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Introduction
Categories for AI, an online program about category the-
ory in machine learning, unfolded over several months be-
ginning in the fall of 2022. As described on their website
https://cats.for.ai, the “Cats for AI” organizing com-
mittee, which included several researchers from industry
including two fromDeepMind, felt that themachine learn-
ing community ought to be using more rigorous composi-
tional tools and that category theory has “great potential
to be a cohesive force” in science in general and in artificial
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intelligence in particular. While this article is by no means
a comprehensive report on that event, the popularity of
“Cats for AI” — the five introductory lectures have been
viewed thousands of times — signals the growing preva-
lence of category theoretic tools in AI.

One way that category theory is gaining traction in ma-
chine learning is by providing a formal way to discuss how
learning systems can be put together. This article has a dif-
ferent and somewhat narrow focus. It’s about how a fun-
damental piece of AI technology used in language mod-
eling can be understood, with the aid of categorical think-
ing, as a process that extracts structural features of language
frompurely syntactical input. The idea that structure arises
from form may not be a surprise for many readers — cat-
egory theoretic ideas have been a major influence in pure
mathematics for three generations — but there are conse-
quences for linguistics that are relevant for some of the on-
going debates about artificial intelligence. We include a
section that argues that the mathematics in these pages re-
but somewidely accepted ideas in contemporary linguistic
thought and support a return to a structuralist approach to
language.

The article begins with a fairly pedantic review of lin-
ear algebra which sets up a striking parallel with the rel-
evant category theory. The linear algebra is then used to
review how to understand word embeddings, which are at
the root of current large language models (LLMs). When
the linear algebra is replaced, Mad Libs style, with the rel-
evant category theory, the output becomes not word em-
beddings but a lattice of formal concepts. The category
theory that gives rise to the concept lattice is a particularly
simplified piece of enriched category theory and suggests
that by simplifying a little less, even more of the structure
of language could be revealed.
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Objects Versus Functions on Objects
When considering a mathematical object 𝑋 that has little
or incomplete structure, one can replace 𝑋 by something
like “functions on 𝑋” which will have considerably more
structure than 𝑋 . Usually, there is a natural embedding
𝑋 → Fun(𝑋) so that when working with Fun(𝑋), one is
working with all of 𝑋 and more.

The first example that comes to mind is 𝑘𝑋 , the set of
functions on a set 𝑋 valued in a field 𝑘, which forms a vec-
tor space. The embedding 𝑋 → 𝑘𝑋 is defined by sending
𝑥 ∈ 𝑋 to the indicator function of 𝑥 defined by 𝑦 ↦ 𝛿𝑥𝑦.
When 𝑋 is finite, there is a natural inner product on 𝑘𝑋 de-
fined by ⟨𝑓|𝑔⟩ = ∑𝑥∈𝑋 𝑓(𝑥)𝑔(𝑥) making 𝑘𝑋 into a Hilbert
space. The physics “ket” notation |𝑥⟩ for the indicator func-
tion of 𝑥 ∈ 𝑋 nicely distinguishes the element 𝑥 ∈ 𝑋 from
the vector |𝑥⟩ ∈ 𝑘𝑋 and reminds us that there is an inner
product. The image of 𝑋 in 𝑘𝑋 defines an orthonormal
spanning set and if the elements 𝑋 are ordered, then the
vectors {|𝑥⟩ ∶ 𝑥 ∈ 𝑋} become an ordered basis for 𝑘𝑋 and
each basis vector |𝑥⟩ has a one-hot coordinate vector: a col-
umn vector consisting of all zeroes except for a single 1 in
the 𝑥-entry. This, by the way, is the starting point of quan-
tum information theory. Classical bits {0, 1} are replaced
by quantum bits {|0⟩, |1⟩} which comprise an orthonormal
basis of a two-dimensional complex Hilbert space ℂ{0,1}.
There might not be a way to add elements in the set 𝑋 , or
average two of them for example, but those operations can
certainly be performed in 𝑘𝑋 . In coordinates, for instance,
if 𝑥 ≠ 𝑦, then the sum |𝑥⟩ + |𝑦⟩ will have all zeroes with 1s
in both the 𝑥- and 𝑦- entries and the sum |𝑥⟩ + |𝑥⟩ has all
zeroes and a 2 in the 𝑥-entry.

When the ground field is the field with two elements
𝑘 = {0, 1}, the vector space structure seems a little weak.
Scalar multiplication is trivial, but there are other notable
structures on {0, 1}𝑋 . Elements of {0, 1}𝑋 can be thought of
as subsets of 𝑋 , the correspondence being between charac-
teristic functions and the sets on which they are supported.
So {0, 1}𝑋 has all the structure of a Boolean algebra: the
join 𝑣∨𝑤 and the meet 𝑣∧𝑤 of two vectors correspond to
the union and intersection of the two subsets defined by
𝑣 and 𝑤, and neither the meet nor the join coincide with
vector addition. Every vector has a “complement” defined
by interchanging 0 ↔ 1, the vectors in {0, 1}𝑋 are partially
ordered by containment, every vector has a cardinality de-
fined by the number of nonzero entries, and so on.

Another closely related example comes from category
theory. By replacing a category 𝖢 by 𝖲𝖾𝗍𝖢op

, the set-valued
functors on 𝖢, one obtains a category with significantly
more structure. Here the “op” indicates the variance of the
functors in question (contravariant, in this case), a tech-
nical point that isn’t very important here, but is included
for accuracy. It’s common to call a functor 𝐹 in 𝖲𝖾𝗍𝖢op

a

presheaf on 𝖢. The Yoneda lemma provides an embedding
𝖢 → 𝖲𝖾𝗍𝖢op

of the original category as a full subcategory
of 𝖲𝖾𝗍𝖢op

. Given an object 𝑥 in 𝖢, Grothendieck used ℎ𝑥
to denote a representable presheaf ℎ𝑥 ≔ 𝖢(−, 𝑥) which is
defined by mapping an object 𝑦 to the set 𝖢(𝑦, 𝑥) of mor-
phisms from 𝑦 to the object 𝑥 represting the presheaf. In
this notation, the Yoneda embedding is defined on objects
by 𝑥 ↦ ℎ𝑥. And just as the vector space 𝑘𝑋 has more struc-
ture than 𝑋 , the category 𝖲𝖾𝗍𝖢op

has more structure than 𝖢.
For any category 𝖢, the category 𝖲𝖾𝗍𝖢op

of presheaves is com-
plete and cocomplete, meaning that the categorical limits
and colimits of small diagrams exist in the category, and
more. It is also an example of what is called a topos which
is a natural place in which to do geometry and logic.

As an illustration, consider a finite set 𝑋 , which can be
viewed as a discrete category 𝖷, that is, a category whose
only morphisms are identity morphisms. In this case
𝖷 = 𝖷op, and a presheaf 𝐹 on 𝖷 assigns a set to every ob-
ject 𝑥 in 𝖷. If the elements of 𝑋 are ordered, then 𝐹 can
be thought of as a column vector whose entries are sets,
with the set 𝐹(𝑥) in the 𝑥-entry. The representable func-
tor ℎ𝑥 can be thought of as a column vector whose entries
are all the empty set except for a one-point set ∗ in the
𝑥-entry. Using 0 for ∅ and 1 for ∗ produces the same ar-
rays as the one-hot basis vectors that span the vector space
𝑘𝑋 . Notably, the categorical coproduct 𝑥∐𝑦 does not ex-
ist in the category 𝖷, but the coproduct ℎ𝑥∐ℎ𝑦 of the rep-
resentable functors ℎ𝑥 and ℎ𝑦 does exist in the category of
presheaves on 𝖷. If 𝑥 ≠ 𝑦 then ℎ𝑥∐ℎ𝑦 is a column consist-
ing of empty sets except for a one-point set ∗ in the 𝑥- and
𝑦-entries; the coproduct ℎ𝑥∐ℎ𝑥 consists of all empty sets
except for a two point set ∗ ⊔ ∗ in the 𝑥-entry. And just as
the indicator functions form a basis of the vector space 𝑘𝑋 ,
every functor 𝖷op → 𝖲𝖾𝗍 is constructed from representable
functors. When 𝑋 is a finite set, every vector in 𝑘𝑋 is a lin-
ear combination of basis vectors, and analogously every
presheaf in 𝖲𝖾𝗍𝖷op is a colimit of representables.

In this article, it will be helpful to consider enriched cat-
egory theory, which is the appropriate version of category
theory to work with when the set 𝖢(𝑦, 𝑥) of morphisms be-
tween two objects is no longer a set. That is, it may be a
partially ordered set, or an Abelian group, or a topologi-
cal space, or something else. So, enriched category theory
amounts to replacing 𝖲𝖾𝗍 with a different category. This is
analogous to changing the base field of the vector space 𝑘𝑋 ,
and if the new base category has sufficiently nice structure,
then most everything said about replacing 𝖢 by 𝖲𝖾𝗍𝖢op

goes
over nearly word-for-word. For example, replacing 𝖲𝖾𝗍 by
the category 𝟤, which is a category with two objects 0 and 1
and one nonidentity morphism 0 → 1, results in the cate-
gory 𝟤𝖢op

of 𝟤-valued presheaves on 𝖢. In the case when 𝖢 is
a set𝑋 viewed as a discrete category 𝖷 = 𝖷op, the presheaves
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in 𝟤𝖷 are exactly the same as {0, 1}-valued functions on 𝑋 ,
which are the same as subsets of 𝑋 . The structure on 𝟤𝖷
afforded by it being a category of 𝟤-enriched presheaves
is the Boolean algebra structure on the subsets of 𝑋 previ-
ously described. The categorical coproduct of 𝟤-enriched
presheaves 𝑓 and 𝑔 is the join (union) 𝑓 ∨ 𝑔, and the cate-
gorical product is the meet (intersection) 𝑓 ∧ 𝑔. So for any
set 𝑋 , the set of functions {0, 1}𝑋 can either be viewed as a
vector space over 𝐹2 = {0, 1}, the field with two elements,
or as enriched presheaves on 𝖷 valued in 𝟤 = {0, 1}, depend-
ing on whether we think of {0, 1} as a field, or as a category
0 → 1, and we get different structures depending on which
point of view is taken.

Now, before going further, notice that replacing an ob-
ject by a free construction on that object can’t immediately
reveal much about the underlying object. Whether it’s the
free vector space on a finite set 𝑋 resulting in 𝑘𝑋 or the
free cocompletion of a category 𝖢 resulting in 𝖲𝖾𝗍𝖢op

, the
structures one obtains are free and employ the underlying
object as little more than an indexing set. The structures
on the “functions” on 𝑋 are owed, essentially, to the struc-
ture of what the functions are valued in. For example, the
source of the completeness and cocompleteness of 𝖲𝖾𝗍𝖢op

is the completeness and cocompleteness of the category of
sets. Similarly, vector addition and scalar multiplication
in 𝑘𝑋 arise from addition and multiplication in the field 𝑘.
The point is that passing to a free construction on 𝑋 pro-
vides some extra room in which to investigate 𝑋 , and in
the theory of vector spaces, for instance, things become in-
teresting when linear transformations are involved. As an-
other example, passing from a finite group𝐺 to the free vec-
tor space ℂ𝐺 doesn’t tell you much about the group, until
that is, you involve the elements of the group as operators
ℂ𝐺 → ℂ𝐺. The result is the regular representation for 𝐺,
which among its many beautiful properties, decomposes
into the direct sum of irreducible representations with ev-
ery irreducible representation of 𝐺 included as a term with
meaningful multiplicity.

This brings us back to the strategy suggested in the first
line of this section. When only a little bit is known about
the internal structure of an object 𝑋 , an approach to learn
more is to replace 𝑋 by something like functions on 𝑋
and study how the limited known structure of 𝑋 interacts
with the freely defined structures on the functions of 𝑋 . A
choice is required of what, specifically, to value the func-
tions in and howmathematically that target is viewed. The
remaining sections of this article can be interpreted simply
as working through the details in an example with linguis-
tic importance for a couple of natural choices of what to
value the functions in.

Embeddings in Natural Language Processing
In the last decade, researchers in the field of computa-
tional linguistics and natural language processing (NLP)
have taken the step of replacing words, which at the be-
ginning only have the structure of a set, ordered alphabeti-
cally, by vectors. One gets the feeling that there is structure
in words — words appear to be used in language with pur-
pose and meaning; dictionaries relate each word to other
words; words can be labelled with parts of speech; and
so on — though the precise mathematical nature of the
structure of words and their usage is not clear. Language
would appear to represent a significant real-world test of
the strategy to uncover structure described in the previous
section. While the step of replacing words by vectors con-
stituted one of the main drivers of current advances in the
field of artificial intelligence, it is not readily recognizable
as an instance of replacing a set by functions on that set.
This is because replacing words by vectors is typically per-
formed implicitly by NLP tools, which are mathematically
obscured by their history— a history which we now briefly
review.

Following the surprisingly good results obtained in do-
mains such as image and sound processing, researchers
working to process natural language in the 2010s be-
came interested in the application of deep neural network
(DNN) models. As a reminder, in its most elementary
form, a DNN can be described as a function 𝑓 ∶ ℝ𝑛 → ℝ𝑚

explicitly expressed as a composition:

𝑓∶ ℝ𝑛 𝑓1⟶ℝ𝑛1
𝑓2⟶ℝ𝑛2

𝑓3⟶⋯

⋯ 𝑓𝐾⟶ℝ𝑛𝐾
𝑔⟶ℝ𝑚 (1)

𝑓𝑖(𝐱) = 𝑎(𝐌𝑖𝐱 + 𝑏𝑖), (2)

where the 𝐌𝑖 are 𝑛𝑖 × 𝑛𝑖−1 matrices, the 𝑏𝑖 ∈ ℝ𝑛𝑖 are “bi-
ases”, the 𝑎 is a (nonlinear) “activation” function, and 𝑔
is an output function. After fixing the activation and out-
put functions, a DNN lives in a moduli space of functions
parametrized by the entries of the matrices𝑀𝑖 and the bias
vectors 𝑏𝑖. Training a DNN is the process of searching
through the moduli space for suitable 𝑀𝑖 and 𝑏𝑖 to find
a function that performs a desired task, usually by mini-
mizing a cost function defined on the moduli space. In
the particular case of natural language tasks, this typically
requires feeding linguistic data into the model and setting
the optimization objective to the minimization of the er-
ror between the actual and intended outputs, with the op-
timization performed by a form of gradient descent.

Significantly, in this setting, linguistic data (typically
words) would be represented as vectors—the domain of a
DNN is a vector space. A natural first choice for practition-
ers was then to represent words as one-hot vectors. Thus,
if one has a vocabulary 𝐷 consisting of, say, 30, 000 words,
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then 𝐷 → ℝ𝐷 embeds words as the standard basis vectors
in a 30, 000-dimensional real vector space.

𝚊𝚊𝚛𝚍𝚟𝚊𝚛𝚔 ↦ (1, 0, 0, 0, … , 0, 0)
𝚊𝚊𝚛𝚍𝚠𝚘𝚕𝚏 ↦ (0, 1, 0, 0, … , 0, 0)

⋮
𝚣𝚢𝚣𝚣𝚢𝚟𝚊 ↦ (0, 0, 0, 0, … , 0, 1).

Likewise, if the output is to be decoded as a word, then the
output function 𝑔 is to be interpreted as a probability dis-
tribution over the target vocabulary, which is usually the
same ℝ𝐷, though it could certainly be different in applica-
tions like translation.

At the time, a DNN was thought of as an end-to-end
process: whatever happens between the input and the out-
put was treated as a black-box and left for the optimiza-
tion algorithm to handle. However, a surprising circum-
stance arose. If the first layer (namely, 𝑓1 in Equation (1))
of a model trained for a given linguistic task was used as
the first layer of another DNN aimed at a different lin-
guistic task, there would be a significant increase in per-
formance of the second task. It was not long thereafter
that researchers began to train that single layer indepen-
dently as the unique hidden layer of a model that predicts
a word given other words in the context. Denoting that
single layer by 𝜎, one can then obtain

𝐷 ↪ ℝ𝐷 𝜍→ ℝ𝑛1 , (3)

which embeds 𝐷 in a vector space of much lower dimen-
sion, typically two or three hundred. Take, for instance,
the vector representations made available by [ea], where
the word 𝚊𝚊𝚛𝚍𝚟𝚊𝚛𝚔 is mapped to a vector with 200 com-
ponents:

𝚊𝚊𝚛𝚍𝚟𝚊𝚛𝚔 ↦ (0.632, 0.370, −0.620, … , −0.475).
In this way, the images of the initial one-hot basis vectors
under the map 𝜎 could be used as low-dimensional dense
word vector representations to be fed as inputs across mul-
tiple DNN models. The word “dense” here is not a tech-
nical term but is used in contrast to the original one-hot
word vectors inℝ𝐷, which are “sparse” in the sense that all
entries were 0 except for a single 1. On the other hand, the
word vectors in ℝ𝑛1 generally have nonzero entries.

The set of word vector representations produced in
this way — also known as “word embeddings” — were
found to have some surprising capabilities. Not only did
the performance of models across different tasks increase
substantially, but also unexpected linguistic significance
was found in the vector space operations of the embed-
ded word vectors. In particular, the inner product be-
tween two vectors shows a high correlation with seman-
tic similarity. As an example, the vector representations
for 𝚝𝚞𝚋𝚞𝚕𝚒𝚍𝚎𝚗𝚝𝚊𝚝𝚊, 𝚘𝚛𝚢𝚌𝚝𝚎𝚛𝚘𝚙𝚞𝚜, 𝚊𝚗𝚝𝚎𝚊𝚝𝚎𝚛𝚜, 𝚜𝚑𝚛𝚎𝚠𝚜,

and 𝚙𝚊𝚗𝚐𝚘𝚕𝚒𝚗𝚜 are among the ones with the largest in-
ner product with that of 𝚊𝚊𝚛𝚍𝚟𝚊𝚛𝚔. Even more surpris-
ingly, addition and subtraction of vectors in the embed-
ding space correlate with analogical relations between the
words they represent. For instance, the vector for 𝙱𝚎𝚛𝚕𝚒𝚗
minus the vector for 𝙶𝚎𝚛𝚖𝚊𝚗𝚢 is numerically very near the
vector for 𝙿𝚊𝚛𝚒𝚜 minus the vector for 𝙵𝚛𝚊𝚗𝚌𝚎 [MSC+13],
all of which suggests that the word vectors live in some-
thing like a space of meanings into which individual words
embed as points. Subtracting the vector for 𝙶𝚎𝚛𝚖𝚊𝚗𝚢 from
the vector for 𝙱𝚎𝚛𝚕𝚒𝚗 does not result in a vector that cor-
responds to any dictionary word. Rather, the difference of
these vectors is more like the concept of a “capital city”,
not to be confused with the vector for the word 𝚌𝚊𝚙𝚒𝚝𝚊𝚕,
which is located elsewhere in the meaning space.

Word vector representations such as the one described
are now the standard input to current neural linguistic
models, including LLMs which are currently the object of
somuch attention. And the fact, as suggested by these find-
ings, that semantic properties can be extracted from the
formal manipulation of pure syntactic properties — that
meaning can emerge from pure form — is undoubtedly
one of the most stimulating ideas of our time. We will
later explain that such an idea is not new but has, in fact,
been present in linguistic thought for at least a century.

But first it is important to understand why word embed-
dings illustrate the utility of passing from 𝑋 to Fun(𝑋) in-
troduced in the previous section. The semantic properties
of word embeddings are not present in the one-hot vectors
embedded inℝ𝐷. Indeed, the inner product of the one-hot
vectors corresponding to 𝚊𝚊𝚛𝚍𝚟𝚊𝚛𝚔 and 𝚝𝚞𝚋𝚞𝚕𝚒𝚍𝚎𝚗𝚝𝚊𝚝𝚊 is
zero, as it is for any two orthogonal vectors, and the vector
space operations in ℝ𝐷 are not linguistically meaningful.
The difference between the one-hot vectors for 𝙶𝚎𝚛𝚖𝚊𝚗𝚢
and 𝙱𝚎𝚛𝚕𝚒𝚗 is as far away from the difference between
the one-hot vectors for 𝙵𝚛𝚊𝚗𝚌𝚎 and 𝙿𝚊𝚛𝚒𝚜 as it is from
the difference between the one-hot vectors for 𝚜𝚊𝚕𝚊𝚖𝚒 and
𝚝𝚑𝚎𝚛𝚎𝚏𝚘𝚛𝚎 or any other two one-hot vectors. Linguisti-
cally significant properties emerge only after composing
with the embedding map 𝜎∶ ℝ𝐷 → ℝ𝑛1 in (3) that was
obtained through neural optimization algorithms, which
are typically difficult to interpret.

In the specific case of word embeddings, however, the
algorithm has been scrutinized and shown to be perform-
ing an implicit factorization of amatrix comprised of infor-
mation about how words are used in language. To elabo-
rate, the optimization objective can be shown to be equiv-
alent to factorizing a |𝐷|×|𝐷|matrix𝑀, where the 𝑖-𝑗-entry
is a linguistically relevant measure of the term-context as-
sociation between words𝑤𝑖 and𝑤𝑗. That measure is based
on the pointwisemutual information between bothwords,
which captures the probability that they appear near each
other in a textual corpus [LG14]. The map 𝜎 is then an
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optimal low-rank approximation of 𝑀. That is, one finds
𝜎′ and 𝜎 of sizes |𝐷| × 𝑑 and 𝑑 × |𝐷| respectively, with
𝑑 ≪ |𝐷|, such that ‖𝑀 − 𝜎′𝜎‖ is mimimal. The upshot is
that neural embeddings are just low-dimensional approxi-
mations to the columns of𝑀. Therefore, the surprising prop-
erties exhibited by embeddings are less the consequence of some
magical attribute of neural models than the algebraic structure
underlying linguistic data found in corpora of text. Indeed, it
has since been shown that one can obtain results compara-
ble to those of neural word embeddings by directly using
the columns of 𝑀, or a low-dimensional approximation
thereof, as explicit word-vector representations [LGD15].
Interestingly, the other factor 𝜎′, which is readable as the
second layer of the trained DNN, is typically discarded al-
though it does contain relevant linguistic information.

In summary, the math story of word embeddings goes
like this: first, pass from the set 𝐷 of vocabulary words to
the free vector space ℝ𝐷. While there is no meaningful lin-
guistic information in ℝ𝐷, it provides a large, structured
setting in which a limited amount of information about
the structure of 𝐷 can be placed. Specifically, this limited
information is a |𝐷| × |𝐷| matrix 𝑀 consisting of rough
statistical data about how words go with other words in a
corpus of text. Now, the columns of 𝑀, or better yet, the
columns of a low-rank factorization of 𝑀, then interact
with the vector space structure to reveal otherwise hidden
syntactic and semantic information in the set 𝐷 of words.
Although a matrix of statistical data seems more mathe-
matically casual than, say, a matrix representing the mul-
tiplication table of a group, it has the appeal of assuming
nothing about the structure that 𝐷 might possess. Rather,
it is purely a witness of how 𝐷 has been used in a particu-
lar corpus. It’s like a set of observations is the input, and a
more formal structure is an output.

So, if word embeddings achieved the important step of
finding a linguistically meaningful space in which words
live, then the next step is to better understand what is
the structure underlying that space. Post facto realizations
about vector subtraction reflecting certain semantic analo-
gies hint that even more could be discovered. For this next
discussion, it is important to understand that there is an
exact solution for the low-rank factorization of a matrix𝑀
using the truncated singular value decomposition (SVD),
which has a beautiful analogue in category theory. To fully
appreciate the analogy, it will be helpful to reviewmatrices
from an elementary perspective.

From the Space of Meanings to the Structure
of Meanings
In this section, keep in mind the comparison between
functions on a set 𝑋 valued in a field 𝑘 and functors on
a category 𝖢 valued in 𝖲𝖾𝗍 or another enriching category.
Now, let’s consider matrices.

Given finite sets 𝑋 and 𝑌 , an 𝑋-𝑌 matrix valued in a
field 𝑘 is a function 𝑚∶ 𝑋 × 𝑌 → 𝑘. By simple curry-
ing, 𝑚 defines functions 𝑋 → 𝑘𝑌 and 𝑌 → 𝑘𝑋 defined by
𝑥 ↦ 𝑚(𝑥,−) and 𝑦 ↦ 𝑚(−, 𝑦). Ordering the elements of 𝑋
and 𝑌 , the function 𝑚 can be represented as a rectangular
array of numbers with |𝑋| rows and |𝑌| columns with the
value 𝑚(𝑥, 𝑦) being the number in the 𝑥-th row and 𝑦-th
column. The function𝑚(𝑥,−) ∈ 𝑘𝑌 is then identified with
the 𝑥-th row of the matrix, which has as many entries as
the elements of 𝑌 and defines a function on 𝑌 sending 𝑦
to the 𝑦-th entry in the row. Similarly, the 𝑦-th column of
𝑚 represents the function 𝑚(−, 𝑦) ∈ 𝑘𝑋 . Linearly extend-
ing the maps 𝑋 → 𝑘𝑌 and 𝑌 → 𝑘𝑋 produces linear maps
𝑀∗ ∶ 𝑘𝑋 → 𝑘𝑌 and 𝑀∶ 𝑘𝑌 → 𝑘𝑋 , which of course are the
linear maps associated with the matrix𝑀 and its transpose
𝑀∗. Here is a diagram:

𝑘𝑌

𝑋 𝑘𝑋
𝑀∗

𝑘𝑌 𝑌

𝑘𝑋
𝑀

Now, the compositions 𝑀𝑀∗ ∶ 𝑘𝑋 → 𝑘𝑋 and
𝑀∗𝑀∶ 𝑘𝑌 → 𝑘𝑌 are linear operators with special prop-
erties. If we fix the ground field 𝑘 to be the real num-
bers ℝ, we can apply the spectral theorem to obtain or-
thonormal bases {𝑢1, … , 𝑢𝑚} of 𝑘𝑋 and {𝑣1, … , 𝑣𝑛} of 𝑘𝑌
consisting of eigenvectors of 𝑀𝑀∗ and 𝑀∗𝑀 respectively
with shared nonnegative real eigenvalues {𝜆1, … , 𝜆𝑟, 0, … , 0},
where 𝑟 = min (𝑚, 𝑛). This data can be refashioned into a
factorization of 𝑀 as 𝑀 = 𝑈Σ𝑉∗. This is the so-called sin-
gular value decomposition of𝑀. The {𝑢𝑖} are the columns
of 𝑈, the {𝑣𝑗} are the rows of 𝑉∗, and Σ is the 𝑚 × 𝑛 diag-

onal matrix whose 𝑖-th entry is 𝜎𝑖 = √𝜆𝑖. The matrices 𝑈
and 𝑉 satisfy 𝑈∗𝑈 = 𝐼 and 𝑉∗𝑉 = 𝐼. In SVD terminology,
the nonnegative real numbers 𝜎𝑖 are the singular values of
𝑀, and the vectors {𝑢1, … , 𝑢𝑟} and {𝑣1, … , 𝑣𝑟} are the left and
right singular vectors of𝑀. In other words, we have pairs of
vectors {(𝑢1, 𝑣1), … , (𝑢𝑟, 𝑣𝑟)} in 𝑘𝑋×𝑘𝑌 related to each other
as

𝑀∗𝑢𝑗 = 𝜎𝑗𝑣𝑗 and 𝑀𝑣𝑗 = 𝜎𝑗𝑢𝑗 .
Moreover, these pairs are ordered with (𝑢𝑖, 𝑣𝑖) ≤ (𝑢𝑗 , 𝑣𝑗) if
the corresponding singular values satisfy 𝜎𝑖 ≤ 𝜎𝑗 . Finally,
it is not difficult to show that the matrix 𝑀′ with rank at
most 𝑠 that is closest in Frobenius norm to the matrix 𝑀
is given by 𝑀′ = 𝑈Σ′𝑉∗ where Σ′ is the 𝑚 × 𝑛 diagonal
matrix containing only the 𝑠 greatest nonzero singular val-
ues on the diagonal. By eliminating the parts of𝑈, Σ′, and
𝑉∗ that do not, because of all the zero entries in Σ′, par-
ticipate in the product 𝑈Σ′𝑉∗, one obtains a factorization
𝑀′ = 𝑈′Σ″𝑉 ′∗ ≈ 𝑀, where 𝑈′ is an 𝑚 × 𝑠 matrix, 𝑉 ′∗ is
an 𝑠 × 𝑛 matrix, and Σ″ is an 𝑠 × 𝑠 diagonal matrix with
the 𝑠 largest singular values of 𝑀 on the diagonal. Princi-
pal component analysis (PCA) employs this approximate
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factorization of a matrix into low-rank components for di-
mensionality reduction of high-dimensional data.

Moving from linear algebra to category theory, one
finds a remarkably similar story. Given two categories 𝖢
and 𝖣, the analogy of a 𝖢-𝖣 matrix is something called a
profunctor, which is a set-valued functor 𝑓∶ 𝖢op × 𝖣 → 𝖲𝖾𝗍.
As before, the “op” here and in what follows is used to
indicate the variance of functors and is needed for accu-
racy, but can on first reading be ignored. Experts will surely
know of situations in which this op is involved in interest-
ing mathematical dualities, but for the analogy with lin-
ear algebra described here, it can be thought of as indi-
cating a sort of transpose between rows and columns. If
both domain categories are finite sets viewed as discrete
categories, then a profunctor is simply a collection of sets
indexed by pairs of elements — that is, a matrix whose
entries are sets instead of numbers. Again, by simple cur-

rying, a profunctor defines a pair of functors 𝖢 → (𝖲𝖾𝗍𝖣)
op

and 𝖣 → 𝖲𝖾𝗍𝖢op
defined on objects by 𝑐 ↦ 𝑓(𝑐, −) and

𝑑 ↦ 𝑓(−, 𝑑). As in the linear algebra setting, the functor
𝑓(𝑐, −) can be pictured as the 𝑐-th row of sets in the matrix
𝑓, which defines a functor 𝖣 → 𝖲𝖾𝗍where the 𝑗-th object of
𝖣 is mapped to the 𝑗-th set in the row 𝑓(𝑐, −). The functor
𝑓(−, 𝑑)∶ 𝖢op → 𝖲𝖾𝗍 can be similarly be pictured as the 𝑑-th
column of 𝑓. Thinking of a category as embedded in its cat-
egory of presheaves via the Yoneda (or co-Yoneda) embed-

ding, the functors 𝖢 → (𝖲𝖾𝗍𝖣)
op

and 𝖣 → 𝖲𝖾𝗍𝖢op
can be ex-

tended in a unique way to functors 𝐹∗ ∶ 𝖲𝖾𝗍𝖢op → (𝖲𝖾𝗍𝖣)op
and 𝐹∗ ∶ (𝖲𝖾𝗍𝖣)op → 𝖲𝖾𝗍𝖢op

that preserve colimits and lim-
its, respectively.

(𝖲𝖾𝗍𝖣)𝑜𝑝

𝖢 𝖲𝖾𝗍𝖢𝑜𝑝𝑌𝑜𝑛𝑒𝑑𝑎

𝐹∗

(𝖲𝖾𝗍𝖣)𝑜𝑝 𝖣

𝖲𝖾𝗍𝖢𝑜𝑝
𝐹∗

𝑌𝑜𝑛𝑒𝑑𝑎

Now, just as the composition of a linear map 𝑀 and
its transpose 𝑀∗ define linear maps with special proper-
ties, the functors 𝐹∗ and 𝐹∗ are adjoint functors with spe-
cial properties. This particular adjunction 𝐹∗ ∶ 𝖲𝖾𝗍𝖢op ⇆
(𝖲𝖾𝗍𝖣)op ∶ 𝐹∗ is known as the Isbell adjunction, which John
Baez recently called “a jewel of mathematics” in a Janu-
ary 2023 column article in this publication [Bae23]. Ob-
jects that are fixed up to isomorphismunder the composite
functors 𝐹∗𝐹∗ and 𝐹∗𝐹∗ are called the nuclei of the profunc-
tor 𝑓 and are analogous to the left and right singular vec-
tors of a matrix. One can organize the nuclei into pairs
(𝑐𝑖, 𝑑𝑖) of objects in 𝖢op × 𝖣, where

𝐹∗𝑐𝑖 ≅ 𝑑𝑖 and 𝐹∗𝑑𝑖 ≅ 𝑐𝑖.
The nuclei themselves {(𝑐𝑖, 𝑑𝑖)} have significant structure —
they organize into a category that is complete and cocom-
plete. The pairs {(𝑢𝑖, 𝑣𝑖)} of singular vectors of a matrix

have some structure — they are ordered by the magnitude
of their singular values, and themagnitudes themselves are
quite important. The nuclei {(𝑐𝑖, 𝑑𝑖)} of a profunctor have
a different, in some ways more intricate, structure because
one can take categorical limits and colimits of diagrams of
pairs, allowing the pairs to be combined in various alge-
braic ways. In the context of linguistics, this is significant
because the nuclei are like abstract units and the categori-
cal limits and colimits provide ways to manipulate those
abstract units. This is illustrated concretely in the next sec-
tion. For now, interpret word embeddings obtained from
the singular vectors of amatrix as a way to overlay the struc-
ture of a vector space on meanings. For certain semantic
aspects of language, like semantic similarity, a vector space
structure is a good fit, but overlaying a vector space struc-
ture could veil others. The Isbell adjunction provides a dif-
ferent structure that may help illuminate other structural
features of language.

For flexibility, it is useful to look at the Isbell adjunction
in the enriched setting. If the base category is 𝟤 instead
of 𝖲𝖾𝗍, then a profunctor 𝑟 between two finite sets 𝑋 and
𝑌 , viewed as discrete categories enriched over 𝟤, is just a
function 𝑟∶ 𝑋 ×𝑌 → {0, 1}, which is the same as a relation
on 𝑋 × 𝑌. The functors 𝑅∗ ∶ 𝟤𝑋 → 𝟤𝑌 and 𝑅∗ ∶ 𝟤𝑌 → 𝟤𝑋
are known objects in the theory of formal concept analysis
[GW99]. The function 𝑅∗ maps a subset 𝐴 ⊆ 𝑋 to the set
𝑅∗(𝐴) = {𝑦 ∈ 𝑌 ∶ 𝑅(𝑥, 𝑦) = 1 for all 𝑥 ∈ 𝐴} and 𝑅∗ maps
a subset 𝐵 ⊆ 𝑌 to the set 𝑅∗(𝐵) = {𝑥 ∈ 𝑋 ∶ 𝑅(𝑥, 𝑦) =
1 for all 𝑦 ∈ 𝐵}. The fixed objects of 𝑅∗𝑅∗ and 𝑅∗𝑅∗ are
known as formal concepts. They are organized into pairs
(𝐴𝑖, 𝐵𝑖) ⊂ 𝑋 × 𝑌 with

𝑅∗(𝐴𝑖) = 𝐵𝑖 and 𝑅∗(𝐵𝑖) = 𝐴𝑖

and the set of all formal concepts {(𝐴𝑖, 𝐵𝑖)} is partially or-
dered with (𝐴𝑖, 𝐵𝑖) ≤ (𝐴𝑗 , 𝐵𝑗) if and only if 𝐴𝑖 ⊆ 𝐴𝑗 which
is equivalent to 𝐵𝑖 ⊇ 𝐵𝑗. Moreover, {(𝐴𝑖, 𝐵𝑖)} forms a com-
plete lattice, so, like the singular vectors of amatrix, there is
a least and a greatest formal concept, and more. The prod-
uct and coproduct, for example, of formal concepts are de-
fined by (𝐴𝑖, 𝐵𝑗) ∧ (𝐴𝑗 , 𝐵𝑗) ≔ (𝐴𝑖 ∩ 𝐴𝑗 , 𝑅∗𝑅∗(𝐵𝑖 ∪ 𝐵𝑗)) and
(𝐴𝑖, 𝐵𝑗) ∨ (𝐴𝑗 , 𝐵𝑗) ≔ (𝑅∗𝑅∗(𝐴𝑖 ∪ 𝐴𝑗), 𝐵𝑖 ∩ 𝐵𝑗). The point is
that limits and colimits of formal concepts have simple, fi-
nite formulas that are similar to, but not exactly, the union
and intersection of sets and give an idea of the kind of al-
gebraic structures one would see on the nucleus of a pro-
functor.

Structures in the Real World
If there’s any place where neural techniques have indis-
putably surpassed more principled approaches to lan-
guage, it is their capacity to exhibit surprisingly high perfor-
mance on empirical linguistic data. Whatever the nature
of formal language models to come, it will certainly be

FEBRUARY 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 179



Figure 1. Characters of the Wikipedia corpus as
three-dimensional embeddings obtained through SVD.

decisive to judge their quality and relevance in the real
world. In this section, we illustrate how the tools of lin-
ear algebra and enriched category theory work in practice,
and in the conclusion we will share how the empirical ca-
pabilities of the enriched category theory presented here
can be used to do more.

To start, consider the English Wikipedia corpus com-
prising all Wikipedia articles in English as of March 2022
[Wik]. If we consider this corpus as a purely syntactic ob-
ject without assuming any linguistic structure, then the
corpus appears as a long sequence of a finite set of inde-
pendent tokens or characters. To simplify things, let’s re-
strict ourselves to the 40 most frequent characters in that
corpus (excluding punctuation), which account for more
than 99.7% of occurrences. So, our initial set 𝑋 contains
the following elements:

𝑋 = {−, /, 𝟶, 𝟷, 𝟸, 𝟹, 𝟺, 𝟻, 𝟼, 𝟽, 𝟾, 𝟿, =, 𝚊, 𝚋, 𝚌, 𝚍, 𝚎, 𝚏,
𝚐, 𝚑, 𝚒, 𝚓, 𝚔, 𝚕, 𝚖, 𝚗, 𝚘, 𝚙, 𝚚, 𝚛, 𝚜, 𝚝, 𝚞, 𝚟, 𝚠, 𝚡, 𝚢, 𝚣, �́�}. (4)

Now let 𝑌 = 𝑋 × 𝑋 and, in line with what we have seen in
the previous sections, consider a matrix 𝑚∶ 𝑋 × 𝑌 → ℝ
representing some linguistically relevant measure of the
association between the elements of 𝑋 and 𝑌 . A straight-
forward choice for 𝑚 is the empirical probability that the
characters (𝑦𝑙, 𝑦𝑟) ∈ 𝑌 are the left and right contexts of the
character 𝑥 ∈ 𝑋 . For instance, we have that 𝑚(𝚑, (𝚝, 𝚎)) ≈
0.3836 while 𝑚(𝚑, (𝚙, 𝚘)) ≈ 0.0037 reflecting that it is over
a hundred times more probable to see the sequence 𝚝𝚑𝚎
than 𝚙𝚑𝚘, given 𝚑 as the center character.

Considered as elements of 𝑋 , each character is indepen-
dent and as different as it can be from all the others. How-
ever, embedding them 𝑋 → ℝ𝑌 via the matrix𝑚 and lever-
aging the relationships they exhibit in concrete linguistic
practices as reflected by a corpus brings out revealing struc-
tural features. Indeed, if we perform an SVD on the in-
duced operator𝑀∗ ∶ ℝ𝑋 → ℝ𝑌 we can obtain a vector rep-
resentation of each character.1 Figure 1 shows a plot of
all characters in 𝑋 as points in a three-dimensional space,
where the coordinates are given by the singular vectors cor-
responding to the three largest singular values, scaled by
those singular values. We can see how what were origi-
nally unrelated elements now appear organized into clus-
ters in the embedding space with identifiable linguistic sig-
nificance. Namely, the elements are distinguished as vow-
els, consonants, digits, and special characters.

What’s more, the dimensions of the embedding space
defined by the singular vectors of 𝑀∗ have a little bit of
natural structure — there is a canonical order given by the
singular values that is endowed with linguistic significance.
Looking at the first three singular vectors, we see that the
first one discriminates between digits and letters, the sec-
ond one distinguishes vowels from the rest, and the third
one identifies special characters (see Figure 2). The rapid
decay of the successive singular values indicates that di-
mensions beyond three adds onlymarginal further distinc-
tions (Figure 3).

While the decomposition into singular values and vec-
tors reveals important structural features — each singular
vector discriminates between elements in a reasonable way,
and the corresponding singular values work to cluster ele-
ments into distinct types — the linear algebra in this nar-
row context seems to run aground. However, as discussed
in the previous sections, we can gain further and different
structural insights by considering our sets 𝑋 and 𝑌 as cat-
egories or enriched categories. As a primitive illustration,
view 𝑋 and 𝑌 as discrete categories enriched over 𝟤. For
the next step, a {0, 1}-valued matrix 𝑟∶ 𝑋 × 𝑌 → {0, 1} is
required. A simple and rather unsophisticated choice is to
establish a cutoff value (such as 0.001) to change the same
matrix𝑀 used in the SVD above into a {0, 1}-valued matrix.
All the entries of 𝑀 less than the cutoff are replaced with
0, and all the entries above the cutoff are replaced with 1.

Then, extend to obtain functors 𝑅∗ ∶ 𝟤𝑋 → 𝟤𝑌 and
𝑅∗ ∶ 𝟤𝑌 → 𝟤𝑋 and look at the fixed objects of 𝑅∗𝑅∗ and
𝑅∗𝑅∗, which are organized as described earlier into formal
concepts {(𝐴𝑖, 𝐵𝑖)} that form a highly structured and com-
plete lattice. Visualizing the lattice in its entirety is chal-
lenging in a static two-dimensional image. To give the
idea in these pages, one can look at a sublattice defined
by selecting a single character and looking at only those

1For reasons beyond the scope of this paper, it’s convenient to take the square
roots of the entries and center the matrix around 0 before performing the SVD.
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Figure 2. Top three left singular vectors of the 𝑋-𝑌 matrix of characters in the Wikipedia corpus, scaled by the corresponding
singular values.

concepts {(𝐴, 𝐵)} for which 𝐴 contains the selected char-
acter. For Figure 4, the characters 𝚊 and 𝟹 are selected
and to further reduce the complexity of the images, only
nodes representing a large number of contexts, |𝐵| ≥ 20,
are drawn.

Right away the lattices make clear the distinction be-
tween digits and letters, but there is also more. Each set
of characters 𝐴𝑖 is associated to an explicit dual set of
contexts 𝐵𝑖 suggesting a principle of compositionality —
namely, the elements of the corresponding classes can be
freely composed to produce a sequence belonging to the
corpus. Such composition reveals relevant features from
a linguistic viewpoint. While digits tend to compose with
other digits or special characters, vowels compose mostly
with consonants. Strictly speaking, a similar duality was
present in the SVD analysis, since left singular vectors are
canonically paired (generically) in a one-to-one fashion
with right singular vectors, which discriminate between
contexts in 𝑌 based on the characters for which they are
contexts. The formal concepts, on the other hand, as fixed
objects of 𝑅∗𝑅∗ and 𝑅∗𝑅∗, display dualities between large
but discrete classes of characters. Numbers, consonants,
and letters are all distinguished, but finer distinctions are
also made. Moreover, the collection of such dual classes
is not just a set of independent elements but carries the
aforementioned operations ∨ and ∧ allowing one to per-
form algebraic operations on the concept level.

Is It Really Meaning? Content from Form
in Linguistic Thought
Upon reflection, it may not be surprising that syntactic fea-
tures of language can be extracted from a corpus of text,
since a corpus — as a sequence of characters — is a syn-
tactic object itself. After all, from a linguistic viewpoint,
consonants, vowels, and digits are purely syntactic units
devoid of any meaning per se. What is true for characters,
however, is also true for linguistic units of higher levels.
This can be illustrated by letting the set 𝑋 be the 1000most
frequent words in the British National Corpus [BNC07].
Use the empirical probabilities that the words 𝑦𝑙, 𝑦𝑟 are the
left and right contexts of word 𝑥 in that corpus to make an
𝑋-𝑌 -matrix 𝑀 and repeat the same calculations done be-
fore. The singular vectors of 𝑀 corresponding to the ten
largest singular values capture all manner of syntactic and
semantic features of words, such as nouns, verbs (past and
present), adjectives, adverbs, places, quantifiers, numbers,
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Figure 3. Left singular vectors of the 𝑋-𝑌 matrix of characters
in the Wikipedia corpus, scaled by their corresponding
singular values.

countries, and so on. These ten singular vectors are pic-
tured in descending order in Figure 5 where, for readabil-
ity, only eight of the 1000 entries are displayed, namely,
the four greatest and four least.

Further information about the terms appearing in the
singular vectors can be obtained by choosing a cutoff (here,
0.01) to create a Boolean matrix𝑀, just as was done for the
character matrix, and a lattice of formal concepts can be
extracted for these 1000 words. To illustrate, a few words
(𝚏𝚛𝚊𝚗𝚌𝚎, 𝚌𝚘𝚞𝚕𝚍, 𝟷𝟶) have been selected from the entries
of the most significant singular vectors pictured in Figure
5, and the corresponding sublattices of formal concepts
are shown in Figure 6. The linear algebra highlights these
words as significant and goes some of the way toward clus-
tering them. Choosing a cutoff and passing to the formal
concepts reveals the syntactic and semantic classes these
words belong to and manifests interesting and more re-
fined structural features.

The broader and more philosophical question remains,
though. Is it really meaning that has been uncovered, and
if so, how is it possible that important aspects of meaning
emerge from pure form? In the wake of recent advances
in LLMs, this question has become increasingly important.
One idea that’s often been repeated is that language mod-
els with access to nothing but pure linguistic form (that is,
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Figure 4. Sublattices of formal concepts for characters in the Wikipedia corpus for the characters 𝚊 and 𝟹 for which there are at
least 20 contexts. Only the minimal and maximal nodes are labeled. Contexts not shown for the lattice for 𝟹.

Figure 5. Words in the BNC corpus corresponding to the four greatest and four least values for the first 10 singular vectors in
decreasing order.

raw text) do not and can not have any relation to mean-
ing. This idea rests upon an understanding of meaning as
“the relation between a linguistic form and communica-
tive intent” [BK20, p. 5185]. While these pages are not
the place to provide a substantial philosophical treatment
of this question, it seems important to point out that the
mathematics presented here supports the idea that mean-
ing is inseparable from the multiple formal dimensions
inherent in text data.

The idea that meaning and form are inseparable is not
new, it just is not prevalent in the current philosophical de-
bates around AI. From a strictly philosophical standpoint,
Kant and Hegel’s influential work stood on the principle
that form and content are not exclusive, an idea that one
can also find at the core of Frege’s thought, the father of

analytic philosophy. More importantly, the perspective
that form and meaning are not independent became cen-
tral in linguistics with the work of Ferdinand de Saussure
[Sau59] and the structuralist revolution motivating the
emergence of modern linguistics. The key argument is
that both form and meaning, signifier and signified, are
simultaneously determined by common structural features
— structural differences on one side correlate with struc-
tural differences on the other. Significantly, one of the
main tools to infer structure in the structuralist theory is
the commutation test, which tries to establish correlations
between pairs of linguistic units at different levels. For
example, substituting “it” by “they” requires substituting
“is” by “are” in the same context, while substituting “it” by
“she” does not, although it might necessitate substitution
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{britain,france}

{france}

{england,france,london} {europe,france,scotland}
{'ll,can,could}

{could}

{'ll,could,might,must, 
should,would}

{could,did,do} {ca,could,did,wo}

{can,could,may,might, 
must,should,will,would}

{1,10,15,2, 
3,4,5,6,…}

{10}

{1,10,15,2, 
20,3,4,5}

{10,12,15,3, 
4,5}

{10,15,2,3, 
30,5,7}

{10,15,2,20, 
3,30,4,5}

{10,12,15,30,5} {10,12,15,20,30}{10,15,20,30,seven}

{10,15,20,eight}

{10,12,15,2, 
3,5,7}

{10,12,15,20, {10,12,15,2, 
3,5} 20,5}

{10,15,20,30, 
five,ten,twenty}

{10,15,2,20, 
3,4,5,6,…}

Figure 6. Sublattices of formal concepts for words in the British National Corpus for the words 𝚏𝚛𝚊𝚗𝚌𝚎, 𝚌𝚘𝚞𝚕𝚍, and 𝟷𝟶 for which
there are significant contexts (at least ten for the words 𝚏𝚛𝚊𝚗𝚌𝚎 and 𝟷𝟶, and at least five for the word 𝚌𝚘𝚞𝚕𝚍). Only the minimal
and maximal nodes are labeled. Contexts are not shown.

in other units. This phenomenon is neatly addressed by
the mathematical approach presented here.

Halfway through the 20th century, Saussure’s idea that
linguistic form and meaning are intimately related, like
two sides of the same sheet of paper, was dominant in
the field of linguistics. While the introduction of Chom-
sky’s novel generative linguistics in the late 1950s brought
a dramatic slowdown to the structuralist program, struc-
tural features continued to be taken as defining properties
of language under Chomsky’s program. The return of em-
pirical approaches to linguistics toward the end of the 20th
century represented a new change of course in this evo-
lution. Connectionism, corpus linguistics, latent seman-
tic analysis, and other approaches to language learnabil-
ity represented renewed efforts to draw all kinds of struc-
tural properties from empirical data, providing amyriad of

conceptual and technical means to intertwine semantics
and syntax (see [CCGP15], and references within).

Although it may come as a surprise that semantics is
at stake in language models with access to linguistic form
only, the point here is that a theory of the emergence
of meaning from form is part of an extensive and well-
established tradition of linguistic thought. And what such
a tradition tells us, in particular in its structuralist version,
is that, if meaning is at stake in the analysis of syntactic
objects, it is entirely due to structural features reflected in
linguistic form.

It is at this precise point, however, where current neu-
ral language models fall short since they do not reveal the
structural features that are necessarily at work as they per-
form their tasks. The mathematical discussion in this ar-
ticle suggests that this is not an insurmountable issue but
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rather is a fascinating research subject, squarely contained
in a mathematical domain, and independent of the archi-
tectures of the language models.

Conclusion: Looking Forward
By understanding word embeddings through well-known
tools in linear algebra and by framing formal concept anal-
ysis in categorical terms, one finds parallel narratives to
unearth structural features of language from purely syn-
tactical input. More specifically, using a real-valued ma-
trix that encodes syntactical relationships found in real
world data, one can use linear algebra to pass to a space
of meanings that displays some semantic information and
structure. By introducing cutoffs to obtain a {0, 1}-valued
matrix, one can use formal concept analysis to reveal se-
mantic structures arising from syntax. While there is noth-
ing new about the well-known tools from linear algebra
and enriched category theory used in this article (principal
component analysis and formal concept analysis), the par-
allel narratives surrounding both sets of tools is less well
known. More important than communicating the narra-
tive, however, is the possibility that the framework of en-
riched category theory can provide new tools, inspired by
linear algebra, to improve our understanding of how se-
mantics emerges from syntax and to study the structure of
semantics.

One approach that immediately comes tomind is a way
to bring the linear algebra and formal concept analysis
closer together. The extended real line [−∞,∞] or the unit
interval [0, 1] can be given the structure of a closed sym-
metric monoidal category making it an appropriate base
category over which other categories can be enriched. So,
[−∞,∞]𝑋 , the functions on a set 𝑋 valued in the extended
reals, can be viewed as a category of presheaves enriched
over [−∞,∞], much in the sameway that 2𝑋 can be viewed
as a category of presheaves enriched over {0 → 1}. Then,
the matrix 𝑀 or some variation of it can be regarded as
a profunctor enriched over the category of extended reals.
The structure of the nucleus could be studied directly in a
way comparable to the formal concept analysis without in-
troducing cutoffs to obtain a {0, 1}-matrix and also would
involve the order on the reals that arranges singular vec-
tors in order of importance. This idea has been around
in certain mathematical circles for about a decade. See
[Pav12, Pav21, Wil13, Ell17, Bra20, BTV22] and the refer-
ences within. One might think of this approach as a way
to unify the lattices of formal concepts for all cutoff values
into one mathematical object, formal concepts intricately
modulated by real numbers.

Another important point is that the linear algebra dis-
cussion began with sets 𝑋 and 𝑌 having no more struc-
ture than an ordering on the elements. To keep the cat-
egorical discussion as parallel as possible, 𝑋 and 𝑌 were

considered discrete categories with no nonidentity mor-
phisms. However, one can introduce morphisms or en-
riched morphisms into 𝑋 and 𝑌 and the presence of those
morphisms will be carried throughout the constructions
described and ultimately reflected in the nucleus of any
𝑋-𝑌 profunctor. There is no obvious way to account
for such information with existing tools in linear alge-
bra. The recent PhD thesis [dF22] recasts a number of
linguistic models of grammar—regular grammars, context-
free grammars, pregroup grammars, and more—in the lan-
guage of category theory, which then fits in the wider con-
text of Coecke et. al’s compositional distributional mod-
els of language [CCS10]. In these models, which date
back to the 2010s, the meanings of sentences are proposed
to arise from the meanings of their constituent words to-
gether with how those words are composed according to
the rules of grammar. This relationship is modeled by
a functor from a chosen grammar category to a category
that captures distributional information, such as finite-
dimensional vector spaces. Such models may also be
thought of as a passage from syntax to semantics, though
they rely heavily on a choice of grammar. The point here,
however, is that if one would like to begin with 𝑋 having
more structure than a set, then enriched category theory
provides a way to do so without disrupting the mathemat-
ical narrative described in this article.

One place where the linear algebra tools have devel-
oped further than their analogues in enriched category the-
ory is inmultilinear algebra. For example, factorizing a ten-
sor in the tensor product of vector spaces 𝑉1⊗𝑉2⊗⋯⊗𝑉𝑛
into what is called a tensor train, or matrix product state,
can be interpreted as a sequence of 𝑛 − 1 compatible trun-
cated SVDs. We are not aware of any similar theory of “se-
quences of compatible nuclei” for a functor on a product
of categories 𝖢1×𝖢2×⋯×𝖢𝑛. Given that text data is more
naturally regarded as a long sequence of characters than
mere term-context pairs, it is reasonable to think an en-
riched categorical version of such an object could be the
right way to understand how multi-layered semantic struc-
tures emerge from syntactical ones in language.
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