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A proof is one of themost important concepts ofmathemat-
ics. However, there is a striking difference between how a
proof is defined in theory and how it is used in practice.
This puts the unique status of mathematics as exact science
into peril. Now may be the time to reconcile theory and
practice, i.e., precision and intuition, through the advent
of computer proof assistants. This used to be a topic for ex-
perts in specialized communities. However, mathemati-
cal proofs have become increasingly sophisticated, stretch-
ing the boundaries of what is humanly comprehensible,
so that leading mathematicians have asked for formal veri-
fication of their proofs. At the same time, major theorems
in mathematics have recently been computer-verified by
people from outside of these communities, even by begin-
ning students. This article investigates the different def-
initions of a proof, the gap between them, and possibil-
ities to build bridges. It is written as a polemic or a col-
lage by different members of the communities in mathe-
matics and computer science at different stages of their ca-
reers, challenging well-known preconceptions and explor-
ing new perspectives.
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1. What is a Mathematical
Proof?

Dierk Schleicher
Mathematics often prides itself as themost fundamental of
all sciences: a mathematical truth, once established, will
be true forever. But what exactly is a mathematical proof?
Here is one possible answer in terms of the other funda-
mental concept in mathematics, a definition:

Definition (Proof: formal definition). A mathematical
proof is a sequence of deductions that are based on a given
set of axioms and formally deduce consequences following
formal rules of deduction.

This might be the first, “idealistic,” definition of proof
that one encounters, and it is not too hard to prove some
simple results in this formal way, perhaps in combina-
torics, elementary number theory, or on Euclidean trian-
gles. But sooner rather than later, one discovers that this
definition is too clumsy and impractical for any profound
result in mathematics. In practice, mathematicians use a
very different definition of proof.

Definition (Proof: practical definition). A mathematical
proof is a sequence of arguments that convinces an edu-
cated reader.
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So one might object that mathematicians routinely
make one of themost fundamentalmistakes: define things
in one way and then use them in a different way. But does
this not give away all the fundamental virtues of mathe-
matics?

Many mathematicians are quick to point out that a typ-
ical proof, given as a convincing sequence of arguments,
can be elaborated in more detail: in principle, for every
step one may ask why this is so, and one can insert ad-
ditional steps of explanation. Each of these steps, in turn,
may be expanded if need be, until eventually one arrives at
the axioms. One would expect that any of these expansion
steps can be performed by the author of a proof, until one
arrives at sufficiently fundamental levels when one reaches
statements that are already established. It is a common
understanding among mathematicians that most current
mathematical knowledge can be thus justified—in princi-
ple. One may thus reinterpret the practical definition of a
proof in the sense that a proof is a sequence of arguments
that convinces an educated reader that a formal proof in
the sense of the first definition “can be constructed.”

But it is true that mathematical “proofs” written by hu-
mans occasionally do have errors. Many of them are of a
trivial kind when some missing steps can be inserted, or
an overlooked special case can be treated in the same way
as the rest of the proof. Sooner or later, one is often told,
any mistakes would be found by the scrutiny of the math-
ematical community.

But now and again there are theorems that were thought
to be proven where much later the proof is recognized to
be false or incomplete, and where perhaps even the result
itself is recognized as wrong. How would you know that
for a given theorem the “sooner or later” might not hap-
pen tomorrow, when a possibly fundamental flaw is dis-
covered? How can one then be certain of themathematical
correctness of a proof?

A rather prominent classical example is the four-color
theorem: this theorem was thought to be proved already
in the late 19th century, when not one but two proofs were
given—that were both found to be incorrect eleven years
later.
A recent example from dynamical systems. Proofs that
are later discovered to be flawed are not just a theoretical
possibility, or an anecdote from the early times of math-
ematics (when perhaps standards of mathematical rigor
were not so high). This is illustrated in a very current ex-
ample from dynamical systems. The claim is stated quite
easily:

Let 𝑓∶ ℂ → ℂ be a holomorphic function but not a poly-
nomial (i.e., a transcendental entire function). Then 𝑓 can
have at most one maximal completely invariant domain: that
is a domain 𝑈 with 𝑓(𝑈) = 𝑈 = 𝑓−1(𝑈), and such that

ℂ ⧵ 𝑈 contains at least two points; maximality means that 𝑈
is not contained in a strictly larger domain 𝑈′ with the same
properties. Until very recently, this result would be stated
as a theorem, proved by Noel Baker, an eminent pioneer
in the field, in 1970 [1]. However, Duval observed about
a half century later that the proof is flawed, and Rempe
and Sixsmith [19] showed that it cannot be fixed by the
methods stated. In particular, a key step in the proof is the
statement that if 𝑈,𝑉 ⊂ ℂ are disjoint simply connected
domains, then one of 𝑓−1(𝑈) and 𝑓−1(𝑉) must be discon-
nected. This statement, however, is false; even as simple
a function as 𝑓(𝑧) = 𝑒𝑧 + 𝑧 provides a counterexample,
as shown by Rempe and Sixsmith: it has infinitely many
disjoint simply connected domains with connected preim-
ages. Baker’s proof thus cannot be repaired along the lines
of its original version. The main result, as of today, is an
open question—half a century after it was accepted as a
correctly proved theorem.

One might wonder how relevant this result is—perhaps
the error went unnoticed because nobody cared? Unfortu-
nately, this is not so. Rempe and Sixsmith [19, Section 9]
give a shocking list of results that depend on the flawed
paper in a variety of ways. One list contains several pub-
lications by a variety of authors that all depend either on
the flawed paper, or even on other papers that used the
flawed result, but where the main results can be fixed by
other methods developed in [19]. Another list contains
several publications, some of them 35 years old, that use
the flawed paper and for which the main results must now
be considered open once again. Yet another list contains
two survey papers, between 25 and 30 years old, that refer
to the result in [1]. And perhaps most alarmingly, there
are several publications, some of which meanwhile classi-
cal andmuch-cited, where the flawedmethod of proof was
found so useful that it was adapted, further developed, and
generalized (without recognizing the flaw). As a result, a
whole area of mathematics has had to sort out how its the-
ory was affected by a rather “convincing” mistake made
half a century earlier.

This is just a recent example, rather worrisome for the
mathematical community, that shows that problems can
be discovered at any time even in supposedly well-known
results. However, it may well be that mathematics is now
developing toward the point when, finally, the two defini-
tions of “proof” can be reconciled. How this may come
about is one of the key topics of this paper.

Another development in current mathematics, leading
to similar conclusions, is that proofs tend to become
longer and more complex, possibly so much so that they
can no longer be stored as a whole in human memory,
nor be verified by referees. For instance, Peter Scholze has
recently asked that one of his key results on condensed
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mathematics be formally verified, a project called the Liq-
uid Tensor Experiment that has attracted broad attention and
was successfully completed in 2022. A number of years ear-
lier, Vladimir Voevodsky had similarly been worried about
the correctness of results in his field leading to the devel-
opment of Homotopy Type Theory.

One of the inspirations for this paper was a workshop at
theHeidelberg Laureate Forum in 2018, titled “The future of
mathematical proof,” where many of the coauthors of this
paper were present, and where some of the aspects treated
here were discussed and developed.

This paper should be seen as a kaleidoscope of many
aspects of mathematical proofs and computer proof assis-
tants, contributed by various researchers with diverse back-
grounds. In Section 2, Yuri Matyiasevich describes his vi-
sion that, soon, mathematical publications need to be sup-
ported by formal proofs, and that this may well be accom-
plished by the coming generation. In Section 3, Efim Zel-
manov argues in favor of the meaning and explanations of
mathematics, rather than formal verification. In Section 4,
Leslie Lamport introduces a way of presenting mathemati-
cal proofs that “should make it much harder to publish
false proofs.” In Section 5, Christoph Benzmüller discusses
several major accomplishments of proof assistants and de-
rives a vision for integrated formal and traditional proofs.
Then, in Section 6, Jonas Bayer, Marco David, and Benedikt
Stock, three undergraduate students at the time, describe
how they learned to work with proof assistants from early
on, and completed one of the first major formalizations
done by the coming generation. In Section 7, Kevin Buz-
zard explains how he makes proof assistants “sexy” to
mathematicians and recounts how he incorporated them
into classroom teaching. In Section 8, Lawrence Paulson
outlines open challenges and a perspective for the future.

Our contributors express different points of view in this
text, so it is natural that upon reading, youmight not agree
with all of their claims. In fact, this also applies to contrib-
utors and referees: reading some of the exchanged mes-
sages led one of us to remark, “is this still mathematics or
already real-life soap opera?” We hope that the kaleido-
scope in this text will provide inspiration and help readers
develop their own point of view.

Dierk Schleicher

2. Why Formalize
Mathematical Results?
And Why Hilbert’s
Tenth Problem?

Yuri Matiyasevich
A decade ago, the St. Petersburg mathematical society held
a meeting titled “Mathematical proof: yesterday, today, to-
morrow.” Being one of the three spokesmen, I completely
disagreedwith the previous speaker, and dared [15] to pub-
licly announce the following:

PREDICTION

In 25 years mathematical journals (if they are des-
tined to survive so long) won’t take into considera-
tion any paper unless it is accompanied by proofs
which can be verified by a computer.

Already at that time at least one (and only one?) jour-
nal existed in which proofs passed preliminary computer
verification. This was Formalized Mathematics founded in
1990. Over the past 10 years, mathematical journals con-
tinued to multiply in number but I do not know of any
new journal requiring formalized proofs. Nevertheless, I
dare to repeat my prediction verbatim et litteratim, that is
meaning “In 25 years from now. . . .”

In fact, the progress in computer verification of proofs
is very impressive, both in the software development and
in the number and the significance of actually verified the-
orems. There exists a compendium [23] of such achieve-
ments; the list of proofs is regularly updated but initially
restricted by a selection of “Top 100” theorems.
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But what could be the goal of computer verification
of results already proven by human beings? One obvi-
ous answer is as follows: to get additional trust in the
correctness of a proof (there are many examples of im-
portant and widely used theorems with flaws in their
proofs which remained unrevealed for decades). How-
ever, some people believe that computers themselves are
not sufficiently reliable because of possible errors in their
design/software/runs. In my opinion, “in 25 years” the
progress in this area will remove such objections com-
pletely.

Formalized proofs are vital for the very ambitious
project of a World digital mathematics library [11]. The ul-
timate goal of this project is to transfer all mathematical
knowledge (not just axioms/definitions/theorems/proofs)
to computers. This would require tremendous efforts but
who would care to spend her/his precious time on the
meticulous presentation of known results? Mathemati-
cians prefer to produce new ideas (definitions, hypotheses,
theorems) and do not appreciate the hard work of writing
proofs with all minute details (luckily, computer scientists
do appreciate such occupation).

The following remedy was proposed a long time ago:
senior, “retired” mathematicians, who are no longer capa-
ble of generating new brilliant mathematical ideas, could
devote the rest of their lives to “teaching mathematics to
computers.” But there is an opposed option: this could be
done by the young people who just start to master math-
ematics. In this way they can get an acute feeling of what
mathematical rigor is. However, the following remains un-
investigated: how would involvement in such an activity
influence the ability to create new mathematics?

So when I heard that a group of students from Jacobs
University in Bremen had studied, under supervision of
Professor Dierk Schleicher, the proof of the undecidability
of Hilbert’s tenth problem, I suggested to them to demon-
strate their understanding of the whole construction by
producing a fully formalized proof. My role in the project
was very restricted: I supplied the students with a suffi-
ciently (for human beings) detailed proof, and I was re-
sponsible for the choice of Isabelle as the verifier. I was
happy to see that the students became very enthusiastic,
maybe because they (and I too) at that moment underesti-
mated the amount of required work.

Hilbert’s tenth problem is not very difficult for formal-
ization. It is a bit strange that at first we were waiting for it
for half a century but then four independent verifications
in Coq, Isabelle/HOL, Lean and Mizar emerged in a short
time ([17], [16], [21], [14]).

Yuri Matiyasevich

3. On Proof and Progress
in Mathematics:
From the Perspective of a
Research Mathematician

Efim Zelmanov
I will add my 5 cents to the wonderful discussion of com-
puter proof verification, organized by students. For more
than 40 years, I’ve lived in the world of proofs and, some-
times, complicated proofs.

If I were told that a proof is correct because a computer
program says so, but I don’t see big ideas “turning the
wheels,” then probably I would continue thinking about
the problem, as if a computer blessing did not exist.

The purpose of a proof is understanding. For mathemati-
cians it is not enough to know if this or that statement is
correct or not. They want to know why it is correct or not.
Often this understanding comes as a link to some big ideas
that come into play now and then in different contexts. I
am not able to say it better than W. Thurston in his beau-
tiful paper on proofs (see [22]).

In my opinion, a credible computer verification of a
proof is an amazing achievement in AI. It is valuable and
interesting for its own sake, leaving alone proofs. It may
also find other applications.

I have to admit that as far as a straightforward compu-
tation is concerned, I trust computers more than humans.

Difficult and important proofs are often written at the
edge of human intellectual abilities (think of the proof of
G. Perelman of the Poincaré conjecture). Shouldwe expect
the authors to present it in a computer-friendly form? I am
afraid that it is too much to ask.
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Modern mathematics created a new challenge: proofs
of enormous complexity. I know proofs of some far-
reaching statements that have been around for quite a
while and still nobody (except the authors) can say that
they understand all the details. The only hope is that good
proofs are like live organisms. They evolve with time and
go through a natural selection. New ideas appear and
bring new understanding. And new proofs may appear.

I will end with the controversial statement that in prac-
tice a proof is what is considered to be a proof by all math-
ematicians.

Efim Zelmanov

4. Making Math More Rigorous

Leslie Lamport
Mathematics, as practiced by most mathematicians, is not
very rigorous. There is evidence that about 1/3 of all pub-
lished, refereed math papers contain significant errors—
incorrect proofs or theorems that their authors believed
to be correct. (I have presented evidence elsewhere [12].)
Math can bemademore rigorous, andmathematicians can
make fewer errors, by replacing archaic customs withmore
sensible practices. Here is how.
Formulas. A few hundred years ago, formulas were writ-
ten in prose. Today, mathematicians recognize the ad-
vantages of writing formulas in mathematical notation:
they’re shorter, easier to understand, and easier to manip-
ulate. Replacing prose by mathematics must have reduced
errors.

Mathematicians think they’ve stopped using prose to
write formulas. They’re wrong. They’ve replaced only
some of the prose in their formulas by math. Consider
this definition of what it means for lim𝑥→𝑎 𝑓(𝑥) to equal
b.

For all 𝜀 > 0 there exists 𝛿 > 0 such that, for all 𝑦,
if 0 < |𝑦 − 𝑥| < 𝛿 then |𝑏 − 𝑓(𝑦)| < 𝜀. (1)

Leslie Lamport is a computer scientist at Microsoft Research.

A mathematician would find (1) perfectly normal, even
though it’s a mathematical formula written with many
words. Here is that formula written without words:

∀𝜀 > 0∶ ∃𝛿 > 0∶ ∀𝑦∶ (0 < |𝑦−𝑥| < 𝛿) ⟹ (|𝑏−𝑓(𝑦)| < 𝜀).
(2)

I believe most mathematicians would find (2) harder to
understand and uglier than (1). I expect mathematicians
a few hundred years ago would have found 0 < |𝑦−𝑥| < 𝛿
hard to understand and ugly.

Why write (2) rather than (1)? For the same reason we
don’t write 0 is less than the absolute value of. . . : It’s shorter,
easier to understand (when you become comfortable with
the notation), and easier to manipulate. And it will reduce
errors. Show elementary calculus students the definition
(1) and ask them to write what it means for lim𝑥→𝑎 𝑓(𝑥)
equals 𝑏 to be false. I doubt if many of them would get it
right. Teach them a little elementary logic and they could
easily compute the negation of (2). The most obvious use
of words in formulas is to express logical operations; but
they are also used in other ways, such as describing sets
and functions.

Formulas written without words can now be manipu-
lated by computer programs. Programs can easily com-
pute the negation of (2). They can’t compute the negation
of (1).1 Those programs can help students become com-
fortable with mathematical concepts, if the concepts are
described with math rather than prose.

Mathematicians think it’s difficult to write formulas
completely mathematically, without words. I have asked
a number of mathematicians how long a completely rig-
orous, wordless definition of the Riemann integral would
be—assuming definitions of the set of real numbers and its
arithmetic operations, as well as simple set theory. I’ve re-
ceived answers ranging from 50 lines to 50 pages. They’re
wrong.

I’ve developed a language called TLA+ that engineers
use to write completely formal mathematical descriptions
of computer systems. It has tools for checking the correct-
ness of their mathematics. The Riemann integral can be
defined in TLA+ in about a dozen lines.
Proofs. A few hundred years ago, proofs were written in
prose. They still are. Mathematicians haven’t even be-
gun to change the way they write proofs. They think their
proofs express rigorous logical reasoning. They’re wrong.
Their prose proofs are written in a literary style that ob-
scures the logic of the proof. Consider the following open-
ing sentence of a proof from an elementary calculus book

1Restricted, unnatural languages have been proposed for writing formulas ap-
proximately like (1) so they can be understood by a computer program. Such
languages are of little or no use to people not afraid of mathematics.
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by Michael Spivak [20, page 170]—a book that is consid-
ered to be very rigorous.

Let 𝑎 and 𝑏 be two points in the interval with 𝑎 < 𝑏.

It is obviously wrong because the interval in question
could consist of a single point, so it might be impossible to
choose 𝑎 and 𝑏. That sentence is actually part of a correct
proof, but the reader must discover for herself the proof
hidden inside Spivak’s prose.

Writing proofs with prose leads to errors. How can
those errors be avoided? Most mathematicians and com-
puter scientists believe that the only way is to write
machine-checked proofs. This requires writing formulas
in a formal language. TLA+ is simple enough that math-
ematically unsophisticated engineers can use it, and it is
enough like everyday math that mathematicians should
find it fairly natural. But it’s too simple to be adequate
for writing the kinds of proofs found in most math jour-
nal articles. Formalizing such proofs requires a language
too complicated formost engineers to learn—one that I be-
lieve most mathematicians would find quite obscure. Few
mathematicians would go to the effort of learning such a
language unless it made writing their proofs significantly
easier. Today, it makes writingmost proofs muchmore dif-
ficult. Routine machine-checked proofs are now practical
in just a few situations, including some safety-critical ap-
plications. I don’t expect this to change in the next couple
of decades.

Fortunately, there is a simple method that anyone can
use now to write proofs with fewer errors. It can’t elimi-
nate all errors, but it can make them much less likely to
occur. Its basic idea is to replace the linear order of or-
dinary prose by a hierarchical structure, and to name hy-
potheses and proved facts so they can be referred to later
in the proof. Here is a brief explanation of the method; a
complete description has appeared elsewhere [13].

A theorem consists of a statement together with its
proof. A proof is either a short paragraph or a sequence
of statements and their proofs. At each point in a proof,
there is a current goal and a set of usable facts that can be
assumed in proving that goal. Statements can be written in
prose or in math. When written in math, the logical struc-
ture of the statement often determines the hierarchical de-
composition of its proof. Figure 1 shows the structure of
part of a proof containing the statement 𝐴 ∧ 𝐵 ⟹ 𝐶,
in which 𝐶 is proved by first proving statements 𝐷 and 𝐸.
Usually, those two statements would easily imply 𝐶, mak-
ing the proof of qed step ⟨3⟩4 simple. The number ⟨2⟩3
indicates that it is the third statement in the level-2 proof
of a level-1 statement.

This is a straightforward proof, and presented in this
way there seems no reason to structure it. But suppose it

⟨2⟩3. 𝐴 ∧ 𝐵 ⟹ 𝐶
Current goal set to 𝐴 ∧ 𝐵 ⟹ 𝐶

⟨3⟩1. SUFFICES ASSUME 𝐴, 𝐵
PROVE 𝐶

Proof: By simple logic. Trivial proof that assuming 𝐴
and 𝐵, then proving 𝐶, proves

the current goal.
Current goal set to 𝐶; and 𝐴 and 𝐵 added to usable facts.

⟨3⟩2. 𝐷
Proof of 𝐷

𝐷 added to usable facts.

⟨3⟩3. 𝐸
Proof of 𝐸

𝐸 added to usable facts.

⟨3⟩4. QED
Proof of 𝐶

Current goal and usable facts same as before ⟨2⟩3 except with fact

𝐴 ∧ 𝐵 ⟹ 𝐶 added.

⟨2⟩4. . . .
Figure 1. A statement and its structured proof.

were a small part of a large proof, and the proofs of 𝐷 and
𝐸 were each half a page long. If the proof were written as
prose, how could the reader keep track of where the scope
of the hypotheses 𝐴 and 𝐵 ended, and where it was no
longer valid to use 𝐷? Mathematicians try to handle com-
plexity by using lemmas; but that just provides one level
of hierarchy, which doesn’t get you very far.

Making a proof more rigorous requires filling in all
the gaps that could conceal errors. This means making
it longer. Making a prose proof longer makes it harder
to read. But with hierarchical structure, the extra length
makes the proof easier to read. The additional explanation
appears at lower levels of the hierarchy, so it doesn’t ob-
scure the structure of the proof. This will be especially true
when mathematicians stop producing pictures of print on
dead trees and start using hypertext, so lower-levels of the
proof can be hidden when not being read. Avoiding errors
requires more detailed proofs than are currently found in
journals. Until journals use hypertext, this means writing
a detailed proof to catch errors, then shortening it for pub-
lication. That’s easy to do with structured proofs: you just
replace the lower levels of the hierarchy with short proof
sketches. (One can even write LATEX macros so a single file
can produce either version by changing a few characters.)

Students can learn to write structured proofs by teach-
ing them to write very simple machine-checked proofs in
some field. Any good proof system should allow hierar-
chical structuring of proofs. The language for writing theo-
rems should be simple—not the kind of complicated lan-
guage needed for serious math. TLA+ and its proof system

84 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 71, NUMBER 1



are not ideal, but they could be used if nothing better is
available.

Students should understand that the facts they learn in
their math classes can, in principle, be formally proved
from simple axioms and proof rules. In practice, we only
carry proofs down to the level where we believe the reader
will find the steps to be obviously true. That level rises
with education and experience. We also sometimes take
shortcuts by writing formulas with words. But students
and mathematicians should have the confidence that they
could make their proofs completely rigorous and carry
them down as close as they want to basic axioms.

Writing hierarchically structured proofs can help you
avoid errors; it can’t guarantee that you will. You have to
be honest with yourself about what’s obvious and what
should be proved. My advice is to write the proof down
to a level at which you think everything is obvious, and
then go one level deeper. But if you don’t care whether
your proofs are correct, nothing short of having to write a
machine-checked proof will keep you from making errors.
What should you do now? If you agree that writing for-
mulas with words or that writing proofs with prose is silly,
just stop doing it. You don’t have to wait for others to
change.
Formulas. You needn’t remove all the words from your for-
mulas. Start by using the quantifiers ∀ and ∃. Then try
eliminating “… ”, which is not a mathematical operator.
The sequence 𝑥1, … , 𝑥𝑛 is just a function 𝑥 with domain
1..𝑛 that maps each 𝑖 in its domain to 𝑥𝑖.2 Often, though
not always, the math becomes simpler and more elegant
if you eliminate the “. . . ” and instead use the function 𝑥.
Give it a try. Be aware of when you’re using words and
sloppy notation instead of being rigorous. If you’re open
to change, you will find that the mathematically rigorous
approach is often the simplest. If you’re a teacher, your stu-
dents should have learned, or should be learning, the basic
math needed to write formulas with fewer words than they
now use. Help them to become more comfortable with
proper mathematical notation by using it in your classes.
Proofs. There is no reason not to start writing structured
proofs now. It takes only a sentence or two to explain to
readers how to read them. I’ve been doing it for about 30
years, and no editor or referee has complained about my
proofs. Start by reading how I write structured proofs, but
feel free to modify my style as you see fit. There are just
two features that should be preserved: hierarchical struc-
turing and the ability to name and refer to hypotheses and
already proved statements.

2“..” is a mathematical operator, defined by 𝑖..𝑗 ∆= {𝑘 ∈ ℤ∶ 𝑖 ≤ 𝑘 ≤ 𝑗}, where
ℤ is the set of all integers.

If you’re a professor, teach your students to structure
their proofs the way you do. They’re not yet set in their
ways, and they’ll appreciate how the structure makes your
proofs easier to understand. Encourage them towrite struc-
tured proofs in all their courses. Other professors are un-
likely to complain that the proofs are too rigorous; and
they might even be inspired to write them themselves.

Leslie Lamport

5. What is a Proof?
What Should It Be?

Christoph Benzmüller
Does the notion of a mathematical proof refer to the rig-
orous but typically rather nonintuitive formal derivation of
a new “truth” from its premises using accurately defined rules
of inference? Or is it an artful communication act in which
the beautiful structures underlying a new mathematical in-
sight are revealed to peers in such a way that they can easily
see and accept it, and even gain further inspiration?

The former notion of a formal proof is primarily con-
cerned with logical rigor and soundness. Intuition and
beauty is a secondary concern, if at all. Formal proofs
have recently attained increased, albeit quite controversial,
attention in mathematics, triggered, e.g., by successful ap-
plications of modern automated theorem proving technol-
ogy to challenging mathematical verification and reason-
ing tasks. Using theorem provers, hard problems were
solved that humans could notmanage on their own. Some
examples include:

(i) The four-color theorem: this notorious challenge was
solved already in 1977 using automated theorem tech-
nology by Appel & Haken, and an interactive formal

Christoph Benzmüller is the Chair for AI Systems Engineering and a professor
at the Otto-Friedrich-Universitä, Bamberg; he is also a professor in the Depart-
ment of Maths and Computer Science at the Freie Universität, Berlin. His
email address is c.benzmueller@gmail.com.
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proof was more recently developed by Gonthier in the
proof assistant Coq.

(ii) The Kepler conjecture (about best sphere packings in Eu-
clidean 3-space): a board of experts had gone to great
lengths to verify the solution to the problem submit-
ted by Hales to the Annals of Mathematics, but in the
end could not fully verify his contribution. Eventu-
ally, Hales and his teammastered it in interactionwith
HOL Light. As the main result, a formal proof is now
available that is independently verifiable—by humans
and computer programs.

(iii) The Pythagorean triple problem (whether all positive
numbers can be colored by two colors so that there
is no monochromatic Pythagorean triple): this chal-
lenge problem was solved by Heule, Kullmann, and
Marek [9] using automated SAT solving technology
(boolean SATisfiability), and the formal proof that
was generated by the computer program is of enor-
mous size (about 200TB); it is still independently ver-
ifiable though (at least by machines). This line of re-
search has been continued by an automatic solutions
for Schur number five [8] and Keller’s conjecture [5].

(iv) My own current work with colleagues focuses on
higher-order metalogical reasoning technologies [3]
that have enabled us to detect and explain errors and
problems in peer-reviewed publications in mathemat-
ics, computational metaphysics, and machine ethics.
These include the discovery of an unnoticed inconsis-
tency in Gödel’s modern variant of the ontological ar-
gument for the existence of God, the discovery and
clarification of a deeply rooted paradox in Zalta’s Prin-
cipia Logico-Metaphysica, and the revelation of some
minor problems in a well-known textbook on cate-
gory theory [4].

There are many other works that could be mentioned here,
e.g., the machine-checked proof on the odd order theo-
rem.

It is to be noted that the formal reconstruction of
mathematical work is generally a very resource- and time-
consuming task, for example due to the lack of large and
easily reusable libraries of formalizedmathematics, or soft-
ware that does not pose additional challenges along the
way. Conversely, some technical mathematical results,
such as those mentioned in (iii), may not support intu-
itive and insightful mathematical proofs. In general, math-
ematics is confronted with increasingly complex problems
whose solution and subsequent evaluation (e.g., by peer re-
view) require techniques that go beyond traditional prac-
tice. Examples (i)–(iv) above are only early evidence of
this kind. When technologies are available that can help
detect errors in publications, they should certainly be used

to optimize scientific quality. Formal proofs should there-
fore take a more central role, in maths and beyond.

In fact, I see it as a societal duty to take up this chal-
lenge. Clinging to the traditional notion of mathematical
proof alone is not an option in an increasingly technolog-
ical world. Think of areas such as “program verification in
computer science” or “trusted AI,” where ideally we want
formal guarantees that implemented, complex solutions
aremathematically correct, but where intuitive, traditional
proofs might be lacking.

Nonetheless, formal proofs alone are of limited inter-
est and they should ideally always be coupled to intuitive
proofs. Explainability, transparency, and intuition must
remain virtues of the highest priority, not only in math-
ematics. In the long run, the increased trustworthiness
and beauty of a combined approach, where both notions
are coupled pari passu, will justify the additional resources
that must now be invested. Publishing errors (even minor
ones) will be prevented by formal proofs, and designing
ill-conceived and inaccessible theories will be impeded by
the demand for mathematical intuition and beauty.
So, what should a proof be? In conclusion, it should
ideally be both a human-oriented traditional proof and
a machine-oriented formal proof. Traditional mathemati-
cal proofs are made by, and consumed by, humans, while
formal proofs are predominantly generated with, and con-
sumed by, machines. Yet, by pairing both, the antipodes
will increasingly engage in a harmonious dance.

One step further, beyond pairings, one may dream of
the integration ofmathematical and formal proofs into one
object. Modern proof assistants such as Isabelle/HOL pro-
vide increasingly intuitive languages for constructing and
representing proofs, but significant scientific progress is
still needed to achieve this ambitious goal. Finding a com-
prehensive solution that integrates both notions of proof
can even be understood as a challenge for AI, as it requires
a seamless semantic integration of natural language, dia-
grams, formula language, etc., up to the exchange of mean-
ingful arguments between humans and theorem provers.

Recent work by Marco David, Benedikt Stock, Jonas
Bayer, and their fellow students gives reason for hope.
Their verification project of Hilbert’s tenth problem is sig-
nificantly smaller in scope than some projects mentioned
above, but differs in that the mathematics students be-
gan their formalization project, encouraged by Matiyase-
vich, with no prior knowledge of proof assistant technol-
ogy. Nevertheless, they rose to the challenge and made
great progress by working independently with the proof
assistant. This is particularly notable because it is another
example (in addition to, e.g., [6]) of an impressive for-
malization project carried out by people from outside the
community of formalized mathematics, and it is another
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excellent demonstration of the maturity that modern
proof assistant technology has now reached.

Christoph
Benzmüller

6. Proof Assistants: The Right
Way to Learn Mathematics?!

Jonas Bayer, Marco David,
and Benedikt Stock
Little did we know at the time that Yuri had made a “grand
plan” to establish his vision on the future of mathemati-
cal proof when we first met him. He visited our univer-
sity back in 2017 and presented the idea to formalize the
DPRM theorem:3 this is the key result in his proof of the
undecidability of Diophantine equations, providing a neg-
ative solution to Hilbert’s tenth problem. Little did we
know that we played the role of “guinea pigs” who, in a
carefully set-up experiment, should demonstrate the idea
that mathematical proof verification by computers is feasi-
ble even for young and inexperienced university students.
Today, we are very grateful for the role we have been given.
The following paragraphs elaborate what we have learned
in the years since then, now that we are ourselves super-
vising another project by a fresh set of students that had
never worked on computer-verified proofs before.

Yuri set up the scene swiftly; he presented his theo-
rem to us and invited us to work on its computer veri-
fication. Neither he nor we had any idea how much ef-
fort this would turn out to be. At the time, it seemed to

Jonas Bayer is a PhD student at Cambridge University. His email address is
jcb234@cam.ac.uk.
Marco David is a PhD student at the University of California, Berkeley. His
email address is marco.david@berkeley.edu.
Benedikt Stock is a PhD student at the University of Oxford. His email address
is stock@maths.ox.ac.uk.
3Named after Martin Davis, Hilary Putnam, Julia Robinson, and Yuri Matiya-
sevich, the DPRM theorem states that every recursively enumerable set is
Diophantine.

us that, once the proof of the DPRM theorem was under-
stood, we merely needed to “translate” its arguments in
such a way that Isabelle could verify them. Anyone who
has ever worked with an interactive theorem prover, how-
ever, knows that the word “translate” does not do much
justice to the process. In reality, this includes filling the
possible gaps that are frequently found in mathematical
papers. Common phrases such as “it is easy to see that. . . ”
needed to be brought to logical life during this process.
Soon, we realized that the challenges often lay in lemmas
that looked rather innocent. In fact, we found ourselves
five times reconsidering the formalization of the mere con-
cept of a register machine before our formal definition
proved useful.

Despite the challenges we encountered, we insist that
learning how to work with an interactive theorem prover
is fully feasible, although not yet easy. In a previous paper
[2], we have reflected upon our own mistakes and the chal-
lenges we encountered. A key realization is that making
progress is almost impossible without an expert at hand
to answer questions. Hence, to popularize proof assis-
tants among the next generation, we are now proactive our-
selves in mentoring a new group of students learning how
to formalize mathematics. The current need to pass on
experience person-to-person distinguishes proof assistants
from most programming languages or computer algebra
systems like Mathematica. Here, online Q&A forums such
as Stack Overflow4 provide a freely accessible and search-
able database of almost any imaginable question about
these tools, and hence provide the means to make them
accessible to the broad public. Interactive theorem provers
and their currently secluded communitiesmust follow suit
to become useful for the average mathematician!

Beyond the technical skills and results, this project
prompted a paradigm shift in the way we now view ordi-
nary mathematics: In our university courses, we no longer
ask if a proof is convincing to us, but instead wonder if
we would be able to formalize it in Isabelle. As the com-
puter often exhibits assumptions or edge cases that hu-
mans gloss over, this thought pattern leads to a more rigor-
ous approach to the (informal) argument. Our new, sharp-
ened perspectivewas largely forged through the interaction
with the computer and its unique manner of reasoning. It
illustrates how to reconcile the two conflicting definitions
of “proof” in the next generation of mathematicians.

4https://stackoverflow.com

JANUARY 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 87

https://stackoverflow.com


Jonas Bayer Marco David

Benedikt Stock

7. Some Thoughts on
the Formalization
of Mathematics

Kevin Buzzard
Making formalization sexy. Mathematics has fashions.
The Langlands philosophy seems to have been a fashion-
able area for many decades now. Conjectures get proved,
new conjectures get made, there was the classical theory,
and then a mod 𝑝 theory (crucial for Fermat’s Last The-
orem), and now a bewildering 𝑝-adic theory as well as
geometric and categorified versions. I will unashamedly
confess that my work with Johan Commelin and Patrick
Massot where we translated the line “Let 𝑋 be a perfectoid
space” into Lean’s language was an attempt to market the-
orem proving software to mathematicians. We wanted to
show them that theorem provers are now ready to handle
fashionable modern mathematics. No, we cannot do any-
thing spectacular yet like come up with an incomprehen-
sible billion-line long proof of the Riemann hypothesis
(indeed, computers generating proofs of hard mathemat-
ical conjectures of mainstream interest is science fiction
right now, and may well remain so for decades to come).
However, let’s think about this. If we stick with the status

Kevin Buzzard is a professor of pure mathematics at the Imperial College of
London. His email address is k.buzzard@imperial.ac.uk.

quo (i.e., essentially nobody types sexy mathematics into
proof assistants), then proof assistants will never be able
to do sexy mathematics, because they will simply never
learn it! Computers certainly can’t directly read the crap
we write in our papers (and humans often can’t read them
either). Humans need to do the translation by hand, and
the sooner the better. So, whose job is it to type in the
statements of the global Langlands conjectures into these
systems? Who will do this, and give humanity the chance
to make computer teaching and proof mining resources,
and large language model training data, for students learn-
ing and working in the Langlands program? Surely it is
our job as mathematicians. Nobody else is going to do it –
we cannot expect computer scientists to become technical
experts in the Langlands philosophy; it is much easier for
mathematicians to learn a programming language. If the
maths staff won’t do the translation, let’s get the maths
PhD students doing it. If you’ve recently graduated with
a PhD from a pure mathematics department, can you, or
even can humanity, state in Lean the main theorems you
proved in your thesis? The practical answers with current
technology are still highly dependent on the nature of the
area of the thesis. For my MSc and PhD students I am
100% certain that we can not only state the main results
in Lean, but also prove them.

Looking to the future, what if mathematicians start
flocking to formalization, and all of a sudden we have got
perfectoid spaces and the statements of the Langlands con-
jectures in Lean and also in Arend (a HoTT prover) and Is-
abelle/HOL (a simple type theory prover) and MetaMath
(a set theory prover) and Coq and HOL 4 and HOL Light
and Mizar and cubical Agda and. . . . What then? I have al-
ready said that, inmy opinion, it is science fiction to expect
that these systems will start proving the Langlands philoso-
phy.

But the following is near-reality. Software such as
Lean can be used to power an interactive resource for
PhD students learning algebraic geometry or some other
dense area. Once we have a database of statements of
many theorems corresponding to tags in the Stacks Project
or Kerodon (online databases of algebraic geometry and
other sexy mathematics), we can let the computer scien-
tists take over. They have tools known as hammers, which
can attempt to build proofs or counterexamples to propo-
sitions fed to the system, using the database we mathe-
maticians constructed. Note that such a tool does not need
any formalized proofs and so even a huge database like the
the statements of the theorems in the Stacks project could
be constructed manually over a period of several person-
years, ideally by young algebraic geometers interested in
trying new ways of learning the area. Of course, formalis-
ing the proofs is the fun part, so these will no doubt follow.
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Another possibility is training large language models such
as ChatGPT to write Lean code. This area is still in its in-
fancy but may turn out to be decisive.
Making formalization fun. The examples in the previous
paragraph show that the mathematical community might
well come to benefit from having serious mathematics for-
malized in a theorem prover. Experience suggests that it is
mostly young people who formalize. Thus teaching young
people about formalization is important; however it is a
different task to teaching young people about mathemat-
ics. The Natural Number Game is a browser-based Lean
game that came out of many hours at Imperial College
London just writing random undergraduate-level mathe-
matics puzzles in Lean and then watching students solving
them. The idea of building up facts about natural numbers
from first principles was a big hit, and it went on from
there. Students say to me “I’ve finished the natural num-
ber game, what next?” The correct answer to that is “Install
Lean following the instructions on the community web-
site”. But after they’ve done that, what next? This depends
on their mathematical interests and abilities. I often en-
courage an enthusiastic student to formalize some mathe-
matics they already know well for their first Lean project.
The rule is: if it compiles, you won. After this we can start
talking about how to write code which is of a high stan-
dard.

For PhD students and more mathematically mature
people who are interested in seeing what’s going on,
it’s always worthwhile pointing out current mathemat-
ical projects which are run via Zulip at leanprover
.zulipchat.com, the platform behind the Lean commu-
nity chat. We are always looking for new people to help
out with various projects, and are happy to “onboard” new-
comers. Right now some of themain active projects on the
site are: a formalization of the proof of Fermat’s Last Theo-
rem for regular primes, being led by Riccardo Brasca, and a
formalization of some of the main results in the theory of
condensed mathematics, being led by Adam Topaz. A fu-
ture project, starting in 2024, led by me and funded by the
EPSRC, is to formalise a full proof of Fermat’s Last Theo-
rem. Past projects which ran on the site include the sphere
eversion project, led by Patrick Massot, which formalised a
modern proof that one can evert a sphere in three dimen-
sions, and “the liquid tensor experiment”, led by Johan
Commelin, formalising the proof of a 2019 theorem of
Clausen and Scholze. In 2020 Scholze challenged the for-
malization community to verify a crucial theorem he had
announced with Clausen, and the Lean community rose
to the challenge. The back story is interesting; Scholze sug-
gested that perhaps the current refereeing process that we
have in mathematics would not dive deeply into a specific
part of the work, and Scholze was interested to see whether

a theorem prover could do this instead. It turns out that
this was indeed possible. Scholze was an advisor through-
out the project, which took 18months to complete; on the
way the community developed many other theories (for
example a theory of homological algebra), some of which
are now being used in other projects.
Teaching formalization skills. Teaching students how to
formalizemathematics means teaching them how to trans-
late mathematical ideas between English and Lean. Just
like learning a foreign human language, you begin by trans-
lating basic stuff between the two languages, and you ask
if you don’t understand something. In the Lean course I
teach in Imperial College London’s mathematics depart-
ment, we work through human mathematics that the stu-
dents have already been taught, and we learn to speak
Lean’s language. Later on I introduce some new mathe-
matics, when the students have already learnt some Lean.
Athina Thoma and Paola Iannone taught me that teaching
the first years equivalence relations and Lean at the same
time would usually not end well. However to a student
who knows both, formalising the fact that equivalence re-
lations biject with partitions would be an excellent Lean
learning experience. The art is to find the right project, and
the correct project typically depends on the student.
Fixing issues in modern research. In an interview with
Wired I was once quoted as suggesting that all maths was
wrong. This is something I know not to be true—some
maths is definitely correct, and (at least in classical logic)
these statements are opposite to one another. However, I
did say that perhaps some of our castles were built on sand,
and I now think even this is a bit naive. Having had con-
versations with David Rabouin, a historian and philoso-
pher of mathematics, I now understand that cutting edge
maths always looks like this. There are bits which are not
quite checked but everyone knows it will usually work out
fine, or at least well enough to make the main theorem go
through.

Sometimes maths does go wrong though. This century,
in my area alone (number theory), prestigious mathemati-
cians have announced proofs of Leopoldt’s conjecture and
the ABC conjecture; the latter workwas even published in a
reputable mathematical journal. Yet our community does
not seem to accept the proofs as rigorous. Unfortunately,
Lean will not deliver us from these problems, at least not
yet. Right now, Lean proves theorems by having humans
translate those theorems from the English, and if nobody
is prepared to take on the monumental task of translating
the Mochuzuki proof of the ABC conjecture into a theo-
rem prover (and why should anybody? This is not how the
mathematical community has treated published proofs in
the past), then I don’t see any way past the impasse.
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Some proofs have already gone beyond the one brain
barrier—no one human understands all of the ideas in it.
Areas which were formerly fashionable can die out if the
big conjectures driving them forwards are resolved. Any-
thing not properly documented actually runs the risk of
being lost. One can hope that new and simpler proofs will
come along. But history shows that this is not always true:
sometimes things are complicated, and stay complicated.
Whether or not we choose to use theorem provers to do
it, mathematicians need to start thinking more carefully
than ever about precisely documenting what we think we
already know, so we can answer technical questions from
future generations of mathematicians.

Kevin Buzzard

8. When Will Computer-
Assisted Proof Become Part
of Everyday Mathematics?

Lawrence Paulson
Introduction and background. The idea of applying tech-
nology to mathematical reasoning began to be realized in
the 1960s. N. G. de Bruijn’s AUTOMATHwas a type theory
for expressing mathematical definitions and proofs. Try-
bulec’s Mizar system included a human-readable formal
language for abstract mathematics. Both were professional
mathematicians and intended their work to be beneficial
to mathematics itself, but the technology was not ready.
Nevertheless, they made valuable progress. AUTOMATH
led to the dominant type theory today, the Calculus of
Inductive Constructions. Mizar accumulated a substan-
tial and wide-ranging library of formalized mathematics,
while its readable structured language is still the best there
is.

Interactive theorem provers, or proof assistants, emerged
in the 1970s. The earliest is arguably Mizar, but the most
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influential was undoubtedly Edinburgh LCF. It imple-
mented a Logic for Computable Functions that promptly
became obsolete, but it also introduced an architecture
that would be adopted by most successor systems, includ-
ing Coq, HOL, Isabelle, and Nuprl [7]. These tools were
intended for verification in computer science. HOL (for
higher-order logic) had been chosen in order to imple-
ment a certain style of hardware verification. These ver-
ification tasks seldom required any mathematics beyond
the integers.

The 1994 discovery of a bug in the floating-point unit
of Intel’s Pentium dramatically focused the verification
community on the real numbers. John Harrison formally
proved the correctness of an algorithm for computing the
exponential function, taking account of all the peculiari-
ties of floating-point arithmetic. He went on to play a ma-
jor role in the Flyspeck project: the formal confirmation of
Thomas Hales’s proof of the Kepler conjecture. He formal-
ized many landmark results in mathematics, such as the
prime number theorem.

Gonthier’s formalization of the four-color theorem had
already demonstrated that an interactive theorem prover
(Coq in this case) could help settle a genuine question in
mathematics. This task was similar to Flyspeck in that it in-
volved formally checking a large number of computations.
Isabelle. Isabelle [18] emerged from the LCF tradition
with the aim of supporting a multiplicity of formalisms,
including set theory. However, with higher-order logic
dominating the verification world, Isabelle/HOL became
the dominant instance of Isabelle. Its formalism extended
that of the various HOLs with axiomatic type classes, al-
lowing the systematic reuse of formal material sharing the
same axiomatic basis [10]. Isabelle adopted a structured
proof language, Isar, based on Mizar’s mathematical lan-
guage. Isar expresses proofs with a nested structure where
milestones—intermediate claims and proofs—are explic-
itly written out. Isabelle provides automation for proof
(powerful external provers can be invoked through sledge-
hammer) and also for disproof in the form of counterexam-
ple search. The user interface is a unique interactive devel-
opment environment for editing live proof documents.

There are powerful synergies between these features.
Structured proof text is easy to reuse. Copied into a new
development, it will instantly be checked and any errors
flagged. Structured proofs also work well with sledgeham-
mer: if a given statement is too difficult to be proved auto-
matically, the user may propose an intermediate statement
that might be easy enough to prove automatically and lead
eventually to a proof of the original statement.

This powerful automation has greatly relieved the te-
dium that accompanied formal proof in the early days.

90 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 71, NUMBER 1



It has also helped encourage the growth of substantial li-
braries of formalized mathematics.
Proof assistants: Ready for prime time? Today we have a
wide variety of systems: the HOL family, for higher-order
logic; Isabelle/HOL, for higher-order logic with axiomatic
type classes; Coq and Lean, implementing the Calculus of
Constructions. These choices are motivated by conflicting
priorities such as the simplicity of the implementation and
its semantics as opposed to the expressiveness of the log-
ical calculus. Competition between research groups was
spurred by Freek Wiedijk’s online list detailing which of
the “top 100 theorems” [23] had been proved in various
systems. Only one of the hundred theorems remains un-
proved, and that is Fermat’s Last Theorem!

Much of modern mathematics falls within the scope of
existing verification tools. There are now huge libraries
of formalized mathematics. Isabelle’s Archive of Formal
Proofs5 contains over 650 entries including much core
mathematics—linear algebra, multivariate analysis, proba-
bility, complex analysis, topology—and over three million
lines of proofs. Lean’s mathlib is an immense and rapidly-
growing corpus of material from every branch of mathe-
matics.6

So are these systems finally ready to support mathemati-
cians? There are still many obstacles:

• Formal syntax looks artificial and often is barely legi-
ble. To see the difficulties presented by traditional no-
tation, contrast 𝑥2, ∇2𝑓, sin2 𝜃, 𝑓2(𝑥). In group theory,
𝐺 denotes a group but also a set; 𝑎𝑏 is the product of
𝑎 and 𝑏 but 𝐻𝐾 is quite a different thing, simply be-
cause we used a different part of the alphabet. In set
theory, 𝜆 < ℵ1 has a different meaning from 𝜆 < 𝜔1
even though ℵ1 = 𝜔1.

• The libraries of formalized mathematics still have
many gaps, and what they do have is difficult to
find. The names of theorems are frequently ambigu-
ous (what is Roth’s theorem?), as are concepts such as
limits (which could refer to analysis, topology or even
set theory). But one should be able to search for “limit
theorems” and get something relevant. Better still, the
system might make suggestions unprompted.

• Obvious statements are often too hard to prove. Ex-
amples include showing a set to be finite, showing
a function to be continuous, calculating a derivative
and evaluating a limit. In some cases, skilful use of
the existing automation can be effective. In others,
specialized decision procedures must be coded. Best

5http://www.isa-afp.org
6https://leanprover-community.github.io/mathlib-overview
.html

known are decision procedures for linear arithmetic;
a recent development is Manuel Eberl’s limit solver.

Toward the future. Recently, with funding from the Euro-
pean Research Council,7 my colleagues and I have been ex-
ploring and stretching the limits of today’s technology. We
have formalized relatively recent (post 1970) and deep re-
sults.8 The latter include additive combinatorics, extremal
graph theory and combinatorial design theory. We have
even formalized some sophisticated definitions, notably
Grothendieck schemes—necessary for advanced work in
algebraic geometry—which had hitherto been thought to
lie outside the scope of Isabelle/HOL’s simple type theory.

Mathematicians also need help navigating our huge li-
brary of formalized mathematics. It can be hard to know
whether a desired result has been formalized: many theo-
rems go by various names, or conversely, one name (e.g.,
Young’s inequality) may be applied to a family of distinct
results. For every well-known result, there may be dozens
of technical lemmas, mostly obvious and yet needed in or-
der to prove anything on today’s systems. My colleagues
have been building an experimental search engine, called
SErAPIS,9 that makes it possible to search the entire library
with the help of a huge dictionary of mathematical con-
cepts.

Also attractive is the idea that the proofs in our library
might be used to generate new proofs automatically. This
is another way the computer can help the user get value out
of our three million lines of formal proofs. Promising re-
sults are just starting to appear from a number of research
groups.

For the further future, we may hope to mechanize math-
ematical intuition. This is the knowledge that tells us that
a given function is surely continuous or that a certain for-
mula cannot generate only prime numbers. That’s how
we know that a particular claim cannot be true as stated or
proved using the methods advertised. Formalization has
demonstrated time and again that while published proofs
often contain errors, theorem statements are generally cor-
rect. Mathematicians can perceive the truth if they can’t
always write down the correct argument. Giving such in-
tuition to a computer would transform our field. This task
will remain open for the next generation or two.

7Project ALEXANDRIA, GA 742178
8https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/
9https://behemoth.cl.cam.ac.uk/search/
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Lawrence Paulson
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