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1. Introduction
Modern chatbot software poses a threat to the health of
our field. A scholarly article had better pass through the
heads of at least two parties, cf. [Huf10, p. 47].1 Here we
undertake the endeavor of writing such an article about
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1“It appears that the reporter has passed along some words without inquiring
what they mean, and you are expected to read them just as uncritically for the
happy illusion they give you of having learned something. It is all too reminis-
cent of an old definition of the lecture method of classroom instruction: a pro-
cess by which the contents of the textbook of the instructor are transferred to the
notebook of the student without passing through the head of either party.”

crossed modules with an eye toward the past, this past be-
ing ignored by the recent activity in this area.

In ancient cultures, symmetry arose as repetition of pat-
terns. The human being perceives such symmetry as har-
monious and beautiful proportion and balance (music,
art, architecture, etc.). The variety of patterns is untold.
Symmetry enables us to structure this variety by recogniz-
ing repetitions, as Eurynome’s dancing structured chaos.
The symmetries of an object are encoded in transforma-
tions that leave the object invariant. Inmodernmathemat-
ics, abstracting from the formal properties of such trans-
formations led to the idea of a group. A typical example is
the group of symmetries of the solutions of an equation,
inmodernmathematics termedGalois group, or each of the
17 plane symmetry groups. The operations that form these
groups were already known to the Greeks. Besides inmath-
ematics, symmetry and groups play a major role in physics,
chemistry, engineering, materials science, crystallography,
meteorology, etc. A group itself admits symmetries: the
automorphisms of a group constitute a group. The crossed
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module concept arises by abstracting from the formal prop-
erties which this pair enjoys. For two groups 𝑁 and 𝑄, the
technology of crossed modules allows for a complete clas-
sification of the groups 𝐸 having 𝑁 as a normal subgroup
and quotient group 𝐸/𝑁 isomorphic to 𝑄. This settles the
extension problem for groups, raised by Hoelder at the end
of the nineteenth century. Schreier explored this problem
in terms of factor sets, and Turing implicitly noticed that
it admits a solution in terms of crossed modules. Given 𝑁
and 𝑄 as symmetry groups, interpreting an extension 𝐸 as
a symmetry group is an interesting task, as is, given the ex-
tension group 𝐸 as a symmetry group, interpreting 𝑁 and
𝑄 as symmetry groups. Crossed modules occur in mathe-
matics under various circumstances as ameans to structure
a collection of mathematical patterns. A special example
of a crossed module arises from an ordinary module over
a group. While the concept of an ordinary module is lin-
gua franca in mathematics, this is not the case of crossed
modules.

Beyond some basic algebra and algebraic topology, we
assume the reader familiar with some elementary category
theory (“categorically thinking” suffices). This article is ad-
dressed to the nonexpert. We keep sophisticated technol-
ogy like group cohomology, homotopy theory, and alge-
braic number theory at a minimum. We write an injection
as ↣ and a surjection as ↠.

The opener image of this article displays the beginning
of the first counterpoint (contrapunctus) of the original
printed version of J. S. Bach’s “Kunst der Fuge”. The order
of the counterpoints (of the second part thereof) had been
lost and, 100 years ago, Wolfgang Graeser, before enrolling
as a mathematics student at Berlin university, restored an
order (perhaps the original sequence) bymeans of symme-
try considerations. This order is the nowadays generally
accepted performance practice.

2. Definition and Basic Examples
A crossed module arises by abstraction from a structure
we are all familiar with when we run into a normal sub-
group of a group or into the group of automorphisms of a
group: Denote the identity element of a group by 𝑒 and, for
a group𝐺 and a𝐺-(operator) group𝐻 (a group𝐻 together
with an action of 𝐺 on 𝐻 from the left by automorphisms
of 𝐻) we write the action as (𝑥, 𝑦) ↦ 𝑥𝑦, for 𝑥 ∈ 𝐺 and
𝑦 ∈ 𝐻. Consider two groups 𝐶 and 𝐺, an action of 𝐺 on 𝐶
from the left, view the group 𝐺 as a 𝐺-group with respect
to conjugation, and let 𝜕∶ 𝐶 → 𝐺 be a homomorphism of
𝐺-groups. The triple (𝐶, 𝐺, 𝜕) constitutes a crossed module
if, furthermore, for every pair (𝑥, 𝑦) of members of 𝐶,

𝑥𝑦𝑥−1(𝜕𝑥𝑦)−1 = 𝑒, (1)

that is, the members 𝑥𝑦𝑥−1 and 𝜕𝑥𝑦 of 𝐶 coincide. For
a crossed module (𝐶, 𝐺, 𝜕), the image 𝜕(𝐶) of 𝐶 in 𝐺 is a

normal subgroup, the kernel ker(𝜕) of 𝜕 is a central sub-
group of 𝐶, and the 𝐺-action on 𝐶 induces an action of
the quotient group 𝑄 = 𝐺/(𝜕(𝐶)) on 𝑍 = ker(𝜕) turning 𝑍
into a module over this group, and it is common to refer
to the resulting exact sequence

𝑍 // // 𝐶 // 𝐺 // // 𝑄 (2)

as a crossed 2-fold extension of𝑄 by 𝑍. Amorphismof crossed
modules is defined in the obvious way. Thus crossed mod-
ules constitute a category. The terminology “crossed mod-
ule” goes back to [Whi49]. The identities (1) appear in
[Pei49] and have come to be known in the literature as
Peiffer identities [Lyn50] (beware: not “Peiffer identity” as
some of the present day literature suggests). There is a pre-
history, however, [Bae34, Tur38]; in particular, the Peiffer
identities occur already in [Tur38]. The readermay consult
[Hue21, Section 3] for details.

For a group 𝑄 and a 𝑄-module 𝑀, the trivial homo-
morphism from𝑀 to 𝑄 is a crossed module structure and,
more generally, so is any 𝑄-equivariant homomorphism
𝜗 from 𝑀 to 𝑄 such that the image 𝜗(𝑀) of 𝑀 in 𝑄 acts
trivially on 𝑀. Relative to conjugation, the injection of a
normal subgroup into the ambient group is manifestly a
crossed module structure. Also, it is immediate that the
homomorphism 𝜕∶ 𝐺 → Aut(𝐺) from a group 𝐺 to its
groupAut(𝐺) of automorphismswhich sends amember of
𝐺 to the inner automorphism it defines turns (𝐺, Aut(𝐺), 𝜕)
into a crossed module. It is common to refer to the quo-
tient group Out(𝐺) = Aut(𝐺)/(𝜕(𝐺)) as the group of outer
automorphisms of 𝐺.

3. Identities Among Relations
An “identity among relations” is for a presentation of a
group what a “syzygy among relations”, as considered by
Hilbert, is for a presentation of a module: Consider a pre-
sentation ⟨𝑋; 𝑅⟩ of a group 𝑄. That is to say, 𝑋 is a set of
generators of𝑄 and 𝑅 a family of (reduced) words in𝑋 and
its inverses such that the canonical epimorphism from the
free group 𝐹 on 𝑋 to 𝑄 has the normal closure 𝑁𝑅 of (the
image of) 𝑅 in 𝐹 as its kernel. Then the 𝐹-conjugates of
the images in 𝐹 of the members 𝑟 of 𝑅 generate 𝑁𝑅, that
is, (with a slight abuse of the notation 𝑅,) the family 𝑅
generates 𝑁𝑅 as an 𝐹-operator group: With the notation
𝑦𝑟 = 𝑦𝑟𝑦−1 (𝑟 ∈ 𝑅, 𝑦 ∈ 𝐹), we can write any member 𝑤 of
𝑁𝑅 in the form

𝑤 =
𝑚
∏
𝑗=1

𝑦𝑗𝑟𝜀𝑗𝑗 , 𝑟𝑗 ∈ 𝑅, 𝑦𝑗 ∈ 𝐹, 𝜀𝑗 = ±1,

but 𝑤 does not determine such an expression uniquely.
Thus the issue of understanding the structure of 𝑁𝑅 as an
𝐹-operator group arises. Heuristically, an identity among re-
lations is such a specified product that recovers the identity
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element 𝑒 of 𝐹. For example, consider the presentation

⟨𝑥, 𝑦; 𝑟, 𝑠, 𝑡⟩, 𝑟 = 𝑥3, 𝑠 = 𝑦2, 𝑡 = 𝑥𝑦𝑥𝑦, (3)

of the symmetric group 𝑆3 on three letters. Straightforward
verification shows that

𝑡𝑠−1(𝑥−1𝑡)(𝑥−1𝑠−1)(𝑥−1𝑦𝑟−1)(𝑥−2𝑡)(𝑥−2𝑠−1)𝑟−1 (4)

is an identity among the relations in (3). A standard pro-
cedure enables us to read off this identity and others from
the following prism-shaped tesselated 2-sphere:

•

𝑦

""

•
𝑥oooooo

77oooooo

ll
𝑥

𝑦

||

•

𝑦

||

''
𝑥OOOOOO

OOOOOO

•

𝑦

bb

•

𝑦

<<

𝑥 //ww
𝑥

•

𝑦

<<

𝑥

gg

(5)

The reader will notice that reading along the boundaries
of the faces recovers the relators in (3). The projection, to
a plane, of this prism-shaped 2-sphere with one of the tri-
angles removed is [BH82, Fig. 2 p. 155]. In Section 10 of
[BH82], the reader can find precisemethods to obtain such
identities from “pictures”, see in particular [BH82, Fig. 12
p. 194] for the case at hand, and in [CH82] from diagrams
etc. The corresponding term in [Pei49] is “Randwegaggre-
gat”.

To develop a formal understanding of the situation, let
𝐶𝑅 be the free 𝐹-operator group on 𝑅. The kernel of the
canonical epimorphism from the free group on the (dis-
joint) union 𝑋 ∪ 𝑅 to 𝐹 realizes 𝐶𝑅. Let ̂𝜕𝑅 ∶ 𝐶𝑅 → 𝐹
denote the canonical homomorphism. The members of
the kernel of ̂𝜕𝑅 ∶ 𝐶𝑅 → 𝐹 are the identities among the re-
lations (or among the relators) for the presentation ⟨𝑋; 𝑅⟩
[Pei49, Rei49, BH82]; Turing refers to them as “relations
between the relations” [Tur38, Section 2].

The Peiffer elements 𝑥𝑦𝑥−1(𝜕𝑅𝑥𝑦)−1, as 𝑥 and 𝑦 range over
𝐶𝑅, are identities that are always present, independently
of any particular presentation under discussion. Follow-
ing [Rei49], let 𝐶𝑅 be the quotient group 𝐶𝑅/𝑃 of 𝐶𝑅 mod-
ulo the subgroup 𝑃 in 𝐶𝑅, necessarily normal, which the
Peiffer elements generate. The Peiffer subgroup 𝑃 is an
𝐹-subgroup, whence the 𝐹-action on 𝐶𝑅 passes to an 𝐹-
action on 𝐶𝑅, and the canonical homorphism ̂𝜕𝑅 induces
a homomorphism 𝜕𝑅 ∶ 𝐶𝑅 → 𝐹 that turns (𝐶𝑅, 𝐹, 𝜕𝑅) into
a crossed module. In particular, the kernel 𝜋 = ker(𝜕𝑅),
being central in 𝐶𝑅, is an abelian group, the 𝐹-action on 𝜋
factors through a 𝑄-module structure, and 𝜋 parametrizes
equivalence classes of “essential” or nontrivial identities as-
sociated to the presentation ⟨𝑋; 𝑅⟩ of 𝑄 [Rei49]. We shall

see below that there are interesting cases where 𝜋 is trivial,
that is, the Peiffer identities generate all identities.

Given a group 𝐺, a 𝐺-crossed module is a 𝐺-group 𝐶 to-
gether with a homomorphism 𝜕∶ 𝐶 → 𝐺 of𝐺-groups such
that (𝐶, 𝐺, 𝜕) is a crossed module. Given a set 𝑅 and a set
map 𝜅∶ 𝑅 → 𝐺 into a group 𝐺, the free crossed 𝐺-module
on 𝜅 is the crossed module (𝐶𝜅, 𝐺, 𝜕𝜅) enjoying the follow-
ing property: Given a 𝐺-crossed module (𝐶, 𝐺, 𝜕) and a
set map 𝛽∶ 𝑅 → 𝐶, there is a unique homomorphism
𝛽𝜅 ∶ 𝐶𝜅 → 𝐶 of 𝐺-groups such that (𝛽𝜅, Id)∶ (𝐶𝜅, 𝐺, 𝜕𝜅) →
(𝐶, 𝐺, 𝜕) is a morphism of crossed modules. A standard
construction shows that this free 𝐺-crossed module al-
ways exists. By the universal property, such a free 𝐺-
crossed module is unique up to isomorphism, whence
it is appropriate to use the definite article here. The 𝐹-
crossed module (𝐶𝑅, 𝜕𝑅) just constructed from a presen-
tation ⟨𝑋; 𝑅⟩ of a group 𝑄 is plainly the free 𝐹-crossed
module on the injection 𝑅 → 𝐹. The resulting exten-
sion 𝜋 // // 𝐶𝑅 // // 𝑁𝑅 of 𝐹-operator groups then
displays the 𝐹-crossed module 𝑁𝑅 as the quotient of a free
𝐹-crossed module and thereby yields structural insight. It
is also common to refer to (𝐶𝑅, 𝐹, 𝜕𝑅) as the free crossed
module on ⟨𝑋; 𝑅⟩.

4. Group Extensions and Abstract Kernels
Given two groups 𝑁 and 𝑄, the issue is to parametrize the
family of groups 𝐺 that contain 𝑁 as a normal subgroup
and have quotient 𝐺/𝑁 isomorphic to 𝑄, or equivalently,
in categorical terms, the family of groups 𝐺 that fit into an
exact sequence of groups of the kind

𝑁 // // 𝐺 // // 𝑄. (6)

Given an extension of the kind (6), conjugation in 𝐺 in-
duces a homomorphism 𝜑 from 𝑄 to Out(𝑁). It is com-
mon to refer to a triple (𝑁, 𝑄, 𝜑) that consists of two groups
𝑁 and 𝑄 together with a homomorphism 𝜑∶ 𝑄 → Out(𝑁)
as an abstract kernel or to the pair (𝑁, 𝜑) as an abstract 𝑄-
kernel. In [Bae34] the terminology is “Kollektivcharakter”.
We have just seen that a group extension determines an
abstract kernel. Given two groups 𝑁 and 𝑄 together with
an abstract kernel structure 𝜑∶ 𝑄 → Out(𝑁), the extension
problem consists in realizing the abstract kernel, that is, in
parametrizing the extensions of the kind (6) having 𝜑 as
its abstract kernel provided such an extension exists, and
the abstract kernel is then said to be extendible.

When 𝑁 is abelian, the group of outer automorphisms
of 𝑁 amounts to the group Aut(𝑁), an abstract 𝑄-kernel
structure on 𝑁 is equivalent to a 𝑄-module structure on
𝑁, and the semidirect product group 𝑁 ⋊ 𝑄 shows that
this abstract kernel is extendible. When 𝑁 is nonabelian,
not every abstract 𝑄-kernel (𝑁, 𝜑) is extendible, however,
[Bae34, p. 415]. We shall shortly see that nonextendible
abstract kernels abound in mathematical nature.
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For two homomorphisms 𝐺1 → 𝑄 and 𝐺2 → 𝑄, let
𝐺1 ×𝑄 𝐺2 denote the pullback group, that is, the subgroup
of 𝐺1 × 𝐺2 that consists of the pairs (𝑥1, 𝑥2) that have the
same image in 𝑄.

For a crossed module (𝐶, 𝐺, 𝜕), the action 𝐺 →
Aut(𝐶) of 𝐺 on 𝐶 plainly defines an abstract kernel
structure 𝜑∶ 𝐺/(𝜕(𝐶)) → Out(𝐶). On the other hand,
given the abstract kernel (𝑁, 𝑄, 𝜑), the pullback group
𝐺𝜑 = Aut(𝑁) ×Out(𝑁) 𝑄 and the canonical homomor-
phism 𝜕𝜑 ∶ 𝑁 → 𝐺𝜑 which the crossed module structure
𝜕∶ 𝑁 → Aut(𝑁) induces combine to the crossed module
(𝑁, 𝐺𝜑, 𝜕𝜑), and ker(𝜕𝜑) coincides with the center of 𝑁. In
fact, this correspondence is a bijection between abstract
kernels and crossed modules (𝐶, 𝐺, 𝜕) having ker(𝜕) as the
center of 𝐶. The group 𝐺𝜑 occurs in [Bae34] as the “Auf-
loesung des Kollektivcharakters” 𝜑.

We will now explain the solution of the extension
problem: Consider an abstract kernel (𝑁, 𝑄, 𝜑), and let
(𝑁, 𝐺𝜑, 𝜕𝜑) be its associated crossedmodule. Let ⟨𝑋; 𝑅⟩ be a
presentation of the group 𝑄 and, exploiting the freeness of
𝐹, choose the set maps 𝛼∶ 𝑋 → 𝐺𝜑 and 𝛽∶ 𝑅 → 𝑁 in such
a way that (i) the composite 𝐹 → 𝑄 of the induced homo-
morphism 𝛼𝐹 ∶ 𝐹 → 𝐺𝜑 with the epimorphism from 𝐺𝜑

to 𝑄 coincides with the epimorphism from 𝐹 to 𝑄 and (ii)
the composite 𝑅 → 𝐺𝜑 of 𝛼𝐹 with the injection from 𝑅 to
𝐹 coincides with the composite of 𝜕 with 𝛽. In view of the
universal property of the free 𝐹-crossed module (𝐶𝑅, 𝜕𝑅),
the set map 𝛽 induces amorphism (𝛽𝑅, 𝛼𝐹)∶ (𝐶𝑅, 𝐹, 𝜕𝑅) →
(𝑁,𝐺𝜑, 𝜕𝜑) of crossed modules defined on the free crossed
module (𝐶𝑅, 𝐹, 𝜕𝑅) on ⟨𝑋; 𝑅⟩. Let 𝜋 = ker(𝜕𝑅) and display
the resulting morphism of crossed modules as

𝜋

��

// // 𝐶𝑅
𝛽𝑅

��

𝜕𝑅 // 𝐹
𝛼𝐹
��

// // 𝑄

𝑍 // // 𝑁 //
𝜕𝜑

// 𝐺𝜑 // // 𝑄.
(7)

(This is Diagram 8 in [Hue21, Section 3]). The following
is a version of [Tur38, Theorem 4 p. 356] in modern lan-
guage and terminology; see [Hue21, Section 3] for details.
Crossed modules, in particular free ones, exact sequences,
commutative diagrams, pullbacks, etc. were not at Tur-
ing’s disposal, however, and he expressed his ideas in other
ways. 2

Theorem. The abstract kernel (𝑁, 𝑄, 𝜑) is extendible if and
only if, once 𝛼 has been chosen, the set map 𝛽 can be chosen
in such a way that, in Diagram 7, the restriction of 𝛽𝑅 to 𝜋 is
zero.

2A. Turing and J.H.C. Whitehead worked as WWII codebreakers at Bletchley
Park (UK) but we shall never know whether they then discussed the idea of a
crossed module.

Proof. It is immediate that the condition is necessary. To
establish the converse, suppose, 𝛼 having been chosen,
there is a choice of 𝛽 with the asserted property. Let
𝑁𝑅 = 𝜕𝑅(𝐶𝑅) ⊆ 𝐹 denote the normal closure of 𝑅 in 𝐹.
From (7), we deduce the morphism

𝑁𝑅
𝛽
��

// 𝜄 // 𝐹
𝛼𝐹
��

// 𝑄

𝑁 //
𝜕𝜑

// 𝐺𝜑 // 𝑄
(8)

of crossed modules. Since (8) is a morphism of crossed
modules, in the semidirect product group𝑁⋊𝐹, the mem-
bers of the kind (𝛽(𝑦), 𝜄(𝑦−1)) as 𝑦 ranges over𝑁𝑅 constitute
a subgroup, necessarily normal. The quotient group 𝐸 of
𝑁⋊𝐹 by this normal subgroup yields the group extension
𝐸 of 𝑄 by 𝑁 we seek. □

This modern proof of the theorem is in [Hue80a, Sec-
tion 10] (phrased in terms of the coequalizer of 𝛽 and 𝜄).
The diligent reader will notice that the proof is complete,
i.e., no detail is left to the reader. It is an instance of a com-
mon observation to the effect that mathematics consists in
continuously improving notation and terminology. Even nowa-
days there are textbooks that struggle to explain the exten-
sion problem and its solution in terms of lengthy and unil-
luminating cocycle calculations, and it is hard to find the
above theorem, only recently dug out as a result of Turing’s
[Hue21].3 Eilenberg–MacLane (quoting [Tur38] but appar-
ently not understanding Turing’s reasoning) developed the
obstruction for an abstract kernel to be extendible in terms
of the vanishing of the class of a group cohomology 3-
cocycle of𝑄with values in𝑍 [EM47, Theorem8.1]. The un-
labeled arrow 𝜋 → 𝑍 in Diagram 7 recovers this 3-cocycle,
and the condition in the theorem says that the class of this
3-cocycle in the group cohomology groupH3(𝑄, 𝑍) is zero.
Indeed, once a choice of 𝛼 and 𝛽 has been made, the van-
ishing of that 3-cocycle is equivalent to the unlabeled 𝑄-
module morphism 𝜋 → 𝑍 in (7) admitting an extension
to a homomorphism 𝛾∶ 𝐶𝑅 → 𝑍 of 𝐹-groups, and setting
𝛽𝑅(𝑦) = 𝛽𝑅(𝑦)𝛾(𝑦)−1 and substituting 𝛽𝑅 for 𝛽𝑅, we obtain
a diagram of the kind (7) having 𝜋 → 𝑍 zero.

To put flesh on the bones of the last remark, recall the
augmentation map 𝜀∶ ℤΓ → ℤ of a group Γ defined on the
integral group ring ℤΓ of Γ by 𝜀(𝑥) = 1 for 𝑥 ∈ Γ and
write the augmentation ideal ker(𝜀) as IΓ. The 𝐹-action on
𝐶𝑅 induces a 𝑄-action on the abelianized group 𝐶𝑅,ab =
𝐶𝑅/[𝐶𝑅, 𝐶𝑅] in such a way that the set 𝑅 constitutes a set
of free generators; thus 𝐶𝑅,ab is canically isomorphic to
the free 𝑄-module ℤ𝑄[𝑅] freely generated by 𝑅 (with a
slight abuse of the notation 𝑅). The induced morphism

3Turing would have slipped through an evaluation system based on biblio-
graphic metrics.
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𝜋 → 𝐶𝑅,ab of 𝑄-modules is still injective. For 𝑟 ∈ 𝑅 and
𝑥 ∈ 𝑋 , using the fact that {𝑥 − 1 ∈ I𝐹; 𝑥 ∈ 𝑋} is a family
of free 𝐹-generators of I𝐹, define 𝑟𝑥 ∈ ℤ𝐹 by the identity
𝑟 − 1 = ∑𝑟𝑥(𝑥 − 1) ∈ I𝐹, and let [𝑟𝑥] ∈ ℤ𝑄[𝑋] denote the
image. Defining 𝑑2 by 𝑑2(𝑟) = ∑[𝑟𝑥]𝑥 ∈ ℤ𝑄[𝑋] where 𝑟
ranges over 𝑅 and 𝑥 over 𝑋 , and 𝑑1 by 𝑑1(𝑥) = [𝑥]−1 ∈ ℤ𝑄
where [𝑥] ∈ ℤ𝑄 denotes the image of 𝑥, as 𝑥 ranges over
𝑋 , renders the sequence

𝜋 // // ℤ𝑄[𝑅] 𝑑2 // ℤ𝑄[𝑋] 𝑑1 // ℤ𝑄 𝜀 // // ℤ (9)

exact, and the threemiddle terms thereof together with the
corresponding arrows constitute the beginning of a free res-
olution of ℤ in the category of 𝑄-modules. When we take
⟨𝑋; 𝑅⟩ to be the standard presentation having 𝑋 the set of
all members of 𝑄 distinct from 𝑒, we obtain the first three
terms of the standard resolution, and the composite of the𝑄-
module epimorphism 𝐵3 → 𝜋 defined on the fourth term
𝐵3 of the standard resolution with the above unlabeled ar-
row 𝜋 → 𝑍 verbatim recovers the 3-cocycle in [EM47, The-
orem 8.1].

A congruence between two group extensions of a group
𝑄 by a group 𝑁 is a commutative diagram

𝑁 // // 𝐸1

��

// // 𝑄

𝑁 // //// 𝐸2 // // 𝑄

(10)

with exact rows in the category of groups. For a group 𝑁
with center 𝑍, the multiplication map restricts to a homo-
morphism 𝜇∶ 𝑁 × 𝑍 → 𝑁.

Complement. Let (𝑁, 𝑄, 𝜑) be an extendible abstract kernel

and realize it by the group extension 𝑁 𝑗1↣ 𝐸1 ↠ 𝑄. The as-

signment to an extension 𝑍 𝑗↣ 𝐸 ↠ 𝑄 of 𝑄 by the center 𝑍 of
𝑁 realizing the induced 𝑄-module structure on 𝑍 of the group

extension 𝑁 𝑗2↣ 𝐸2 ↠ 𝑄 which the commutative diagram

𝑁 × 𝑍
𝜇
��

// (𝑗1,𝑗) // 𝐸1 ×𝑄 𝐸

��

// // 𝑄

𝑁 // //// 𝐸2
𝑗2 // // 𝑄

(11)

with exact rows in the category of groups characterizes induces
a faithful and transitive action of H2(𝑄, 𝑍) on the congruence
classes of extensions of 𝑄 by 𝑁 realizing the abstract kernel
(𝑁, 𝑄, 𝜑).

As for the proof we note that, as before, since the left-
hand and middle vertical arrows in (11) constitute a mor-
phism of crossed modules, in the group 𝑁⋊(𝐸1×𝑄 𝐸), the
triples (𝑦1𝑦2, 𝑗1(𝑦1)−1, 𝑗(𝑦2)−1), as 𝑦1 ranges over 𝑁 and 𝑦2
over 𝑍, form a normal subgroup, and the group 𝐸2 arises
as the quotient of 𝑁 ⋊ (𝐸1 ×𝑄 𝐸) by this normal subgroup.

When 𝑁 is abelian, it coincides with its center, Diagram
11 displays the operation of “Baer sum” of two extensions
with abelian kernel, and the complement recovers the fact
that the congruence classes of abelian extensions of𝑄 by𝑁
constitute an abelian group, the group structure being in-
duced by the operation of Baer sum [Bae34], indeed, the
group cohomology group H2(𝑄, 𝑁).

5. Combinatorial Group Theory
and Low-dimensional Topology

Consider a space𝑌 and a subspace𝑋 (satisfying suitable lo-
cal properties, 𝑌 being a CW complex and 𝑋 a subcomplex
would suffice), and let 𝑜 be a base point in 𝑋 . The standard
action of the fundamental group 𝜋1(𝑋, 𝑜) (based homo-
topy classes of continuous maps from a circle to 𝑋 with
a suitably defined composition law) on the second rela-
tive homotopy group 𝜋2(𝑌, 𝑋, 𝑜) (based homotopy classes
of continuous maps from a disk to 𝑌 such that the bound-
ary circle maps to 𝑋 with a suitably defined composition
law) and the boundarymap 𝜕∶ 𝜋2(𝑌, 𝑋, 𝑜) → 𝜋1(𝑋, 𝑜) turn
(𝜋2(𝑌, 𝑋, 𝑜), 𝜕) into a crossed 𝜋1(𝑋, 𝑜)-module [Whi41].
See [BHS11] for a leisurely introduction to homotopy
groups building on an algebra of composition of cubes.
Suffice it to mention that the higher homotopy groups of
a space acquire an action of the fundamental group. In
[Whi41], J.H.C.Whitehead in particular proved that, when
the space 𝑌 arises from 𝑋 by attaching 2-cells, the crossed
𝜋1(𝑋, 𝑜)-module (𝜋2(𝑌, 𝑋, 𝑜), 𝜕) is free on the homotopy
classes in 𝜋1(𝑋, 𝑜) of the attaching maps of the 2-cells.

The Cayley graph of a group 𝑄 with respect to a fam-
ily 𝑋 of generators is the directed graph having 𝑄 as its
set of vertices and, for each pair (𝑥, 𝑦) ∈ 𝑋 × 𝑄, an ori-
ented edge joining 𝑦 to 𝑥𝑦. The oriented graph that under-
lies (5) is the Cayley graph of the group 𝑆3 with respect
to the generators 𝑥 and 𝑦 in (3). The geometric realization
𝐾 = 𝐾⟨𝑋; 𝑅⟩ of a presentation ⟨𝑋; 𝑅⟩ of a group 𝑄 is a 2-
dimensional CW complex with a single zero cell 𝑜, hav-
ing 1-cells in bijection with 𝑋 and 2-cells in bijection with
𝑅 in such a way that the fundamental group 𝜋1(𝐾1, 𝑜) of
the 1-skeleton amounts to the free group on 𝑋 and that
the attaching maps of the 2-cells define, via the boundary
map 𝜕∶ 𝜋2(𝐾, 𝐾1, 𝑜) → 𝜋1(𝐾1, 𝑜), the members of 𝑅. By
construction, the fundamental group 𝜋1(𝐾, 𝑜) of 𝐾 is iso-
morphic to 𝑄, the fundamental group 𝜋1(𝐾1, 𝑜) is canon-
ically isomorphic to the free group 𝐹 on the generators 𝑋
and, by Whitehead’s theorem, the 𝜋1(𝐾1, 𝑜)-crossed mod-
ule (𝜋2(𝐾, 𝐾1, 𝑜), 𝜕) is free on the attaching maps of the 2-
cells and hence canonically isomorphic to the 𝜋1(𝐾1, 𝑜)-
crossed module written above as (𝐶𝑅, 𝜕𝑅). The 1-skeleton
𝐾
1
of the universal covering space 𝐾 of 𝐾 then has funda-

mental group isomorphic to the normal closure 𝑁𝑅 of the
relators in 𝐹 and, together with the appropriate orienta-
tion of its edges, then amounts to the Cayley graph of 𝑄
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with respect to 𝑋 . Every 2-dimensional CW complex with
a single 0-cell is of this kind. Since the higher homotopy
groups of 𝐾1 are zero, the long exact homotopy sequence
of the pair (𝐾, 𝐾1) reduces to the crossed 2-fold extension

𝜋2(𝐾, 𝑜) // // 𝜋2(𝐾, 𝐾1, 𝑜) 𝜕 // 𝜋1(𝐾, 𝑜) // // 𝑄. (12)

Thus the group of “essential identities” among the rela-
tions 𝑅 amounts to the second homotopy group 𝜋2(𝐾, 𝑜)
of 𝐾 (based homotopy classes of continuous maps from a
2-sphere to𝐾, with a suitably defined group structure). For
illustration, consider the 1-skeleton of the prism-shaped
tesselated 2-sphere (5). For each 2-gon and each 4-gon, at-
tach two copies of the disk bounding it and, likewise, for
each triangle, attach three copies of the disk bounding it.
Thus we obtain a prism-shaped 2-complex having, beyond
the six vertices and twelve edges, six faces bounded by 2-
gons, six faces bounded by 4-gons, and six faces bounded
by triangles, and this 2-complex realizes the universal cov-
ering space 𝐾 of the geometric realization 𝐾 of (3). By
its very construction, it has eleven “chambers” (combina-
torial 2-spheres). Since 𝐾 is simply connected, we con-
clude its second homotopy group is free abelian of rank
eleven. For the inexperienced reader we note that choos-

ing a maximal tree in 𝐾
1
= 𝐾1 and deforming this tree to a

point is a homotopy equivalence, and the result is a bunch
of eleven 2-spheres, necessarily having second homology
group free abelian of rank eleven. Since 𝐾 is simply con-
nected, the Hurewicz map from 𝜋2(𝐾, 𝑜) to this homology
group is an isomorphism, and so is the homomorphism
𝜋2(𝐾, 𝑜) → 𝜋2(𝐾, 𝑜)which the covering projection induces.
Hence 𝜋2(𝐾, 𝑜) is free abelian of rank eleven. Under the
isomorphism 𝜋2(𝐾, 𝐾1, 𝑜) → 𝐶𝑅 of crossed 𝐹-modules, the
based homotopy class of the innermost chamber goes to
the class of the identity (4) in 𝐶𝑅, necessarily nontrivial, as
are the identities that correspond to the other chambers.
Another interesting piece of information we extract from

(5) is that 𝜋1(𝐾
1
, 𝑜) ≅ 𝑁𝑅 ⊆ 𝐹, being the fundamental

group of the Cayley graph 𝐾
1
of 𝑆3 is, as a group, freely

generated by any seven among the eight constituents of
(4).

The paper [Pei49] arose out of a combinatorial study
of 3-manifolds: The present discussion applies to the 2-
skeleton 𝑀2 of a cell decomposition of a 3-manifold 𝑀,
and attaching 3-cells to build the 3-manifold under discus-
sion “kills” some of the essential identities associated with
𝑀2: The commutative diagram

𝜋2(𝑀2, 𝑜)

����

// // 𝜋2(𝑀2,𝑀1, 𝑜)

����

𝜕// 𝜋1(𝑀1, 𝑜) // // 𝜋1(𝑀, 𝑜)

𝜋2(𝑀, 𝑜) // // 𝜋2(𝑀,𝑀1, 𝑜) //
𝜕𝑀
// 𝜋1(𝑀1, 𝑜) // // 𝜋1(𝑀, 𝑜)

(13)

with exact rows displays how the𝜋1(𝑀1, 𝑜)-crossedmodule
(𝜋2(𝑀,𝑀1, 𝑜), 𝜕𝑀) arises from the free 𝜋1(𝑀1, 𝑜)-crossed
module (𝜋2(𝑀2,𝑀1, 𝑜), 𝜕). For these and related issues, see,
e.g., [BH82] and the literature there. For illustration, con-
sider a finite subgroup 𝑄 of SU(2) such as, e.g., 𝑄 = 𝐶𝑛,
the cyclic group of order 𝑛 ≥ 2, or 𝑄 the quaternion group
of order eight. The orbit space 𝑀 = SU(2)/𝑄, a lens space
when 𝑄 = 𝐶𝑛, is a 3-manifold having 𝜋2(𝑀2, 𝑜) nontriv-
ial but 𝜋2(𝑀, 𝑜) trivial since the 3-sphere has trivial sec-
ond homotopy group. Via Papakyriakopoulos’s sphere the-
orem, the second homotopy group of a general 3-manifold
being nontrivial is equivalent to the manifold being geo-
metrically splittable, similarly to what we hint at for tame
links below. Thus a 3-manifold is geometrically splittable
if and only if attaching the 3-cells of a cell decomposition
does not kill all the essential identities arising from its 2-
skeleton.

A 2-complex 𝐾 is said to be aspherical when its degree
≥ 2 homotopy groups are trivial. This is equivalent to the
second homotopy group being trivial. Lyndon’s identity
theorem [Lyn50] implies that, when 𝐾 has a single 2-cell,
the 2-complex𝐾 is aspherical if and only if the relator 𝑟 aris-
ing as the boundary of the 2-cell is not a proper power in
𝐹 = 𝜋1(𝐾, 𝑜). Thus the 𝐹-crossed module structure of the
normal closure𝑁 {𝑟} of {𝑟} in 𝐹 is free in this case. For exam-
ple, a closed surface distinct from the 2-sphere is aspheri-
cal, but this is an immediate consequence of the universal
covering being the 2-plane. In the same vein, the exterior
of a tame link in the 3-sphere is homotopy equivalent to
a 2-complex—the operation of “squeezing” the 3-cells of a
cell decomposition achieves this—and the link is geomet-
rically unsplittable if and only if the exterior and hence
the 2-complex is aspherical. Here “tame” means that the
link belongs to a cellular subdivision. Consequently, for
the Wirtinger presentation ⟨𝑋; 𝑅⟩ [BH82, Fig. 3 Section 9
p. 183] of the link group, as a crossed 𝐹-module, the nor-
mal closure 𝑁𝑅 of the relators 𝑅 in 𝐹 is free if and only
if, by the already quoted result of Papakyriakopoulos, the
link is geometrically unsplittable [BH82, Theorem (P) Sec-
tion 9 p. 183]. In particular, a tame knot is a geometrically
unsplittable link. In [Whi41], Whitehead raised the issue,
still unsettled, whether any subcomplex of an aspherical
2-complex is itself aspherical. This is equivalent to asking
whether, for a presentation ⟨𝑋; 𝑅⟩ of a group, when the nor-
mal closure 𝑁𝑅 of 𝑅 in 𝐹 is free as an 𝐹-crossed module,
this is still true of the normal closure 𝑁𝑅 of a subset 𝑅 of
𝑅. See [BH82, Section 9 p. 181 ff.] for more details and
literature on partial results. In [Whi41], in the proof of
the freeness of the crossed module arising from attaching
2-cells to a space, Whitehead interpreted the Peiffer iden-
tities as Wirtinger relations associated to the link arising
from a null homotopy; see [BH82, Section 10 p. 187 ff.]
for details and more references.
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6. Interpretation of the Third Group
Cohomology Group

The notion of congruence for group extensions extends
to crossed 2-fold extensions, and congruence classes of
crossed 2-fold extensions of the kind (2), together with
a suitably defined operation of composition arising from
a generalized Baer sum, constitute the third group coho-
mology group H3(𝑄, 𝑍). Under this interpretation, the
crossed 2-fold extension associated to the crossed mod-
ule (𝑍, 𝑄, 0) represents the identity element. See [Mac79]
for the history of this interpretation; it parallels the re-
sult in [EM47] saying that suitably defined equivalence
classes of abstract 𝑄-kernels having 𝑍 as its center are in
bijection with the members of H3(𝑄, 𝑍). Under this in-
terpretation, the zero class corresponds to the extendible
𝑄-kernels. This is essentially Turing’s theorem in a new
guise. Thus the crossed 2-fold extension (2) associated
to a 𝐺-crossed module (𝐶, 𝜕) defines a characteristic class
in H3(𝑄, 𝑍) with 𝑄 = 𝐺/𝜕(𝐶). In particular, such a 𝐺-
crossedmodule having ker(𝜕) equal to the center 𝑍 of𝐶 de-
fines an abstract 𝑄-kernel, and this 𝑄-kernel is extendible
if and only if its characteristic class is zero. The character-
istic class in H3(𝜋1(𝐾, 𝑜), 𝜋2(𝐾, 𝑜)) of the 𝜋1(𝐾1, 𝑜)-crossed
module (𝜋2(𝐾, 𝐾1, 𝑜), 𝜕) associated with a CW complex 𝐾
recovers the (first) 𝑘- (or Postnikov) invariant; when 𝐾 is 2-
dimensional, 𝜋1(𝐾, 𝑜), 𝜋2(𝐾, 𝑜) and this 𝑘-invariant deter-
mine the homotopy type of 𝐾. A CW complex with non-
trivial fundamental group and nontrivial second homo-
topy group typically has nonzero 𝑘-invariant but, to under-
stand the present discussion, there is no need to know any-
thing about 𝑘-invariants beyond the fact that the crossed 2-
fold extension associated with the corresponding crossed
module represents it. The crossed module associated with
the geometric realization of (3) provides an explicit ex-
ample of a nontrivial 𝑘-invariant; see below. Here is an
even more elementary example, with explicit verification
of the nontriviality of its 𝑘-invariant: The free crossedmod-
ule (𝐶{𝑟}, 𝐶𝑥, 𝜕) associated with the presentation ⟨𝑥, 𝑟⟩ with
𝑟 = 𝑥𝑛 of the finite cyclic group 𝐶𝑛 of order 𝑛 ≥ 2 has
𝐶𝑥 the free cyclic group generated by 𝑥 and 𝐶{𝑟} the free
abelian 𝐶𝑛-group which 𝑟 generates, equivalently, the free
ℤ𝐶𝑛-module which 𝑟 generates when we use additive nota-
tion, the action of 𝐶𝑥 on 𝐶{𝑟} is the composite of the projec-
tion 𝐶𝑥 → 𝐶𝑛 with the action coming from the 𝐶𝑛-group
structure on 𝐶{𝑟}, and 𝜕 sends 𝑥

𝑘𝑟, 0 ≤ 𝑘 ≤ 𝑛−1, to 𝑥𝑛 ∈ 𝐶𝑥.
The 𝑛 identities

𝑖1 = 𝑥𝑟𝑟−1, 𝑖2 = 𝑥𝑖1 = 𝑥2𝑟(𝑥𝑟−1), … , 𝑖𝑛 = 𝑥𝑛−1 𝑖1 = 𝑟(𝑥𝑛−1𝑟−1),

generate the kernel 𝜋 = ker(𝜕) as an abelian group, sub-
ject to the relation 𝑖1𝑖2 … 𝑖𝑛 = 1. Thus 𝑖1 generates 𝜋 as
an abelian 𝐶𝑛-group, equivalently, as a 𝐶𝑛-module when
we write 𝜋 additively. The experienced reader will rec-
ognize 𝜋 as being, as a 𝐶𝑛-module, isomorphic to the

augmentation ideal I𝐶𝑛 of 𝐶𝑛. Sending each 𝑖𝑗, for 1 ≤
𝑗 ≤ 𝑛, to the generator of (a copy of) 𝐶𝑛 defines an epi-
morphism 𝜋 → 𝐶𝑛; indeed, this is the epimorphism that
arises by dividing out the 𝐶𝑛-action on 𝜋. Let (𝐶{𝑟}, ̂𝜕) de-
note the 𝐶𝑥-crossed module which requiring the diagram

𝜋

����

// // 𝐶{𝑟}

����

𝜕 // 𝐶𝑥 // // 𝐶𝑛

𝐶𝑛 // // 𝐶{𝑟} //
𝜕

// 𝐶𝑥 // // 𝐶𝑛

(14)

with exact rows to be commutative characterizes. Let 𝐶𝑟 ⊆
𝐶𝑥 denote the free cyclic subgroup which 𝑟 = 𝑥𝑛 generates.
As an abelian group, 𝐶{𝑟} ≅ 𝐶𝑛 ×𝐶𝑟 and, with the notation
𝑢 for the generator of the copy of 𝐶𝑛, the rules 𝑥𝑟 = 𝑢𝑟 and
𝑥𝑢 = 𝑢 characterize the 𝐶𝑥-group structure. Let 𝑣 denote a
generator of the cyclic group 𝐶𝑛2 of order 𝑛2. With respect
to the trivial actions, the homomorphism ⋅𝑛 ∶ 𝐶𝑛2 → 𝐶𝑛2
which sends 𝑣 to 𝑣𝑛 defines a𝐶𝑛2 -crossedmodule structure
on 𝐶𝑛2 . Sending 𝑢 to 𝑣𝑛, 𝑟 to 𝑣 and 𝑥 to 𝑣 we obtain a
congruence morphism

𝐶𝑛 // // 𝐶{𝑟}

����

𝜕 // 𝐶𝑥

��

// // 𝐶𝑛

𝐶𝑛 // // 𝐶𝑛2 //
⋅𝑛

// 𝐶𝑛2 // // 𝐶𝑛

(15)

of crossed 2-fold extensions. The upper row of (14) rep-
resents the 𝑘-invariant in H3(𝐶𝑛, 𝜋) of the geometric real-
ization of the presentation ⟨𝑥; 𝑟⟩ of the group 𝐶𝑛 while the
lower row of (15) represents a generator of H3(𝐶𝑛, 𝐶𝑛) ≅
𝐶𝑛. Diagram (14) says that, under the induced map
H3(𝐶𝑛, 𝜋) → H3(𝐶𝑛, 𝐶𝑛), that 𝑘-invariant goes to a gen-
erator of a cyclic group of order 𝑛 ≥ 2. Hence that 𝑘-
invariant is necessarily nontrivial. It is also worthwhile
noting that the left-hand copy of𝐶𝑛 in (15) amounts to the
third group homology group H3(𝐶𝑛) of 𝐶𝑛 and that suit-
ably exploiting the Yoneda interpretation of the traditional
definition ofH3(𝐶𝑛, 𝐶𝑛) as Ext3𝐶𝑛(ℤ, 𝐶𝑛) identifies the class
of the bottom row in (15) with the correspondingmember
of Ext3𝐶𝑛(ℤ, 𝐶𝑛). Restricting the crossed 2-fold extension as-
sociated with the geometric realization of (3) to any of the
cyclic subgroups of 𝑆3 and playing a bit with the data, one
can also show that the crossed module associated with the
geometric realization of (3) has nonzero 𝑘-invariant. Thus
crossedmodules having nonzero characteristic class and in
particular nonextendible abstract kernels abound.

7. Higher Group Cohomology Groups
Suitably extended, the interpretation in terms of crossed 2-
fold extensions leads, for 𝑛 ≥ 1, to an interpretation of the
group cohomology group H𝑛+1(𝑄, 𝑍) in terms of “crossed
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𝑛-fold extensions”. See [Mac79] for the history of this in-
terpretation. For example, the crossed 𝑛-fold extension as-
sociated with a cell decomposition of an 𝑛-dimensional
CW-complex 𝑋 with nontrivial fundamental group and
trivial homotopy groups 𝜋𝑗(𝑋) for 2 ≤ 𝑗 < 𝑛 represents the
first nonzero 𝑘-invariant inH𝑛+1(𝑋, 𝜋𝑛(𝑋)) of 𝑋 [Hue80b].
For illustration, as in Section 5, consider the orbit space
𝑀 = SU(2)/𝑄 for a (nontrivial) finite subgroup 𝑄 of SU(2).
We will now use, without further explanation, some clas-
sical material which the reader can find in standard text-
books. The 2-skeleton of a suitable cell decomposition of
𝑀 yields the geometric realization of the presentation of𝑄
resulting from the cell decomposition, the geometric real-
ization of the presentation ⟨𝑥; 𝑟⟩ of 𝐶𝑛, with 𝑟 = 𝑥𝑛, when
𝑄 = 𝐶𝑛. For a general finite subgroup𝑄 of SU(2), the exact
homotopy sequence of the pair (𝑀,𝑀2), necessarily one of
𝑄-modules, takes the form

…𝜋3(𝑀2, 𝑜) → 𝜋3(𝑀, 𝑜) → 𝜋3(𝑀,𝑀2, 𝑜) (16)

→ 𝜋2(𝑀2, 𝑜) ↠ 𝜋2(𝑀, 𝑜).

With respect to the epimorphism from 𝜋1(𝑀1, 𝑜) to𝑄, (16)
becomes a sequence of 𝜋1(𝑀1, 𝑜)-modules. The composite

𝜋3(𝑀,𝑀2, 𝑜) → 𝜋2(𝑀2,𝑀1, 𝑜) → 𝜋2(𝑀2,𝑀1, 𝑜)ab (17)

of 𝜋3(𝑀,𝑀2, 𝑜) → 𝜋2(𝑀2, 𝑜) with the injection 𝜋2(𝑀2, 𝑜)
→ 𝜋2(𝑀2,𝑀1, 𝑜) and, thereafter, with abelianization,
amounts to the boundary operator 𝐶3(𝑆3) → 𝐶2(𝑆3) of
the 𝑄-equivariant cellular chain complex 𝐶∗(𝑆3) of the
(cellularly decomposed) 3-sphere 𝑆3 that underlies SU(2),
and this boundary operator has the homology group
H3(𝑆3) as its kernel. Using the Hurewicz isomorphism
𝜋3(𝑆3, ̂𝑜) → H3(𝑆3) and the covering projection isomor-
phism 𝜋3(𝑆3, ̂𝑜) → 𝜋3(𝑀, 𝑜) (with the notation ̂𝑜 for a pre-
image in 𝑆3 of the base point 𝑜 of 𝑀), we deduce that
the 𝑄-morphism 𝜋3(𝑀, 𝑜) → 𝜋3(𝑀,𝑀2, 𝑜) in (16) is injec-
tive. (Beware: We must be circumspect at this point since
𝜋3(𝑀2, 𝑜) is nontrivial when 𝑄 is not the trival group, and
we cannot naively deduce that injectivity from the exact-
ness of (16).) Since the second homotopy group of the
3-sphere 𝑆3 is trivial, so is 𝜋2(𝑀, 𝑜). Consequently the 𝑄-
morphism 𝜋3(𝑀,𝑀2, 𝑜) → 𝜋2(𝑀2, 𝑜) in (16) is surjective.
Hence splicing (12), with 𝑀2 substituted for 𝐾, and (16)
yields the crossed 3-fold extension

𝜋3(𝑀, 𝑜) // // 𝜋3(𝑀,𝑀2, 𝑜) //𝜋2(𝑀2,𝑀1, 𝑜) 𝜕//𝜋1(𝑀1, 𝑜) // //𝑄
(18)

of 𝑄 by the free cyclic group 𝜋3(𝑀, 𝑜) ≅ H3(𝑆3) (as 𝑄-
modules), and the 𝑄-action on 𝜋3(𝑀, 𝑜) is trivial since
this action amounts to the induced 𝑄-action on H3(𝑆3),
necessarily trivial. The group H4(𝑄, 𝜋3(𝑀, 𝑜)) is cyclic
of order |𝑄| (the number of elements of 𝑄), and the
crossed 3-fold extension (18) represents a generator of
H4(𝑄, 𝜋3(𝑀, 𝑜)) and thence the first nonzero 𝑘-invariant of

𝑀. This 𝑘-invariant, the fundamental group 𝜋1(𝑀, 𝑜) ≅
𝑄, and the third homotopy group 𝜋3(𝑀, 𝑜) determine
the homotopy type of 𝑀. Furthermore, the group 𝑄
has periodic cohomology, of period 2 when 𝑄 is cyclic
and of period 4 otherwise. Thus, the operation of cup
product with the class of (18) induces isomorphisms
H𝑠(𝑄, ⋅) → H𝑠+4(𝑄, ⋅), for 𝑠 ≥ 1, for any integer 𝑠
when we interpret the notation H as Tate cohomology.
When 𝑄 is a cyclic group 𝐶𝑛 of order 𝑛 > 1, the

extension 𝜋3(𝑀, 𝑜) // // 𝜋3(𝑀,𝑀2, 𝑜) // // 𝜋 = ker(𝜕)
of 𝐶𝑛-modules amounts to the familiar extension
ℤ // // ℤ𝐶𝑛 // // I𝐶𝑛 of 𝐶𝑛-modules arising from the
standard small free resolution of ℤ in the category of 𝐶𝑛-
modules, and it is immediate that the𝐶𝑛-module structure
on 𝜋3(𝑀, 𝑜) is trivial.

8. Generalization
The description of group cohomology in terms of crossed
𝑛-fold extensions (𝑛 ≥ 1) is susceptible to generalizations
where cocycles are not necessarily available. For example,
for an extension of a topological group 𝐺 by a continuous
𝐺-module whose underlying bundle is nontrivial, (global)
continuous cocycles are not available. See [Hue21, Section
3] and the literature there for more situations where this
happens.

9. Lie Algebra Crossed Modules
The axiom (1) makes perfect sense for Lie algebras, and
the interpretation of the (𝑛 + 1)th Lie algebra cohomol-
ogy group in terms of crossed 𝑛-fold extensions (𝑛 ≥ 1) is
available. Also the abstract kernel concept extends to Lie
algebras in an obviousmanner, as does the equivalence be-
tween abstract kernels and crossed modules with the cen-
tral kernel constraint explained above, and there is an ana-
logue of Turing’s theorem. Indeed, much of the above ma-
terial carries over to Lie algebras. See [Hue21, Section 5]
and the literature there for details.

10. Normality of a Noncommutative Algebra
Over Its Center

Crossed modules arise in Galois theory. We will now
briefly delve into this. See [Hue21, Section 4] for the his-
tory and [Hue18b] for a more complete account and refer-
ences:

Let 𝑆 be a commutative ring and 𝐴 an 𝑆-algebra having
𝑆 as its center. Let 𝑄 be a group of operators on 𝑆. The
development of a Galois theory for such algebras leads to
the following question: Does every automorphism in 𝑄 ex-
tend to an automorphism of 𝐴? The algebra 𝐴 is said to be
𝑄-normal when this happens to be the case. We formalize
the situation as follows:

Denote by Aut(𝐴) the group of ring automorphisms
of 𝐴 and by U(𝐴) its group of units. The obvious
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homomorphism 𝜕∶ U(𝐴) → Aut(𝐴) assigns to a unit of
𝐴 the associated inner automorphism of 𝐴, the obvious
action of Aut(𝐴) on U(𝐴) turns the triple (U(𝐴), Aut(𝐴), 𝜕)
into a crossed module, and ker(𝜕) = U(𝑆), the group of
units of 𝑆. WriteOut(𝐴) = Aut(𝐴)/(𝜕U(𝐴)). Each inner au-
tomorphism of𝐴 leaves 𝑆 elementwise fixedwhence the re-
strictionmapAut(𝐴) → Aut(𝑆) induces a homomorphism
res∶ Out(𝐴) → Aut(𝑆). Let 𝑄 be a group and 𝜅∶ 𝑄 →
Aut(𝑆) an action of 𝑄 on 𝑆 by ring automorphisms. De-
fine a 𝑄-normal structure on the central 𝑆-algebra 𝐴 rela-
tive to the given action 𝜅∶ 𝑄 → Aut(𝑆) of 𝑄 on 𝑆 to be
a homomorphism 𝜎∶ 𝑄 → Out(𝐴) that lifts the action
𝜅∶ 𝑄 → Aut(𝑆) of 𝑄 on 𝑆 in the sense that the compos-
ite of 𝜎 with res∶ Out(𝐴) → Aut(𝑆) coincides with 𝜅. A
𝑄-normal 𝑆-algebra is, then, a central 𝑆-algebra 𝐴 together
with a 𝑄-normal structure 𝜎∶ 𝑄 → Out(𝐴).

Let (𝐴, 𝜎) be a 𝑄-normal 𝑆-algebra, let 𝐺𝜍 =
Aut(𝐴) ×Out(𝐴) 𝑄, and let 𝐺𝜍 act onU(𝐴) via the canonical
homomorphism from𝐺𝜍 toAut(𝐴). The homomorphism
𝜕𝜍 ∶ U(𝐴) → 𝐺𝜍 which 𝜕∶ U(𝐴) → Aut(𝐴) induces turns
(U(𝐴), 𝐺𝜍, 𝜕𝜍) into a crossed module, and the crossed 2-
fold extension

e(𝐴,𝜍) ∶ U(𝑆) ↣ U(𝐴) 𝜕
𝜍
→ 𝐺𝜍 ↠ 𝑄 (19)

represents a class [e(𝐴,𝜍)] ∈ H3(𝑄,U(𝑆)), the Teichmueller
class of (𝐴, 𝜎). For the special case where 𝑆 is a field, a cocy-
cle description of this class (independently of any crossed
module) is in [Tei40].4

Define a 𝑄-equivariant 𝑆-algebra to be a central 𝑆-
algebra𝐴 together with a homomorphism 𝜌∶ 𝑄 → Aut(𝐴)
that induces the 𝑄-action 𝜅 on 𝑆. For example, let 𝑅 = 𝑆𝑄,
the subring of 𝑄-invariants in 𝑆; the 𝑆-algebra 𝐴 = 𝐵⊗𝑅 𝑆
for some central 𝑅-algebra 𝐵 plainly admits a canonical
𝑄-equivariant structure. Consider a 𝑄-normal 𝑆-algebra
(𝐴, 𝜎). We can then ask, as did Teichmueller in the situ-
ation he considered, whether the 𝑄-action on 𝑆 lifts to a
𝑄-equivariant structure. When such a lift exists, it induces
a congruence between e(𝐴,𝜍) and the crossed 2-fold exten-
sion arising from the crossed module (𝑍, 𝑄, 0), and hence
the class [e(𝐴,𝜍)] ∈ H3(𝑄,U(𝑆)) is zero. As for the con-
verse, let M𝐼(𝐴) denote the (𝐼 × 𝐼) matrix algebra over 𝐴
for an index family 𝐼; when 𝐼 is not finite, we interpret
M𝐼(𝐴) as being the endomorphism ring of ⊕𝐼𝐴op. The al-
gebraM𝐼(𝐴) is again a central 𝑆-algebra. It is obvious that
an automorphism of 𝐴 yields one of M𝐼(𝐴) in a unique
way, and the obvious map 𝐴 → M𝐼(𝐴) is a ring homomor-
phism. Hence a 𝑄-normal structure 𝜎∶ 𝑄 → Out(𝐴) on
𝐴 determines one on M𝐼(𝐴), and we denote this structure
by 𝜎𝐼 ∶ 𝑄 → Out(M𝐼(𝐴)). By [Hue18a, Theorem 6.1], the
Teichmüller class of a 𝑄-normal 𝑆-algebra (𝐴, 𝜎) is zero if

4Teichmueller worked as WWII codebreaker for the high command of the Ger-
man army.

and only if, for 𝐼 = 𝑄, the𝑄-normal structure 𝜎𝐼 on thema-
trix algebra M𝐼(𝐴) comes from an equivariant one. Thus
the class [e(𝐴,𝜍)] ∈ H3(𝑄,U(𝑆)) is the obstruction for the𝑄-
normal algebra (𝐴, 𝜎) to be equivalent to a 𝑄-equivariant
one in the sense just explained. In general, we cannot have
(𝐴, 𝜎) itself to be equivariant. See (22) below for a special
case.

Suppose 𝑆 is a field. Then we are running into ordinary
Galois theory. Here is a family of explicit examples of a 𝑄-
normal algebra having nontrivial Teichmueller class: Con-
sider a field 𝐾 and let 𝐿 = 𝐾(𝜁) be a normal extension
having Galois group 𝑁 cyclic of order 𝑛 ≥ 2 (say). Let 𝜏 de-
note a generator of𝑁, let 𝜂 ∈ U(𝐾), and consider the cyclic
central simple𝐾-algebra𝐷(𝜏, 𝜂) generated by 𝐿 = 𝐾(𝜁) and
some (indeterminate) 𝑢 subject to the relations

𝑢𝜆 = 𝜏𝜆𝑢, 𝑢𝑛 = 𝜂, 𝜆 ∈ 𝐿 = 𝐾(𝜁). (20)

In 𝐷(𝜏, 𝜂), the member 𝑢 is a unit having inverse 𝑢−1 =
𝑢𝑛−1𝜂−1 and, for 𝜆 ∈ 𝐿, we get 𝑢𝜆𝑢−1 = 𝜏𝜆, that is, the
action of the Galois group 𝑁 on 𝐿 extends to the inner
automorphism of 𝐷(𝜏, 𝜂)which 𝑢 determines. The algebra
𝐷(𝜏, 𝜂) is a crossed product of𝑁 with 𝐿 relative to theU(𝐿)-
valued 2-cocycle of 𝑁 determined by 𝜂 but this fact need
not concern us here. The field 𝐿 is a maximal commutative
subalgebra of 𝐷(𝜏, 𝜂). The capital 𝐷 serves as a mnemonic
for the fact that Dickson explored such algebras.

Distinct choices of 𝜂 ∈ U(𝐾) may lead to the “same” al-
gebra of the kind 𝐷(𝜏, 𝜂): The assignment to 𝜗 ∈ U(𝐿) of
∏𝑛−1

𝑗=0
𝜏𝑗𝜗 defines the classical norm map 𝜈∶ U(𝐿) → U(𝐾).

Let 𝜗 ∈ U(𝐿). Then 𝑢 ↦ 𝑢𝜗 = 𝜗𝑢 induces an isomor-
phism 𝛼𝜗 ∶ 𝐷(𝜏, 𝜂) → 𝐷(𝜏, 𝜈(𝜗)𝜂) which restricts to the
identity of 𝐿, an automorphism 𝛼𝜗 of 𝐷(𝜏, 𝜂) if and only
if 𝜈(𝜗) = 1. Furthermore, for 𝜂 = 𝜈(𝜗) with 𝜗 ∈ U(𝐿),
the algebra 𝐷(𝜏, 𝜂) comes down to the algebra of (𝑛 × 𝑛)-
matrices over 𝐾. Thus the cokernel coker(𝜈) of the norm
map 𝜈∶ U(𝐿) → U(𝐾) parametrizes classes of algebras of
the kind 𝐷(𝜏, 𝜂) such that 𝐷(𝜏, 𝜂1) and 𝐷(𝜏, 𝜂2) belong to
the same class if and only if an isomorphism which re-
stricts to the identity of 𝐿 carries 𝐷(𝜏, 𝜂1) to 𝐷(𝜏, 𝜂2). The
expert will recognize that coker(𝜈) amounts toH2(𝑁,U(𝐿))
and ker(𝜈) to the group of multiplicatively written U(𝐿)-
valued 1-cocycles of 𝑁.

Let Aut𝐿(𝐷(𝜏, 𝜂)) denote the group of automorphisms
of 𝐷(𝜏, 𝜂) that restrict to an automorphism of 𝐿|𝔨. For
𝜒 ∈ U(𝐿), the member 𝜗𝜒 = 𝜏𝜒𝜒−1 of U(𝐿) lies in the
kernel of 𝜈. The assignment to 𝜒 of 𝛼𝜗𝜒 ∈ Aut𝐿(𝐷(𝜏, 𝜂)) in-
duces an embedding of U(𝐿)/U(𝐾) into Aut𝐿(𝐷(𝜏, 𝜂)) onto the
subgroup of automorphisms that restrict to the identity of 𝐿. In-
deed, every automorphism 𝛼 of 𝐷(𝜏, 𝜂) that restricts to the
identity of 𝐿 necessarily satisfies the identity

𝛼(𝑢)𝑢−1𝜆𝑢𝛼(𝑢)−1 = 𝛼(𝑢)(𝜏−1𝜆)𝛼(𝑢)−1

= 𝛼(𝑢(𝜏−1𝜆)𝑢−1) = 𝛼(𝜆) = 𝜆
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for every 𝜆 ∈ 𝐿, and this implies 𝛼(𝑢)𝑢−1 ∈ U(𝐿) since
𝐿 is a maximal commutative subalgebra of 𝐷(𝜏, 𝜂); then
𝜗 = 𝛼(𝑢)𝑢−1 belongs to the kernel of 𝜈. By Hilbert’s “Satz
90”, every member 𝜗 of ker(𝜈) is of the kind 𝜗𝜒, for some
𝜒 ∈ U(𝐿).

Let𝑄 be a finite group of operators on 𝐾 and let 𝔨 = 𝐾𝑄,
so that 𝐾|𝔨 is a Galois extension. Suppose that, further-
more, 𝐿|𝔨 is a Galois extension, let 𝐺 = Gal(𝐿|𝔨), and sup-
pose that the resulting group extension of𝑄 by𝑁 is central.
The 𝑄-action onU(𝐾) passes to an action of 𝑄 on coker(𝜈).
In terms of classes of algebras of the kind 𝐷(𝜏, 𝜂), the as-
signment to 𝐷(𝜏, 𝜂) of 𝐷(𝜏, 𝑥𝜂), as 𝑥 ranges over 𝑄, induces
this action.

A little thought reveals that the following are equiva-
lent: (i) The algebra 𝐷(𝜏, 𝜂) is 𝑄-normal; (ii) the restriction
Aut𝐿(𝐷(𝜏, 𝜂)) → 𝐺 is an epimorphism; (iii) for 𝑥 ∈ 𝑄 =
Gal(𝐾|𝔨), there is a unit 𝜗 ∈ U(𝐿) such that 𝜈(𝜗) = 𝑥𝜂𝜂−1.
Furthermore, under the circumstances of (iii), the unit 𝜗 is
unique up to multiplication by a unit in 𝐾.

Condition (iii) plainly characterizes the members [𝜂]
of the subgroup coker(𝜈)𝑄 of 𝑄-invariants of the cokernel
of the norm map 𝜈∶ U(𝐿) → U(𝐾). Let 𝜎∶ 𝑄 → Aut(𝐾)
denote the Galois action. The assignment to the class
[𝜂] ∈ coker(𝜈)𝑄 of the crossed 2-fold extension e(𝐷(𝜏,𝜂),𝜍)
of 𝑄 by U(𝐾) associated to a chosen representative 𝜂 de-
fines a map 𝑡∶ coker(𝜈)𝑄 → H3(𝑄,U(𝐾)), the Teichmueller
map associated with the data. Since for 𝜂1, 𝜂2 ∈ U(𝐾), the
tensor product algebra 𝐷(𝜏, 𝜂1) ⊗𝐾 𝐷(𝜏, 𝜂2) is the algebra
of (𝑛 × 𝑛)-matrices over 𝐷(𝜏, 𝜂1𝜂2), the Teichmueller map 𝑡
is a homomorphism of abelian groups.

Up to this stage the discussion is elementary except, per-
haps, the quote of Hilbert’s “Satz 90”. Now we borrow
some classical algebra: Recall the Brauer group B(𝐾) of 𝐾
consists of classes of central simple 𝐾-algebras, two such
algebras being equivalent when they are matrix algebras
over the same division algebra, the inverse being induced
by the assignment to an algebra of its opposite algebra. A
field 𝐿|𝐾 splits the central simple 𝐾-algebra 𝐴when 𝐴⊗𝐾 𝐿
is 𝐿-isomorphic to a matrix algebra over 𝐿. It is common
to denote by B(𝐿|𝐾) the subgroup of Brauer classes that
are split by 𝐿. For rings more general than fields, the ap-
propriate equivalence relation is Morita equivalence. The
properties of being 𝑄-normal and 𝑄-equivariant are prop-
erties of the Brauer classes, the 𝑄-action on 𝐾 induces an
action of 𝑄 on Br(𝐾), and the 𝑄-invariants Br(𝐾)𝑄 con-
stitute the subgroup of Brauer classes of 𝑄-normal cen-
tral simple 𝐾-algebras. In terms of the canonical isomor-
phisms H2(𝑄,U(𝐾)) → Br(𝐾|𝔨), H2(𝐺,U(𝐿)) → Br(𝐿|𝔨)
and H2(𝑁,U(𝐿)) → Br(𝐿|𝐾), with the notation sc for
“scalar extension”, the classical five-term exact sequence in
the cohomology of the (central) group extension of 𝑄 by
𝑁 with coefficients in U(𝐿) takes the form

Br(𝐾|𝔨) ↣ Br(𝐿|𝔨) sc→ Br(𝐿|𝐾)𝑄 𝑡→ H3(𝑄,U(𝐾)) (21)

inf→ H3(𝐺,U(𝐿)).

To reconcile this sequence with the above remarks about
the vanishing of the Teichmueller class of a 𝑄-equivariant
central 𝑆-algebra we note that, by “Galois descent”, every
𝑄-equivariant central simple 𝐾-algebra arises by scalar ex-
tension from a central simple 𝔨-algebra.

To arrive at explicit examples, let 𝐾 be an algebraic num-
ber field (a finite-dimensional extension of the field ℚ of
rational numbers) and, as before, let 𝑄 be a finite group
of operators on 𝐾 and 𝔨 = 𝐾𝑄. Let 𝑚 denote the l.c.m. of
the local degrees [𝐾P ∶ 𝔨p] as p ranges over the primes of 𝔨
and P over extensions thereof to 𝐾. By [Mac48, Theorem
3], the cokernel of scalar extension sc∶ Br(𝔨) → Br(𝐾)𝑄 is

a finite cyclic group of order 𝑠 = [𝐾∶𝔨]
𝑚

. Let 𝐿 = 𝐾(𝜁) be a
cyclotomic extension having Galois group 𝑁 cyclic of or-
der 𝑛 ≥ 2 (say), that is, 𝜁 is a primitive ℓth root of unity
for some ℓ prime to 𝑛, and the Galois group 𝑁 of order 𝑛
acts faithfully and transitively on the primitive ℓth roots
of unity. The field 𝐿|𝔨 coincides with the composite field
𝔨(𝜁)𝐾 in 𝐿, and the canonical action of the pullback group
Gal(𝔨(𝜁)|𝔨) ×Gal(𝔨(𝜁)∩𝐾|𝔨) 𝑄 on 𝔨(𝜁)𝐾 identifies this group
with a finite group of operators on 𝐿 = 𝔨(𝜁)𝐾 having 𝔨 as
its fixed field. Hence 𝐿|𝔨 is a Galois extension having Ga-
lois group 𝐺 canonially isomorphic to the pullback group
Gal(𝔨(𝜁)|𝔨)×Gal(𝔨(𝜁)∩𝐾|𝔨)𝑄, and𝐺 is a central extension of𝑄
by the cyclic group 𝑁 = Gal(𝐾(𝜁)|𝐾) ≅ Gal(𝔨(𝜁)|(𝔨(𝜁) ∩ 𝐾))
of order 𝑛, a split extension if and only if 𝔨(𝜁) ∩ 𝐾 = 𝔨.

Every class inBr(𝐾) has a cyclic cyclotomic splitting field
but, beware, this only says that, for a central simple 𝐾-
algebra 𝐴, some cyclic cyclotomic field splits a matrix al-
gebra over 𝐴. On the other hand, it implies that every
class in Br(𝐾) and in particular in Br(𝐾)𝑄 has a represen-
tative of the kind 𝐷(𝜏, 𝜂). Thus we may choose a mem-
ber 𝜂 of 𝐾 and, for some 𝑛 ≥ 2, a cyclic degree 𝑛 cyclo-
tomic Galois extension 𝐿 = 𝐾(𝜁) of 𝐾 such that the image
𝑡[𝐷(𝜏, 𝜂] ∈ H3(𝑄,U(𝐾)) of the class [𝐷(𝜏, 𝜂)] ∈ Br(𝐿|𝐾)𝑄 of
the𝑄-normal central 𝐾-algebra𝐷(𝜏, 𝜂) generates the group
H3(𝑄,U(𝐾)); such a member 𝜂 is unique up to multiplica-
tion by some 𝜆 ∈ 𝔨 and by 𝜈(𝜗) for some 𝜗 ∈ 𝐿. From the
exactness of (21) we deduce that the Teichmueller map 𝑡
fits into the exact sequence

Br(𝔨) sc→ Br(𝐾)𝑄 𝑡↠ H3(𝑄,U(𝐾)) ≅ ℤ/𝑠 (22)

but beware, exactness only implies that the class of a 𝑄-
normal algebra having trivial Teichmueller class arises by
scalar extension, not necessarily the algebra itself. An ex-
ample of such an algebra that does not arise by scalar
extension while its class does is in [Tei40]. The im-
ages 𝑡[𝐷(𝜏, 𝜂)], 𝑡[𝐷(𝜏, 𝜂2)], … , 𝑡[𝐷(𝜏, 𝜂𝑛−1)] ∈ H3(𝑄,U(𝐾))
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exhaust the nontrivial members of the group H3(𝑄,U(𝐾)),
and the algebras 𝐷(𝜏, 𝜂𝑗𝜆), for 1 ≤ 𝑗 ≤ 𝑛 − 1 and 𝜆 ∈ 𝔨,
cover all Brauer classes of𝑄-normal algebras split by 𝐿with
nontrivial Teichmueller class and, when we let 𝐿 vary, we
obtain all Brauer classes of 𝑄-normal algebras with non-
trivial Teichmueller class. Thus, to get examples, all we
need is a Galois extension 𝐾|𝔨 having 𝑠 > 1. While, in
view of the Hilbert–Speiser theorem, this is impossible
when the Galois group 𝑄 is cyclic, for example, the fields
𝐾 = ℚ(√13,√17) or 𝐾 = ℚ(√2,√17) have as Galois group
the four group and 𝑠 = 2.

Again we see that crossedmodules having nonzero char-
acteristic class and in particular nonextendible abstract ker-
nels abound.

11. Outlook
A topological group is a group in the category of topologi-
cal spaces. Groups in the categoryCat of small categories—
equivalently, categories internal to groups—constitute a
category, that of 2-groups, and there is an equivalence of
categories between crossedmodules and groups inCat, ob-
served by the Grothendieck school in the mid 1960s (un-
published), see [BHS11, Section I.1.8, p. 29; Section 2.7,
p. 58]. It is an interesting exercise to see how the Peiffer
identities fall out from this equivalence.

Crossed modules, variants, and generalizations thereof
are nowadays very lively in mathematics; see [BHS11],
[Hue21, Section 3] and the references there. The equiva-
lence of crossed modules (in the category of groups) and
2-groups is relevant in string theory, see [Hue21, Section
3] for references. Suffice it to mention that when we pass
from particles to strings, we add an extra dimension, and
replacing groups by groups in Cat reflects this adding an
extra dimension.

For a leisurely introduction and survey of the state of the
art at the time consider [BH82]. A particularly important
work is [BHS11], with its special emphasis on foundational
issues.
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