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The Beauty of Roots
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Figure 1. Roots of all polynomials of degree 23 whose
coefficients are ±1. The brightness shows the number of
roots per pixel.

One of the charms of mathematics is that simple rules
can generate complex and fascinating patterns, which raise
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questions whose answers require profound thought. For
example, if we plot the roots of all polynomials of degree
23 whose coefficients are all 1 or −1, we get an astounding
picture, shown in Figure 1.

More generally, define a Littlewood polynomial to be a

polynomial 𝑝(𝑧) = ∑𝑑
𝑖=0 𝑎𝑖𝑧𝑖 with each coefficient 𝑎𝑖 equal

to 1 or −1. Let 𝐗𝑛 be the set of complex numbers that
are roots of some Littlewood polynomial with 𝑛 nonzero
terms (and thus degree 𝑛 − 1). The 4-fold symmetry of
Figure 1 comes from the fact that if 𝑧 ∈ 𝐗𝑛 so are −𝑧 and 𝑧.
The set 𝐗𝑛 is also invariant under the map 𝑧 ↦ 1/𝑧, since
if 𝑧 is the root of some Littlewood polynomial then 1/𝑧
is a root of the polynomial with coefficients listed in the
reverse order.

It turns out to be easier to study the set

𝐗 =
∞

⋃
𝑛=1

𝐗𝑛 = {𝑧 ∈ ℂ|𝑧 is the root of some

Littlewood polynomial} .

If 𝑛 divides 𝑚 then 𝐗𝑛 ⊆ 𝐗𝑚, so 𝐗𝑛 for a highly divisible
number 𝑛 can serve as an approximation to 𝐗, and this is
why we drew 𝐗24.

Some general properties of 𝐗 are understood. It is easy
to show that 𝐗 is contained in the annulus 1/2 < |𝑧| < 2.
On the other hand, Thierry Bousch showed [2] that the
closure of 𝐗 contains the annulus 2−1/4 ≤ |𝑧| ≤ 21/4. This
means that the holes near roots of unity visible in the sets
𝐗𝑛 must eventually fill in as we take the union over all
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Figure 2. The region of 𝐗24 near the point 𝑧 = 1
2
𝑒𝑖/5.

𝑛. More surprisingly, Bousch showed in 1993 that the clo-
sure 𝐗 is connected and locally path-connected [3]. It is
worth comparing the work of Odlyzko and Poonen [7],
who previously showed similar result for roots of polyno-
mials whose coefficients are all 0 or 1.

The big challenge is to understand the diverse, compli-
cated and beautiful patterns that appear in different re-
gions of the set 𝐗. There are websites that let you explore
and zoom into this set online [4, 5, 8]. Different regions
raise different questions.

For example, what is creating the fractal patterns in
Figure 2 and elsewhere? An anonymous contributor sug-
gested a fascinating line of attack which was further devel-
oped by Greg Egan [5]. Define two functions from the
complex plane to itself, depending on a complex param-
eter 𝑞:

𝑓+𝑞(𝑧) = 1 + 𝑞𝑧, 𝑓−𝑞(𝑧) = 1 − 𝑞𝑧.

When |𝑞| < 1 these are both contraction mappings, so by
a theorem of Hutchinson [6] there is a unique nonempty
compact set 𝐷𝑞 ⊆ ℂ with

𝐷𝑞 = 𝑓+𝑞(𝐷𝑞) ∪ 𝑓−𝑞(𝐷𝑞).

We call this set a dragon, or the 𝐪-dragon to be specific.
And it seems that for |𝑞| < 1, the portion of the set 𝐗 in a
small neighborhood of the point 𝑞 tends to look like a rotated
version of 𝐷𝑞.

Figure 3 shows some examples. To precisely describe
what is going on, much less prove it, would take real work.
We invite the reader to try. A heuristic explanation is
known, which can serve as a starting point [1, 5]. Bousch
[3] has also proved this related result:

Theorem. For 𝑞 ∈ ℂ with |𝑞| < 1, we have 𝑞 ∈ 𝐗 if and only
if 0 ∈ 𝐷𝑞. When this holds, the set 𝐷𝑞 is connected.

Figure 3. Top: the set 𝐗 near 𝑞 = 0.594 + 0.254𝑖 at left, and the
set 𝐷𝑞 at right. Bottom: the set 𝐗 near 𝑞 = 0.375453 + 0.544825𝑖
at left, and the set 𝐷𝑞 at right.
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