember ..................................................................................N/A............................................ 458
Non-mathematician Guest ..........................................................................................31...............................................31
Commercial Exhibitor .................................................................................................. 0................................................ 0

JMM Professional Enhancement Program (PEP)–Per Program By Dec. 20 (midnight EST) After Dec. 20
Member of AIM, AMS, AWM, ASA, NAM, or SIAM .......................................... US$125..................................... US$125
Nonmember .............................................................................................................. 175............................................ 175
Grad School Fair / Career Fair By Dec. 20 (midnight EST) After Dec. 20
Grad School Fair Non-Institutional Members .................................................. US$200..................................... US$200 
Grad School Fair AMS Institutional Members......................................................... 140............................................ 140
Graduate Program Table ..................................................................................fees apply per table for Grad School Fair
Career Fair..................................................................................................................................................... 180 per table
......................................................................................................................................Free for AMS Corporate Members
Career Fair Table .........................................................................................................fees apply per table for Career Fair
Department Chairs  Workshop By Dec. 20 (midnight EST) After Dec. 20
Members of AMS (in person) ............................................................................ US$220..................................... US$220
Nonmember (in person) .......................................................................................... 330............................................ 330

Registration Category Definitions
Full-Time Students
Any person over 16 years of age who is currently working toward a degree or diploma is eligible for this category. Students 
are asked to determine whether their status can be described as a graduate (working toward a degree beyond the bache-
lor’s), an undergraduate (working toward a bachelor’s degree), or high school (working toward a high school diploma) 
and to mark the registration form accordingly. Any child 16 years and younger can attend the meeting free of charge but 
must be accompanied by an adult at all times.
Retired
Any person who has been a member of the AMS for twenty years or more and who retired because of age or long-term 
disability from his or her latest position is eligible for this category.
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Librarian
Any librarian who is not a professional mathematician is eligible for this category.
Unemployed
Any person who is currently unemployed, actively seeking employment, and is not a student is eligible for this category. 
This category is not intended to include any person who has voluntarily resigned or retired from his or her latest position.
Developing Country Participant
Any person who is employed in a developing country, where salary levels are radically not commensurate with those in 
the US, is eligible for this category. See the most recent list of developing countries at https://worldpopulationreview 
.com/country-rankings/developing-countries.
Non-mathematician Guest
Any family member, friend, or associate, who is not a mathematician, and who is accompanied by a participant in the 
meeting is eligible for this category. Guests will receive a badge and may attend any session, talk, or other event at the 
meeting.
Commercial Exhibitor
Any person who is exhibiting in the Joint Mathematics Meetings Exhibits is eligible for this category. This does not include 
anyone participating in a poster session or the art exhibit. Any exhibitor who is a mathematician and is participating in 
the scientific program and/or wants to attend sessions, talks, etc. is expected to register separately for the meeting.

Social Events
All events listed are open to all registered participants. It is strongly recommended that for any event requiring a ticket, 
tickets should be purchased through advance registration. Only a very limited number of tickets, if any, will be available 
for sale on site. If you must cancel your participation in a ticketed event, you may request a 50% refund by returning 
your tickets to the Mathematics Meetings Service Bureau (MMSB) by December 30, 2023. After that date, no refunds can 
be made. Special meals are available at banquets upon advance request, but this must be indicated on the Registration/
Housing Form. Please see complete descriptions of these events on the JMM website.

American Institute for Mathematics Math Circles Dessert and Games Night Reception, Thursday, 8:00–9:30 p.m.
American Statistical Association Reception, Thursday, 6:00–7:00 p.m. An open reception—the opportunity to celebrate 

the contributions of statistics to science and society and to build community.
AMS Journal Reviewer Appreciation Reception, Thursday, 7:00–8:00 p.m.
Association of Christians in the Mathematical Sciences (ACMS) Reception and Lecture, Day and time to be announced.
Association for Women in Mathematics Reception and Awards Presentation, Friday, 5:00–6:30 p.m. The AWM Reception is 

open to all JMM participants and will begin at 5:00 p.m., during the poster presentations.
Budapest Semesters in Mathematics Annual Alumni Reunion, Thursday, 6:00–7:00 p.m. Budapest Semesters in Mathemat-

ics (BSM) Alumni Reunion Event. BSM alums are invited for light appetizers. The BSM North American Directors and 
staff will be hosting this event. BSM is the prestigious and essential study abroad program for undergraduates studying 
mathematics, established in 1985.

Canada/USA Mathcamp Alumni and Friends Gathering, Thursday, 6:00–7:30 p.m.
Estimathon!, organized by Andrew Niedermaier, Jane Street Capital; Time to be announced.
Grand Opening Reception, Wednesday, 6:00–8:30 p.m. The JMM officially opens with a brief ribbon-cutting ceremony 

(at 4:30 p.m.), followed by an Awards Ceremony. Participants will then enjoy festivities to further celebrate our vibrant 
mathematical community. At the reception, the mathematical art display, vendor, and exhibitor booths will all be available 
to you, along with hors d’oeuvres, food stations, beverages, and entertainment. ALL are welcome! FREE!

Meet up with friends or explore on your own, but be sure to take in all the fun, refreshments, and special offerings.  
Travel each aisle—many exhibitors are planning special offerings just for this evening!

Inspiring Stories: How an Academic Rejection Led to Something Amazing, organized by Allison Henrich, Seattle University, 
and Aaron Wooten, University of Portland; Friday, 3:00–4:30 p.m.

Knitting Circle, Thursday, 8:15–9:45 p.m. Bring a project (knitting/crochet/tatting/beading/etc.) and chat with other 
mathematical crafters!

Mathematical Reviews Reception, Friday, 6:00–7:00 p.m. All friends of Mathematical Reviews (MathSciNet®) are invited 
to join reviewers as well as editors and staff of Mathematical Reviews (past and present) for a reception in honor of 
all of the efforts that go into the creation and publication of the Mathematical Reviews database. This year we are also  
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celebrating the release of the brand new user interface for MathSciNet. We look forward to seeing old and new friends 
this year. Refreshments will be served.

Mathematical Institutes Open House, Day and time to be announced.
Mathematically Bent Theater, organized by Colin Adams, Williams College; Friday, 6:00–7:00 p.m. When you are trying 

to prove a theorem, does it help to bang your head against the wall? Why does the Skiponacci Quarterly only produce 
three issues per year? Did you mistakenly take my tote-bag at the Wisconsin reception at JMM 2023? These are just a few 
of the questions we will not answer in this presentation of four short humorous math pieces.

Mathematical Variety Show, organized by Dan Margalit, Georgia Institute of Technology; Friday, 8:00 p.m. at the Alcazar 
Theater. Ticket purchases can be made on the JMM registration page: $25 student ticket/$30 general admission.

MEET and SHARE: A Mathematicians’ Storytelling Event, presented by The Coalition for the Amplification of Historically 
Excluded Mathematicians (The Coalition), Day and time to be announced.

National Association of Mathematicians Banquet, Friday, 6:00–9:00 p.m. A cash bar reception will be held at 6:00 p.m., 
and dinner will be served at 6:30 p.m. The Cox-Talbot Invited Address will be given after the dinner, 7:45–8:45 p.m. 
Tickets will be available for sale once registration is open for the JMM.

Nevertheless She Persisted: The Daughters of Hypatia, organized by Karl Schaffer, De Anza College. Day and time to be 
announced. Dedicated to the foremothers of mathematics as well as to their leading contemporaries, this exciting six-
woman dance concert celebrates great mathematical women throughout the ages, telling their stories with thoughtful 
dances, dynamic storytelling, colorful projections, and more. The dancers recount intriguing stories from the women’s 
lives and perform powerful dances inspired by their mathematical work.

NSA WiMS Networking Event, Day and time to be announced.
Project NExT Reception, Friday, 8:00–10:00 p.m.
SLMath (MSRI) Reception for Current and Future Donors, Friday, 6:00–7:30 p.m.
Society for Industrial and Applied Mathematics (SIAM) Reception on Industrial Math Modeling, Thursday, 7:00–9:00 p.m.
Spectra Reception for LGBT Mathematicians, Day and time to be announced.
Undergraduate Student Reception, Friday, 6:00–8:00 p.m. A community-building event open to all undergraduate students 

and their supporters. Join us for activities, games, food, and fun. Organized by AMS and Pi Mu Epsilon, with funding 
from an AMS anonymous donor.

University of Michigan Alumni and Friends Reception, Day and time to be announced. Please join us for the University of 
Michigan, Mathematics, Alumni and Friends Reception!

Wrong Answers Only, a science comedy game show; Wednesday, 8:45–9:45 p.m. Created by LabX.
Yearly Gather: Collaborative Puzzle Time!, Wednesday, 8:45–10:00 p.m., organized by sarah-marie belcastro, MathILy, 

Corinne Yap, Rutgers University, Brian Freidin, Auburn University, and Jonah Ostroff, University of Washington.

Travel/Transportation
Please see details about travel and transportation options on the JMM website.



Thank you!
Want to learn more? 

Visit www.ams.org/giving
Or contact 

development@ams.org 
401.455.4111

Your gift will help programs and services such as scientifi c meetings, 
advocacy for mathematics, employment services, and much more.

SUPPORT AREA OF GREATEST NEED

Your donation is unrestricted, which 
means you are supporting immediate 
priorities in the mathematics community.

What happens when 
I support Area of 

Greatest Need? 

NEWS AND PUBLIC OUTREACH  |  GOVERNMENT AND POLICY ADVOCACY

MATHEMATICS MEETINGS   |   EDUCATIONAL RESOURCES   |   CAREER SERVICES
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Tuesday, January 02
  JMM (JOINT MATHEMATICS MEETINGS)
 2:00–7:00 p.m. Joint Meetings Registration 

Wednesday, January 03
  JMM (JOINT MATHEMATICS MEETINGS)
 7:00 a.m.–3:00 p.m. Joint Meetings Registration

 8:00 a.m.–3:00 p.m. Employment Center

  AIM (AMERICAN INSTITUTE OF MATHEMATICS)
 8:00 a.m.–12:00 p.m. AIM Special Session Associated with the Alexanderson Award and Lecture, I

  AMS (AMERICAN MATHEMATICAL SOCIETY)
 8:00 a.m.–12:00 p.m. AMS Special Session on Advances in Coding Theory, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Algebraic Approaches to Mathematical Biology, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Applications of Hypercomplex Analysis, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Applied Topology: Theory, Algorithms, and Applications, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Combinatorial Insights into Algebraic Geometry, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Commutative Algebra and Algebraic Geometry (associated with the 
Invited Address by Daniel Erman), I

 8:00 a.m.–12:00 p.m. AMS Special Session on Computable Mathematics: A Special Session Dedicated to 
Martin D. Davis, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Developing Students’ Technical Communication Skills through 
Mathematics Courses, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Dynamical Systems Modeling for Biological and Social Systems, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Ethics in the Mathematics Classroom, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Extremal and Probabilistic Combinatorics, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Geometric Group Theory (associated with the AMS Retiring 
Presidential Address), I

 8:00 a.m.–12:00 p.m. AMS Special Session on Harmonic Analysis, Geometry Measure Theory, and Fractals, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Homological Techniques in Noncommutative Algebra, I
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 8:00 a.m.–12:00 p.m. AMS Special Session on Integer Partitions, Arc Spaces and Vertex operators, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematical Modeling and Simulation of Biomolecular Systems, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematics and the Arts, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematics of DNA and RNA, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Metric Dimension of Graphs and Related Topics, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Modeling Complex Adaptive Systems in Life and Social Sciences, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Modeling to Motivate the Teaching of the Mathematics of 
Differential Equations, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Modelling with Copulas: Discrete vs Continuous Dependent Data, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Number Theory in Memory of Kevin James, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Numerical Analysis, Spectral Graph Theory, Orthogonal Polynomials, 
and Quantum Algorithms, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Recent Advances in Mathematical Models of Diseases: 
Analysis and Computation, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Research Presentations by Math Alliance Scholar Doctorates, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Serious Recreational Mathematics, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Theoretical and Numerical Aspects of Nonlocal Models, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Theta Correspondence, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Topics in Equivariant Algebra, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Undergraduate Research Activities in Mathematical and 
Computational Biology, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Water Waves, I

 8:00 a.m.–12:00 p.m. AMS-AWM Special Session for Women and Gender Minorities in Symplectic and 
Contact Geometry and Topology, I

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)
 8:00 a.m.–12:00 p.m. AWM Special Session on EvenQuads Live and in person: The honorees and the games

 8:00 a.m.–12:00 p.m. AWM Special Session on Women in Mathematical Biology

  ILAS (INTERNATIONAL LINEAR ALGEBRA SOCIETY)
 8:00 a.m.–12:00 p.m. ILAS Special Session on Generalized Numerical Ranges and Related Topics

 8:00 a.m.–12:00 p.m. ILAS Special Session on Innovative and Effective Ways to Teach Linear Algebra, I

  SLMATH (MSRI/SIMONS LAUFER MATHEMATICAL SCIENCES INSTITUTE)
 8:00 a.m.–12:00 p.m. SLMath (MSRI) Special Session on Summer Research in Mathematics (SRiM): 

Recent Trends in Nonlinear Boundary Value Problems

  TPSE (TRANSFORMING POST-SECONDARY EDUCATION)
 8:00 a.m.–12:00 p.m. TPSE Contributed Paper Session on Using Institutional and National Data Sources to Recruit, 

Retain and Support a Diverse Population of Mathematics Students 

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)
 9:00–10:00 a.m. Association for Symbolic Logic Tutorial

  JMM (JOINT MATHEMATICS MEETINGS)
 9:00–11:00 a.m. Professional Enhancement Program (PEP) 1A: Visualizing Projective Geometry 

Through Photographs and Perspective Drawings
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 9:00–11:00 a.m. Professional Enhancement Program (PEP) 6A: Skills and Tools for Communicating your 
Research to the Public, Policymakers, and Future Funders

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 8A: Shaping Thoughtful Conversations on 
the Past and Future of Data

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS)
 9:30–11:30 a.m. SIAM Minisymposium on Scientific Machine Learning to Advance Modeling and 

Decision Support, I

   INVITED ADDRESS
 9:45–10:50 a.m. AMS John von Neumann Lecture - Ankur Moitra, Massachusetts Institute of Technology

  JMM (JOINT MATHEMATICS MEETINGS)
 10:30 a.m.–12:00 p.m. JMM Workshop: Building Conceptual Understanding of Multivariable Calculus using 

3D Visualization in CalcPlot3D and 3D-Printed Surfaces

 10:30 a.m.–12:00 p.m. JMM Workshop on Teaching Student-Centered Mathematics: 
Active Learning & the Learning Assistant Model

  INVITED ADDRESSES

 11:00 a.m.–12:00 p.m. AMS Erdős Lecture for Students - John Urschel

 1:00–2:00 p.m. AMS Colloquium Lecture I - Terence Tao, University of California, Los Angeles

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)
 1:00–2:00 p.m. Association for Symbolic Logic Tutorial

  AMS (AMERICAN MATHEMATICAL SOCIETY)
 1:00–2:30 p.m. AMS Committee on the Profession Panel Discussion: Building a Successful 

Research Career in Mathematics

  PME (PI MU EPSILON)
 1:00–2:30 p.m. PME Panel: What Every Student Should Know about the JMM 

  JMM (JOINT MATHEMATICS MEETINGS)
 1:00–3:00 p.m. Professional Enhancement Program (PEP) 2A: GitHub for Mathematicians

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS)
 1:00–4:30 p.m. SIAM Minisymposium on Scientific Machine Learning to Advance Modeling and 

Decision Support, II

  AIM (AMERICAN INSTITUTE OF MATHEMATICS)
 1:00–5:00 p.m. AIM Special Session on Little School Dynamics: Cool Research by Researchers at PUIs, I

  AMS (AMERICAN MATHEMATICAL SOCIETY)
 1:00–5:00 p.m. AMS Special Session on Advances in Coding Theory, II

 1:00–5:00 p.m. AMS Special Session on Algebraic Approaches to Mathematical Biology, II

 1:00–5:00 p.m. AMS Special Session on Applications of Hypercomplex Analysis, II

 1:00–5:00 p.m. AMS Special Session on Commutative Algebra and Algebraic Geometry (associated with the 
Invited Address by Daniel Erman), II

 1:00–5:00 p.m. AMS Special Session on Computable Mathematics: A Special Session Dedicated to 
Martin D. Davis, II

 1:00–5:00 p.m. AMS Special Session on Dynamical Systems Modeling for Biological and Social Systems, II

 1:00–5:00 p.m. AMS Special Session on Ethics in the Mathematics Classroom, II

 1:00–5:00 p.m. AMS Special Session on Extremal and Probabilistic Combinatorics, II
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 1:00–5:00 p.m. AMS Special Session on Harmonic Analysis, Geometry Measure Theory, and Fractals, II

 1:00–5:00 p.m. AMS Special Session on Homological Techniques in Noncommutative Algebra, II

 1:00–5:00 p.m. AMS Special Session on Integer Partitions, Arc Spaces and Vertex Operators, II

 1:00–5:00 p.m. AMS Special Session on Mathematical Modeling and Simulation of Biomolecular Systems, II

 1:00–5:00 p.m. AMS Special Session on Mathematics and the Arts, II

 1:00–5:00 p.m. AMS Special Session on Mathematics of DNA and RNA, II

 1:00–5:00 p.m. AMS Special Session on Metric Dimension of Graphs and Related Topics, II

 1:00–5:00 p.m. AMS Special Session on Modeling Complex Adaptive Systems in Life and Social Sciences, II

 1:00–5:00 p.m. AMS Special Session on Modeling to Motivate the Teaching of the Mathematics of 
Differential Equations, II

 1:00–5:00 p.m. AMS Special Session on Modelling with Copulas: Discrete vs Continuous Dependent Data, II

 1:00–5:00 p.m. AMS Special Session on Number Theory in Memory of Kevin James, II

 1:00–5:00 p.m. AMS Special Session on Numerical Analysis, Spectral Graph Theory, Orthogonal Polynomials, and 
Quantum Algorithms, II

 1:00–5:00 p.m. AMS Special Session on Topological and Algebraic Approaches for Optimization, I

 1:00–5:00 p.m. AMS Special Session on Recent Advances in Mathematical Models of Diseases: 
Analysis and Computation, II

 1:00–5:00 p.m. AMS Special Session on Recent Progress in Inference and Sampling (associated with 
AMS Invited Address by Ankur Moitra), I

 1:00–5:00 p.m. AMS Special Session on Research Presentations by Math Alliance Scholar Doctorates, II

 1:00–5:00 p.m. AMS Special Session on Serious Recreational Mathematics, II

 1:00–5:00 p.m. AMS Special Session on The EDGE (Enhancing Diversity in Graduate Education) Program: 
Pure and Applied Talks by Women Math Warriors, I

 1:00–5:00 p.m. AMS Special Session on Theoretical and Numerical Aspects of Nonlocal Models, II

 1:00–5:00 p.m. AMS Special Session on Theta Correspondence, II

 1:00–5:00 p.m. AMS Special Session on Topics in Equivariant Algebra, II

 1:00–5:00 p.m. AMS Special Session on Undergraduate Research Activities in Mathematical and 
Computational Biology, II

 1:00–5:00 p.m. AMS Special Session on Using 3D-Printed and Other Digitally-Fabricated Objects in 
the Mathematics Classroom, I

 1:00–5:00 p.m. AMS Special Session on Water Waves, II

 1:00–5:00 p.m. AMS-AWM Special Session for Women and Gender Minorities in Symplectic and 
Contact Geometry and Topology, II

 1:00–5:00 p.m. AMS-AWM Special Session on Solvable Lattice Models and their Applications Associated 
with the Noether Lecture, I

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)

 1:00–5:00 p.m. AWM Special Session on EvenQuads Live and in person: The honorees and the games

 1:00–5:00 p.m. AWM Special Session on Women in Mathematical Biology

  ILAS (INTERNATIONAL LINEAR ALGEBRA SOCIETY)

 1:00–5:00 p.m. ILAS Special Session on Generalized Numerical Ranges and Related Topics
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 1:00–5:00 p.m. ILAS Special Session on Innovative and Effective Ways to Teach Linear Algebra, I

  NAM (NATIONAL ASSOCIATION OF MATHEMATICIANS)
 1:00–5:00 p.m. NAM-SIAM-AMS Special Session on Quantitative Justice, I

  SLMATH (MSRI/SIMONS LAUFER MATHEMATICAL SCIENCES INSTITUTE)
 1:00–5:00 p.m. SLMath (MSRI) Special Session on Summer Research in Mathematics (SRiM): 

Recent Trends in Nonlinear Boundary Value Problems

  TPSE (TRANSFORMING POST-SECONDARY EDUCATION)

 1:00–5:00 p.m. TPSE Contributed Paper Session on Using Institutional and National Data Sources to 
Recruit, Retain and Support a Diverse Population of Mathematics Students

  INVITED ADDRESS
 2:15–3:20 p.m. AMS Retiring Presidential Address - Ruth Charney, Brandeis University

  JMM (JOINT MATHEMATICS MEETINGS)
 3:00–4:30 p.m. JMM Panel: Decolonizing Mathematics

 4:30–5:45 p.m. Awards Celebration

 6:00–8:30 p.m. Exhibits and Book Sales

  SOCIAL EVENTS
 6:00–8:30 p.m. Grand Opening Reception

 8:45–9:45 p.m. Wrong Answers Only

 8:45–10:00 p.m. Yearly Gather: Collaborative Puzzle Time!

Thursday, January 04
  JMM (JOINT MATHEMATICS MEETINGS)
 7:30 a.m.–4:00 p.m. Joint Meetings Registration

 8:00 a.m.–5:30 p.m. Employment Center

  AIM (AMERICAN INSTITUTE OF MATHEMATICS)
 8:00 a.m.–12:00 p.m. AIM Special Session on Little School Dynamics: Cool Research by Researchers at PUIs, I

 8:00 a.m.–12:00 p.m. AIM Special Session on Math Circle Activities as a Gateway Into Research, I

  AMS (AMERICAN MATHEMATICAL SOCIETY)
 8:00 a.m.–12:00 p.m. AMS Special Session on Advances in Coding Theory, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Applications of Extremal Graph Theory to Network Design, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Applied Topology: Theory, Algorithms, and Applications, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Bridging Applied and Quantitative Topology, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Complex Social Systems (a Mathematics Research Communities session) I

 8:00 a.m.–12:00 p.m. AMS Special Session on Computable Mathematics: A Special Session Dedicated to 
Martin D. Davis, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Derived Categories, Arithmetic, and Geometry 
(a Mathematics Research Communities session) I

 8:00 a.m.–12:00 p.m. AMS Special Session on Developing Students’ Technical Communication Skills through 
Mathematics Courses, II
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 8:00 a.m.–12:00 p.m. AMS Special Session on Dynamics and Management in Disease or Ecological Models 
(associated with the Gibbs Lecture by Suzanne Lenhart), I

 8:00 a.m.–12:00 p.m. AMS Special Session on Ergodic Theory, Symbolic Dynamics, and Related Topics, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Explicit Computation with Stacks (a Mathematics Research 
Communities session) I

 8:00 a.m.–12:00 p.m. AMS Special Session on Geometric Group Theory (associated with the AMS Retiring 
Presidential Address), II

 8:00 a.m.–12:00 p.m. AMS Special Session on Hamiltonian Systems and Celestial Mechanics, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Harmonic Analysis, Geometry Measure Theory, and Fractals, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Homological Techniques in Noncommutative Algebra, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Homotopy Theory, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Ideal and Factorization Theory in Rings and Semigroups, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Integer Partitions, Arc Spaces and Vertex Operators, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Looking Forward and Back: Common Core State Standards in 
Mathematics (CCSSM), 12 Years Later, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematical Physics and Future Directions, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematics of Computer Vision, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematics of DNA and RNA, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Mock Modular forms, Physics, and Applications, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Modeling Complex Adaptive Systems in Life and Social Sciences, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Numerical Analysis, Spectral Graph Theory, Orthogonal Polynomials, and 
Quantum Algorithms, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Topological and Algebraic Approaches for Optimization, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Recent Developments on Markoff Triples, I

 8:00 a.m.–12:00 p.m. AMS-SIAM Special Session on Research in Mathematics by Undergraduates and Students in 
Post-Baccalaureate Programs, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Research Presentations by Math Alliance Scholar Doctorates, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Ricci Curvatures of Graphs and Applications to Data Science 
(a Mathematics Research Communities session) I

 8:00 a.m.–12:00 p.m. AMS Special Session on Structure-preserving Algorithms, Analysis and Simulations for 
Differential Equations, I

 8:00 a.m.–12:00 p.m. AMS Special Session on The EDGE (Enhancing Diversity in Graduate Education) Program: 
Pure and Applied Talks by Women Math Warriors, II

 8:00 a.m.–12:00 p.m. AMS Special Session on The Teaching and Learning of Undergraduate Ordinary 
Differential Equations, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Theoretical and Numerical Aspects of Nonlocal Models, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Thresholds in Random Structures, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Water Waves, III

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)
 8:00 a.m.–12:00 p.m. ASL Special Session on Descriptive Methods in Dynamics, Combinatorics, and 

Large Scale Geometry, I
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  PMA (PRO MATHEMATICA ARTE)
 8:00 a.m.–12:00 p.m. BSM Special Session: Mathematical Research in Budapest for Students and Faculty

  COMAP (CONSORTIUM FOR MATHEMATICS AND ITS APPLICATIONS)
 8:00 a.m.–12:00 p.m. COMAP Contributed Paper Session: Integrating Modeling into Established Courses, I

  NAM (NATIONAL ASSOCIATION OF MATHEMATICIANS)
 8:00 a.m.–12:00 p.m. NAM Haynes-Granville-Browne Session of Presentations by Recent Doctoral Recipients

  SLMATH (MSRI/SIMONS LAUFER MATHEMATICAL SCIENCES INSTITUTE)
 8:00 a.m.–12:00 p.m. SLMath (MSRI) Special Session on Summer Research in Mathematics (SRiM): Recent Trends in 

Nonlinear Boundary Value Problems

 8:00 a.m.–12:00 p.m. SLMath (MSRI) Special Session on African Diaspora Joint Mathematics Working Groups 
(ADJOINT)

  INVITED ADDRESS
 8:30–9:35 a.m. The Spectra Lavender Lecture

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS)
 8:30–10:00 a.m. SIAM Panel on Business-Industry-Government Careers for Mathematicians

  JMM (JOINT MATHEMATICS MEETINGS)
 8:30–10:30 a.m. Career Fair

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 1A: Visualizing Projective Geometry Through 
Photographs and Perspective Drawings

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 6A: Skills and Tools for Communicating your 
Research to the Public, Policymakers, and Future Funders

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 8B: Shaping Thoughtful Conversations on 
the Past and Future of Data

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS)
 9:00–11:00 a.m. SIAM Minisymposium on Mathematical Modeling of Complex Materials Systems

  JMM (JOINT MATHEMATICS MEETINGS)
 9:00 a.m.–5:00 p.m. Exhibits and Book Sales

  INVITED ADDRESSES
 9:45–10:50 a.m. AWM-AMS Noether Lecture - Anne Schilling, University of California, Davis

 9:45–10:50 a.m. ILAS Invited Address - Stephan Ramon Garcia, Pomona College

  PME (PI MU EPSILON)
 10:30 a.m.–12:00 p.m. PME Panel: What Every Student Should Know about the JMM

  JMM (JOINT MATHEMATICS MEETINGS)
 10:30 a.m.–12:00 p.m. JMM Panel: The Future of Graduate Mathematics Textbooks

  INVITED ADDRESSES

 11:00 a.m.–12:00 p.m. AIM Alexanderson Award Lecture - Joni Teräväinen

 1:00–2:00 p.m. AMS Colloquium Lecture II - Terence Tao, University of California, Los Angeles

  AMS (AMERICAN MATHEMATICAL SOCIETY)
 1:00–2:30 p.m. AMS Committee on Education Panel Discussion, I

  TPSE (TRANSFORMING POST-SECONDARY EDUCATION)
 1:00–2:30 p.m. TPSE Panel on Grading for Active Learning & Department Change
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  JMM (JOINT MATHEMATICS MEETINGS)
 1:00–3:00 p.m. Professional Enhancement Program (PEP) 2A: GitHub for Mathematicians

 1:00–3:00 p.m. Professional Enhancement Program (PEP) 5A: Development of Mathematics Programs for 
Workforce Preparation

  SLMATH (MSRI/SIMONS LAUFER MATHEMATICAL SCIENCES INSTITUTE)
 1:00–4:00 p.m. SLMath (MSRI) Special Session on The MSRI Undergraduate Program (MSRI-UP)

  AIM (AMERICAN INSTITUTE OF MATHEMATICS)
 1:00–5:00 p.m. AIM Special Session on Graphs and Matrices, I

 1:00–5:00 p.m. AIM Special Session on Math Circle Activities as a Gateway Into Research, I

  AMS (AMERICAN MATHEMATICAL SOCIETY)
 1:00–5:00 p.m. AMS Special Session on Applications of Extremal Graph Theory to Network Design, II

 1:00–5:00 p.m. AMS Special Session on Coding Theory for Modern Applications, I

 1:00–5:00 p.m. AMS Special Session on Combinatorial Insights into Algebraic Geometry, II

 1:00–5:00 p.m. AMS Special Session on Complex Analysis, Operator Theory, and Real Algebraic Geometry, I

 1:00–5:00 p.m. AMS Special Session on Complex Social Systems (a Mathematics Research Communities session) II

 1:00–5:00 p.m. AMS Special Session on Computational techniques to Study the Geometry of the Shape Space, I

 1:00–5:00 p.m. AMS Special Session on Derived Categories, Arithmetic, and Geometry (a Mathematics Research 
Communities session) II

 1:00–5:00 p.m. AMS Special Session on Ergodic theory, Symbolic Dynamics, and Related Topics, II

 1:00–5:00 p.m. AMS Special Session on Explicit Computation with Stacks (a Mathematics Research 
Communities session) II

 1:00–5:00 p.m. AMS Special Session on Geometric Group Theory (associated with the AMS Retiring 
Presidential Address), III

 1:00–5:00 p.m. AMS Special Session on Hamiltonian Systems and Celestial Mechanics, II

 1:00–5:00 p.m. AMS Special Session on Informal Learning, Identity, and Attitudes in Mathematics, I

 1:00–5:00 p.m. AMS Special Session on Knots, Skein Modules, and Categorification, I

 1:00–5:00 p.m. AMS Special Session on Loeb Measure after 50 Years, I

 1:00–5:00 p.m. AMS Special Session on Looking Forward and Back: Common Core State Standards in 
Mathematics (CCSSM), 12 Years Later, II

 1:00–5:00 p.m. AMS Special Session on Mathematical Modeling and Simulation of Biomolecular Systems, III

 1:00–5:00 p.m. AMS Special Session on Mathematics and Philosophy, I

 1:00–5:00 p.m. AMS Special Session on Mathematics and Quantum, I

 1:00–5:00 p.m. AMS Special Session on Mathematics of Computer Vision, II

 1:00–5:00 p.m. AMS Special Session on Metric Geometry and Topology, I

 1:00–5:00 p.m. AMS Special Session on Mock Modular Forms, Physics, and Applications, II

 1:00–5:00 p.m. AMS Special Session on Partition Theory and q-Series, I

 1:00–5:00 p.m. AMS Special Session on Quaternions, I

 1:00–5:00 p.m. AMS Special Session on Recent Developments on Markoff Triples, II

 1:00–5:00 p.m. AMS Special Session on Recent Progress in Inference and Sampling (associated with 
AMS Invited Address by Ankur Moitra), II
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 1:00–5:00 p.m. AMS-SIAM Special Session on Research in Mathematics by Undergraduates and Students in 
Post-Baccalaureate Programs, II

 1:00–5:00 p.m. AMS Special Session on Research Presentations by Math Alliance Scholar Doctorates, IV

 1:00–5:00 p.m. AMS Special Session on Ricci Curvatures of Graphs and Applications to Data Science 
(a Mathematics Research Communities session) II

 1:00–5:00 p.m. AMS Special Session on Structure-preserving Algorithms, Analysis and Simulations for 
Differential Equations, II

 1:00–5:00 p.m. AMS Special Session on The EDGE (Enhancing Diversity in Graduate Education) Program: 
Pure and Applied Talks by Women Math Warriors, III

 1:00–5:00 p.m. AMS Special Session on The Teaching and Learning of Undergraduate Ordinary 
Differential Equations, II

 1:00–5:00 p.m. AMS Special Session on Using 3D-Printed and Other Digitally-Fabricated Objects in 
the Mathematics Classroom, II

 1:00–5:00 p.m. AMS-AWM Special Session on Solvable Lattice Models and their Applications Associated with 
the Noether Lecture, II

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)
 1:00–5:00 p.m. ASL Special Session on Descriptive Methods in Dynamics, Combinatorics, and 

Large Scale Geometry, I

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)
 1:00–5:00 p.m. AWM Special Session on Recent Developments in Harmonic Analysis, I

  COMAP (CONSORTIUM FOR MATHEMATICS AND ITS APPLICATIONS)

 1:00–5:00 p.m. COMAP Contributed Paper Session: Integrating Modeling into Established Courses, II

  ILAS (INTERNATIONAL LINEAR ALGEBRA SOCIETY)
 1:00–5:00 p.m. ILAS Special Session on Linear algebra, matrix theory, and its applications

  PME (PI MU EPSILON)
 1:00–5:00 p.m. PME Contributed Session on Research by Undergraduates

  SPECTRA
 1:00–5:00 p.m. Spectra Workshop: Creating an Inclusive Undergraduate Mathematics Curriculum

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS
 1:00–6:00 p.m. SIAM Minisymposium on Mathematics of Bacterial Viruses: From Virus Discovery to 

Mathematical Principles

  INVITED ADDRESSES
 2:15–3:20 p.m. AMS Invited Address II - Daniel Erman, University of Wisconsin-Madison

 2:15–3:20 p.m. NAM Claytor-Woodard Lecture - Shelly M. Jones, Central Connecticut State University

  NSF (NATIONAL SCIENCE FOUNDATION)
 2:30–5:00 p.m. NSF Special Session on Exploring Funding Opportunities in the Division of Mathematical Sciences

  TPSE (TRANSFORMING POST-SECONDARY EDUCATION)
 3:00–4:30 p.m. TPSE Panel on Developing Innovative Upper Division Pathways in Mathematics: 

Strategies for Enrollment and Inclusion

  INVITED ADDRESSES
 3:30–4:30 p.m. ASA Invited Address - Kathy Ensor, Rice University

 3:30–4:35 p.m. AMS Invited Address I - Kimberly Sellers, Georgetown University
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 5:00–6:00 p.m. AMS Josiah Willard Gibbs Lecture - Suzanne Lenhart, University of Tennessee

  SOCIAL EVENTS

 6:00–7:00 p.m. American Statistical Association Reception

 6:00–7:00 p.m. Budapest Semesters in Mathematics Annual Alumni Reception

 6:00–7:00 p.m. Nevertheless She Persisted: The Daughters of Hypatia

 6:00–7:30 p.m. Canada/USA Mathcamp Alumni and Friends Gathering

 7:00–8:00 p.m. AMS Journal Reviewer Appreciation Reception

 7:00–9:00 p.m. Society for Industrial and Applied Mathematics (SIAM) Reception on Industrial Math Modeling

 8:00–9:30 p.m. American Institute for Mathematics Math Circle Dessert and Games Night Reception

 8:15–9:45 p.m. Knitting Circle

Friday, January 05
  JMM (JOINT MATHEMATICS MEETINGS)
 7:30 a.m.–4:00 p.m. Joint Meetings Registration

 8:00 a.m.–5:30 p.m. Employment Center

  AIM (AMERICAN INSTITUTE OF MATHEMATICS)
 8:00 a.m.–12:00 p.m. AIM Special Session Associated with the Alexanderson Award and Lecture, I

  AMS (AMERICAN MATHEMATICAL SOCIETY)

 8:00 a.m.–12:00 p.m. AMS-AAAS Special Session on Large Random Permutations (affiliated with the 
AAAS-AMS Invited Address by Peter Winkler), I

 8:00 a.m.–12:00 p.m. AMS Special Session on Advances in Analysis, PDE’s and Related Applications, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Analysis and Differential Equations at Undergraduate Institutions, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Applied Topology: Theory, Algorithms, and Applications, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Arithmetic Geometry with a View toward Computation, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Bridging Applied and Quantitative Topology, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Coding Theory for Modern Applications, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Complex Analysis, Operator Theory, and Real Algebraic Geometry, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Covering Systems of the Integers and Their Applications, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Cryptography and Related Fields, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Dynamical Systems Modeling for Biological and Social Systems, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Dynamics and Management in Disease or Ecological Models 
(associated with the Gibbs Lecture by Suzanne Lenhart), II

 8:00 a.m.–12:00 p.m. AMS Special Session on Ergodic Theory, Symbolic Dynamics, and Related Topics, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Geometry and Topology of High-Dimensional Biomedical Data, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Group Actions in Commutative Algebra, I

 8:00 a.m.–12:00 p.m. AMS Special Session on History of Mathematics, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Homotopy Theory, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Ideal and Factorization Theory in Rings and Semigroups, II
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 8:00 a.m.–12:00 p.m. AMS Special Session on Interplay Between Matrix Theory and Markov Systems: 
Applications to Queueing Systems and of Duality Theory, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Issues, Challenges and Innovations in Instruction of Linear Algebra, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Knots, Skein Modules, and Categorification, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Looking Forward and Back: Common Core State Standards in 
Mathematics (CCSSM), 12 Years Later, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematical Modeling of Nucleic Acid Structures, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematics and Philosophy, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematics and Quantum, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Modular Tensor Categories and TQFTs beyond the Finite and Semisimple, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Recent Advances in Stochastic Differential Equation Theory and 
its Applications in Modeling Biological Systems, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Thresholds in Random Structures, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Topics in Combinatorics and Graph Theory, I

 8:00 a.m.–12:00 p.m. AMS-AWM Special Session for Women and Gender Minorities in Symplectic and 
Contact Geometry and Topology, III

 8:00 a.m.–12:00 p.m. AMS-AWM Special Session on Solvable Lattice Models and their Applications Associated with 
the Noether Lecture, III

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)

 8:00 a.m.–12:00 p.m. AWM Special Session on Women in Mathematical Biology

  COMAP (CONSORTIUM FOR MATHEMATICS AND ITS APPLICATIONS)
 8:00 a.m.–12:00 p.m. COMAP Special Session on Math Modeling Contests: What They Are, How They Benefit, 

What They Did – Discussions with the Students and Advisors

  ILAS (INTERNATIONAL LINEAR ALGEBRA SOCIETY)
 8:00 a.m.–12:00 p.m. ILAS Special Session on Linear algebra, matrix theory, and its applications

 8:00 a.m.–12:00 p.m. ILAS Special Session on Sign-pattern Matrices and Their Applications

  PME (PI MU EPSILON)
 8:00 a.m.–12:00 p.m. PME Contributed Session on Research by Undergraduates

  SPECTRA
 8:00 a.m.–12:00 p.m. Spectra Special Session on Research by LGBTQ+ Mathematicians

  JMM (JOINT MATHEMATICS MEETINGS)
 8:30–10:00 a.m. Graduate School Fair

 8:30–10:00 a.m. JMM Panel: Regional Math Alliances: Activities and Formation of Regional Groups to 
Support the Goals of the National Math Alliance

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS)
 8:30–11:30 a.m. SIAM Minisymposium on Computational Mathematics and the Power Grid

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)
 9:00–10:00 a.m. ASL Invited Address

  INVITED ADDRESS
 9:00–10:30 a.m. MAA-SIAM-AMS Hrabowski-Gates-Tapia-McBay Lecture by Kamuela Yong followed by  

the MAA-SIAM-AMS Hrabowski-Gates-Tapia-McBay Panel
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  JMM (JOINT MATHEMATICS MEETINGS)

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 3A: Changing Math Department Culture: 
Embracing Servingness

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 7A: Effective Technical Advocacy: 
How to Talk About Mathematics so Policymakers will Hear you

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 9A: Developing Learning Activities for 
Multivariable Calculus using CalcPlot3D and 3D-Printed Surfaces

  SLMATH (MSRI/SIMONS LAUFER MATHEMATICAL SCIENCES INSTITUTE)

 9:00 a.m.–12:00 p.m. SLMath (MSRI) Special Session on The MSRI Undergraduate Program (MSRI-UP)

  JMM (JOINT MATHEMATICS MEETINGS)

 9:00 a.m.–5:00 p.m. Exhibits and Book Sales

  INVITED ADDRESS

 9:45–10:50 a.m. CRM-PIMS-AARMS Invited Address - Henri Darmon, McGill University

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)

 10:00–11:00 a.m. ASL Invited Address

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)

 10:30 a.m.–12:00 p.m. AWM Workshop: Mathematicians + Wikipedia – A Training Edit-a-thon

  INVITED ADDRESSES

 11:00 a.m.–12:00 p.m. SIAM Invited Address - Mariel Vazquez, UC Davis

 11:00 a.m.–12:00 p.m. TPSE Invited Address - Sylvester James Gates, Jr, Clark Leadership Chair in Science, 
University of Maryland

  PME (PI MU EPSILON)

 12:00–1:30 p.m. AMS-PME Undergraduate Student Poster Session, I

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)

 1:00–2:00 p.m. ASL Invited Address

  INVITED ADDRESS

 1:00–2:00 p.m. AMS Colloquium Lecture III - Terence Tao, University of California, Los Angeles

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)

 1:00–2:30 p.m. AWM Panel: Celebrating Academic Pivots in Mathematics

  JMM (JOINT MATHEMATICS MEETINGS)

 1:00–2:30 p.m. JMM Workshop on Leveraging Research-Based Instruction in Introductory Proofs Courses

 1:00–3:00 p.m. Professional Enhancement Program (PEP) 4A: Becoming a Math JEDI: Working for Justice, 
Equity, Diversity, and Inclusion

 1:00–3:00 p.m. Professional Enhancement Program (PEP) 5A: Development of Mathematics Programs for 
Workforce Preparation

  AIM (AMERICAN INSTITUTE OF MATHEMATICS)

 1:00–5:00 p.m. AIM Special Session on Graphs and Matrices, I

 1:00–5:00 p.m. AIM Special Session on Math Circle Activities as a Gateway Into Research, I

  AMS (AMERICAN MATHEMATICAL SOCIETY)

 1:00–5:00 p.m. AIM-AMS Special Session on Applied Topology Beyond Persistence Diagrams, I

 1:00–5:00 p.m. AMS Special Session on Algebraic Structures in Knot Theory, I
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 1:00–5:00 p.m. AMS Special Session on Analysis and Differential Equations at Undergraduate Institutions, II

 1:00–5:00 p.m. AMS Special Session on Combinatorial Perspectives on Algebraic Curves and their Moduli, I

 1:00–5:00 p.m. AMS Special Session on Combinatorics for Science, I

 1:00–5:00 p.m. AMS Special Session on Computational Biomedicine: Methods - Models - Applications, I

 1:00–5:00 p.m. AMS Special Session on Diffusive Systems in the Natural Sciences, I

 1:00–5:00 p.m. AMS Special Session on Discrete Homotopy Theory, I

 1:00–5:00 p.m. AMS Special Session on Dynamics and Management in Disease or Ecological Models 
(associated with the Gibbs Lecture by Suzanne Lenhart), III

 1:00–5:00 p.m. AMS Special Session on Dynamics and Regularity of PDEs, I

 1:00–5:00 p.m. AMS Special Session on Epistemologies of the South and the Mathematics of Indigenous Peoples, I

 1:00–5:00 p.m. AMS Special Session on Exploring Spatial Ecology via Reaction Diffusion Models: 
New Insights and Solutions, I

 1:00–5:00 p.m. AMS Special Session on Geometric Analysis in Several Complex Variables, I

 1:00–5:00 p.m. AMS Special Session on Geometric Group Theory (associated with the AMS Retiring 
Presidential Address), IV

 1:00–5:00 p.m. AMS Special Session on Geometry and Symmetry in Differential Equations, 
Control, and Applications, I

 1:00–5:00 p.m. AMS Special Session on Group Actions in Commutative Algebra, II

 1:00–5:00 p.m. AMS Special Session on History of Mathematics, II

 1:00–5:00 p.m. AMS Special Session on Ideal and Factorization Theory in Rings and Semigroups, III

 1:00–5:00 p.m. AMS Special Session on Informal Learning, Identity, and Attitudes in Mathematics, II

 1:00–5:00 p.m. AMS Special Session on Interplay Between Matrix Theory and Markov Systems: 
Applications to Queueing Systems and of Duality Theory, II

 1:00–5:00 p.m. AMS Special Session on Issues, Challenges and Innovations in Instruction of Linear Algebra, II

 1:00–5:00 p.m. AMS Special Session on Loeb Measure after 50 Years, II

 1:00–5:00 p.m. AMS Special Session on Modern Developments in the Theory of Configuration Spaces, I

 1:00–5:00 p.m. AMS Special Session on Navigating the Benefits and Challenges of Mentoring Students in 
Data-Driven Undergraduate Research Projects, I

 1:00–5:00 p.m. AMS Special Session on New Faces in Operator Theory and Function Theory, I

 1:00–5:00 p.m. AMS Special Session on Nonlinear Dynamics in Human Systems: 
Insights from Social and Biological Perspectives, I

 1:00–5:00 p.m. AMS Special Session on Partition Theory and q-Series, II

 1:00–5:00 p.m. AMS Special Session on Principles, Spatial Reasoning, and Science in First-Year Calculus, I

 1:00–5:00 p.m. AMS Special Session on Quaternions, II

 1:00–5:00 p.m. AMS Special Session on Spectral Methods in Quantum Systems, I

 1:00–5:00 p.m. AMS Special Session on The Mathematics of Decisions, Elections, and Games, I

 1:00–5:00 p.m. AMS Special Session on Topics in Combinatorics and Graph Theory, II

 1:00–5:00 p.m. AMS-AWM Special Session for Women and Gender Minorities in Symplectic and 
Contact Geometry and Topology, IV
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  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)

 1:00–5:00 p.m. AWM Special Session on Recent Developments in Harmonic Analysis, II

  COMAP (CONSORTIUM FOR MATHEMATICS AND ITS APPLICATIONS)
 1:00–5:00 p.m. COMAP Workshop on Modeling for Educators: Integrate Modeling into Your Classroom

  ILAS (INTERNATIONAL LINEAR ALGEBRA SOCIETY)
 1:00–5:00 p.m. ILAS Special Session on Sign-pattern Matrices and Their Applications

  SLMATH (MSRI/SIMONS LAUFER MATHEMATICAL SCIENCES INSTITUTE)
 1:00–5:00 p.m. SLMath (MSRI) Special Session on African Diaspora Joint Mathematics Working Groups 

(ADJOINT)

  SPECTRA
 1:00–5:00 p.m. Spectra Special Session on Research by LGBTQ+ Mathematicians

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS)
 1:00–6:00 p.m. SIAM Minisymposium on Mathematical Methods in Computer Vision and Image Analysis

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)
 2:00–3:00 p.m. ASL Invited Address

  INVITED ADDRESS
 2:15–3:20 p.m. PME J. Sutherland Frame Lecture - Trachette Jackson, University of Michigan

  AMS (AMERICAN MATHEMATICAL SOCIETY)
 2:30–4:00 p.m. AMS Committee on Science Policy Panel Discussion: Artificial Intelligence in 

Mathematics, Science, and Society

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)
 3:00–6:00 p.m. ASL Contributed Paper Session

  COMAP (CONSORTIUM FOR MATHEMATICS AND ITS APPLICATIONS)
 3:00–4:30 p.m. COMAP Panel on Math Modeling Contests: Trends, Topics, and Tips

  INVITED ADDRESS
 3:30–4:35 p.m. AMS Maryam Mirzakhani Lecture - Melanie Wood, Harvard University

  PME (PI MU EPSILON)
 3:30–5:00 p.m. AMS-PME Undergraduate Student Poster Session, II

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)
 4:00–5:30 p.m. AWM Workshop Poster Presentations

  INVITED ADDRESS
 4:45–5:50 p.m. AAAS-AMS Invited Address - Peter Winkler, Dartmouth College

  OTHER ORGANIZATION
 5:30–6:30 p.m. POMSIGMAA Guest Lecture and Discussion

  INVITED ADDRESS
 7:45–8:45 p.m. NAM Cox-Talbot Address - Ranthony A.C. Edmonds, Duke University

  SOCIAL EVENTS
 5:00–6:30 p.m. Association for Women in Mathematics Reception and Awards Presentation

 6:00–7:00 p.m. Mathematically Bent Theater

 6:00–7:00 p.m. Mathematical Reviews Reception

 6:00–7:30 p.m. SLMath (MSRI) Reception for Current and Future Donors
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 6:00–8:00 p.m. Undergraduate Student Reception

 6:00–9:00 p.m. National Association of Mathematicians Banquet

 8:00–10:00 p.m. Mathematical Variety Show

Saturday, January 06
  JMM (JOINT MATHEMATICS MEETINGS)
 7:30 a.m.–2:00 p.m. Joint Meetings Registration

  AIM (AMERICAN INSTITUTE OF MATHEMATICS)

 8:00 a.m.–12:00 p.m. AIM Special Session on Equivariant Techniques in Stable Homotopy Theory, I

  AMS (AMERICAN MATHEMATICAL SOCIETY)
 8:00 a.m.–12:00 p.m. AIM-AMS Special Session on Applied Topology Beyond Persistence Diagrams, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Advances in Analysis, PDE’s and Related Applications, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Arithmetic Geometry with a View toward Computation, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Coding Theory for Modern Applications, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Combinatorial Perspectives on Algebraic Curves and their Moduli, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Combinatorics for Science, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Computational techniques to study the geometry of the shape space, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Cryptography and Related Fields, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Dynamics and Regularity of PDEs, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Epistemologies of the South and the Mathematics of Indigenous Peoples, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Exploring Spatial Ecology via Reaction Diffusion Models: 
New Insights and Solutions, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Geometric Analysis in Several Complex Variables, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Geometry and Symmetry in Differential Equations, 
Control, and Applications, II

 8:00 a.m.–12:00 p.m. AMS Special Session on History of Mathematics, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Knots, Skein Modules, and Categorification, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Large Random Permutations (affiliated with AAAS-AMS Invited Address 
by Peter Winkler), II

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematical Modeling of Nucleic Acid Structures, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Mathematics and the Arts, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Metric Geometry and Topology, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Mock Modular Forms, Physics, and Applications, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Modern Developments in the Theory of Configuration Spaces, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Modular Tensor Categories and TQFTs beyond the 
Finite and Semisimple, II

 8:00 a.m.–12:00 p.m. AMS Special Session on New Faces in Operator Theory and Function Theory, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Nonlinear Dynamics in Human Systems: Insights from Social and 
Biological Perspectives, II
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 8:00 a.m.–12:00 p.m. AMS Special Session on Polymath Jr REU Student Research, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Recent Advances in Stochastic Differential Equation Theory and 
its Applications in Modeling Biological Systems, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Recent Developments in Commutative Algebra, I

 8:00 a.m.–12:00 p.m. AMS Special Session on Recent Developments in Numerical Methods for PDEs and Applications, I

 8:00 a.m.–12:00 p.m. AMS-SIAM Special Session on Research in Mathematics by Undergraduates and Students in 
Post-Baccalaureate Programs, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Serious Recreational Mathematics, III

 8:00 a.m.–12:00 p.m. AMS Special Session on Spectral Methods in Quantum Systems, II

 8:00 a.m.–12:00 p.m. AMS Special Session on The Mathematics of Decisions, Elections, and Games, II

 8:00 a.m.–12:00 p.m. AMS Special Session on Undergraduate Research Activities in Mathematical and 
Computational Biology, III

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)

 8:00 a.m.–12:00 p.m. AWM Special Session on Mathematics in the Literary Arts and Pedagogy in Creative Settings

  ILAS (INTERNATIONAL LINEAR ALGEBRA SOCIETY)

 8:00 a.m.–12:00 p.m. ILAS Special Session on Graphs and Matrices

 8:00 a.m.–12:00 p.m. ILAS Special Session on Spectral and combinatorial problems for nonnegative matrices 
and their generalizations

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS)

 8:00 a.m.–12:00 p.m. SIAM ED Session on Artificial Intelligence and its Uses in Mathematical Education, 
Research, and Automation in the Industry

 8:00 a.m.–12:00 p.m. SIAM Minisymposium on Recent Developments in the Analysis and Control of 
Partial Differential Equations Arising in Fluid and Fluid-Structure Interactive Dynamics

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)

 9:00–10:00 a.m. ASL Invited Address

  JMM (JOINT MATHEMATICS MEETINGS)

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 7A: Effective Technical Advocacy: 
How to Talk About Mathematics so Policymakers will Hear you

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 9B: Developing Learning Activities for 
Multivariable Calculus using CalcPlot3D and 3D-Printed Surfaces

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)

 9:00–11:30 a.m. AWM Workshop: Women in Operator Theory

  JRMF (JULIA ROBINSON MATHEMATICS FESTIVAL)

 9:00 a.m.–12:00 p.m. Julia Robinson Math Festival

  JMM (JOINT MATHEMATICS MEETINGS)

 9:00 a.m.–2:00 p.m. Exhibits and Book Sales

 9:00–11:00 a.m. Professional Enhancement Program (PEP) 4A: Becoming a Math JEDI: 
Working for Justice, Equity, Diversity, and Inclusion

  INVITED ADDRESS

 9:45–10:50 a.m. AMS Lecture on Education - Suzanne Weekes, Society for Industrial and Applied Mathematics
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  ASL (ASSOCIATION OF SYMBOLIC LOGIC)

 10:00–11:00 a.m. ASL Invited Address

  NAM (NATIONAL ASSOCIATION OF MATHEMATICIANS)

 10:00–11:00 a.m. NAM Business Meeting

  SLMATH (MSRI/SIMONS LAUFER MATHEMATICAL SCIENCES INSTITUTE)

 11:30 a.m.–1:00 p.m. SLMath (MSRI) - NAM Film Presentation: World Premiere of George Csicsery’s film 
“Journeys of Black Mathematicians: Part 1” and Panel Discussion

  ASL (ASSOCIATION OF SYMBOLIC LOGIC)

 1:00–2:00 p.m. ASL Invited Address

  JMM (JOINT MATHEMATICS MEETINGS)

 1:00–3:00 p.m. Professional Enhancement Program (PEP) 3A: Changing Math Department Culture: 
Embracing Servingness

  AIM (AMERICAN INSTITUTE OF MATHEMATICS)

 1:00–5:00 p.m. AIM Special Session on Equivariant Techniques in Stable Homotopy Theory, I

  AMS (AMERICAN MATHEMATICAL SOCIETY)

 1:00–5:00 p.m. AIM-AMS Special Session on Applied Topology Beyond Persistence Diagrams, III

 1:00–5:00 p.m. AMS Special Session on Advances in Analysis, PDE’s and Related Applications, III

 1:00–5:00 p.m. AMS Special Session on Arithmetic Geometry with a View toward Computation, III

 1:00–5:00 p.m. AMS Special Session on Combinatorial Perspectives on Algebraic Curves and their Moduli, III

 1:00–5:00 p.m. AMS Special Session on Combinatorics for Science, III

 1:00–5:00 p.m. AMS Special Session on Computational techniques to study the geometry of the shape space, III

 1:00–5:00 p.m. AMS Special Session on Cryptography and Related Fields, III

 1:00–5:00 p.m. AMS Special Session on Diffusive Systems in the Natural Sciences, II

 1:00–5:00 p.m. AMS Special Session on Discrete Homotopy Theory, II

 1:00–5:00 p.m. AMS Special Session on Dynamics and Regularity of PDEs, III

 1:00–5:00 p.m. AMS Special Session on Exploring Spatial Ecology via Reaction Diffusion Models: 
New Insights and Solutions, III

 1:00–5:00 p.m. AMS Special Session on Geometric Analysis in Several Complex Variables, III

 1:00–5:00 p.m. AMS Special Session on Geometry and Symmetry in Differential Equations, 
Control, and Applications, III

 1:00–5:00 p.m. AMS Special Session on History of Mathematics, IV

 1:00–5:00 p.m. AMS Special Session on Informal Learning, Identity, and Attitudes in Mathematics, III 

 1:00–5:00 p.m. AMS Special Session on Mathematics and the Arts, IV

 1:00–5:00 p.m. AMS Special Session on Metric Geometry and Topology, III

 1:00–5:00 p.m. AMS Special Session on Mock Modular Forms, Physics, and Applications, IV

 1:00–5:00 p.m. AMS Special Session on Modular Tensor Categories and TQFTs beyond the 
Finite and Semisimple, III

 1:00–5:00 p.m. AMS Special Session on Navigating the Benefits and Challenges of Mentoring Students in 
Data-Driven Undergraduate Research Projects, II

 1:00–5:00 p.m. AMS Special Session on New Faces in Operator Theory and Function Theory, III
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 1:00–5:00 p.m. AMS Special Session on Partition Theory and q-Series, III

 1:00–5:00 p.m. AMS Special Session on Polymath Jr REU Student Research, II

 1:00–5:00 p.m. AMS Special Session on Principles, Spatial Reasoning, and Science in First-Year Calculus, II

 1:00–5:00 p.m. AMS Special Session on Recent Advances in Stochastic Differential Equation Theory and 
its Applications in Modeling Biological Systems, III

 1:00–5:00 p.m. AMS Special Session on Recent Developments in Commutative Algebra, II

 1:00–5:00 p.m. AMS Special Session on Recent Developments in Numerical Methods for PDEs and Applications, II

 1:00–5:00 p.m. AMS-SIAM Special Session on Research in Mathematics by Undergraduates and 
Students in Post-Baccalaureate Programs, IV

 1:00–5:00 p.m. AMS Special Session on Serious Recreational Mathematics, IV

 1:00–5:00 p.m. AMS Special Session on Spectral Methods in Quantum Systems, III

 1:00–5:00 p.m. AMS Special Session on The Mathematics of Decisions, Elections, and Games, III

 1:00–5:00 p.m. AMS Special Session on Undergraduate Research Activities in Mathematical and 
Computational Biology, IV

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)
 1:00–5:00 p.m. AWM Special Session on Mathematics in the Literary Arts and Pedagogy in Creative Settings

  ILAS (INTERNATIONAL LINEAR ALGEBRA SOCIETY)
 1:00–5:00 p.m. ILAS Special Session on Graphs and Matrices

 1:00–5:00 p.m. ILAS Special Session on Spectral and combinatorial problems for nonnegative 
matrices and their generalizations

  SIAM (SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS)
 1:00–6:00 p.m. SIAM Minisymposium on Current Advances in Modeling and Simulation to 

Uncover the Complexity of Disease Dynamics 

  AWM (ASSOCIATION FOR WOMEN IN MATHEMATICS)
 1:30–4:30 p.m. AWM Workshop: Women in Operator Theory

  JMM (JOINT MATHEMATICS MEETINGS)
 2:00–3:30 p.m. JMM Panel: Cal-Bridge: Building Bridges and Diversifying Mathematics

  INVITED ADDRESS
 3:30–4:35 p.m. AMS-MAA-SIAM Gerald and Judith Porter Public Lecture
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AMS Employment Center Web Services
Employment Center registration information should be 
accessed through the MathJobs.org system. The website 
and all information will be available in early September 
2023 and will remain accessible through January 5, 2024 
(the last day of the Employment Center). While some in-
stitutions may not set appointments until late December 
2023, virtually all scheduling will be done before any Joint 
Mathematics Meetings (JMM) travel takes place, so appli-
cants should expect few or no additional appointments to 
be available after arrival.

No Admittance Without a JMM Badge
All applicants and employers who plan to enter the Em-
ployment Center—even just for one interview—must 
present a 2024 Joint Meetings Registration badge. Meeting 
badges are obtained by registering for the JMM and paying 

AMS Employment Center
Hall B, Moscone North/South, Moscone Center, 

San Francisco, CA (Meeting #1192) 
January 3–6, 2024

The AMS Employment Center offers a convenient, safe, and practical meeting place for employers and job seekers 
attending the Joint Meetings. The focus of the Employment Center is on PhD-level mathematical scientists and repre-
sentatives from academia, business, and government who seek to hire them. The AMS strongly encourages use of the 
Employment Center venues for all interviews of prospective employees at society meetings. The use of hotel guest rooms 
for interviews violates the AMS Welcoming Environment Policy. Interviews must be conducted in public meeting spaces.

2024 AMS Employment Center Schedule
December 20, 2023 is the deadline for table registration. After this date, only “One-Day Tables” will be available for 
purchase. This is also the deadline to register for the JMM badge, required for admittance, at advance registration prices. 

Hours of Operation (Please note there is no access to the EC prior to the opening times listed.):
Wednesday, January 3, 2024—8:00 a.m.–3:00 p.m.
Thursday, January 4, 2024—8:00 a.m.–5:30 p.m.

Friday, January 5, 2024—8:00 a.m.–5:30 p.m.

Location: Hall B, Moscone North/South, Moscone Center, San Francisco, CA (meeting #1192).

Do not schedule an interview to begin until 15 minutes after the EC opens.

a meeting registration fee. The advanced registration dead-
line is December 20, 2023 (11:59 p.m. EST). See the JMM 
website at www.jointmathematicsmeetings.org/jmm for 
registration instructions and rates.

Employers: Choose a Table Type
Three table types are available for employers, based on 
the number of interviewers who will be present at any 
given time:

 • One or two interviewers per table in the “Quiet” area: 
US$380/$285 AMS Institutional Member, each addi-
tional table US$215/$161 AMS Institutional Member.

 • Three to six interviewers per table in the “Committee” 
area: US$460/$345 AMS Institutional Member, each ad-
ditional table US$235/$176 AMS Institutional Member.

 • “One-Day Tables” allow for on-site interviewing. These 
tables, which can accommodate up to two interviewers, 
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 • The Employment Center is restricted to registered 
interviewers and applicants who have a scheduled ap-
pointment.

 • The Employment Center offers no guarantees of inter-
views or jobs. Hiring decisions are not made during or 
immediately following interviews.

 • Research-oriented postdoctoral positions are not ordi-
narily listed or discussed at the Employment Center.
Please visit the Employment Center website for further 

advice, information, and program updates at www.ams.org 
/emp-reg/.

Applicants: Signing Up with the 
AMS Employment Center
Applicants do not pay Employment Center fees, but ad-
mission to the Employment Center room requires a 2024 
JMM badge, obtainable by registering (and paying a fee) 
for the JMM. To register for the meeting, go to the website: 
www.jointmathematicsmeetings.org/jmm.

 • To let employers know that an applicant will be attend-
ing the JMM, applicants should log into their Math-
Jobs.org account or create a new account, look for the 
“EmpCent” icon across the top tool bar, and mark that 
they will be attending the JMM by clicking the “Click 
here if you are attending the Employment Center” link. 
Applicants can then upload documents and peruse the 
list of employers attending and the positions available. 
Applicants do not have the option to request an inter-
view with an employer, but if an applicant is interested 
in any position, the applicant can apply to the job. The 
employer will be aware that the applicant is also attend-
ing the JMM and will contact the applicant directly if 
interested in setting up an interview.
Applicants should keep track of their interview sched-

ules. If an applicant is invited for an interview at a time 
when they are not available, they should ask the employer 
to offer a new time or suggest one.

For complete information, visit www.ams.org/emp-reg/.
Questions about the Employment Center registration and 

participation can be directed to Rosalynde Vas Dias, AMS Pro-
grams Department, at emp-info@ams.org.

may be purchased through January 5, 2024. The fee is 
US$210/$157 AMS Institutional Member. Please register 
online at MathJobs.org and choose the “EC One-Day 
Table purchase” option.

 • Electricity is supplied to every table with purchase of 
a table.
All Employment Center data and registrations must be 

entered on the MathJobs.org site. An existing account can 
be used for accessing Employment Center services and for 
paying applicable fees. If no account exists, participants can 
start an account solely for Employment Center use.

Employers are expected to create their own interview 
schedules as far in advance as possible by using the assist-
ed-email system in MathJobs.org, or by using other means 
of communication. Please do not schedule an interview to 
begin until 15 minutes after the Employment Center opens.

Employers must mark appointments as “confirmed” in 
their MathJobs.org account to ensure that appointments 
display in applicants’ schedules. At the time of interview, 
the employer will meet the applicant in the on-site waiting 
area and escort the applicant to their table.

Employers: Registering with the 
AMS Employment Center

 • Registration runs from early September 2023 through 
December 20, 2023 on www.MathJobs.org. After De-
cember 20, only One-Day Tables will be available. They 
may also be reserved and paid for through MathJobs.org.

 • New users of MathJobs.org should click the “NEW 
EMPLOYER” link on the Registered Employers page of 
www.MathJobs.org. Choose the appropriate table type 
and fill out the New Employer Form.

 • Existing users of MathJobs.org should go to www.Math 
Jobs.org and log into their existing account. They 
may purchase a table by clicking the “EmpCent” logo 
in the menus along the top tool bar and using the “buy 
tables” link.

 • Every person who needs to enter the Employment Center 
area must have a meeting badge (obtained by registering 
for the JMM and paying a meeting registration fee).
To display an ad on site and use no Employment Center 

services at all, an employer may submit a one-page paper 
ad, including departmental contact information, to the 
Employment Center staff on site in San Francisco. There is 
no fee for this service.

For complete information, visit www.ams.org/emp-reg/.

Applicants: Deciding to Attend
The majority of Employment Center employers are aca-
demic departments of mathematical sciences seeking to 
meet a short list of applicants who applied for their open 
positions during the fall. Each year, a few government or 
industry employers are present. Often, they are seeking US 
citizens only due to existing contracts.



The Mathematical Moments program promotes 

appreciation and understanding of the role mathematics 

plays in science, nature, technology, and human culture.

www.ams.org/mathmoments

MM/166

Bringing Photographs to Life

Picture this. Your best friend just 
returned from a whirlwind vacation to 
Rome. She’s showing you photo after 
photo of the Colosseum, the famed 
ancient Roman amphitheater. As you 
look through her pictures, you wonder: 
Are these 2D photos really giving you a 
good sense of the 3D Colosseum?

It turns out you’re getting more infor-
mation than you might think. Tools that 
build 3D models out of 2D photos are all 

around us. They blur our Zoom background when we’re embarrassed by the mess behind 
us, and they make the special effects in our favorite movies possible. In fact, in 2009, a team 
from the University of Washington, Cornell University, and Microsoft Research used images 
uploaded to Flickr by tourists like your friend to create a 3D model of the Colosseum,as well 
as other attractions in Venice, Italy; and Dubrovnik, Croatia.

The mathematics of image reconstruction is both 
simpler and more abstract than it seems. To recon-
struct a 3D model based on photographic data, 
researchers and algorithms must solve a set of poly-
nomial equations. Some solutions to these equations 
work mathematically, but correspond to an unrealistic 
scenario — for instance, a camera that took a photo 
backwards. Additional constraints help ensure this 
doesn’t happen. Researchers are now investigating 
the mathematical structures underlying image recon-
struction, and stumbling over unexpected links with 
geometry and algebra.

References:
Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Steve Seitz, and Richard Szeliski. Building Rome in a Day, https://grail.
cs.washington.edu/rome/. 

Andrew Pryhuber, Rainer Sinn, Rekha R. Thomas. Existence of Two View Chiral Reconstructions, https://arxiv.org/abs/2011.07197.

Joe Kileel, Kathlén Kohn. Snapshot of Algebraic Vision, https://arxiv.org/pdf/2210.11443.pdf.

Watch an interview 
with an expert!

A 3D reconstruction of the Colosseum based on photos from Flickr. 
Credit to Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Steve Seitz, and Richard Szeliski. 
Building Rome in a Day, https://grail.cs.washington.edu/rome/.
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A team of mathematicians found that this shape, 
which has been studied for centuries, has close 
ties to an image reconstruction algorithm. 
Credit to Alain Esculier, mathcurve.com.
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Introduction to Mathematics: Number, Space, and Structure is designed 
for an introduction to proof course organized around the themes of num-
ber and space. Concepts are illustrated using both geometric and number 
examples, while frequent analogies and applications help build intuition 
and context in the humanities, arts, and sciences. Sophisticated mathemat-
ical ideas are introduced early and then revisited several times in a spiral 
structure, allowing students to progressively develop rigorous thinking. 
Throughout, the presentation is enlivened with whimsical illustrations, apt 
quotations, and glimpses of mathematical history and culture. 

Pure and Applied Undergraduate Texts, Volume 62; 2023; 415 pages; Softcover; ISBN: 
978-1-4704-7188-0; List US$89; AMS members US$71.20; MAA members US$80.10; 
Order code AMSTEXT/62

This new revision of a best-selling textbook bridges the gap between lower-division 
mathematics courses and advanced mathematical thinking. Featuring clear writing, 
appealing topics, and abundant examples and exercises, the book introduces tech-
niques for writing proofs in the context of discrete mathematics. It is suitable for an 
introduction to proof course or a course in discrete mathematics. This new edition has 
been expanded and modernized throughout, featuring: 

• a new chapter on combinatorial geometry

• an expanded treatment of the combinatorics of indistinguishable objects

• new sections on the inclusion-exclusion principle and circular permutations

• over 365 new exercises

Pure and Applied Undergraduate Texts, Volume 63; 2023; approximately 503 pages; Softcover; ISBN: 
978-1-4704-7204-7; List US$89; AMS members US$71.20; MAA members US$80.10; Order code 
AMSTEXT/63

Are you teaching a course that introduces proofs?

Discover Two New Textbooks from the AMS

Visit
bookstore.ams.org/bookstore-textbooks
to learn more about these new titles 
and other texts for your courses

http://bookstore.ams.org/bookstore-textbooks
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