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1. Introduction
Ellipticity is a well-studied characteristic of some partial
differential equations which enforces regularity on its so-
lutions. The prototype problem is the Laplace equation
Δ𝑢 ≔ 𝜕21𝑢 + … + 𝜕2𝑛𝑢 = 0 whose solutions are known
as the harmonic functions. To illustrate its usefulness,
consider an arbitrary sequence of uniformly bounded
functions over a compact set. In contrast to numerical
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sequences, a bounded sequence of functions does not nec-
essarily have a uniformly convergent subsequence, even if
we assume that each function in such sequence is smooth.
However, as soon as we assume that the functions are har-
monic, then such uniform limits are always guaranteed.

The property we have just described is known as com-
pactness. We will see that it can be derived from regular-
ity estimates for harmonic functions. It is a powerful tool
that can be used in many fundamental results, such as the
existence theorem for harmonic functions with prescribed
boundary values or the convergence of numerical schemes.

To fix some ideas, let us consider a general second-order
partial differential equation (PDE) of the form

𝐹(𝐷2𝑢,𝐷𝑢, 𝑢, 𝑥) = 0 in Ω ⊆ ℝ𝑛,

where 𝐹 = 𝐹(𝑀, 𝑝, 𝑧, 𝑥)∶ ℝ𝑛×𝑛
sym × ℝ𝑛 × ℝ × Ω → ℝ

determines the nonlinear operator on the left-hand side,

1604 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 10



and the second-order differentiable function 𝑢∶ Ω → ℝ
is the unknown of the problem. Our focus lies on elliptic
problems, which are defined by the requirement that 𝐹 is
nondecreasing in the Hessian variable (𝑀).1

Uniform ellipticity arises when we further assume some
quantitative control on themonotonicity of 𝐹 with respect
to 𝑀. In the case that the function 𝐹 is differentiable, we
say that the operator is uniformly elliptic if

𝜆𝐼 ≤ 𝐷𝑀𝐹 ≤ Λ𝐼,

for some fixed constants 0 < 𝜆 ≤ Λ. In the previous expres-
sion, 𝐼 ∈ ℝ𝑛×𝑛 is the identity matrix and 𝐷𝑀𝐹 = (𝜕𝑚𝑖𝑗𝐹) ∈
ℝ𝑛×𝑛

sym is the matrix of partial derivatives of 𝐹 with respect
to the Hessian variable 𝑀 = (𝑚𝑖𝑗) ∈ ℝ𝑛×𝑛

sym .
Operators that are elliptic, but not necessarily uni-

formly elliptic, are called degenerate elliptic. These find prac-
tical applications in diverse fields such asmaterial sciences,
fluid dynamics, finance, and image processing. Some fa-
mous examples of degenerate equations include the mini-
mal surface equation

div ( 𝐷𝑢
√1 + |𝐷𝑢|2

) = 0,

the 𝑝-Laplace equation (𝑝 ≥ 1)

div(|𝐷𝑢|𝑝−2𝐷𝑢) = 0,

and, in the time-dependent case, the porousmedium equa-
tion (𝑚 > 1)

𝜕𝑡𝑢 = Δ(𝑢𝑚).
In general, it has been observed that solutions of degener-
ate elliptic equations are not always guaranteed to have the
same regularity estimates as uniformly elliptic equations.

Motivated by the observation for harmonic functions,
we may wonder the following:

1. Have solutions of uniformly elliptic PDEs a com-
pactness property, similar to the harmonic functions?

2. Which additional hypotheses could complement
the degenerate ellipticity in order to recover a compact-
ness property for the solutions?

The analysis of PDEs relies significantly on bounds for
the modulus of continuity of a solution and its derivatives,
these estimates constitute the cornerstones of the regularity
theory. The development of the regularity theory for elliptic
equations has a rich history with numerous authors. This
survey concerns the regularity theory of uniformly ellip-
tic equations that originated during the 1980s and 1990s,
with main contributions due to Krylov, Safonov, Evans,
and Caffarelli, among many others. This regularity theory
is now commonly known as the Krylov–Safonov theory.

1We assume the following partial order onℝ𝑛×𝑛
sym : 𝑀 ≤ 𝑁 if and only if 𝑥⋅𝑀𝑥 ≤

𝑥 ⋅ 𝑁𝑥 for all 𝑥 ∈ ℝ𝑛.

Figure 1. The mean value theorem: If Δ𝑢 ≤ 0 in Ω, then for any
𝐵𝑟(𝑥0) ⊆ Ω it holds that 1

|𝐵𝑟(𝑥0)|

´
𝐵𝑟(𝑥0)

𝑢 ≤ 𝑢(𝑥0).

We aim to provide a perspective on ongoing develop-
ments in the regularity theory of degenerate elliptic prob-
lems. First, we give an overview of the regularity theory
for the Laplacian and uniformly elliptic equations. This
discussion will shed light on the fundamental strategies
employed in classical scenarios, enabling us to appreciate
better the challenges posed by degenerate equations.

Afterward, we focus on the case of degenerate elliptic-
ity, where the absence of uniform ellipticity is comple-
mented with some additional hypotheses. These assump-
tions could be interpreted as some sort of alternative reg-
ularizing mechanism for the solution. It is the interplay
of these phenomena what we find to be a quite attractive
venue of current research.

We focus on three types of degeneracies which can be
loosely described in the following way:

1. Elliptic equations that hold only where the gradi-
ent is large: Either the solution obeys a uniformly elliptic
equation or its gradient is bounded.

2. Small perturbations: Uniform ellipticity holds in a
neighborhood of a given profile.

3. Quasi-Harnack: Uniformly ellipticity holds at
macroscopic scales.

Each one of the previous problems will be presented in
a different section, titled accordingly. These section titles
make reference to the articles [IS16], [Sav07], and [DSS21],
where the respective results were originally studied.

2. The Laplacian
The Laplacian Δ ≔ 𝜕21+…+𝜕2𝑛 is the fundamental differen-
tial operator that describes the ellipticity phenomenon in
ℝ𝑛. Solutions of the equation Δ𝑢 = 0, also known as har-
monic functions, are abundant in pure and applied math-
ematics.

Perhaps the most characteristic features of uniformly el-
liptic problems are the Harnack inequalities. In the case
of the Laplacian, these arise as consequences of the diver-
gence theorem through the mean value theorem (Figure
1).
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Figure 2. The key observation is that for any 𝑥1 ∈ 𝐵𝑟/3(𝑥0) we
always get the inclusions 𝐵𝑟/3(𝑥0) ⊆ 𝐵2𝑟/3(𝑥1) ⊆ 𝐵𝑟(𝑥0).

The weak Harnack inequality states that for any 𝑢 ≥ 0
satisfying Δ𝑢 ≤ 0 in 𝐵𝑟(𝑥0), and any value 𝜇 > 0, it holds
that

|{𝑢 ≥ 𝜇} ∩ 𝐵𝑟/3(𝑥0)|
|𝐵𝑟/3(𝑥0)|

≤ 2𝑛𝜇−1 inf
𝐵𝑟/3(𝑥0)

𝑢. (2.1)

Figure 2 illustrates a geometric argument from where to
establish this estimate from the mean value theorem.

This control on the distribution of the solution is quite
powerful. In particular, it can be used to prove an interior
Hölder estimate for harmonic functions in the following
form

𝑟𝛼[𝑢]𝐶𝛼(𝐵𝑟/3(𝑥0)) ≤ 𝐶‖𝑢‖𝐿∞(𝐵𝑟(𝑥0)), (2.2)

for some 𝛼 ∈ (0, 1) and 𝐶 > 0 depending only on the
dimension.

Although we have assumed that the solution is 𝐶2-
regular, the point of the estimate is that its own continuity
gets controlled by its size rather than its derivatives. No-
tably, a uniformly bounded family of harmonic functions
is automatically equicontinuous on any compact subset.
By the Arzelá–Ascoli theorem, this family always contains
a sequence that converges locally uniformly to a limit.
Moreover, it can be shown that the limit is also a harmonic
function.
2.1. The diminish of oscillation. The Estimate (2.2) can
be derived through a strategy known as diminish of oscilla-
tion. This elegant argument exemplifies the geometric ap-
proach in elliptic PDEs. Let us explain it in detail:

1. Assume that 𝑢 ∈ 𝐶2(𝐵1) is a harmonic function tak-
ing values between 0 and 1. For 𝑥0 ∈ 𝐵1/2 and 𝑟 ∈ (0, 1/3],
we aim to show that

sup
𝐵𝑟(𝑥0)

|𝑢 − 𝑢(𝑥0)| ≤ 𝐶𝑟𝛼.

This can be proved recursively if there exists some small

𝜃 ∈ (0, 1) such that for any 𝑟 ∈ (0, 1/3]2

osc
𝐵𝑟/3(𝑥0)

𝑢 ≤ (1 − 𝜃) osc
𝐵𝑟(𝑥0)

𝑢. (2.3)

Indeed, (2.3) implies that the oscillation of 𝑢 has a geo-
metric decay in triadic balls

osc
𝐵3−𝑘 (𝑥0)

𝑢 ≤ (1 − 𝜃)𝑘−1.

By conveniently fixing 𝛼 ≔ log1/3(1−𝜃) and 𝐶 ≔ (1−𝜃)−2
we now get the desired estimate in the following form and
for every 𝑟 ∈ (0, 1/3) and 𝑘 = ⌊log1/3 𝑟⌋, such that 3−(𝑘+1) <
𝑟 ≤ 3−𝑘

sup
𝐵𝑟(𝑥0)

|𝑢 − 𝑢(𝑥0)| ≤ osc
𝐵𝑟(𝑥0)

𝑢

≤ osc
𝐵3−𝑘 (𝑥0)

𝑢

≤ (1 − 𝜃)𝑘−1

= 𝐶3−𝛼(𝑘+1)

≤ 𝐶𝑟𝛼.
2. To get the diminish of oscillation (2.3), we apply

the weak Harnack inequality to a given translation of 𝑢.
Keep in mind that 𝑢 oscillates between 𝑚𝑟 ≔ inf𝐵𝑟(𝑥0) 𝑢
and 𝑀𝑟 ≔ sup𝐵𝑟(𝑥0) 𝑢 over 𝐵𝑟(𝑥0), and consider as well
𝜇𝑟 ≔ (𝑚𝑟 +𝑀𝑟)/2, the level set that sits just in the middle.
Hence, at least one of the following alternatives must be
true:

|{𝑢 ≥ 𝜇𝑟} ∩ 𝐵𝑟/3(𝑥0)|
|𝐵𝑟/3(𝑥0)|

≥ 1
2

or
|{𝑢 ≤ 𝜇𝑟} ∩ 𝐵𝑟/3(𝑥0)|

|𝐵𝑟/3(𝑥0)|
≥ 1
2 .

In the first case we apply the weak Harnack inequality
(2.1) to the positive harmonic function (𝑢 −𝑚𝑟) in 𝐵𝑟(𝑥0)
to get that

inf
𝐵𝑟/3(𝑥0)

(𝑢 − 𝑚𝑟) ≥ 2−(𝑛+1)(𝜇𝑟 −𝑚𝑟).

This estimate raises the lower bound on 𝑢 from 𝑚𝑟 over
the ball 𝐵𝑟(𝑥0), to

𝑚𝑟 + 2−(𝑛+1)(𝜇𝑟 −𝑚𝑟) = 𝑚𝑟 + 2−(𝑛+2) osc
𝐵𝑟(𝑥0)

𝑢

over 𝐵𝑟/3(𝑥0) (Figure 3).
For the other alternative, we apply the weak Harnack

inequality to (𝑀𝑟−𝑢) to get a similar improvement on the
upper bound instead. In conclusion, either option implies
the diminish of oscillation Estimate (2.3) for 𝜃 ≔ 2−(𝑛+2).

□
2The oscillation of a function measures the variation of the values that it takes
in a given set:

osc
𝐸
𝑢 ≔ sup

𝑥,𝑦∈𝐸
|𝑢(𝑥) − 𝑢(𝑦)|.
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Figure 3. Diminish of oscillation: The lower bound of the
solution improves if the measure of {𝑢 ≥ 𝜇𝑟} ∩ 𝐵𝑟/3(𝑥0) is at
least half of the measure of 𝐵𝑟/3(𝑥0).

3. Uniformly Elliptic Equations
Let us now consider the second-order equation

𝐹(𝐷2𝑢,𝐷𝑢, 𝑥) = 0. (3.1)

Assuming that 𝐹 is differentiable and 𝐹(0, 0, 𝑥) = 0, we get
by the fundamental theorem of calculus that 𝑢 satisfies a
homogeneous linear equation of the following form3

𝐴 ∶ 𝐷2𝑢 + 𝑏 ⋅ 𝐷𝑢 = 0. (3.2)

Indeed, we just need to integrate the derivative
(𝑑/𝑑𝑡)𝐹(𝑡𝐷2𝑢, 𝑡𝐷𝑢, 𝑥) from 𝑡 = 0 to 𝑡 = 1 to notice that
the coefficients 𝐴 = (𝑎𝑖𝑗(𝑥)) ∈ ℝ𝑛×𝑛

sym and 𝑏 = (𝑏𝑖(𝑥)) ∈ ℝ𝑛

are given by

𝑎𝑖𝑗(𝑥) ≔
ˆ 1

0
𝜕𝑚𝑖𝑗𝐹(𝑡𝐷2𝑢(𝑥), 𝑡𝐷𝑢(𝑥), 𝑥)𝑑𝑡,

𝑏𝑖(𝑥) ≔
ˆ 1

0
𝜕𝑝𝑖𝐹(𝑡𝐷2𝑢(𝑥), 𝑡𝐷𝑢(𝑥), 𝑥)𝑑𝑡.

Even though these coefficients depend on the solution as
well, under suitable hypotheses on the derivatives of 𝐹 we
can overlook this dependence and understand the equa-
tion in a broad sense.

To start, we can just assume that the coefficients are uni-
formly bounded. In particular, |𝑏| ≤ Λ, which would fol-
low from a Lipschitz assumption on 𝐹. Uniform ellipticity
requires that for some constants 0 < 𝜆 ≤ Λ, it holds that
𝜆𝐼 ≤ 𝐷𝑀𝐹 ≤ Λ𝐼, which means that 𝜆𝐼 ≤ 𝐴 ≤ Λ𝐼. We
summarize our hypotheses on 𝐹 as

⎧
⎨
⎩

𝜆𝐼 ≤ 𝐷𝑀𝐹 ≤ Λ𝐼,
|𝐷𝑝𝐹| ≤ Λ,
𝐹(0, 0, 𝑥) = 0.

3We assume the following inner product in ℝ𝑛×𝑛

𝐴 ∶ 𝐵 ≔ tr(𝐴𝑇𝐵) =
𝑛
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑏𝑖𝑗 .

By considering the extreme cases in (3.2) given under
these assumptions, we obtain that

{𝒫
−
𝜆,Λ(𝐷2𝑢) − Λ|𝐷𝑢| ≤ 0,
𝒫+
𝜆,Λ(𝐷2𝑢) + Λ|𝐷𝑢| ≥ 0,

(3.3)

where

𝒫−
𝜆,Λ(𝑀) ≔ min

𝜆𝐼≤𝐴≤Λ𝐼
𝐴 ∶ 𝑀

𝒫+
𝜆,Λ(𝑀) ≔ max

𝜆𝐼≤𝐴≤Λ𝐼
𝐴 ∶ 𝑀.

are known as the Pucci extremal operators.
The main result of the Krylov–Safonov regularity the-

ory established in [KS79], states that solutions of the uni-
formly elliptic problem (3.3) have an interior Hölder esti-
mate as in (2.2).

Theorem 3.1 (Interior Hölder estimate). Given the parame-
ters of uniform ellipticity 0 < 𝜆 ≤ Λ and the dimension 𝑛, there
exist 𝛼 ∈ (0, 1) and 𝐶 > 0 such that the following holds:

Let 𝑢 ∈ 𝐶2(𝐵𝑟(𝑥0)) satisfy

{𝒫
−
𝜆,Λ(𝐷2𝑢) − Λ|𝐷𝑢| ≤ 0 in 𝐵𝑟(𝑥0),
𝒫+
𝜆,Λ(𝐷2𝑢) + Λ|𝐷𝑢| ≥ 0 in 𝐵𝑟(𝑥0).

Then
𝑟𝛼[𝑢]𝐶𝛼(𝐵𝑟/3(𝑥0)) ≤ 𝐶 osc

𝐵𝑟(𝑥0)
𝑢.

In the same way as for the Laplacian, this estimate can
be deduced by a diminish of oscillation argument from the
weak Harnack inequality, also known in this case as the 𝐿𝜀
estimate. The only difference is that, in the general setting,
the bound on the distribution becomes of order 𝜇−𝜀, for
some exponent 𝜀 > 0, perhaps small and depending on
the parameters of uniform ellipticity and the dimension.

From now on, and to simplify the statements of the fol-
lowing lemmas and theorems, we will assume that any
constants mentioned in these statements depend by de-
fault on the parameters of uniform ellipticity and the di-
mension.

Lemma 3.2 (Weak Harnack inequality). There exist 𝜀, 𝐶 >
0 such that the following holds:

Let 𝑢 ∈ 𝐶2(𝐵𝑟(𝑥0)) be nonnegative and satisfy
𝒫−
𝜆,Λ(𝐷2𝑢) − Λ|𝐷𝑢| ≤ 0 in 𝐵𝑟(𝑥0).

Then, for any 𝜇 > 0
|{𝑢 ≥ 𝜇} ∩ 𝐵𝑟/2(𝑥0)|

|𝐵𝑟/2(𝑥0)|
≤ 𝐶 (𝜇−1 inf

𝐵𝑟/2(𝑥0)
𝑢)

𝜀
.

For a long time, the challenge to demonstrate this type
of result was to find some connection between pointwise
and measure quantities on the solution. For the Lapla-
cian, this connection is naturally suggested by the diver-
gence theorem (keep in mind that Δ = div𝐷). In the
general case, this link was eventually established by the
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Figure 4. The contact set for a function 𝑢 is the set of points in
the domain that admit a supporting graph of the form 𝜑𝑦0 + 𝑐
from below.

Alexandrov–Bakelman–Pucci maximum principle, often ab-
breviated as the ABP lemma.
3.1. The ABP lemma. Before stating the main result
of this section we will need some preliminary notions.
This presentation showcases constructions due to Cabré
[Cab97] and Savin [Sav07].

Consider the family of functions given by translations
of a fixed profile

𝜑𝑦0(𝑥) ≔ 𝜑(𝑥 − 𝑦0).
For a given function 𝑢, we say that a vertical translation
of 𝜑𝑦0 touches 𝑢 from below at 𝑥0 if and only if 𝑥0 ∈
argmin(𝑢−𝜑𝑦0). We define the lower contact set as 𝑦0 varies
in some set 𝐵 in the following way (Figure 4)

𝐴𝐵 ≔ ⋃
𝑦0∈𝐵

argmin(𝑢 − 𝜑𝑦0).

The set 𝐴𝐵 may be designed to capture important in-
formation about 𝑢. For instance, if 𝜑(𝑥) = −|𝑥|2 then
𝐴𝐵𝑟 ⊆ {𝑢 ≤ 𝑢(0)+𝑟2}. Indeed, for any 𝑥0 ∈ argmin(𝑢−𝜑𝑦0)

𝑢(𝑥0) ≤ 𝜑𝑦0(𝑥0) + 𝑢(0) − 𝜑𝑦0(0) ≤ 𝑢(0) + 𝑟2.
Consider now the mapping 𝑇 ∶ 𝐴𝐵 → 𝐵, such that

𝑇(𝑥0) = 𝑦0 if 𝑥0 ∈ argmin(𝑢 − 𝜑𝑦0). This transforma-
tion can be computed by solving for 𝑦0 in the expression
𝐷𝑢(𝑥0) = 𝐷𝜑(𝑥0 − 𝑦0).

If 𝑇 is surjective, we get by the change of variable for-
mula that

|𝐵| ≤
ˆ
𝐴𝐵

| det(𝐷𝑇)|.

The Jacobian is given by

𝐷𝑇(𝑥) = 𝐼 − [𝐷2𝜑(𝑥 − 𝑇(𝑥))]−1𝐷2𝑢(𝑥).
Hence, the measure of the contact set 𝐴𝐵 can be compared
with the measure of 𝐵, provided some bound on the Hes-
sian of 𝑢 over 𝐴𝐵.

At every contact point 𝑥0 ∈ 𝐴𝐵, we can use the second-
derivative test to bound the eigenvalues of 𝐷2𝑢(𝑥0) from

below by4 −|𝐷2𝜑𝑦0(𝑥0)|𝑜𝑝. On the other hand, if we now
assume that 𝑢 satisfies

𝒫−
𝜆,Λ(𝐷2𝑢) − Λ|𝐷𝑢| ≤ 0,

then we can also bound the eigenvalues of 𝐷2𝑢(𝑥0) from
above.

To see this, we notice first that5

𝒫−
𝜆,Λ(𝑀) = ∑

𝑒∈eig(𝐷2ᵆ(𝑥0))
(𝜆𝑒+ − Λ𝑒−).

Thanks to the lower bound on the eigenvalues of 𝐷2𝑢(𝑥0)
and the first-derivative test, we get that for any 𝑒 ∈
eig(𝐷2𝑢(𝑥0))

𝜆𝑒 ≤ Λ(𝑛 − 1)|𝐷2𝜑𝑦0(𝑥0)|𝑜𝑝 + Λ|𝐷𝜑𝑦0(𝑥0)|.
The next lemma gives a concrete implementation of this

construction. In this result, we fix the family of concave
paraboloids

{
𝜑𝑦0(𝑥) ≔ 𝑝(|𝑥 − 𝑦0|) − 𝑝(5𝑟/6),
𝑝(𝜌) ≔ − 1

2𝑟2
𝜌2.

Lemma 3.3 (ABP). There exists 𝜂 ∈ (0, 1), such that the fol-
lowing holds:

Let 𝐵 = 𝐵𝑟/6(𝑥0) and 𝑢 ∈ 𝐶2(𝐵𝑟(𝑥0)) satisfy

{𝒫
−
𝜆,Λ(𝐷2𝑢) − Λ|𝐷𝑢| ≤ 0 in 𝐵𝑟(𝑥0),
inf𝐵𝑟(𝑥0)(𝑢 − 𝜑𝑦0) ≤ 0 for every 𝑦0 ∈ 𝐵.

Then, |𝐴𝐵| ≥ 𝜂𝑟𝑛.
This previous lemma can be used to bound the distribu-

tion of 𝑢 over 𝐵𝑟(𝑥0), in terms of its infimum over 𝐵𝑟/2(𝑥0).
Notice first that the particular choice of 𝜑 and 𝐵 implies

that for every 𝑦0 ∈ 𝐵

{𝜑𝑦0 ≥ 𝑝(5𝑟/6) − 𝑝(2𝑟/3) = 1/8 in 𝐵𝑟/2(𝑥0),
𝜑𝑦0 < 0 in ℝ𝑛 ⧵ 𝐵𝑟(𝑥0).

Then, a hypothesis of the form inf𝐵𝑟/2(𝑥0) 𝑢 ≤ 1/8 gives us
that inf𝐵𝑟(𝑥0)(𝑢 − 𝜑𝑦0) ≤ 0 for every 𝑦0 ∈ 𝐵 (Figure 5).

On the other hand, 𝐴𝐵 ⊆ {𝑢 ≤ 1}, hence the conclusion
from Lemma 3.3 let us recover a nontrivial upper bound
on the density of the set {𝑢 ≥ 1} with respect to 𝐵𝑟(𝑥0).

In conclusion, under the hypotheses of the Lemma 3.2,
we recover the following preliminary measure estimate: If

inf
𝐵𝑟/2(𝑥0)

𝑢 ≤ 1/8,

then
|{𝑢 ≥ 1} ∩ 𝐵𝑟(𝑥0)|

|𝐵𝑟(𝑥0)|
≤ (1 − 𝜂|𝐵1|−1).

4For 𝑀 ∈ ℝ𝑛×𝑛, we denote |𝑀|op ≔ sup|𝑥|=1 |𝑀𝑥|. If 𝑀 is also symmetric
then we also have that

|𝑀|op = max{|𝑒| | 𝑒 ∈ eig(𝑀)}.

5For 𝑒 ∈ ℝ, we denote 𝑒± ≔ max(±𝑒, 0) the positive and negative parts of 𝑒 =
𝑒+ − 𝑒−.
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Figure 5. Each paraboloid 𝜑𝑦0 with 𝑦0 ∈ 𝐵𝑟/6(𝑥0) must be
crossed by 𝑢 if 𝑢 is less or equal than 1/8 at some point in
𝐵𝑟/2(𝑥0).

3.2. Summary. Here is a quick summary of the Krylov–
Safonov theory revisited in this survey, before moving to
the degenerate problems in the next sections:

1. Uniform ellipticity ⇒ Mean value theorem/ABP
lemma: For the Laplacian it follows from the divergence
theorem. In the general setting, we used instead the
change of variable formula over a contact set for the so-
lution.

2. Mean value theorem/ABP lemma⇒WeakHarnack:
For the Laplacian it is a geometric observation (Figure 2).
In general, it follows by an iterative diminish of the distri-
bution. We did not offer any details in this presentation;
however, they can be found in [CC95].

3. Weak Harnack ⇒ Hölder estimate: In either case it
follows by the iterative diminish of the oscillation as dis-
cussed for harmonic functions.

4. Elliptic Equations That Hold Only Where
the Gradient is Large

There are numerous scenarios in which the ellipticity pa-
rameter of a given operator depends on the gradient of the
solution. This is the case for quasi-linear operators of diver-
gence form, which emerged from problems in the calculus
of variations. Among the most widely known problems,
we find the minimal surface equation and the 𝑝-Laplacian.

Another example is the very degenerate equation re-
cently explored in [CLP21]

max(1 − |𝐷𝑢|, Δ𝑢 + 1) = 0.
This problem arises as the Hamilton–Jacobi equation of a
zero-sum game. Notice that in this case, Δ𝑢 = −1 holds in
the region where |𝐷𝑢| > 1.

These examples raise a natural question. Can we obtain
some regularity for the solutions of an elliptic equation for
which uniform ellipticity only holds over the set {|𝐷𝑢| > 𝛾},
for some 𝛾 ≥ 0?

In compact subsets of {|𝐷𝑢| > 𝛾}we may just invoke the
classical estimates, meanwhile in the complementary re-
gion {|𝐷𝑢| ≤ 𝛾}, the Lipschitz semi-norm is automatically

bounded by 𝛾. The problem is to understand the behavior
of the solution at the interface between these two regimes.

The following interior Hölder estimate due to Imbert
and Silvestre gives a positive answer to the previous ques-
tion [IS16].

Theorem 4.1. Given 𝛾 > 0 there exists 𝛼 ∈ (0, 1) and 𝐶 > 0
such that the following estimate holds:

Let 𝑢 ∈ 𝐶2(𝐵𝑟(𝑥0)) and Ω𝛾 ≔ {|𝐷𝑢| > 𝛾} satisfy

{𝒫
−
𝜆,Λ(𝐷2𝑢) − Λ|𝐷𝑢| ≤ 0 in Ω𝛾 ∩ 𝐵𝑟(𝑥0),
𝒫+
𝜆,Λ(𝐷2𝑢) + Λ|𝐷𝑢| ≥ 0 in Ω𝛾 ∩ 𝐵𝑟(𝑥0).

Then,
𝑟𝛼[𝑢]𝐶𝛼(𝐵𝑟/3(𝑥0)) ≤ 𝐶 osc

𝐵𝑟(𝑥0)
𝑢.

As in the uniformly elliptic setting, the proof relies on
the weak Harnack inequality and an ABP-type lemma. The
idea consists of using a different family of functions for
the ABP lemma, namely 𝜑(𝑥) = −𝐶|𝑥|1/2. The advantage
is that the family of functions from this profile can be ar-
ranged such that they only have contact with the solution
in the region where the gradient is large and the uniform
ellipticity is present.

A year later in [Moo15], Mooney offered a second proof
of this result which extended the analysis to equations of
the form

{𝒫
−
𝜆,Λ(𝐷2𝑢) − 𝑏|𝐷𝑢| ≤ 0 in Ω𝛾 ∩ 𝐵𝑟(𝑥0),
𝒫+
𝜆,Λ(𝐷2𝑢) + 𝑏|𝐷𝑢| ≥ 0 in Ω𝛾 ∩ 𝐵𝑟(𝑥0).

with 𝑏 ∈ 𝐿𝑛(𝐵𝑟(𝑥0)), possibly unbounded. This answered
one proposed open problem in [IS16].

Notice that without imposing an equation in the region
{|𝐷𝑢| ≤ 𝛾}, we have that arbitrary functions 𝑢with |𝐷𝑢| ≤ 𝛾,
are trivial solutions of these equations. By doing so, we
prevent the possibility of deriving any continuity estimate
on the gradient. In this sense, the previous theorem is
quite optimal in terms of the expected regularity.
4.1. Some further developments. The methods in
[IS16, Moo15] have proven to be quite flexible to treat
other equations as well. The envelope from [IS16] was
employed by Silvestre and Schwab to extend regularity
estimates for parabolic integro-differential equations in
[SS16]. Pimentel, Santos, and Teixeira also used this
idea recently to obtain higher-order fractional estimates in
[PST22]. In collaboration with Santos, we revisited the reg-
ularity theory for the porous medium equation in [CLS23]
by adapting Mooney’s argument to a particular parabolic
setting.
4.2. An open problem in the parabolic setting. Analo-
gous estimates as in Theorem 4.1 for parabolic equations
remain unknown. Notice that functions that depend only
on time, 𝑢 = 𝑢(𝑡), are automatically solutions of

𝜕𝑡𝑢 = 𝐴 ∶ 𝐷2𝑢 + 𝑏 ⋅ 𝐷𝑢 in {|𝐷𝑢| > 𝛾}.
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This indicates that the corresponding estimate should only
address the continuity of the solution in the spatial vari-
able (𝑥). This problem was originally proposed in [IS16].

5. Small Perturbations
Caffarelli developed in [Caf89] a perturbative approach to
higher regularity estimates for solutions of uniformly el-
liptic equations, sometimes referred to as regularity by com-
pactness or the improvement of flatness. By flatness we mean
that a solution is uniformly close to a prescribed profile.
The general strategy was inspired by De Giorgi’s regularity
theorem for minimal surfaces. The idea can be roughly
described by saying that if the solution is uniformly close
to a smooth solution, then it inherits the estimates of the
corresponding linearization.

This approach quickly provided alternative proofs to
the regularity estimates for some of the canonical degen-
erate equations. Caffarelli and Cordoba treated in [CC93]
the minimal surface equation, while Wang studied in
[Wan94] the estimates for the 𝑝-Laplace equation.

In [Sav07], Savin demonstrated that these estimates
could be extended to allow operators 𝐹 = 𝐹(𝑀, 𝑝) which
are only required to be uniformly elliptic in a neighbor-
hood of a given profile (𝑀0, 𝑝0) ∈ {𝐹 = 0}. In particular,
his result allows us to treat equations that become degen-
erate as (𝑀, 𝑝) is large, complementing the ideas in the pre-
vious section. In this case, the alternative mechanism that
supplements the equation is a flatness hypothesis on the
solution.

For simplicity, we state the following result for
(𝑀0, 𝑝0) = (0, 0) and over the unit ball.

Theorem 5.1. Given 𝛾 > 0 and 𝛼 ∈ (0, 1), there exist 𝛿0, 𝐶 >
0 such that the following estimate holds:

Let 𝐹 = 𝐹(𝑀, 𝑝) ∈ 𝐶2(ℝ𝑛×𝑛
sym × ℝ𝑛) satisfy

⎧
⎨
⎩

𝜆𝐼 ≤ 𝐷𝑀𝐹 ≤ Λ𝐼,
|𝐷2𝐹| ≤ Λ,
𝐹(0, 0) = 0.

(5.1)

Let 𝑢 ∈ 𝐶2(𝐵1) and Ω𝛾 = {|𝐷2𝑢| + |𝐷𝑢| ≤ 𝛾} satisfy

{𝐹(𝐷
2𝑢,𝐷𝑢) = 0 in Ω𝛾 ∩ 𝐵1,

‖𝑢‖𝐿∞(𝐵1) ≤ 𝛿0.
.

Then 𝑢 ∈ 𝐶2,𝛼(𝐵1/2) with
‖𝑢‖𝐶2,𝛼(𝐵1/2) ≤ 𝐶‖𝑢‖𝐿∞(𝐵1).

The proof of the previous theorem provides another im-
portant use of the compactness property derived from the
Krylov–Safonov estimate. For this reason, we would like
to offer a sketch of the argument, at least in the uniformly
elliptic case, that is 𝛾 = ∞ and Ω𝛾 = 𝐵1. Later on, we will
give a few comments on the degenerate case 𝛾 < ∞. The
interested reader may refer to [Sav07] for a complete proof.

Figure 6. Improvement of flatness: 𝑢 ∼ 𝑄𝑘 ∼ 𝑄∗, both with
errors of order 𝜇(2+𝛼)𝑘 over 𝐵𝜇𝑘 (𝑥0); then also 𝑢 ∼ 𝑄∗ with the
same order of approximation.

1. Given 𝑥0 ∈ 𝐵1/2, the goal is to build a multiple scale
approximation of 𝑢 around 𝑥0 of the following form and
for some 𝜇 ∈ (0, 1/2) to be chosen sufficiently small

𝑢(𝑥) = 𝑃0(𝑥) + 𝜇2+𝛼𝑃1(𝜇−1𝑥) + … + 𝜇(2+𝛼)𝑘𝑃𝑘(𝜇−𝑘𝑥)⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
∶=𝑄𝑘(𝑥)

+…

We require that this approximation satisfies:

(1) 𝑃0 = 𝑄0 = 0,
(2) 𝑃𝑖 are quadratic polynomials with ‖𝑃𝑖‖𝐿∞(𝐵1) ≤ 1,
(3) ‖𝑢 − 𝑄𝑘‖𝐿∞(𝐵𝜇𝑘 (𝑥0)) ≤ 𝜇(2+𝛼)𝑘,
(4) Each 𝑄𝑘 satisfies 𝐹(𝐷2𝑄,𝐷𝑄(𝑥0)) = 0.

From the second item we obtain that

‖𝑄𝑘+1 − 𝑄𝑘‖𝐿∞(𝐵1) ≤ 𝐶𝜇𝛼𝑘.
Hence, 𝑄∗ ≔ lim𝑄𝑘 is well defined. Combining now the
third item we get

‖𝑢 − 𝑄∗‖𝐿∞(𝐵𝜇𝑘 (𝑥0)) ≤ 𝐶𝜇(2+𝛼)𝑘.

This is an equivalent way to state the desired 𝐶2,𝛼 estimate
(Figure 6).

2. The goal now is to find a suitable correction
𝜇(2+𝛼)(𝑘+1)𝑃𝑘+1(𝜇−(𝑘+1)𝑥) to the quadratic polynomial 𝑄𝑘
approximating 𝑢 over 𝐵𝜇𝑘(𝑥0). This correction must sat-
isfy all the items above. However, in this sketch, we will
mainly focus on the error estimate given by the third item.

Assume that all the hypotheses are satisfied up to some
scale 𝑟 ≔ 𝜇𝑘, for some 𝑘 ≥ 1, now fixed. Then we consider
the small perturbation 𝑣 ∈ 𝐶2(𝐵1) such that for 𝑄 = 𝑄𝑘,

𝑢(𝑥) = 𝑄(𝑥) + 𝑟2+𝛼𝑣(𝑟−1(𝑥 − 𝑥0)).
Notice that by the inductive hypothesis ‖𝑣‖𝐿∞(𝐵1) ≤ 1.

Under the uniform ellipticity hypothesis we get that 𝑣
satisfies 𝐺(𝐷2𝑣, 𝐷𝑣) = 0 in 𝐵1, where

𝐺(𝑀, 𝑝) ≔ 𝑟−𝛼𝐹(𝑟𝛼𝑀 +𝐷2𝑄, 𝑟1+𝛼𝑝 + 𝐷𝑄(𝑥0))
satisfies the same hypotheses as 𝐹 in (5.1). Therefore, 𝑣
has an interior Hölder estimate that depends exclusively
on the parameters of uniform ellipticity and the dimen-
sion.
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3. If we assume by contradiction that the correcting
polynomial can not be found for any 𝜇 → 0+, we then ex-
tract a pair of converging sequences 𝑣𝑟 → 𝑣0 and 𝑄𝑟 → 𝑄0,
locally uniformly in 𝐵1.

Using that 𝐹(𝐷2𝑄𝑟, 𝐷𝑄𝑟) = 0 and |𝐷2𝐹| ≤ Λ, we also get
that the sequence 𝑄𝑟 determines a converging sequence of
operators

𝐺𝑟(𝑀, 𝑝) ≔
𝑟−𝛼𝐹(𝑟𝛼𝑀 +𝐷2𝑄𝑟, 𝑟1+𝛼𝑝 + 𝐷𝑄𝑟(𝑥0)) =
𝐹(𝑟𝛼𝑀 +𝐷2𝑄𝑟, 𝑟1+𝛼𝑝 + 𝐷𝑄𝑟(𝑥0)) − 𝐹(𝐷2𝑄0, 𝐷𝑄0(𝑥0))

𝑟𝛼 ,

such that 𝐺𝑟 → 𝐺0 = 𝐺0(𝑀), the linear operator with con-
stant coefficients given by

𝐺0(𝑀) ≔ 𝐷𝑀𝐹(𝐷2𝑄0, 𝐷𝑄0(𝑥0)) ∶ 𝑀.
It turns out that the limit function 𝑣0 also satisfies the lin-
ear equation 𝐺0(𝐷2𝑣0) = 0.

4. As a final step, we notice that by the 𝐶3 estimates for
linear equations with constant coefficients, 𝑣0 can be ap-
proximated by a quadratic polynomial around the origin.
This leads to a contradiction of the assumed fact that the
corrections did not exist for any small value of 𝜇. □

For the degenerate case when 𝛾 < ∞, Savin’s remarkable
observation is that under the flatness hypothesis, it is pos-
sible to reconstruct most of the Krylov–Safonov regularity
theory. However, there is a caveat related to the dimin-
ish of oscillation argument. As one rescales the equation,
the degeneracy becomes more and more pervasive and the
argument leading to the improvement on the oscillation
eventually breaks down. This means that from an initial
𝛿-flatness hypothesis on the solution, with 𝛿 ∈ (0, 𝛿0),
one can only get a truncated modulus of continuity for
the solution. Nevertheless, the radius on the truncation
also vanishes as the flatness parameter 𝛿 goes to zero. This
means that the compactness of solutions in the previous
argument still holds by a Cantor diagonal argument.
5.1. Some further developments. Within the scope of
this presentation, it is not possible to cite the numerous
articles that rely on these techniques. The original idea
was developed to answer a celebrated conjecture by De
Giorgi about level sets in Ginzburg–Landau phase tran-
sition models in [Sav09]. The approach has been ex-
tended by De Silva to establish regularity estimates for the
Bernoulli free boundary problem starting in [DS11]. Reg-
ularity estimates for nonlocal minimal surfaces were es-
tablished by Caffarelli, Roquejoffre, and Savin in [CRS10].
Armstrong, Silvestre, and Smart also utilized this approach
to develop partial regularity results for fully nonlinear
equations in [ASS12]. Colombo and Figalli developed
regularity estimates for degenerate equations from traffic
congestion models in [CF14]. Finally, in collaboration
with Pimentel, we demonstrated in [CLP21] the continuity

of |𝐷𝑢|, where 𝑢 solves the gradient-constrained problem
max(1 − |𝐷𝑢|, Δ𝑢 + 1) = 0.

6. Quasi-Harnack
Degeneracy can alsomanifest itself across scales. For exam-
ple, when modeling a PDE using finite difference schemes,
the continuous formulation of uniform ellipticity breaks
down at the level of the discretization. However, if the
numerical scheme approximates a uniformly elliptic equa-
tion, we expect that the discrete solution will approximate
the continuous solution over large scales, inheriting with
it the classical manifestations of uniform ellipticity.

A recent work by De Silva and Savin in [DSS21] pro-
poses a weak notion of solution for equations where the
uniform ellipticity manifests from a given scale onward.

The next definition of solutions relies on the follow-
ing geometric configuration: Given 𝑢 ∈ 𝐶(Ω), and 𝜑 ∈
𝐶(𝐵𝑟(𝑥0)) with 𝐵𝑟(𝑥0) ⊆ Ω, we say that 𝜑 touches 𝑢 from
below (above) at 𝑥0 and over 𝐵𝑟(𝑥0) if

{𝜑 ≤ (≥) 𝑢 in 𝐵𝑟(𝑥0),
𝜑(𝑥0) = 𝑢(𝑥0).

Definition 6.1. Let 𝐹 = 𝐹(𝑀) ∈ 𝐶(ℝ𝑛×𝑛
sym ) be nondecreas-

ing. We say that 𝑢 ∈ 𝐶(Ω) satisfies
𝐹(𝐷2𝑢) ≤𝑟 (≥𝑟) 0 in Ω

if for every quadratic polynomial 𝜑 that touches 𝑢 from
below at 𝑥0 and over 𝐵𝑟(𝑥0) ⊆ Ω, it holds that 𝐹(𝐷2𝜑) ≤
(≥) 0.

The equality=𝑟 holds when both inequalities are simul-
taneously satisfied.

This definition is consistent with the classical notion of
the inequality 𝐹(𝐷2𝑢) ≤ 0 for 𝑢 ∈ 𝐶2(Ω). This follows by
the second-derivative test and the monotonicity hypothe-
sis on 𝐹. Notice also that if 𝑟1 < 𝑟2 and 𝐹(𝐷2𝑢) ≤𝑟1 0, then
also 𝐹(𝐷2𝑢) ≤𝑟2 0, meaning that this notion of solution is
more relaxed as 𝑟 becomes larger.

To give a concrete example, let us consider a two-
dimensional numerical approximation of the Laplacian
over the two-dimensional lattice 𝜀ℤ2. In this scenario, we
will work with a continuous function 𝑢, but the relevant
values will be given on the lattice as

𝑢𝑖𝑗 ≔ 𝑢(𝜀𝑖, 𝜀𝑗) for (𝑖, 𝑗) ∈ ℤ2.
We can then extend 𝑢 to each square 𝑄𝑖𝑗 ≔ [𝜀𝑖, 𝜀(𝑖 + 1)) ×
[𝜀𝑗, 𝜀(𝑗 + 1)) in a continuous manner, ensuring that the
maximum and minimum of 𝑢 over 𝑄𝑖𝑗 are reached at the
corners of 𝑄𝑖𝑗 (Figure 7).

A classical discretization of the Laplace equation over
the lattice is formulated by

𝑢𝑖𝑗 =
𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1

4 . (6.1)
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Figure 7. An interpolation of a discrete function such that over
each square 𝑄𝑖𝑗 , the extremal values are attained over the
corners.

In particular, it follows from a straightforward computa-
tion, that a quadratic polynomial is harmonic if and only
if satisfies (6.1) at one point.

Assume 𝑢 satisfies (6.1) for (𝑖, 𝑗) ∈ 𝜀−1Ω ∩ ℤ2, and con-
sider a quadratic polynomial 𝜑 touching 𝑢 from below at
𝑥0 and over 𝐵𝑟(𝑥0). If 𝑟 < 𝜀, it is not difficult to come up
with interpolations for 𝑢 for which 𝐷2𝜑 could be arbitrary.

On the other hand, if 𝑟 ≥ 𝜀 and 𝑥0 = 𝜀(𝑖0, 𝑗0) ∈ 𝜀ℤ2 is a
lattice point, then

𝜑𝑖0,𝑗0 = 𝑢𝑖0,𝑗0 ,

=
𝑢𝑖0−1,𝑗0 + 𝑢𝑖0+1,𝑗0 + 𝑢𝑖0,𝑗0−1 + 𝑢𝑖0,𝑗0+1

4 ,

≥
𝜑𝑖0−1,𝑗0 + 𝜑𝑖0+1,𝑗0 + 𝜑𝑖0,𝑗0−1 + 𝜑𝑖0,𝑗0+1

4 .

This implies that Δ𝜑 ≤ 0, as would be required by the def-
inition of Δ𝑢 ≤𝑟 0.

Would it be possible to get a similar result in the general
case, when 𝑥0 is not necessarily a lattice point?

The answer to this question is affirmative. However, it
is necessary to modify the operator at hand. Indeed, let us
see that if 𝑢𝑖𝑗 satisfies (6.1) for (𝑖, 𝑗) ∈ 𝜀−1Ω ∩ ℤ2, then 𝑢
satisfies

{𝒫
−
1,Λ(𝐷2𝑢) ≤3𝜀 0 in Ω,
𝒫+
1,Λ(𝐷2𝑢) ≥3𝜀 0 in Ω.

(6.2)

The parameter Λ will be conveniently fixed as a large con-
stant by the end of the argument.

We will show the inequality for 𝒫−
1,Λ, as the one corre-

sponding to 𝒫+
1,Λ has a similar analysis.

1. Let 𝜑 be a quadratic polynomial touching 𝑢 from
below at 𝑥0 over 𝐵3𝜀(𝑥0) ⊆ Ω. Assume by contradiction
that 𝒫−

1,Λ(𝐷2𝜑) > 0. This test function can be written as

⎧
⎨
⎩

𝜑 = 𝑃 + 𝐿
𝑃(𝑥) = 𝜆1(𝜉1 ⋅ (𝑥 − 𝑥0))2 + 𝜆2(𝜉2 ⋅ (𝑥 − 𝑥0))2
𝐿 is affine,

with {𝜉1, 𝜉2} orthonormal.

Assume without loss of generality that 𝜆1 ≤ 𝜆2 and that
the angle subtended by the vectors 𝜉2 and 𝑒2 = (0, 1) is
between −𝜋/4 and 𝜋/4.

By hypothesis,

𝒫−
1,Λ(𝐷2𝜑) =

2
∑
𝑖=1
(𝜆𝑖)+ − Λ(𝜆𝑖)− > 0,

so that 𝜆2 > 0 and 𝜆1 ∈ (−𝜆2/Λ, 𝜆2].
2. We get in this way that for 𝜆 ≔ 𝜆2/Λ,

̄𝑃(𝑥) ≔ −(𝜉1 ⋅ (𝑥 − 𝑥0))2 + Λ(𝜉2 ⋅ (𝑥 − 𝑥0))2,
≤ 𝑃(𝑥)/𝜆,

touches (𝑢 − 𝐿)/𝜆 from below at 𝑥0 and over 𝐵3𝜀(𝑥0). By
computing the infimum of ̄𝑃 over 𝐵3𝜀(𝑥0), we get that

(𝑢 − 𝐿) ≥ −9𝜆𝜀2 in 𝐵3𝜀(𝑥0). (6.3)

3. Let (𝑖0, 𝑗0) ∈ ℤ2 such that 𝑥0 ∈ 𝑄𝑖0𝑗0 . We will see
now that in at least one corner 𝑦 = (𝜀𝑖1, 𝜀𝑗1) ∈ 𝜕𝑄𝑖0𝑗0 ∩ 𝜀ℤ2
we must have

(𝑢 − 𝐿)(𝑦) ≥ 𝑐𝜆2𝜀2 − 9𝜆𝜀2, (6.4)

for some constant 𝑐 > 0 to be fixed.
By considering

𝑦− ≔ (𝜀𝑖0, 𝜀𝑗0),
𝑦+ ≔ (𝜀𝑖0, 𝜀(𝑗0 + 1)),

and the angle assumption on 𝜉2, we get that

|𝜉2 ⋅ (𝑦− − 𝑥0))| + |𝜉2 ⋅ (𝑦+ − 𝑥0)| ≥ 𝜀(𝜉2 ⋅ 𝑒2)

≥ 𝜀/√2.
Hence, in at least one of these two corners we must have
that |𝜉2⋅(𝑦−𝑥0))| ≥ 𝜀/(2√2), and the desired bound follows
for 𝑐 = 1/8 by using that (𝑢 − 𝐿) ≥ 𝜆 ̄𝑃.

4. By the contact given by (𝑢 − 𝐿) and 𝜆 ̄𝑃 at 𝑥0 we get
that (𝑢 − 𝐿)(𝑥0) = 𝜆 ̄𝑃(𝑥0) = 0. The way in which we con-
sidered the continuous extension of 𝑢 also implies that the
minimum of (𝑢−𝐿) over the four corners of 𝑄𝑖0𝑗0 must be
nonpositive. In this final step, we will see how to get a con-
tradiction from this fact, together with (6.3) and (6.4).

The choice on the scale 𝑟 = 3𝜀 was made such that the
nine closed squares of the form 𝑄𝑖𝑗 with |𝑖 − 𝑖0| ≤ 1 and
|𝑗 − 𝑗0| ≤ 1 are also contained in 𝐵3𝜀(𝑥0) (Figure 8).

Let𝑄 ≔ (𝑖0−1, 𝑖0+2)×(𝑗0−1, 𝑗0+2) and𝑤𝑖𝑗 be defined

for (𝑖, 𝑗) ∈ 𝑄 ∩ ℤ2 such that the following holds: For the
three interior nodes (𝑖, 𝑗) ∈ (𝑄 ∩ ℤ2) ⧵ {(𝑖1, 𝑗1)}

𝑤𝑖𝑗 =
𝑤𝑖−1,𝑗 + 𝑤𝑖+1,𝑗 + 𝑤𝑖,𝑗−1 + 𝑤𝑖,𝑗+1

4 .

Meanwhile, it also satisfies the boundary conditions

{𝑤𝑖1𝑗1 = 1,
𝑤𝑖𝑗 = 0 in 𝜕𝑄 ∩ ℤ2.
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Figure 8. The ball 𝐵3𝜀(𝑥0) contains the 9 squares surrounding
the square 𝑄𝑖0𝑗0 in which falls the center of the ball.

A simple computation determines that 𝑤𝑖𝑗 = 2/7 in the
interior nodes of 𝑄 ∩ ℤ2 adjacent to (𝑖1, 𝑗1), and 𝑤𝑖𝑗 = 1/7
in the opposite one.

By the discrete comparison principle we get that for any
of the four interior nodes (𝑖, 𝑗) ∈ 𝑄 ∩ ℤ2

(𝑢 − 𝐿 + 9𝜆𝜀2)𝑖𝑗 ≥ 𝜆2𝜀2𝑤𝑖𝑗/8,
≥ 𝜆2𝜀2/48.

Nevertheless, this contradicts that the minimum of (𝑢−𝐿)
over these interior nodes is nonpositive once we choose
Λ > 432. □

In the recent article of De Silva and Savin [DSS21], the
authors get a weak Harnack inequality for the general de-
generate problem (6.2). The alternative mechanism used
in this case is a measure estimate over any ball of radius
𝜌 = 𝐶𝑟.

We say that 𝑢 ∈ 𝐶(Ω) satisfies themeasure estimatewith
respect to the parameters 𝜌,𝑀 > 0 and 𝛿 ∈ (0, 1), if for
every 𝐵𝜌(𝑥0) ⊆ Ω, and 𝜇 > 0, we get that

𝑢 − inf
𝐵𝜌(𝑥0)

𝑢 ≤ 𝜇 in 𝐵𝜌/2(𝑥0),

implies

|{𝑢 − inf𝐵𝜌(𝑥0) 𝑢 ≥ 𝑀𝜇} ∩ 𝐵𝜌/2(𝑥0)|
|𝐵𝜌/2(𝑥0)|

≤ 𝛿.

Theorem 6.1. There exists a small fraction 𝛿 ∈ (0, 1) depend-
ing on the dimension for which the following statement is true:

Given Λ,𝑀 ≥ 1, there exist 𝑟0, 𝐶, 𝑐 > 0 and 𝛼 ∈ (0, 1) such
that the following holds:

Let 𝑢 ∈ 𝐶(𝐵1) satisfy for some 𝑟 ∈ (0, 𝑟0)

{𝒫
−
1,Λ(𝐷2𝑢) ≤𝑟 0 in 𝐵1,
𝒫+
1,Λ(𝐷2𝑢) ≥𝑟 0 in 𝐵1,

and ±𝑢 satisfy the measure estimate with respect to 𝐶𝑟,𝑀, and
𝛿. Then 𝑢 has a truncated Hölder estimate of the form

sup
𝑥0∈𝐵1/2
𝜌∈(𝑐𝑟,1/2)

𝜌−𝛼 osc
𝐵𝜌(𝑥0)

𝑢 ≤ 𝐶‖𝑢‖𝐿∞(𝐵1).

Besides the already discussed applications to numerical
schemes, the previous theorem can also be applied in the
homogenization of elliptic problems with degeneracies, as
was studied in [AS14]. Finally, it was shown in [DSS21]
that integro-differential uniformly elliptic equations of or-
der 𝜎 close to two, also fit in the framework of the previous
theorem. In this way, it provides a new proof to the Har-
nack inequality of Caffarelli and Silvestre [CS09].

7. Concluding Remarks
In this note, we have revisited the regularity theory of uni-
formly elliptic equations under the perspective of degener-
ate ellipticity. It is our hope to have conveyed some of the
beautiful geometric insights of the theory.

While we did not go deeper into the models that have
brought up these particular degeneracies, it is important
to emphasize that a careful understanding of such natural
phenomena has been instrumental in the analysis of the
solutions. It can be easily the topic of just one survey to
uncover each one of these models in detail, such as min-
imal surfaces, the 𝑝-Laplacian, the porous medium equa-
tion, etc. For the same reason, many important references
have been unfortunately left out.

This article is dedicated to Luis Caffarelli with gratitude
and admiration.
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mendi and Luis Núñez; and the anonymous referees
for their helpful feedback on this manuscript. The au-
thor was supported by CONACyT-MEXICO grant A1-S-
48577.

References
[AS14] Scott N. Armstrong and Charles K. Smart, Regularity

and stochastic homogenization of fully nonlinear equations with-
out uniform ellipticity, Ann. Probab. 42 (2014), no. 6, 2558–
2594, DOI 10.1214/13-AOP833. MR3265174

[ASS12] Scott N. Armstrong, Luis E. Silvestre, and Charles
K. Smart, Partial regularity of solutions of fully nonlin-
ear, uniformly elliptic equations, Comm. Pure Appl. Math.
65 (2012), no. 8, 1169–1184, DOI 10.1002/cpa.21394.
MR2928094
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