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Regularity Theory of
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1. Introduction

Ellipticity is a well-studied characteristic of some partial
differential equations which enforces regularity on its so-
lutions. The prototype problem is the Laplace equation
Au = 33u + .. + d2u = 0 whose solutions are known
as the harmonic functions. To illustrate its usefulness,
consider an arbitrary sequence of uniformly bounded
functions over a compact set. In contrast to numerical
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sequences, a bounded sequence of functions does not nec-
essarily have a uniformly convergent subsequence, even if
we assume that each function in such sequence is smooth.
However, as soon as we assume that the functions are har-
monic, then such uniform limits are always guaranteed.

The property we have just described is known as com-
pactness. We will see that it can be derived from regular-
ity estimates for harmonic functions. It is a powerful tool
that can be used in many fundamental results, such as the
existence theorem for harmonic functions with prescribed
boundary values or the convergence of numerical schemes.

To fix some ideas, let us consider a general second-order
partial differential equation (PDE) of the form

F(D?>u,Du,u,x) =0in Q C R",
where F = F(M,p,z,x): R X R" XR X Q — R

determines the nonlinear operator on the left-hand side,
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and the second-order differentiable function u: Q —» R
is the unknown of the problem. Our focus lies on elliptic
problems, which are defined by the requirement that F is
nondecreasing in the Hessian variable (M).!

Uniform ellipticity arises when we further assume some
quantitative control on the monotonicity of F with respect
to M. In the case that the function F is differentiable, we
say that the operator is uniformly elliptic if

AI <Dy F < Al

for some fixed constants 0 < 4 < A. In the previous expres-
sion, I € R™" is the identity matrix and Dy, F = (amU_F ) e
R&m is the matrix of partial derivatives of F with respect
to the Hessian variable M = (m;;) € R

Operators that are elliptic, but not necessarily uni-
formly elliptic, are called degenerate elliptic. These find prac-
tical applications in diverse fields such as material sciences,
fluid dynamics, finance, and image processing. Some fa-
mous examples of degenerate equations include the mini-
mal surface equation

div (L) =0
1+ |Du|?
the p-Laplace equation (p > 1)
div(|Du|P=2Du) = 0,

and, in the time-dependent case, the porous medium equa-
tion (m > 1)
osu = A(u™).

In general, it has been observed that solutions of degener-
ate elliptic equations are not always guaranteed to have the
same regularity estimates as uniformly elliptic equations.

Motivated by the observation for harmonic functions,
we may wonder the following:

1. Have solutions of uniformly elliptic PDEs a com-
pactness property, similar to the harmonic functions?

2. Which additional hypotheses could complement
the degenerate ellipticity in order to recover a compact-
ness property for the solutions?

The analysis of PDE:s relies significantly on bounds for
the modulus of continuity of a solution and its derivatives,
these estimates constitute the cornerstones of the regularity
theory. The development of the regularity theory for elliptic
equations has a rich history with numerous authors. This
survey concerns the regularity theory of uniformly ellip-
tic equations that originated during the 1980s and 1990s,
with main contributions due to Krylov, Safonov, Evans,
and Caffarelli, among many others. This regularity theory
is now commonly known as the Krylov-Safonov theory.

"We assume the following partial order on R§s": M < N if and only if x-Mx <
X - Nx for all x € R".
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Figure 1. The mean value theorem: If Au <0 in Q, then for any
By(xo) C Q it holds that —— [ u < u(x).
1B, (xo)| VBr(x0)

We aim to provide a perspective on ongoing develop-
ments in the regularity theory of degenerate elliptic prob-
lems. First, we give an overview of the regularity theory
for the Laplacian and uniformly elliptic equations. This
discussion will shed light on the fundamental strategies
employed in classical scenarios, enabling us to appreciate
better the challenges posed by degenerate equations.

Afterward, we focus on the case of degenerate elliptic-
ity, where the absence of uniform ellipticity is comple-
mented with some additional hypotheses. These assump-
tions could be interpreted as some sort of alternative reg-
ularizing mechanism for the solution. It is the interplay
of these phenomena what we find to be a quite attractive
venue of current research.

We focus on three types of degeneracies which can be
loosely described in the following way:

1. Elliptic equations that hold only where the gradi-
ent is large: Either the solution obeys a uniformly elliptic
equation or its gradient is bounded.

2. Small perturbations: Uniform ellipticity holds in a
neighborhood of a given profile.

3. Quasi-Harnack: Uniformly ellipticity holds at
macroscopic scales.

Each one of the previous problems will be presented in
a different section, titled accordingly. These section titles
make reference to the articles [[S16], [Sav07], and [DSS21],
where the respective results were originally studied.

2. The Laplacian

The Laplacian A := 82 +...+ 92 is the fundamental differen-
tial operator that describes the ellipticity phenomenon in
R". Solutions of the equation Au = 0, also known as har-
monic functions, are abundant in pure and applied math-
ematics.

Perhaps the most characteristic features of uniformly el-
liptic problems are the Harnack inequalities. In the case
of the Laplacian, these arise as consequences of the diver-
gence theorem through the mean value theorem (Figure

1).
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Figure 2. The key observation is that for any x; € B,5(xo) we
always get the inclusions B, 3(xo) C By/3(x1) C B,(xg).

The weak Harnack inequality states that for any u > 0
satisfying Au < 0 in B,(xy), and any value u > 0, it holds
that

{u > u} N By3(x0)|

2}1 -1
|By/3(x0)I

inf w.
By/3(xo)

(2.1)

Figure 2 illustrates a geometric argument from where to
establish this estimate from the mean value theorem.

This control on the distribution of the solution is quite
powerful. In particular, it can be used to prove an interior
Holder estimate for harmonic functions in the following
form

réulca (s, 50000 < Cllttlles, (o)) (2.2)
for some a € (0,1) and C > 0 depending only on the
dimension.

Although we have assumed that the solution is C2-

regular, the point of the estimate is that its own continuity
gets controlled by its size rather than its derivatives. No-
tably, a uniformly bounded family of harmonic functions
is automatically equicontinuous on any compact subset.
By the Arzeld-Ascoli theorem, this family always contains
a sequence that converges locally uniformly to a limit.
Moreover, it can be shown that the limit is also a harmonic
function.
2.1. The diminish of oscillation. The Estimate (2.2) can
be derived through a strategy known as diminish of oscilla-
tion. This elegant argument exemplifies the geometric ap-
proach in elliptic PDEs. Let us explain it in detail:

1. Assume that u € C%(B,;) is a harmonic function tak-
ing values between 0 and 1. For x4 € By, and r € (0,1/3],
we aim to show that

sup |u —u(xy)| < Cre.
By (x0)

This can be proved recursively if there exists some small
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6 € (0,1) such that for any r € (0,1/3]?

osc u<(1-90) osc)u. (2.3)

Byj3(x0) By (xo

Indeed, (2.3) implies that the oscillation of u has a geo-

metric decay in triadic balls

osc u<(1-6)k1,
B3—k(x0)
By conveniently fixing a := log, ,(1—6) and C := (1 — 0)~2
we now get the desired estimate in the following form and
for every r € (0,1/3) and k = [log,  r], such that 3=(k+1)
r<3k
sup |u—u(xy)| < osc u
Br(xI())) |u = u(xo)| 5258,

< osc u

B3—k(x0)
<@-ek!
— c3—alk+D)
< Cr@.

2. To get the diminish of oscillation (2.3), we apply
the weak Harnack inequality to a given translation of u.
Keep in mind that u oscillates between m, := infg (. yu
and M, := SUPp (y ) U Over B,(xo), and consider as well
== (m, + M,)/2, the level set that sits just in the middle.
Hence, at least one of the following alternatives must be
true:

|{u 2 ;ur} n Br/3(x0)|
By/3(x0)

.1
-2
or
[fu < prt N Bys(x0)| 1
|Br/3(xo)l 2’
In the first case we apply the weak Harnack inequality
(2.1) to the positive harmonic function (u — m,) in B.(x,)
to get that

\%

inf (u—m,)>2""D(, —m,).
By3(x0)
This estimate raises the lower bound on u from m, over
the ball B,(xg), to
m, + 2", —m,) = m, + 2= osc u
By (xo)
over B, 3(x,) (Figure 3).

For the other alternative, we apply the weak Harnack
inequality to (M, —u) to get a similar improvement on the
upper bound instead. In conclusion, either option implies
the diminish of oscillation Estimate (2.3) for 8 := 2-("+2),

O

2The oscillation of a function measures the variation of the values that it takes
in a given set:
oscu:= sup |u(x)—u(y)|.
E x,yeE
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Figure 3. Diminish of oscillation: The lower bound of the
solution improves if the measure of {u > u,} N B,;5(xp) is at
least half of the measure of B, ;5(xp).

3. Uniformly Elliptic Equations
Let us now consider the second-order equation

F(D?*u,Du,x) = 0. (3.1)

Assuming that F is differentiable and F(0, 0, x) = 0, we get
by the fundamental theorem of calculus that u satisfies a
homogeneous linear equation of the following form?

A:D?*u+b-Du=0. (3.2)

Indeed, we just need to integrate the derivative
(d/dt)F(tD*u,tDu,x) fromt = 0 to t = 1 to notice that
the coefficients A = (a;j(x)) € R and b = (b;(x)) € R"
are given by

1
ay(x) = /O 8y F(D?u(x), tDu(x), X)dt,

1
b;(x) ::/ 8y, F(tD*u(x), tDu(x), X)dt.
0

Even though these coefficients depend on the solution as
well, under suitable hypotheses on the derivatives of F we
can overlook this dependence and understand the equa-
tion in a broad sense.

To start, we can just assume that the coefficients are uni-
formly bounded. In particular, |b| < A, which would fol-
low from a Lipschitz assumption on F. Uniform ellipticity
requires that for some constants 0 < 4 < A, it holds that
Al < DyF < Al which means that AI < A < Al. We
summarize our hypotheses on F as

AI < Dy F < Al
ID,F| < A,
F(0,0,x) = 0.

3We assume the following inner product in R

n
A B:= tr(ATB) = Z aijbij.
i,j=1
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By considering the extreme cases in (3.2) given under
these assumptions, we obtain that

{?ZA(Dzu) — AlDu| <0,

3.3
Pia(D*u) + A|Du| > 0, (3:3)

where

min A: M

Pr(M) =
2A (M) AT<A<AT

PiEAM) = Mr<nAa<xMA : M.

are known as the Pucci extremal operators.

The main result of the Krylov-Safonov regularity the-
ory established in [KS79], states that solutions of the uni-
formly elliptic problem (3.3) have an interior Holder esti-
mate as in (2.2).

Theorem 3.1 (Interior Holder estimate). Given the parame-
ters of uniform ellipticity 0 < 1 < A and the dimension n, there
exist a € (0,1) and C > 0 such that the following holds:

Let u € C?(B,(x,)) satisfy

Pra(D*u) — AlDu| < 0 in B,(x,),
PEA(D?W) + AlDul > 0 in B, (xo).

Then
réltlea(p, o) < C 0sC u-

In the same way as for the Laplacian, this estimate can
be deduced by a diminish of oscillation argument from the
weak Harnack inequality, also known in this case as the L
estimate. The only difference is that, in the general setting,
the bound on the distribution becomes of order =%, for
some exponent ¢ > 0, perhaps small and depending on
the parameters of uniform ellipticity and the dimension.

From now on, and to simplify the statements of the fol-
lowing lemmas and theorems, we will assume that any
constants mentioned in these statements depend by de-
fault on the parameters of uniform ellipticity and the di-
mension.

Lemma 3.2 (Weak Harnack inequality). There exist €,C >
0 such that the following holds:
Let u € C%(B,(x,)) be nonnegative and satisfy

Py a(D*u) — A|Du| < 0 in B,(x,).
Then, for any u > 0

{u > p} N B,y (xo)| ( 1
Bl = C\H

For a long time, the challenge to demonstrate this type
of result was to find some connection between pointwise
and measure quantities on the solution. For the Lapla-
cian, this connection is naturally suggested by the diver-
gence theorem (keep in mind that A = divD). In the
general case, this link was eventually established by the

€
inf u) .

Bya(x0)
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Figure 4. The contact set for a function u is the set of points in
the domain that admit a supporting graph of the form ¢, +c¢
from below.

Alexandrov-Bakelman-Pucci maximum principle, often ab-
breviated as the ABP lemma.
3.1. The ABP lemma. Before stating the main result
of this section we will need some preliminary notions.
This presentation showcases constructions due to Cabré
[Cab97] and Savin [Sav07].

Consider the family of functions given by translations
of a fixed profile

Py, (%) = @(x — o).

For a given function u, we say that a vertical translation
of @), touches u from below at x, if and only if x, €
argmin(u—@,, ). We define the lower contact set as y, varies
in some set B in the following way (Figure 4)

Ag = U argmin(u — @, ).
YoEB
The set Ap may be designed to capture important in-
formation about u. For instance, if (x) = —|x|* then
Ap, C{u< u(0)+r2}. Indeed, forany x, € argmin(u—gy, )

u(xo) < @y, (x0) + u(0) — @y, (0) < u(0) + 1.

Consider now the mapping T: Ag — B, such that
T(xp) = yo if xo € argmin(u — ¢, ). This transforma-
tion can be computed by solving for y, in the expression
Du(xy) = Dp(xo — Yo)-

If T is surjective, we get by the change of variable for-
mula that

IB| < / | det(DT)].
Ap

The Jacobian is given by
DT(x) = I — [D?*p(x — T(x))] ' D?*u(x).

Hence, the measure of the contact set Ay can be compared
with the measure of B, provided some bound on the Hes-
sian of u over Ag.

At every contact point x, € Ag, we can use the second-
derivative test to bound the eigenvalues of D*u(x,) from
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below by* —|D?9,, (Xo)lop- On the other hand, if we now
assume that u satisfies

Pia(D*u) — A|Du| <0,

then we can also bound the eigenvalues of D?u(x,) from
above.
To see this, we notice first that’

PraM) = >

eceig(D2u(xg))

(e, — Ae_).

Thanks to the lower bound on the eigenvalues of D?u(x,)
and the first-derivative test, we get that for any e €
eig(D?*u(xo))
de < A(n = 1)|D?py (x0)lop + AlDey, (xo)].
The next lemma gives a concrete implementation of this

construction. In this result, we fix the family of concave
paraboloids

Pyo(X) = p(|x = yo|) — p(5r/6),
p(p) = ——p%.

2r2
Lemma 3.3 (ABP). There exists n € (0, 1), such that the fol-

lowing holds:
Let B = B, 5(xo) and u € C?*(B,(x,)) satisfy

Pia(D?u) — A|Du| < 0 in B(xo),
infg (x,) (4 —@y,) <0 for every y, € B.
Then, |Ag| > nr™.

This previous lemma can be used to bound the distribu-
tion of u over B,(xXy), in terms of its infimum over B,,(xy).

Notice first that the particular choice of ¢ and B implies
that for every y, € B

Py, 2 p(5r/6) — p(2r/3) = 1/8 in By3(xo),
Py, <0in R™\ B.(xp).

Then, a hypothesis of the form infp, ,(x,)u < 1/8 gives us
that infg (,y(u — ¢y,) < 0 for every y, € B (Figure 5).

On the other hand, Ay C {u < 1}, hence the conclusion
from Lemma 3.3 let us recover a nontrivial upper bound
on the density of the set {u > 1} with respect to B,(x,).

In conclusion, under the hypotheses of the Lemma 3.2,
we recover the following preliminary measure estimate: 1f

inf u<1/8,
By2(x0)

then
{u > 1} N B,(xo)|

|Br (o)

4For M € R™", we denote [Mlg = SUD =1 [Mx|. If M is also symmetric
then we also have that

<@ =nB™.

[M|o, = max{le| | e € eig(M)}.

>For e € R, we denote e = max(=e, 0) the positive and negative parts of e =
e, —e_.
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25/72 < 1

r/2 27"5/3 57’76 /‘
Figure 5. Each paraboloid ¢, with y, € B,(xo) must be

crossed by u if u is less or equal than 1/8 at some point in
Byj2(xo)-

3.2. Summary. Here is a quick summary of the Krylov—
Safonov theory revisited in this survey, before moving to
the degenerate problems in the next sections:

1. Uniform ellipticity = Mean value theorem/ABP
lemma: For the Laplacian it follows from the divergence
theorem. In the general setting, we used instead the
change of variable formula over a contact set for the so-
lution.

2. Mean value theorem/ABP lemma = Weak Harnack:
For the Laplacian it is a geometric observation (Figure 2).
In general, it follows by an iterative diminish of the distri-
bution. We did not offer any details in this presentation;
however, they can be found in [CC95].

3. Weak Harnack = Holder estimate: In either case it
follows by the iterative diminish of the oscillation as dis-
cussed for harmonic functions.

4. Elliptic Equations That Hold Only Where
the Gradient is Large

There are numerous scenarios in which the ellipticity pa-
rameter of a given operator depends on the gradient of the
solution. This is the case for quasi-linear operators of diver-
gence form, which emerged from problems in the calculus
of variations. Among the most widely known problems,
we find the minimal surface equation and the p-Laplacian.

Another example is the very degenerate equation re-
cently explored in [CLP21]

max(1 — |Du|,Au+1) =0.

This problem arises as the Hamilton-Jacobi equation of a
zero-sum game. Notice that in this case, Au = —1 holds in
the region where |Du| > 1.

These examples raise a natural question. Can we obtain
some regularity for the solutions of an elliptic equation for
which uniform ellipticity only holds over the set {|Du| > y},
for some y > 0?

In compact subsets of {| Du| > y} we may just invoke the
classical estimates, meanwhile in the complementary re-
gion {|Du| < y}, the Lipschitz semi-norm is automatically
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bounded by y. The problem is to understand the behavior
of the solution at the interface between these two regimes.

The following interior Holder estimate due to Imbert
and Silvestre gives a positive answer to the previous ques-
tion [IS16].

Theorem 4.1. Given y > 0 there exists a € (0,1) and C > 0
such that the following estimate holds:
Let u € C*(B.(xo)) and Q,, = {|Du| > y} satisfy

Pra(D*u) — A|Du| £ 0 in Q, N B,(x,),
PiADu) + ADu| > 0 in Q, 0 By(xo).

Then,
re [u]C“(Br/s(Xo)) < CB?(Sx%) u.

As in the uniformly elliptic setting, the proof relies on
the weak Harnack inequality and an ABP-type lemma. The
idea consists of using a different family of functions for
the ABP lemma, namely ¢(x) = —C|x|"/2. The advantage
is that the family of functions from this profile can be ar-
ranged such that they only have contact with the solution
in the region where the gradient is large and the uniform
ellipticity is present.

Avyear later in [Moo15], Mooney offered a second proof
of this result which extended the analysis to equations of
the form

Pia(D?u) — b|Du| < 0in Q, N B.(Xo),
Pia(D?u) + b|Dul| > 0in Q, N B(Xo).

with b € L'(B,(xy)), possibly unbounded. This answered
one proposed open problem in [IS16].

Notice that without imposing an equation in the region
{|Du| < y}, we have that arbitrary functions u with |Du| < y,
are trivial solutions of these equations. By doing so, we
prevent the possibility of deriving any continuity estimate
on the gradient. In this sense, the previous theorem is
quite optimal in terms of the expected regularity.

4.1. Some further developments. The methods in
[IS16, Moo15] have proven to be quite flexible to treat
other equations as well. The envelope from [IS16] was
employed by Silvestre and Schwab to extend regularity
estimates for parabolic integro-differential equations in
[SS16]. Pimentel, Santos, and Teixeira also used this
idea recently to obtain higher-order fractional estimates in
[PST22]. In collaboration with Santos, we revisited the reg-
ularity theory for the porous medium equation in [CLS23]
by adapting Mooney’s argument to a particular parabolic
setting.

4.2. An open problem in the parabolic setting. Analo-
gous estimates as in Theorem 4.1 for parabolic equations
remain unknown. Notice that functions that depend only
on time, u = u(t), are automatically solutions of

du=A:D?>u+b-Duin{|Du| >yl
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This indicates that the corresponding estimate should only
address the continuity of the solution in the spatial vari-
able (x). This problem was originally proposed in [IS16].

5. Small Perturbations

Caftarelli developed in [Caf89] a perturbative approach to
higher regularity estimates for solutions of uniformly el-
liptic equations, sometimes referred to as regularity by com-
pactness or the improvement of flatness. By flatness we mean
that a solution is uniformly close to a prescribed profile.
The general strategy was inspired by De Giorgi’s regularity
theorem for minimal surfaces. The idea can be roughly
described by saying that if the solution is uniformly close
to a smooth solution, then it inherits the estimates of the
corresponding linearization.

This approach quickly provided alternative proofs to
the regularity estimates for some of the canonical degen-
erate equations. Caffarelli and Cordoba treated in [CC93]
the minimal surface equation, while Wang studied in
[Wan94] the estimates for the p-Laplace equation.

In [Sav07], Savin demonstrated that these estimates
could be extended to allow operators F = F(M, p) which
are only required to be uniformly elliptic in a neighbor-
hood of a given profile (M, py) € {F = 0}. In particular,
his result allows us to treat equations that become degen-
erate as (M, p) is large, complementing the ideas in the pre-
vious section. In this case, the alternative mechanism that
supplements the equation is a flatness hypothesis on the
solution.

For simplicity, we state the following result for
(Mg, po) = (0,0) and over the unit ball.

Theorem 5.1. Giveny > 0 and a € (0,1), there exist &, C >
0 such that the following estimate holds:
Let F = F(M, p) € C3(REx" X R™) satisfy
AI < Dy F < Al
ID?F| < A,
F(0,0) = 0.

(5.1)

Let u € C*(By) and Q,, = {|D*u| + |Du| < y} satisfy
F(D*u,Du) = 0in Q, N B,
{HuHLw(Bl) < 8.
Then u € C*>%(B,,) with
llullczas, ;) < Cllull=(s,)-

The proof of the previous theorem provides another im-
portant use of the compactness property derived from the
Krylov-Safonov estimate. For this reason, we would like
to offer a sketch of the argument, at least in the uniformly
elliptic case, that is y = co and Q, = B,. Later on, we will
give a few comments on the degenerate case y < co. The
interested reader may refer to [Sav07] for a complete proof.
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(2*<"17\) = (V‘.I‘ — X 2+a

Qu(x) - Cla — ao|>*

Figure 6. Improvement of flatness: u ~ Q; ~ Q,, both with
errors of order u(2*®k gver Bi(xp); then also u ~ Q, with the
same order of approximation.

1. Given xy € By, the goal is to build a multiple scale
approximation of u around x, of the following form and
for some u € (0,1/2) to be chosen sufficiently small

u(x) = B(x) + u2+2B(u=1x) + ... + u@+okp (u=kx) +...
1=Qk(x)
We require that this approximation satisfies:

(1) Hh=Qy =0,
(2) P; are quadratic polynomials with [|P;||z(5,) < 1,

(3) Il = QillLeod e (xo)) < p+ak,
(4) Each Qy satisfies F(D?Q, DQ(x,)) = 0.
From the second item we obtain that
1Qk+1 — Qullreo(sy) < Cu*-.
Hence, Q, := lim Qy, is well defined. Combining now the

third item we get

[l = Qullze(B e (xo)) < Cu+ak,

This is an equivalent way to state the desired C*% estimate
(Figure 6).

2. The goal now is to find a suitable correction
uCrOk+p o (u=k+Dx) to the quadratic polynomial Qy
approximating u over Bk(xo). This correction must sat-
isfy all the items above. However, in this sketch, we will
mainly focus on the error estimate given by the third item.

Assume that all the hypotheses are satisfied up to some
scale r := uk, for some k > 1, now fixed. Then we consider
the small perturbation v € C?(B;) such that for Q = Qy,

u(x) = Q(x) + r***u(r~1(x — xy)).

Notice that by the inductive hypothesis |||z« (5,) < 1.
Under the uniform ellipticity hypothesis we get that v
satisfies G(D?v, Dv) = 0 in B;, where

G(M, p) := r *F(r*M + D*Q,r'*%p + DQ(x,))

satisfies the same hypotheses as F in (5.1). Therefore, v
has an interior Holder estimate that depends exclusively
on the parameters of uniform ellipticity and the dimen-
sion.

VoruMe 70, NumMBER 10



3. If we assume by contradiction that the correcting
polynomial can not be found for any 4 — 0%, we then ex-
tract a pair of converging sequences v, — Vg and Q, — Qy,
locally uniformly in B;.

Using that F(D?Q,, DQ,) = 0 and |D?F| < A, we also get
that the sequence Q, determines a converging sequence of
operators

G(M, p) =
r~®F(r*M + D?Q,,r'*%p + DQ,(x,)) =

F(r*M + D*Q,,r'*%p + DQ,(x,)) — F(D*Qq, DQy(x))
re ’

such that G, - Gy = Gyo(M), the linear operator with con-
stant coefficients given by

Go(M) := Dy F(D*Qo, DQo(xo)) : M.

It turns out that the limit function v, also satisfies the lin-
ear equation Gy (D?v,) = 0.

4. As a final step, we notice that by the C* estimates for
linear equations with constant coefficients, v, can be ap-
proximated by a quadratic polynomial around the origin.
This leads to a contradiction of the assumed fact that the
corrections did not exist for any small value of u. O

For the degenerate case when y < o0, Savin’s remarkable
observation is that under the flatness hypothesis, it is pos-
sible to reconstruct most of the Krylov-Safonov regularity
theory. However, there is a caveat related to the dimin-
ish of oscillation argument. As one rescales the equation,
the degeneracy becomes more and more pervasive and the
argument leading to the improvement on the oscillation
eventually breaks down. This means that from an initial
d-flatness hypothesis on the solution, with § € (0,3,),
one can only get a truncated modulus of continuity for
the solution. Nevertheless, the radius on the truncation
also vanishes as the flatness parameter § goes to zero. This
means that the compactness of solutions in the previous
argument still holds by a Cantor diagonal argument.

5.1. Some further developments. Within the scope of
this presentation, it is not possible to cite the numerous
articles that rely on these techniques. The original idea
was developed to answer a celebrated conjecture by De
Giorgi about level sets in Ginzburg-Landau phase tran-
sition models in [Sav09]. The approach has been ex-
tended by De Silva to establish regularity estimates for the
Bernoulli free boundary problem starting in [DS11]. Reg-
ularity estimates for nonlocal minimal surfaces were es-
tablished by Caffarelli, Roquejoffre, and Savin in [CRS10].
Armstrong, Silvestre, and Smart also utilized this approach
to develop partial regularity results for fully nonlinear
equations in [ASS12]. Colombo and Figalli developed
regularity estimates for degenerate equations from traffic
congestion models in [CF14]. Finally, in collaboration
with Pimentel, we demonstrated in [CLP21] the continuity
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of |Du|, where u solves the gradient-constrained problem
max(1 — |Du|,Au+1) = 0.

6. Quasi-Harnack

Degeneracy can also manifest itself across scales. For exam-
ple, when modeling a PDE using finite difference schemes,
the continuous formulation of uniform ellipticity breaks
down at the level of the discretization. However, if the
numerical scheme approximates a uniformly elliptic equa-
tion, we expect that the discrete solution will approximate
the continuous solution over large scales, inheriting with
it the classical manifestations of uniform ellipticity.

A recent work by De Silva and Savin in [DSS21] pro-
poses a weak notion of solution for equations where the
uniform ellipticity manifests from a given scale onward.

The next definition of solutions relies on the follow-
ing geometric configuration: Given u € C(Q), and ¢ €
C(B.(xp)) with B.(xy) C Q, we say that ¢ touches u from
below (above) at x, and over B,(x,) if

{qo < (2)uin B,(xo),
o(x0) = u(xp).

Definition 6.1. Let F = F(M) € C(Rg;') be nondecreas-
ing. We say that u € C(Q) satisfies

F(D*u) <, (>,)0in Q

if for every quadratic polynomial ¢ that touches u from
below at x,, and over B,(x,) C Q, it holds that F(D?*p) <
(2)o.

The equality =, holds when both inequalities are simul-
taneously satisfied.

This definition is consistent with the classical notion of
the inequality F(D?*u) < 0 for u € C?(Q). This follows by
the second-derivative test and the monotonicity hypothe-
sis on F. Notice also that if , < r, and F(D*u) <,, 0, then
also F(D?u) <, 0, meaning that this notion of solution is
more relaxed as r becomes larger.

To give a concrete example, let us consider a two-
dimensional numerical approximation of the Laplacian
over the two-dimensional lattice €Z2. In this scenario, we
will work with a continuous function u, but the relevant
values will be given on the lattice as

w;j = u(ei, ej) for (i, j) € 72,

We can then extend u to each square Q;; = [ei,e(i + 1)) X
[ej,e(j + 1)) in a continuous manner, ensuring that the
maximum and minimum of u over Q_lj are reached at the
corners of Q;; (Figure 7).

A classical discretization of the Laplace equation over
the lattice is formulated by

Uit Uit U T U (6.1)
7 . )

u,-j =

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1611



Figure 7. An interpolation of a discrete function such that over
each square Q;j, the extremal values are attained over the
corners.

In particular, it follows from a straightforward computa-
tion, that a quadratic polynomial is harmonic if and only
if satisfies (6.1) at one point.

Assume u satisfies (6.1) for (i, j) € e71Q N 72, and con-
sider a quadratic polynomial ¢ touching u from below at
Xo and over B,(xg). If r < ¢, it is not difficult to come up
with interpolations for u for which D?¢ could be arbitrary.

On the other hand, if r > ¢ and xq = (i, j,) € €Z%is a
lattice point, then

Pig.jo = Uig,jo>
_ Uig—1,jo T Uig+1,jo T Uig, jo—1 + Uiy, jo+1
= 2 ,
5 Pio-L.jo + Pig+1,jo t Pig,jo—1 T Pig,jo+1
> 7 .
This implies that Ap < 0, as would be required by the def-
inition of Au <, 0.

Would it be possible to get a similar result in the general
case, when Xx is not necessarily a lattice point?

The answer to this question is affirmative. However, it
is necessary to modify the operator at hand. Indeed, let us
see that if u;; satisfies (6.1) for (i, j) € €7'Q N Z? then u
satisfies

Pia(D?u) <5 0in Q,

6.2
PIA(D*u) 23 0in Q. (6-2)

The parameter A will be conveniently fixed as a large con-
stant by the end of the argument.

We will show the inequality for 77, as the one corre-
sponding to ;f; has a similar analysis.

1. Let ¢ be a quadratic polynomial touching u from
below at x, over B;.(x,) C Q. Assume by contradiction
that 7, (D?p) > 0. This test function can be written as

¢p=P+L
P(x) = 2,(&; - (x — x0))? + (&, - (x — xp))?
L is affine,

with {&;, &,} orthonormal.
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Assume without loss of generality that 1; < 1, and that
the angle subtended by the vectors &, and e, = (0,1) is
between —7/4 and 7/4.

By hypothesis,

2
PraD?9) = X (A4 — Ad)- >0,
i=1

so that 1, > 0 and 4; € (—14,/A, A;,].
2. We get in this way that for 4 := 1,/A,

P(x) = —(& - (x = x0))* + A&z - (x — x0))%,
< P(x)/4,

touches (u — L)/A from below at x, and over Bs.(xy). By
computing the infimum of P over Bs.(x,), we get that

(u—L) > —91&? in By, (xg). (6.3)

3. Let (ip, jo) € Z* such that x, € Q;j,. We will see
now that in at least one corner y = (¢i;, £j;) € 9Q; j, NeZ>
we must have

(u—L)(y) > cl,e? — 9e2, (6.4)

for some constant ¢ > 0 to be fixed.
By considering

y- = (€lg, €jo)s
Y4 = (elg, €(jo + 1)),
and the angle assumption on &,, we get that
€2 - = = x| + 182 - (4 — x0)| 2 (43 - €2)
> E/\/E.

Hence, in at least one of these two corners we must have
that |&,-(y—xp))| = €/ (2\/5), and the desired bound follows
for ¢ = 1/8 by using that (u — L) > AP.

4. By the contact given by (u — L) and AP at x, we get
that (u — L)(xy) = AP(xg) = 0. The way in which we con-
sidered the continuous extension of u also implies that the
minimum of (u — L) over the four corners of Tm must be
nonpositive. In this final step, we will see how to get a con-
tradiction from this fact, together with (6.3) and (6.4).

The choice on the scale r = 3¢ was made such that the
nine closed squares of the form Q;; with |i —i,;| < 1 and
|j — jo| <1 are also contained in B;.(x,) (Figure 8).

Let Q := (ip—1,ip+2)X(jo—1, jo+2) and w;; be defined
for (i, j) € Q N Z2 such that the following holds: For the
three interior nodes (i, j) € (Q N Z?) \ {(i1, j1)}

Wi—1,j + Wiy1,j + Wy j1 + Wi j4
wij = 2 .
Meanwhile, it also satisfies the boundary conditions

{wilh =1

w;j = 0in dQnZZ.
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(ci0,€50)

Figure 8. The ball B;.(xy) contains the 9 squares surrounding
the square Q; j, in which falls the center of the ball.

A simple computation determines that w;; = 2/7 in the
interior nodes of Q N Z* adjacent to (iy, j;), and w;; = 1/7
in the opposite one.

By the discrete comparison principle we get that for any
of the four interior nodes (i, j) € Q N 7>

(u— L+ 92e%);; > A,e2w;;/8,
> 1,e%/48.

Nevertheless, this contradicts that the minimum of (u— L)
over these interior nodes is nonpositive once we choose
A > 432, ([

In the recent article of De Silva and Savin [DSS21], the
authors get a weak Harnack inequality for the general de-
generate problem (6.2). The alternative mechanism used
in this case is a measure estimate over any ball of radius
p=Cr.

We say that u € C(Q) satisfies the measure estimate with
respect to the parameters p, M > 0 and § € (0,1), if for
every B,(x,) C Q, and > 0, we get that

u— inf u <uin B,,(xg),
Bp(x()) M 0/2\*0

implies
[{u — infp (xy) u = Muj N Boja(xo)]
|Bp/2(x0)| -
Theorem 6.1. There exists a small fraction § € (0, 1) depend-
ing on the dimension for which the following statement is true:
Given A, M > 1, there exist 1y, C,c > 0 and a € (0, 1) such

that the following holds:
Let u € C(B,) satisfy for some r € (0,1,)

PA(D?u) <, 0in By,
PiA(D*u) 2, 0in By,

and *u satisfy the measure estimate with respect to Cr, M, and
8. Then u has a truncated Holder estimate of the form

sup p~ ¢« o(sc)us Cllul|ze(By)-

X0€B12 (X0
pe(cer,1/2)
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Besides the already discussed applications to numerical
schemes, the previous theorem can also be applied in the
homogenization of elliptic problems with degeneracies, as
was studied in [AS14]. Finally, it was shown in [DSS21]
that integro-differential uniformly elliptic equations of or-
der o close to two, also fit in the framework of the previous
theorem. In this way, it provides a new proof to the Har-
nack inequality of Caffarelli and Silvestre [CS09].

7. Concluding Remarks

In this note, we have revisited the regularity theory of uni-
formly elliptic equations under the perspective of degener-
ate ellipticity. It is our hope to have conveyed some of the
beautiful geometric insights of the theory.

While we did not go deeper into the models that have
brought up these particular degeneracies, it is important
to emphasize that a careful understanding of such natural
phenomena has been instrumental in the analysis of the
solutions. It can be easily the topic of just one survey to
uncover each one of these models in detail, such as min-
imal surfaces, the p-Laplacian, the porous medium equa-
tion, etc. For the same reason, many important references
have been unfortunately left out.

This article is dedicated to Luis Caffarelli with gratitude
and admiration.
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