
ISSN 0002-9920 (print)
ISSN 1088-9477 (online)

Volume 71, Number 3March 2024

of the American Mathematical Society

The cover design is based on imagery from
 “Deborah Loewenberg Ball: Teaching/Learning 

Mathematics Teaching,” page 302.



The Data Revolution
Data science has been transformational in how we live and has been 

driving many new technological innovations. Mathematics provides an 

underlying structure needed to accelerate new breakthroughs that data 

science unveils. Dr. Talitha Washington will deliver perspectives on 

the role of data science in expanding the scientifi c frontier and how to 

navigate the murky ethics of its applications.

2024 AMS Einstein Public 
Lecture in Mathematics 
will be held at the Spring Eastern Sectional Meeting 

Scan the QR code 
for more information: 

DR. TALITHA 
WASHINGTON

CLARK ATLANTA UNIVERSITY 
& ATLANTA UNIVERSITY CENTER



March 2024
Cover Credit: The image used in the cover design appears in “Deborah Loewenberg Ball:  

Teaching/Learning Mathematics Teaching,” p. 302, and is courtesy of Hyman Bass.

FEATURES

Deborah Loewenberg Ball: Teaching/Learning  
Mathematics Teaching .................................................................302
Hyman Bass

Marie-Françoise Roy .....................................................................313
Saugata Basu

The Contributions of Chuu-Lian Terng to Geometry ................327
Karen Uhlenbeck

Catherine Goldstein: The Question of Long-Term Histories  
and Mathematical Identity ..........................................................338
Jenny Boucard and Jemma Lorenat

A Word from... Rhonda Hughes ................................. 300

Early Career: Women’s History Month ..................... 346
What Would It Mean for Students to Bring 
Their Entire Selves to the Mathematics 
Classroom? ............................................................ 346
Ksenija Simić-Muller
The Infinite Possibilities Conference: Creating 
Moments of Belonging .......................................... 349
Lily S. Khadjavi, Tanya Moore, and Kimberly Weems
A Source List to Support DEI/EDI Work in 
Mathematical Sciences .......................................... 355
Deborah Kent, Emilie Aebischer, and Stuart Neave
Challenges and Rewards Facing Foreign-Born 
Female Mathematicians in the US ........................ 359
Bhamini M. P. Nayar
Dear Early Career ................................................... 362

Memorial Tribute: The Unfailing Optimism of  
Dr. Gloria Ford Gilmer (1928–2021)........................ 366
Tanya Moore and Josh Levy

History: An Enchantress of Number? Reassessing  
the Mathematical Reputation of Ada Lovelace ..........374
Adrian Rice

Opinion: Redefining Math Conferences: A Panel ...... 387
Robyn Brooks and Padi Fuster Aguilera

Bookshelf .................................................................... 392

AMS Bookshelf ........................................................... 393

Communication: Shock Waves and PDEs:  
A Conversation with Barbara Lee Keyfitz .................. 394
Fariba Fahroo and Reza Malek-Madani

News: AMS Updates ................................................... 412

News: Mathematics People .........................................414

New Books Offered by the AMS ................................ 417

Meetings & Conferences of the AMS ......................... 423



FROM THE 
AMS SECRETARY

Calls for Nominations & Applications ........................ 404
I. Martin Isaacs Prize for Excellence in 
Mathematical Writing ............................................ 404
Elias M. Stein Prize for 
Transformative Exposition .................................... 404
Mary P. Dolciani Prize for Excellence 
in Research ............................................................. 405
Award for an Exemplary Program or 
Achievement in a Mathematics Department ........ 405
Award for Impact on the Teaching 
and Learning of Mathematics ............................... 405
Ciprian Foias Prize in Operator Theory ............... 406
David P. Robbins Prize .......................................... 406
E. H. Moore Research Article Prize ....................... 406
Leroy P. Steele Prize for 
Lifetime Achievement ............................................ 407
Leroy P. Steele Prize for 
Mathematical Exposition ...................................... 407
Leroy P. Steele Prize for 
Seminal Contribution to Research ....................... 407
Levi L. Conant Prize .............................................. 408
Mathematics Programs that Make a Difference ... 408
Oswald Veblen Prize in Geometry ........................ 409
Ruth Lyttle Satter Prize in Mathematics ............... 409
Frank and Brennie Morgan Prize for 
Outstanding Research in Mathematics by 
an Undergraduate Student (AMS-MAA-SIAM) .... 409
JPBM Communications Award ..............................410
AMS-SIAM Norbert Wiener Prize 
in Applied Mathematics .........................................410
AMS-Simons Travel Grants ....................................410
AMS-Simons Research Enhancement Grants 
for Primarily Undergraduate Institution 
(PUI) Faculty...........................................................411
Fellows of the American Mathematical Society ....411

2024 AMS Einstein Public Lecture  
in Mathematics .................................. inside front cover

AMS-Simons Research Enhancement Grants  
for Primarily Undergraduate Institution Faculty ...... 312

AMS-Simons Travel Grants ........................................ 326

Fellows of the AMS ..................................................... 416

Submit a Book Proposal ............................................ 422

INVITATIONS 
FROM THE AMS

ERRATA. In the December 2023 book review “The 
Discrete Mathematical Charms of Paul Erdős: A Simple 
Introduction,” there are errors in the citations for the 
films by George Csicsery. Both films are distributed 
by Zala Films, and information about both films and 
how to get DVDs or stream them can be found at  
www.zalafilms.com.  

In the February 2024 issue, on p. 254, Andrew Put-
man’s last name is misspelled as “Putnam.”

http://www.zalafilms.com


SUBSCRIPTION  INFORMATION
Individual subscription prices for Volume 71 (2024) are as follows: non-
member, US$764, member, US$611.20. (The subscription price for members 
is included in the annual dues.) For information on institutional pricing, 
please visit https://www.ams.org/publications/journals/subscriberinfo. Sub-
scription renewals are subject to late fees. Add US$6.50 for delivery within 
the United States; US$25 for surface delivery outside the United States. See  
www.ams.org/journal-faq for more journal subscription information.

ADVERTISING
Notices publishes situations wanted and classified advertising, and display 
advertising for publishers and academic or scientific organizations. Advertis-
ing requests, materials, and/or questions should be sent to: 

classads@ams.org (classified ads) 
notices-ads@ams.org (display ads)

PERMISSIONS
All requests to reprint Notices articles should be sent to:  

reprint-permission@ams.org.

SUBMISSIONS
The editor-in-chief should be contacted about articles 

for consideration after potential authors have reviewed 
the “For Authors” page at www.ams.org/noticesauthors.

The managing editor should be contacted for additions 
to our news sections and for any questions or corrections. 

Contact the managing editor at: notices@ams.org.

Letters to the editor should be sent to: notices-letters@ams.org.

To make suggestions for additions to other sections, 
and for full contact information, see www.ams.org/noticescontact.

© Copyright 2024 by the American Mathematical Society. All rights reserved.

Printed in the United States of America. The paper used in this journal is acid-free and  
falls within the guidelines established to ensure permanence and durability.

Opinions expressed in signed Notices articles are those of the authors and do not necessarily  
reflect opinions of the editors or policies of the American Mathematical Society.

[Notices of the American Mathematical Society (ISSN 0002-9920) is published monthly except bimonthly in June/July by the American Mathematical Society 
at 201 Charles Street, Providence, RI 02904-2213 USA, GST No. 12189 2046 RT****. Periodicals postage paid at Providence, RI, and additional mailing offices. 
POSTMASTER: Send address change notices to Notices of the American Mathematical Society, PO Box 6248, Providence, RI 02904-6248 USA.] Publication 
here of the Society’s street address and the other bracketed information is a technical requirement of the US Postal Service.

EDITOR IN CHIEF

Erica Flapan

ASSOCIATE EDITORS

 Daniela De Silva Boris Hasselblatt, ex officio 
 Benjamin Jaye Richard A. Levine  
 Reza Malek-Madani William McCallum  
 Chikako Mese Antonio Montalbán  
 Han-Bom Moon  Asamoah Nkwanta  
 Emily Olson Emilie Purvine  
 Scott Sheffield Krystal Taylor   
 Laura Turner

ASSISTANT TO THE EDITOR IN CHIEF
Masahiro Yamada

CONSULTANTS

 Jesús De Loera  Bryna Kra  Hee Oh  
 Ken Ono Kenneth A. Ribet Bianca Viray

MANAGING EDITOR

Meaghan Healy

CONTRIBUTING WRITER

Elaine Beebe

COMPOSITION, DESIGN, and EDITING
 Brian Bartling John F. Brady Nora Culik  
 Craig Dujon Anna Hattoy Teresa McClure  
 Lori Nero Dan Normand John C. Paul 
 Courtney Rose-Price Miriam Schaerf  Mike Southern 
 Peter Sykes

Supported by the AMS membership, this publication is freely available 
electronically through the AMS website, the Society’s resource for deliver-
ing electronic products and services. Use the URL www.ams.org/notices to 
access the Notices on the website. The online version of the Notices is the 
version of record, so it may occasionally differ slightly from the print version.

The print version is a privilege of Membership. Graduate students at member 
institutions can opt to receive the print magazine by updating their individual 
member profiles at www.ams.org/member-directory. For questions regard-
ing updating your profile, please call 800-321-4267.

For back issues see www.ams.org/backvols. Note: Single issues of the 
Notices are not available after one calendar year. 

Notices
of the American Mathematical Society

The American Mathematical Society is committed to promoting and facilitating equity, diversity and inclusion throughout the mathematical sciences. For 
its own long-term prosperity as well as that of the public at large, our discipline must connect with and appropriately incorporate all sectors of society. We 
reaffirm the pledge in the AMS Mission Statement to “advance the status of the profession of mathematics, encouraging and facilitating full participation of 
all individuals,” and urge all members to conduct their professional activities with this goal in mind. (as adopted by the April 2019 Council)



A WORD FROM. . .
Rhonda Hughes, Former President of AWM and Cofounder of EDGE

The Status of Women
in Mathematics

The opinions expressed here are not necessarily those of the Notices or the AMS.

Throughout the 1970s, women were virtually invisible on
the national level in mathematics. For most of us com-
ing of age in that decade, the only woman mathemati-
cian we had ever heard of was Emmy Noether. Women
mathematicians at the time were often underemployed
and some received recognition only after achieving fame
beyond the mathematics community. Julia Robinson, the
most notable example, was finally granted a full-time pro-
fessorship at Berkeley after she was elected to the National
Academy of Sciences. With the founding of the Associa-
tion for Women in Mathematics (AWM) in 1971, women
were somewhat reluctantly offered a seat at the table in
professional organizations, and the stories, struggles, and
achievements of women became more widely discussed.
In the 1980s, women began to be properly recognized for
their work.

If we judge purely by the numbers, the status of women
in mathematics may not appear to be substantially differ-
ent from the era when I served as AWM president from
1987–1989. The most quoted percentage is usually that
of US citizen women obtaining PhDs in the mathematical
sciences. In 1989, that figure was approximately 24% [6],
and in recent years ranges from 25%–29%, depending on
the source [7,8].

Rhonda Hughes is professor emerita of mathematics at Bryn Mawr College. Her
email address is rhughes@brynmawr.edu.
AWM: Association for Women in Mathematics, EDGE: Enhancing Diversity in
Graduate Education.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2892

If we look, however, at some other metrics, we do see
progress. Some of the standard markers of success in
mathematics have been Fields Medals, AMS Colloquium
Speakers, and tenured professorships at the leading re-
search universities. As is widely known, two women have
now won the Fields Medal, Maryam Mirzakhani (2014)
and Maryna Viazovska (2022). Since 1896, when the
AMS Colloquium Lectures began, there have been eight
women speakers, most in the twenty-first century. The
first was Anna Pell Wheeler of Bryn Mawr College in
1927. The secondwas Julia Robinson, nearly 60 years later,
in 1980, followed relatively quickly by Karen Uhlenbeck
(1985). There were none until the 2000s, which brought
Alice Chang (2004), Alice Guionnet (2013), Dusa Mc-
Duff (2014), Ingrid Daubechies (2020) and Karen Smith
in (2022). (There is anecdotal evidence here that once a
woman is recognized one year, people realize the universe
is still in operation, and another is chosen the following
year.) In 2019, Karen Uhlenbeck was the first woman to
win the Abel Prize [2].

In the 1980s, there were virtually no tenured women in
the mathematics departments of the leading research uni-
versities. Today, that has changed. With some exceptions,
those departments now have tenured professors who are
women, and some departments havemore than one. How-
ever, most mathematicians, regardless of gender, will not
attain this level of accomplishment, so these are perhaps
unfair measures of success. Instead, we should look more
broadly at the progress of women and other underrepre-
sented groups who have historically been marginalized.

One of the areas where we see impressive change is in
the professional organizations. One special case worthy of
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A Word From. . .

note is the American Statistical Association (ASA), which
had its first woman president, Helen Walker, in 1944, and
has had a total of nineteen women presidents since its
founding in 1939. Among the other professional organi-
zations, none had a woman president until 1979, when
Dorothy Bernstein became president of the Mathematical
Association of America (MAA). Julia Robinsonwas the first
woman president of the American Mathematical Society
(AMS) in 1983, and the Society for Industrial and Applied
Mathematics (SIAM) elected Margaret Wright in 1995. It is
truly remarkable that the current presidents of AMS, MAA,
ASA, the National Association of Mathematicians (NAM),
the Society for the Advancement of Chicanos/Hispanics
& Native Americans in Science (SACNAS), and the Soci-
ety of Mathematical Biologists (SMB) are all women [3–
5]. Moreover, the Association for Women in Mathemat-
ics (AWM) had Cora Sadosky, a Hispanic woman, serve as
president in 1993 and currently has a Black president and
president-elect: Talitha Washington and Raegan Higgins,
respectively. Through the work of professional organiza-
tions such as SACNAS, AWM, NAM, and Spectra, the As-
sociation for LGBTQ+ Mathematicians, we see progress in
inclusivity for all groups in the mathematical sciences.
New faces. One of the most welcome changes is the pres-
ence of women of color and other historically underrepre-
sented groups at all levels of professional activity. When
I became AWM president in 1987, there were few voices
that championed the cause of women or people of color
in the mathematics community. In 1969, Johnny Hous-
ton and Scott Williams organized a gathering that would
formally become NAM in 1971. Lee Lorch, the civil rights
icon [9], mentored a generation of Black women mathe-
maticians in the short time he was at Fisk University, and
Mary Gray, a lifelong champion of women’s and human
rights, was one of the founders of AWM [10]. Richard
Tapia is a visionary under whose leadership the Compu-
tational and Applied Mathematics Department at Rice has
become a national leader in producing women and under-
represented minority PhDs [11]. The Enhancing Diversity
in Graduate Education (EDGE) Program (disclaimer: I am
one of its founders, alongwith Sylvia Bozeman of Spelman
College) boasts many prominent women in positions of
research and professional leadership among its alumnae.
The website Mathematically Gifted and Black [12], which
each year features Black mathematicians during Black His-
tory Month, has showcased hundreds of Black mathemati-
cians and brought their stories to light.
New voices. While most mathematicians of my genera-
tion read the same classic (often excellent) textbooks in
graduate school, the internet has provided new and ex-
citing ways of bringing mathematics to a wider audience
than could possibly be reached by conventional teach-
ing methods. Innovative ways of explaining mathematics

have taken hold. Many of these voices belong to women.
Tai-Danae Bradley’s Math3ma website [1] offers clear
explanations and synthesizes disparate themes in mathe-
matics in an exhilarating way. Lillian Pierce brings her mu-
sician’s sensibility to bear on her approach to exposition
[13]. Her 2022 ICM slides, exceptional in their clarity, in-
vite us to understand her research and give us access to her
work [14]. Susan D’Agostino’s book, How to Free Your In-
ner Mathematician: Notes on Mathematics and Life, offers a
fresh new perspective on how the lessons of mathematics
can have bearing on the way we navigate our lives [15]. As
the world consumes the content thesemasterful expositors
produce, we can only hope that a new and diverse genera-
tion feels more welcome than in the past and embraces all
that mathematics has to offer.
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[2] https://mathwomen.agnesscott.org/women

/prizes.htm
[3] https://www.amstat.org/news-listing/2023

/05/15/american-statistical-association
-elects-2025-president

[4] https://smb.org/leadership
[5] https://maa.org/about-maa/governance/maa
-presidents/hortensia-soto

[6] https://www.ams.org/profession/data/annual
-survey/1989Survey-Second-Report.pdf

[7] https://www.ams.org/profession/data/annual
-survey/2018Survey-NewDoctorates-Report.pdf

[8] https://ncses.nsf.gov/pubs/nsf23315/data
-tables

[9] https://www.nytimes.com/2014/03/02
/nyregion/lee-lorch-desegregation-activist
-who-led-stuyvesant-town-effort-dies-at-98
.html

[10] https://www.ams.org/journals/notices
/202303/noti2636/noti2636.html

[11] https://www.nsf.gov/news/special_reports
/medalofscience50/tapia.jsp

[12] https://mathematicallygiftedandblack.com/
[13] https://www.ias.edu/news/2022/lillian
-pierce-builds-landscapes

[14] https://services.math.duke.edu/~pierce/
[15] https://www.susandagostino.com/

MARCH 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 301

https://mathwomen.agnesscott.org/women/prizes.htm
https://mathwomen.agnesscott.org/women/prizes.htm
https://maa.org/about-maa/governance/maa-presidents/hortensia-soto
https://maa.org/about-maa/governance/maa-presidents/hortensia-soto
https://www.ams.org/profession/data/annual-survey/1989Survey-Second-Report.pdf
https://www.ams.org/profession/data/annual-survey/1989Survey-Second-Report.pdf
https://www.ams.org/profession/data/annual-survey/2018Survey-NewDoctorates-Report.pdf
https://www.ams.org/profession/data/annual-survey/2018Survey-NewDoctorates-Report.pdf
https://ncses.nsf.gov/pubs/nsf23315/data-tables
https://ncses.nsf.gov/pubs/nsf23315/data-tables
https://www.ams.org/journals/notices/202303/noti2636/noti2636.html
https://www.ams.org/journals/notices/202303/noti2636/noti2636.html
https://www.nsf.gov/news/special_reports/medalofscience50/tapia.jsp
https://www.nsf.gov/news/special_reports/medalofscience50/tapia.jsp
https://www.ias.edu/news/2022/lillian-pierce-builds-landscapes
https://www.ias.edu/news/2022/lillian-pierce-builds-landscapes
https://www.amstat.org/news-listing/2023/05/15/american-statistical-association-elects-2025-president
https://www.amstat.org/news-listing/2023/05/15/american-statistical-association-elects-2025-president
https://www.amstat.org/news-listing/2023/05/15/american-statistical-association-elects-2025-president
https://www.nytimes.com/2014/03/02/nyregion/lee-lorch-desegregation-activist-who-led-stuyvesant-town-effort-dies-at-98.html
https://www.nytimes.com/2014/03/02/nyregion/lee-lorch-desegregation-activist-who-led-stuyvesant-town-effort-dies-at-98.html
https://www.nytimes.com/2014/03/02/nyregion/lee-lorch-desegregation-activist-who-led-stuyvesant-town-effort-dies-at-98.html
https://www.nytimes.com/2014/03/02/nyregion/lee-lorch-desegregation-activist-who-led-stuyvesant-town-effort-dies-at-98.html


Deborah Loewenberg Ball:
Teaching/Learning
Mathematics Teaching
Hyman Bass

To its credit, Notices has
been publishing a series
of profiles celebrating the
work and careers of sev-
eral accomplished women
in mathematics. Deborah
Loewenberg Ball might, at
first consideration, seem an
unlikely entry into that au-
gust company, in that nei-
ther her education nor her
early life interests exhibited
particular mathematical in-
clinations. Indeed, her first
serious engagement with a
challenging math problem
came after she had gradu-

ated college, where she had majored in French. How she
addressed that problem is an important part of her story.
I write from the perspective of a colleague, friend, and col-
laborator.

1. Family and Early Education
Let’s start from the beginning.

Deborah’s family heritage is part of a long line of Ger-
man Jewish intellectuals. Those who survived Nazi per-
secution fled to the United States and other countries.
Her great-great-uncle, Ernst Cassirer, was a prominent
twentieth-century philosopher, who embraced both sides
of the Neo-Kantian division between the natural and the
human sciences, a sensibility also present in Deborah’s
work. Her father, Gerhard Loewenberg, was an eminent
political scientist, who developed the field of comparative

Hyman Bass is Samuel Eilenberg Distinguished University Professor at the Uni-
versity of Michigan. His email address is hybass@umich.edu.

Communicated by Notices Associate Editor William McCallum.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2902

study of legislatures, especially in postwar Europe. He was
also a much-appreciated professor and academic leader.
Deborah’s mother, Ina, is broadly talented—a scholar in
philosophy, a certified public accountant, a published
poet, an accomplished photographer, and a polyglot. Deb-
orah’s one sibling, Michael, is a professor of chemical en-
gineering at Yale. Her husband of more than 50 years,
Richard, has also been a teacher, and their three children,
Sarah, Joshua, and Jacob, all educators in different con-
texts, have been central to her life and her learning.

Figure 1. Four-year old
Deborah’s “proof” that she is
related to her father.

Deborah was born in
March of 1954 just as her
father began his 16 years
on the faculty of Mount
Holyoke College. Her early
education was in South
Hadley, Massachusetts,
where she was one of only
two Jewish children in her
elementary school. She
read fluently by age four.
Her first-grade teacher was
unsure how to deal with her
and awkwardly arranged for
her to read current events
materials aloud to the sixth-
grade class. Also when
she was four, her father
teasingly challenged her to
prove that the two of them
were related. Her “proof”
can be seen in Figure 1, in
which she even appeals to
her birth certificate.

During her father’s sab-
batical inGermany, to study

the evolution of the Bundestag, Deborah, then age 7, at-
tended public school and became fluent in German. In
the late 1960s, her father accepted a faculty position at the
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Figure 2. Deborah Ball with her brother Michael, mother Ina,
and father Gerhard Loewenberg.

University of Iowa, so Deborah finished high school in
Iowa City. While in high school she also spent a term in
Zurich on a student exchange program. Her only science-
related courses were Algebra I and biology. Instead, she im-
mersed herself in the humanities—English and languages,
studying French, Spanish, and German.

Having completed two years of college work in high
school, it took Deborah only two more to earn a BA at
Michigan State University (MSU) in 1976, majoring in
French and elementary education. Because of her love
of language, she studied Spanish and German as well as
French. Realizing that she didn’t want to become a transla-
tor, she decided to pursue teaching, choosing elementary
education because elementary teachers teach all subjects,
and because of Michigan State’s excellent teacher educa-
tion program.

Having always felt herself to be somehow “different,”
Deborah was deeply interested in people—in how oth-
ers think and in their experiences and perspectives. In
her travels she met people of different identities and cul-
tures, becoming aware both of enormous gaps of experi-
ence and opportunity and of the histories and social forces
that shaped inequality and injustice. Across time, she had
also held a range of jobs: as a cocktail waitress in a bowling
alley; as an accounts tabulator at Kmart; and in a bakery,
eventually as a cake decorator. Baking became a contin-
uing métier for her, from which her students and friends
continue to benefit. In each work environment, she no-
ticed that, though the educational opportunities of her
coworkers were often less than hers, they skillfully per-
formed complex work involving rapid mental arithmetic
calculations, substantial memory retrieval, complex rela-
tional work, and complicated multitasking, both physi-
cal and mental. It struck her how accomplished, yet how
little noticed or appreciated, was their everyday skilled

performance. This deepened a sensitivity to equity that
has infused all of her life’s work, especially teaching.

2. Early Teaching and Teacher
Mathematical Knowledge

For 13 years (1975–1988) Deborah taught public elemen-
tary school, grades 1–5 in East Lansing, Michigan. Her
husband, Richard Ball, was a middle school teacher. Deb-
orah and Richard found that their experiences as parents
infused their work as teachers and reciprocally. Debo-
rah loved teaching and felt generally satisfied with her
progress in developing as a teacher, with the exception
of one subject: mathematics. She was puzzled and frus-
trated that things the children seemed to understand on
Friday were often forgotten by Monday. She began to sus-
pect that there were important things about teachingmath-
ematics that she did not understand. Inspired by educa-
tional philosophers like John Dewey, Joseph Schwab, and
Jerome Bruner,1 she realized that this must begin (but not
end) with a more robust knowledge of mathematics itself,
something thus far underdeveloped in her education. So,
she took and performed well in a four-term calculus se-
quence, the first two at Lansing Community College, the
final two at MSU, plus a number theory course that she
loved. This study enabled her to see situations that came
up in her teaching in a new light. For example, one day
in her first-grade class, she had the children try to measure
the area of their hands. They traced their hands on graph
paper and then tried to count the grid squares within the
outline, with some improvised procedures for squares on
the boundary. One child suggested getting the graph pa-
per that the fifth graders used, with smaller squares, so
that they might be able to get a more accurate measure-
ment. At that time, Deborah was taking integral calculus,
so she recognized that the child was noticing something
that was a significant mathematical insight. How should
she respond? Not by giving a mini-discourse on calculus,
or even on the subtleties in defining area. She responded,
“That’s a really interesting idea. Why don’t you get the fifth-
grade graph paper, and let’s try it?”

During part of these years of teaching elementary stu-
dents, Deborah was a doctoral student in the MSU College
of Education, majoring in curriculum, teaching, teacher
education and professional development, and policy with
a minor in mathematics education. For her 1988 doctoral
dissertation, titled “Knowledge and reasoning in mathe-
matical pedagogy: Examining what prospective teachers
bring to teacher education,” she developed an interview
protocol that she used to explore the mathematical under-
standing, as well as the ideas about learning, teaching, and

1Deborah was inspired by Bruner’s famous declaration, “We begin with the hy-
pothesis that any subject can be taught effectively in some intellectually honest
form to any child at any stage of development.”

MARCH 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 303



students, that preservice teachers held before even begin-
ning their professional training.2 Here is an item from a
survey, used in a study of content knowledge for teaching,
that she later developed from an open-ended interview in
her dissertation:

Which of the following story problems can be
used to represent the meaning of 1 1

4
divided by

1
2
?

a) You want to split 1 1
4
pies evenly between two families.

How much should each family get?
b) You have $1.25 and may soon double your money.

How much money would you end up with?
c) You are making some homemade taffy and the recipe

calls for 1 1
4
cups of butter. How many sticks of butter

(each stick = 1
2
cup) will you need?

Few of the study participants selected the correct an-
swer. Most surprising was that even the mathematics ma-
jors were unable to explain the meaning of division by

1
2
.

3. Making Teaching Practice Accessible to Study
Next, as an assistant professor at MSU, Deborah contin-
ued to teach elementary school every day, then just as the
math teacher in Sylvia Rundquist’s third grade class. To-
gether with her colleague, Magdalene Lampert, who was
also teaching fifth grade in Thom Dye’s class, they set out
to conduct a major study of “the work of teaching,” with
a special focus on mathematics teaching. Often, the sci-
entific study of a phenomenon proceeds first by close and
systematic empirical observation of the phenomenon of
interest, with detailed data gathering. A characteristic fea-
ture of classroom teaching presents an obstacle to this: it
is typically private, carried out behind closed doors. A few
accomplished teachers are sometimes featured as exem-
plary, to be emulated, much as listening to operas might
equip you to sing arias. This is unlike most other skilled
professions—like medicine, nursing, architecture, art, act-
ing, aircraft piloting, plumbing—in which extensive super-
vised actual or simulated performance is the norm as part
of professional training. Teaching, instead, is often po-
sitioned as something one can just learn on one’s own,
through experience. Deborah argued that even more im-
portant is that teaching be carefully taught, practiced, and
coached. Ball and Lampert set out to design ways for oth-
ers to engagewith thework of teaching, with its complexity
and dilemmas, through investigations of primary records
of practice.

What Deborah and Magdalene proposed to do was
to make their actual practice public, not as a model of

2Her interview protocol was later used by Liping Ma in a comparison of mathe-
matical knowledge of Chinese and American teachers.

exemplary teaching, but to produce a corpus of primary
data with which to empirically study the work of teach-
ing. They proposed to the NSF to fully document an entire
academic year of their teaching, Deborah of third grade,
Magdalene of fifth. The school in which they were both
teaching had a diverse student body and teaching faculty,
including Black, Latine, and white children, of many dif-
ferent cultures and different home languages. The records
they proposed to collect comprised videos with transcripts
of every class, student notebooks, teacher journals, home-
work and quizzes, and interviews with the children. The
complexity and scale, innovative use of then available tech-
nology, and concomitant expense of such an undertaking
were unprecedented. It is a tribute to the vision of the
NSF program directors that they decided to fund this. Data
were generated during the 1989–90 academic year, and the
outcome more than fulfilled its promise. It provided a pri-
mary data source for Magdalene Lampert’s seminal book,
Teaching Problems and the Problems in Teaching (2001, Yale
University Press) as well as the materials on which Debo-
rah drew as she sought to study and analyze themathemat-
ical work of teaching.

These records of practice were deployed as a kind of em-
pirical “text” for others to study the work of teaching as
it relates to various kinds of research questions. Specifi-
cally, Deborah wanted to understand the nature and form
of mathematical knowledge that teaching mathematics en-
tails. Of course, this would depend in part on the math-
ematical topic and the level of the students. But there
should be some mathematical practices, ways of think-
ing, and sensibilities that apply across these different con-
texts. Deborah was aware of the ways that teachers and
other educators commonly thought about these questions.
But, going back to the influence of Dewey, Schwab, and
Bruner, she felt it important to incorporate the perspec-
tives of mathematicians as the disciplinary experts. More-
over, rather than ask for their disengaged opinions and re-
flections on what mathematical knowledge is needed for
teaching children, shewas now in a position to invite them
to examine primary data (especially video) of teaching,
and to ask, more concretely, “What mathematical issues
do you see in these classroom episodes?” Of course, the
problems occur in contexts that involve more than just the
mathematics, as do the solutions. These questions could
not be adequately answered with intellectual speculation
and reflection, or based on university-level mathematics.
But, she believed, mathematicians might see important
mathematical aspects of events that might remain invisi-
ble to others.

To this end, Deborah enlisted several mathematicians,
of whom I was one, to examine these records. Others
included, for example, Peter Hilton, Herb Clemens, and
Phil Kutzko. I was asked first to look at an interesting
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Figure 3. Domains of mathematical knowledge for teaching.

episode from the January data. Recall that the data ranged
from September until May, so January was midyear. I was
quite excited by the rich mathematical thinking and in-
teractions of the children. I thought that these children
showed amazing mathematical curiosity and engagement.
I later more fully appreciated the importance of the many
subtle teacher moves that supported the children’s think-
ing and discourse. The longitudinality of the data allowed
me to also “visit” the first classes, in September, when I
saw themathematical tasks and the teacher’smathematical
prompts to which the students were just beginning to re-
spond. It was somehow the teaching that supported these
September-children to grow into the January-children, and
the comprehensive data allowed me to analyze the peda-
gogy that supported that transformation.

I continued this study of the 1989–90 data, recorded
through annotations of the transcripts, from my office in
the Columbia Mathematics Department. Deborah moved
from MSU to the University of Michigan (U-M) in 1996,
and I spent a spring 1997 sabbatical at U-M to work with
Deborah’s research group. After returning, I found it dif-
ficult to continue this work remotely, away from the re-
search group, so I moved to U-M in 1999, with a joint
appointment in the Department of Mathematics and the
School of Education.

4. Mathematical Knowledge for Teaching
Over the next several years, Deborah led her group in the
development of a theory of “mathematical knowledge for
teaching,” (MKT). Unlike other theories that claim such
a title, the knowledge base here was an in-depth empiri-
cal study of teaching practice. The theory was framed as a
refinement of Lee Shulman’s seminal work on “pedagogi-
cal content knowledge” (PCK) and was represented in the
“egg” diagram in Figure 3.3

3From D. L. Ball, M. H. Thames, and G. Phelps, Content knowledge for
teaching: What makes it special?, Journal of Teacher Education 59 (2008),
no. 5, 389–407, http://dx.doi.org/10.1177/0022487108324554.

The right half is PCK, as a kind of hybrid pedagogical
and content knowledge developed by Shulman and his
colleagues at Stanford (Shulman, 1986; Wilson, Shulman,
& Richert, 1987). The left half presents a new decom-
position of “pure” content knowledge, which was a uni-
tary component in Shulman’s framework. A novel feature
is the prominent appearance of “specialized content (in
our case, mathematics) knowledge” (SCK). This new con-
struct designated a knowledge of mathematics not involv-
ing pedagogy that is needed for teaching but is not typi-
cally needed for, or known by, other professionals, includ-
ing mathematicians. Its discovery posed new questions
aboutmathematics content courses taught inmathematics
departments for future teachers. Where, and how, would
SCK be taught?

In order for the theory of MKT to have some bearing
on instruction and on student learning, it was important
to have measures of MKT and of desired outcomes. To
this end, Deborah and Heather Hill, together with Mark
Hoover, and several talented doctoral students, led the de-
velopment of measures of MKT, and another of “the math-
ematical quality of instruction” (MQI). For student learn-
ing outcomes standard measures were used. Working with
colleagues Brian Rowan and Stephen Schilling who, along
with Heather Hill, brought extensive quantitative analytic
expertise, the team was able to show that teachers’ MKT, as
they conceived it, is related to student learning outcomes.

5. Teacher Education: The Work of Teaching
Given this line of research, a new question emerged:
Where and how could teachers develop this kind of mathe-
matical knowledge for teaching? The teaching population
in the US numbers close to four million. It is America’s
largest occupation. This scale made clear to Deborah that
this could not be an isolated agenda. It had to be inte-
grated into a fundamental transformation of US teacher
education and professional development—something per-
haps analogous to the reform of US medical education, in-
spired by the Flexner Report in the early 1900s. Her ap-
proach was to ground this in an in-depth and fine-grained
analysis of the work of teaching, something that was so
far, perhaps unsurprisingly, largely understudied. This
launched the next phase of Deborah’s work.

Paralleling the work of Lee Shulman, Suzanne Wil-
son, and Pam Grossman, Deborah noted differences in
the preparation of practitioners in other skilled lines of
work—for example, surgeons, nurses, airplane pilots, and
plumbers. This typically involved decomposition of the
work into distinct, more directly learnable practices, and
then also learning fluent integrated performance through
both close observation of practice (think of the surgical
theater) and coached rehearsals and simulations.
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During this period Deborah was appointed dean of the
University of Michigan School of Education (2005–2016),
and the redesign of its teacher education program was a
major part of her agenda. To this end, she began by enlist-
ing the faculty in a two-year analysis of the basic everyday
practices of teaching. A list of close to 100 such practices of
various grain sizes and complexity was identified. This di-
verse list was clearly impractical as a foundation for teacher
education. So, for elementary teacher education, the next
phase was a process of distillation and consolidation to
arrive at a short list of what they termed “high leverage”
teaching practices, and the criteria for choosing them. The
resulting, and still evolving, list of nineteen high leverage
practices (HLPs)4 included things like:

(HLP 1) leading group discussions;
(HLP 2) explaining and modeling content;
(HLP 3) eliciting and interpreting individual students’

thinking; and
(HLP 11) communicating with families.
Of course, “content” refers traditionally to school sub-

jects like language arts, mathematics, science, social stud-
ies, etc. To organize the teacher education program around
these high-leverage practices required reconceptualizing
the courses. Each content area course would address a
small subset of the HLPs, grounded in that specific con-
tent.

To more broadly and enduringly amplify this reconcep-
tualization of teacher education, Deborah founded and
directs TeachingWorks,5 an organization housed at U-M
that designs resources and practice-based approaches to
teacher education that support educators to enact equi-
table teaching practice that nurtures young people’s learn-
ing and actively disrupts patterns of injustice.

Though Deborah’s innovative scholarship remains pro-
lific, she already received, in 2017, the Felix KleinMedal for
lifetime achievement in mathematics education research
from the International Commission on Mathematics In-
struction (ICMI). This is the highest honor worldwide in
mathematics education research. The three most highly
citedmathematics education scholars in theworld areDeb-
orah Ball (73585); Paul Cobb (51794); and Alan Schoen-
feld (45544), each of them also a KleinMedalist. AndDeb-
orah co-authored the twomost highly cited journal articles
in mathematics education research, both related to MKT.

But, as has already been indicated, Deborah’s inter-
ests in education are broader than mathematics education.
In 2017–18 she was president of the (25,000 member)
American Educational Research Association (AERA). In her

4https://marsal.umich.edu/academics-admissions/degrees
/bachelors-certification/undergraduate-elementary-teacher
-education/high-leverage-practices
5https://www.teachingworks.org/

Figure 4. Deborah Loewenberg Ball delivering her AERA
presidential address.

presidential address,6 she introduced and vividly illus-
trated the notion of “discretionary spaces” in teaching.
Drawing on the work of political scientist Michael Lipsky,
this idea illuminated how policies and norms, no mat-
ter how prescriptive and specified, inevitably leave room
for interpretation and (conscious or unconscious) conse-
quential choices by on-the-ground actors that ultimately
shape the enactment of the policy or practice. These dis-
cretionary actions by teachers can not only profoundly af-
fect student learning, but also either reinforce or disrupt
racism and other forms of oppression that infiltrate class-
rooms from the ambient society, culture, and institutions.

6. Deborah the Teacher
If there is one thing that best characterizes Deborah as a
person, a scholar, and a leader, it is that she is quintessen-
tially a teacher. She started with 17 years teaching ele-
mentary grades in East Lansing schools, partly during her
doctoral studies and postdoctoral work at MSU. She has
since taught a range of university courses, such as meth-
ods courses for teacher candidates, foundations and pol-
icy courses in the graduate program, and courses for stu-
dents across the university with interests in education. Her
courses draw many students and she earns high ratings
for her teaching and her support of students. She regu-
larly leads professional development workshops around
the country. Further, for two decades now, she has taught
10-year-old children each summer in the Elementary Math
Lab (EML). I say more about this below.

Teaching (and learning) for Deborah is a calling, a life
practice, her way to interact with the world, to nurture
and empower people of all ages, stations, and identities,
and to disrupt institutions and practices that oppress them.
She assumes that all children bring substantial knowledge
and skills, and so considers it a core task of the teacher to
elicit that and use it as a foundation for what new mate-
rial the children are ready to learn. This contrasts with the
negative orientations of much teaching that makes deficit

6Video available at https://youtu.be/JGzQ7O_SIYY?t=3212

306 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 71, NUMBER 3

https://marsal.umich.edu/academics-admissions/degrees/bachelors-certification/undergraduate-elementary-teacher-education/high-leverage-practices
https://marsal.umich.edu/academics-admissions/degrees/bachelors-certification/undergraduate-elementary-teacher-education/high-leverage-practices
https://marsal.umich.edu/academics-admissions/degrees/bachelors-certification/undergraduate-elementary-teacher-education/high-leverage-practices


Figure 5. Deborah teaching in the Elementary Math Lab.

judgments of children’s competence, and with testing that
tests not what children know, but what they don’t.

Deborah as leader: Carla O’Connor, in introducing Deb-
orah’s AERA Presidential Address, said:

Her teacher identity also permeates how sheworks
as a leader and as a public servant. As dean of the
U-M School of Education, where I had the privi-
lege of serving as her associate dean for four years,
I witnessed how Deborah interpreted every meet-
ing and every convening as an opportunity to cul-
tivate communities of learning and action. She
established the goals of the convening, assessing
who would be in the room—the identities, knowl-
edge, and resources they brought. And, in cooper-
ation with her cofacilitators, she would determine
which instructional tools and strategies could be
most powerfully leveraged, when and by whom,
to support the stated objective. And all of this was
outlined clearly in her written “lesson plan.”

I can testify to this. Deborah always honors and takes
responsibility for the quality of the time she asks her col-
leagues/students to meet. Her well-attended faculty meet-
ings were edifying and engaging, on themes from the
school budget, to review and reform of our instructional
programs, to equitable practices, and more, often enlisting
outside expertise.

Deborah and STEM: These skills enriched every environ-
ment she entered, even those whose culture and knowl-
edge base were remote from her own. For example, even
through the so called “Math Wars” and beyond, Deborah
remains one of the most highly respected mathematics ed-
ucators by the research mathematics community. She par-
ticipated in the “Reaching for Common Ground. . . ” effort
(AMSNotices, Oct. 2005). She is a fellow of the AMS.More
pointedly, Deborah has twice been appointed to the Na-
tional Science Board (NSB), a presidential appointment.
The NSB is the governing board of the National Science

Foundation. It covers the full range of sciences and typ-
ically has only one education member (and at most one
mathematician). An educator has a limited role in its
planned agenda, and often a little-heeded voice otherwise.
Deborah’s reappointment was welcomed by its members
because of the clarity and focus she brought to their delib-
erations. Even on topics for which she had little technical
expertise, she demonstrated great listening, learning, and
enabling skills, these being qualities not always highly de-
veloped in the other members’ environments.

Let me next offer some vignettes of Deborah’s class-
room teaching.

Teaching teaching place value: This is a methods class for
intern elementary teachers, in which Deborah is introduc-
ing them to the teaching of place value in the early grades.
I will describe this in what may seem like excessive detail,
but there is a point to this. My description draws from a
video recording of one such class that I also observed first-
hand.

To simulate a lesson, Deborah as teacher (T) and a
dozen of the teacher candidates in the role of children (C)
sit cross-legged in a circle on the floor. Another dozen or
so teacher candidates sit at tables around them to observe
and take notes on the floor dialogue and actions. A box
of more than two thousand popsicle sticks is poured into
the middle of the circle. T asks, “How many do you think
there are?” Various Cs offer (widely varying) guesses. T:
“How can we find out?” A few Cs say, hesitantly, “Count
them?” T: “Ok, let’s do that, . . . together.” Then the Cs be-
gin eagerly gathering individual sticks and counting them.
It quickly becomes apparent that they are running out of
room for the sticks and finding it hard to keep track of the
counting. Some of the Cs say they could collect the sticks
into bundles. But another C asks, “How can we hold the
sticks in a bundle together? T says, “We can use rubber
bands,” and she presents a box of them to distribute to
the Cs. At this point, T “exits” from the lesson simulation
and asks the teacher candidates on the floor, “What do you
think the (real) Cs are going to do when they get the rub-
ber bands?” There is some discussion of the Cs using them
as slingshots, and related behavioral issues. They then re-
turn to the simulation, and T demonstrates how to use a
rubber band to bundle several sticks. But how many sticks
should be in a bundle? It becomes clear that the bundles
of each C should be of the same size, thinking of eventu-
ally combining their collections. But what size? This en-
genders some lively discussion: Two would be too small
(too many bundles); but also we don’t want them too big.
Five is a good possibility. Then T urges 10, but empha-
sizes that this is a choice, and it could as well be otherwise.
Then the counting resumes, but now with bundling. Dur-
ing this activity, T asks a variety of questions. T holds up a
bundle and three sticks and asks, “How many is this?” A C
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answers, “13.” T: “How do you know?’ T does not accept
“10 + 3 = 13,” but asks for a direct proof—unbundling the
10 and counting all the loose sticks. T also asks questions
like, “What are different ways to show me 24 sticks?” All
of this happens while the counting goes on. After a while,
the same crowding problem as before emerges; too many
bundles! This leads to “super-bundles.” But how many
bundles in a super-bundle? Again, there is a choice to be
made, and T proposes for consistency to make it 10. There
ensues a sequence of now more complex representation
questions: “How many sticks in two super-bundles, three
bundles, and four sticks?” “Show me 302 sticks.”

Finally, all the sticks are counted, and the collections of
each C are gathered in the center. The assembled individ-
ual sticks are consolidated into more bundles, and then
the assembled bundles are consolidated into more super-
bundles. But now there is an abundance of super-bundles.
And, after some discussion, they decide to form “mega-
bundles” (comprising 10 super bundles). In the end, they
have two mega-bundles, five super-bundles, three bundles,
and seven individual sticks. And so, the count of the orig-
inal pile is captured by these four digits: 2537.

Afterward, the lesson is repeated with the two groups
of interns exchanging roles. Two big features of this les-
son design are worth noting. Rather than directly present-
ing the teacher candidates/children with symbolic place
value notation (this is the ones place, the tens place, . . . ,
names to be memorized) it creates a context in which
(1) they organically construct/invent a place value system,
and (2) they are viscerally able to appreciate the amazing
power of notational compression so achieved. Moreover,
the bundling stick model is a faithful physical represen-
tation of the mathematics; bundling and unbundling are
just ways of organizing the physically invariant collection.
Performing addition and subtraction in this model gives
direct meaning to the symbolic processes of “carrying” and
“borrowing”—or, more properly, “regrouping,” carried out
physically with two- and three-digit numbers. This con-
trasts with the base-ten blocks representation, which in-
volves physical exchange in place of unbundling, with car-
dinal invariance shown by geometric measurement. Fi-
nally, one arrives at symbolic place value notation, with
its compactness and computational efficiency, achieved
with formal algorithms. The symbolism is abstract and re-
mote from its mathematical meaning, but it arrives with a
concrete foundation into which it can be translated when
needed.

Deborah’s instruction included systematic analysis of
these representation systems, which progressed from mak-
ing the mathematics transparently and directly mean-
ingful but cumbersome, to the powerfully compressed
and efficient but opaque in meaning symbolic represen-
tation. When children might encounter difficulties in the

symbolic system, the teacher candidates were learning to
diagnose them and return to a more transparently under-
stood model to help a child understand the meanings
of the symbolic manipulations they were making. The
teacher candidates were taught to rehearse such explana-
tions, to talk about this and ask questions that could open
insights for young learners.

The broken calculator lesson: Deborah was invited to
teach a lesson to a third-grade class of mostly Black chil-
dren in Detroit, whom Deborah had never met. When
Deborah showed the regular teacher the lesson plan, she
expressed reservations about whether the students could
actually handle the lesson.

The class was high energy, with lots of sound and mo-
tion. Deborah gave them a picture of a hand calculator and
explained that the 2 and the 5 keys were broken. She asked
them, “Can we still use this broken calculator?” After elic-
iting various student opinions, she posed a sequence of
addition and subtraction problems, to be performed on
the broken calculator. For example, if the 2 and the 5 keys
were broken, how might one use the broken calculator to
add 32 + 51? The children successfully engaged with these
substantial challenges with great enthusiasm.

What mathematics learning was supported by this ac-
tivity? Given some arithmetic expression to calculate, the
children had to construct an equivalent expression (hav-
ing the same value) that did not involve the digits 2 and 5.
For example, 32 + 51 = 33 + 50 = 33 + 40 + 10. More than
arithmetic practice, this implicitly involved early algebra
skills and equivalence of arithmetic expressions.

With regard to the regular teacher’s expectations, Debo-
rah has always, when meeting students she did not know,
chosen to not look at previous teachers’ or others’ judg-
ments about the mathematical capabilities or potential be-
havior issues of the individual students. For her, each child
comes with high promise and no presumed deficiencies.
This is a crucial stance to take, especially for Black and
Brown children who have been historically marginalized
and pervasively seen by their white teachers through deficit
lenses.

Proving mathematical impossibility: I turn next to a third
case: Deborah teaching a summer program class (the
EML) of racially and linguistically diverse soon-to-be fifth
graders. The goal of the program is growing the children’s
mathematical identities through a focus on their skill as
mathematical thinkers in preparation for fifth grade. The
curriculum she developed involved a combination of foun-
dational work on fractions, including their placement
on the number line, plus some novel and challenging
problem-solving activity. In this regard, the reform mathe-
matics education literature has urged the teaching of prac-
tices like reasoning and proving across all grade levels, K–
16. But this has proved difficult to achieve even at the
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Figure 6. A 5-car train, and a 3-car 11-passenger train.

undergraduate level. Deborah has developed a complex
problem called “The Train Problem” on which they work,
often in small groups, over several days. It is a nontrivial
problem even for most adults.

A plain mathematical statement of the problem goes as
follows. Consider the set of numbers, S = {1, 2, 3, 4, 5}.
Note that 1+2+3+4+5 = 15. The Train Problem has two
parts. (I) Can every (whole) number ≤ 15 be expressed as
the sumof a subset of S? (II) Is there an ordering T = (a, b, c,
d, e) of S such that every number ≤ 15 is the sum of some
consecutive terms in T? In what follows, I describe how
Deborah stages this problem for the children and, in par-
ticular, how she motivates them to seriously engage with
it. I draw from one particular year in which I observed the
development of the children’s work.

The children worked with Cuisenaire rods. These have
dimensions (1 cm) x (1 cm) x (n cm) (from n = 1 (white)
to n = 10 (orange)). Deborah had them make “trains” (a
sequence of rods placed end-to-end).

She told the children that each rod represented a train
car with passenger capacity corresponding to its length,
and the passenger capacity of a train is the sum of those
of its cars. She set the class up as a collective to be called
the “EML Train Company,” a company that specializes in
making trains using only the cars: white, red, light green,
purple, and yellow, each one at most once.

Deborah asked, “What’s the biggest (most passengers)
train you canmake?” “The smallest?” After a small calcula-
tion, they found 15 to be the largest. For the smallest, the
children began to engage in an interesting discussion of
whether there could be an “empty train.” Deborah then
asked if they could make trains with any number of pas-
sengers between 1 and 15. Collectively, they constructed
trains for each number, and in some cases several trains for
some numbers. Incidentally, this activity involved a lot of
practice with basic arithmetic as well as the construction of
a table to record their findings. At this point, the children
felt pretty confident and fluent at train building, and Deb-
orah praised them as being a really smart train company.

She then announced that there was a “customer” who
had heard of their high reputation and wanted to hire
them to build a special train. This excited the children.
In fact, the customer was an adult7 recruited by Deborah,
who appeared before the class and announced, “I’ve heard

7Once the client was Roger Howe.

Figure 7. Children building trains in the EML class.

that you’re a really smart train company. I would like you
to build me a special train that uses each of the five differ-
ent size cars, each one only once. I also want to be able
to break apart the special train to make smaller subtrains.
But I want these smaller trains to be formed of cars that
are next to each other in the special train. And I want to
be able to make such a subtrain for every number of pas-
sengers between 1 (just the white car) to 15 (all five cars).”

After he left, Deborah worked with the children to un-
pack the several complex conditions of the problem. Pairs
of children constructed various trains to see if they worked.
For each train, they had 15 numbers to check, but they
soon recognized that 1, 2, 3, 4, 5 (single cars) and 15 (all
cars), come for “free,” for any train. So, they only had to
worry about 6, 7, 8, 9, 10, 11, 12, 13, 14. The children
tested these, starting up from 6. For each train, they were
able to find, after significant effort, that some numbers
could not be made. This work stretched over a couple of
days amidst other mathematical work. There was a risk of
the children becoming discouraged, especially when the
customer visited and asked, “When do you think you’ll
have my train?”

While this is a finite problem, therefore, in principle an-
swered by examining all cases, it is a BIG problem: There
are 5! = 120 possible trains, and each train requires testing
for nine different passenger sizes (6–14 passengers). After
some intense work by the group, Deborah contributed a
clue. She simulated publicly a phone call from an assistant
of the customer, suggesting that it might be important to
begin by trying to make trains that would work for the big
numbers, such as 13 or 14, instead of just always begin-
ning from the lower end, at 6, 7, etc. She asked whether
the children wanted to try this. After further exploration
and effort, some of the children realized that the only way
to get 14 was to remove 1 (the white car), and that this
would be possible only if white is on the end; otherwise,
its removal would disconnect what’s left. Similar reason-
ing shows that the only way to get 13 is to remove the red

MARCH 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 309



car. And so, the only possible trains must have red and
white on the two ends. Turning the train around, if neces-
sary, one can assume that red is the left end and white the
right end. This is a big step in reducing the scope of the
possible solution space of the problem. These red-white-
ended trains are then determined by the ordering of the
three middle cars: green, purple, and yellow.

Prior to working on the train problem, Deborah had
given the task of finding all three-digit numbers they could
make with the digits 3, 4, and 5 using each one only once.
They found all six possibilities but Deborah pressed them
to show (prove) that there couldn’t be any others. The chil-
dren had produced a range of convincing arguments for
this.

The childrenwere now able to retrieve (transfer) this ear-
lier work to determine the six possible three-car trains us-
ing the green, purple, and yellow cars, each one only once.
Thus, they had reduced the train problem to a manageable
size, examining six (not 120) trains! These reasoning steps
were dramatic, challenging, and transformative. Deborah
had themmake the six possible trains and then formed the
class into six groups, each group to test if its train worked.
Collectively, they reached the conclusion that none of the
six trains worked tomeet the customer’s order and the con-
straints of the problem. The problem was impossible to
solve!

Mathematicians might judge this to be a mathematical
success. But this predicament left some of the children still
uncertain. They had failed to make the customer’s train
and, given past experience, they worried that they were
failures. They were disappointed; maybe they were not as
smart as the customer had expected. “Will he be mad?”
they asked. Deborah assured them that they had done
very important and validmathematical work. One student
wondered, “Do you think that someone else might be able
to make the customer’s train?” After extended discussion,
they began to realize what they had accomplished: No one,
no matter how “smart,” could make the train. In fact, they
had done very smart work on this challenging problem.

The customer came to “receive” his train. Deborah dis-
cussedwith the class how theymight respond. They would
have to show not only that they could not make his train,
but also that it was impossible. And they would show this
mathematically. Deborah formed the class into groups to
prepare their presentations of parts of the proof and expla-
nations of the various stages of the complex argument.

Before the customer’s arrival, Deborah asked the chil-
dren what they would do if he said, “Well, I know some
pretty smart mathematicians, and maybe I’ll ask them to
make my train.” One of the girls responded confidently,
“You’d be wasting your time and money.”

Figure 8. The children’s work “published” on wall posters.

7. The Elementary Math Lab (EML)
The Park City Mathematics Institute (PCMI), sponsored
by the Institute for Advanced Study, has a “vertically in-
tegrated” structure, in that it assembles several dynamic
programs each summer in a common physical environ-
ment: one for active mathematics research development
involving both graduate students and leading world ex-
perts; one for undergraduates and undergraduate faculty;
one for mathematical enrichment of high school teachers;
etc. In 2004, Herb Clemens, then PCMI director, invited
Deborah to contribute an elementary education compo-
nent to this mathematically rich and intense environment.

This was the birth of what has become the EML, which
moved to the University of Michigan in 2007 and is now
under the sponsorship there of TeachingWorks. The above
discussion of the “Train Problem” is based on EML data.
Resonant with her early work with Lampert, Deborah con-
ceived the EML to be a “theater of public teaching” as well
as a laboratory in which teaching was a domain of empir-
ical study and experimentation.

In the EML, Deborah teaches a diverse class of about
30 rising fifth graders for two weeks, with an ambitious
curriculum that combines foundational topics with high-
level mathematical thinking and reasoning. The teaching
is directly observed and studied by teachers and educators
who come from around the country. The days begin early,
when Deborah shares with the observers the lesson plan
for the day’s (2+ hours) class. She answers questions and
invites feedback, including suggested modifications. Then
the class is (silently) observed, followed by inspection of
the children’s notebooks, and then a debriefing with Deb-
orah. This highly organized and multiply purposed struc-
ture has some features in common with Japanese Lesson
Study, but it is much more complex. All of this activity is
professionally recorded and documented. The afternoons
offer several professional development options for the ob-
servers. The children are given some tutoring sessions by
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STEM undergraduates, focused on puzzle solving or other
topics, followed by some art-related activity. Beginning in
2019, Deborah was joined by coteacher Darrius Robinson
and the two of them have developed a team-teaching ap-
proach in working in this special program.

The EML is yet another manifestation of Deborah’s
essence as a teacher. But it is also an expression both of her
institutional creativity and of her continuing commitment
to making teaching accessible to primary observation and
study.

8. Epilogue
Deborah Loewenberg Ball is an educator—a teacher, a
teacher of teachers, and, in particular, a teacher of math-
ematics. And she is a well-recognized and honored leader,
scholar, and practitioner in each of these domains. How-
ever, her profile differs from those of other women fea-
tured in the Notices of the American Mathematical Society.

Mathematicians are frequently critical of school math-
ematics education in this country, being offended by the
perceived distortion of mathematical ideas in various cur-
ricula and instruction. And they generally give little at-
tention to mathematics education research. But they do
not hesitate to voice strong opinions about what teach-
ers should know and understand to teach mathematics.
This typically consists of chosen extractions from the dis-
ciplinary canon. These views often find a home in policy
and curricular documents.

Deborah made mathematical knowledge for teaching a
rigorous research question, grounded in a close empirical
study of the work of teaching. The work of her research
group on MKT made this into what some have called an
area of applied mathematics—that is to say, a complex do-
main of human practice that makes substantial specialized
use of mathematics. It revealed novel kinds of mathemat-
ical knowing, thinking, and doing that are essential for
teaching mathematics, yet had not previously been clearly
identified or measured.

Somethingmathematiciansmost appreciate about Deb-
orah is her respect for the integrity of the disciplinary
knowledge in whatever domain she teaches, mathematics
in particular. Although she has followed a different path
in and around mathematics, she reflects a mathematical
sensibility and depth of mathematical understanding of
all that she teaches, as well as an artistry in pedagogical
design that elicits critical thinking and a deep engagement
with learning. And she does this with children historically
and pervasively marginalized and oppressed in our society.

Finally, I think it is important to say that Deborah is
deeply spiritual. A faithfully practicing Jew, she has also
joined many of her students of other faith traditions in
their religious celebrations. At her core, she considers

teaching itself to be a spiritual calling, a challenging prac-
tice of cultivating human fulfillment.

Hyman Bass

Credits

Opening image and Figures 1–3 are courtesy of Deborah
Loewenberg Ball.

Figure 4 is courtesy of American Educational Research Associ-
ation.

Figures 5, 7, and 8 are courtesy of TeachingWorks.
Figure 6 is courtesy of Hyman Bass.
Photo of Hyman Bass is courtesy of Hyman Bass.
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Marie-Françoise Roy
Saugata Basu

Figure 1. Marie-Françoise in her office in Rennes (c.1997).

1. Brief Biography
Marie-Françoise Roy was born in Paris in 1950. She was
educated at Lycée Condorcet, École Normale Supérieure
de jeunes filles and Université Paris 7. Married to Michel
Coste since 1971, she has two children Denis and Elise and
two grandsons Pierre and Alexandre. She started teaching
at University of Rennes in 1972 and continued at Univer-
sité Paris Nord where she received her habilitation in 1980,
supervised by Jean Bénabou. In 1981–1983 she spent two
years at Abdou Moumouni University in Niger. In 1985
she became a professor of Mathematics at University of
Rennes, where she is currently an emerita professor.

She was the president of Société Mathématique de
France (SMF) from 2004 to 2007. In 2004, she received
an Irène Joliot-Curie Prize and in 2009 she was made a
Chevalier of the French Legion of Honour.

2. Mathematical Works
2.1. Background. The major part of Marie-Françoise’s
work has to do with various aspects of real algebraic ge-
ometry. So to put her work in the proper perspective it is
good to start with a little bit of history. Historically, real
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algebraic geometry can be said to have two origins—both
of which continues to play an important role as evidenced
indeed by the works of Marie-Françoise herself.
Hilbert’s 17th problem: Artin’s theorem. The origin of real
algebraic geometry can be arguably traced back to Artin’s
solution to Hilbert’s 17th problem (in the famous list
of 23 problems presented by Hilbert in the first Inter-
national Congress of Mathematicians in Paris, in 1900
[12]). Hilbert’s 17th problem concerns polynomials in
ℝ[𝑋1, … , 𝑋𝑛] which take nonnegative values at each point
in ℝ𝑛. Obviously any polynomial which is a sum of
squares of polynomials has this property. But what about
the converse? It is an easy exercise to verify that the con-
verse is also true for polynomials in one variable, i.e., ev-
ery nonnegative polynomial in ℝ[𝑋] is a sum of at most
two squares (hint. use the “two squares” identity namely,
(𝑎2+𝑏2)(𝑐2+𝑑2) = (𝑎𝑐−𝑏𝑑)2+(𝑎𝑑+𝑏𝑐)2, and the fact that
every polynomial inℝ[𝑋] factors into linear and quadratic
factors, where each quadratic factor is a sum of squares).
It is also easy to check that any nonnegative polynomial
of degree 2 in 𝑛 variables is a sum of squares of at most
𝑛 polynomials of degree one (hint. use Sylvester’s inertia
law). Hilbert also observed that the converse holds in one
other case (degree 4 polynomials in two variables) but fails
to hold in every other case. He asked nevertheless whether
every nonnegative real polynomial is a sum of squares of
rational functions. Artin [1] resolved this question in his
seminal paper by proving Hilbert’s statement. In the pro-
cess he introduced the notion of a real closed field.

A real closed field R is an ordered field in which every
positive element is a square and which satisfies the inter-
mediate value property for polynomials (i.e., for each poly-
nomial 𝑃 ∈ R[𝑋] and 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏, 𝑃(𝑎)𝑃(𝑏) < 0
implies that there exists 𝑐 ∈ Rwith 𝑎 < 𝑐 < 𝑏 and 𝑃(𝑐) = 0).
The field of real numbers, ℝ, as well as well its subfield of
real algebraic numbers are familiar examples of real closed
fields. These fields satisfy the Archimedean property, but
there exist non-Archimedean real closed fields such as the
field R⟨⟨𝜀⟩⟩ of Puiseux series in 𝜀 with coefficients in a real
closed field R. Real closed fields admit a unique ordering
(compatible with the field operations), and in this unique
order the element 𝜀 ∈ R⟨⟨𝜀⟩⟩ is positive but smaller than
every positive element of R (𝜀 is often referred to as an
infinitesimal). The fields of such Puiseux series in one or
more “infinitesimals” play an important role in algorith-
mic real algebraic geometry and they will be mentioned
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Figure 2. The discriminant hypersurface of the real quartic
polynomial in one variable.

several times later in the article. In the rest of this article R
will always denote a real closed field.
First order logic: Tarski’s theorem. A second root of the sub-
ject originates in logic and the work of Tarski [22] who
proved that the first order theory of the reals admits quan-
tifier elimination and is decidable.

One usually meets an easy example of this theorem in
middle school. The existentially quantified formula

(∃𝑋)𝑋2 + 2𝑏𝑋 + 𝑐 = 0

is equivalent modulo the first-order theory of the reals to
the quantifier-free formula

𝑏2 − 𝑐 ≥ 0 (1)

(we refrain from defining precisely what we mean by a for-
mula but just say that a formula is built out of atoms of the
form 𝑃 = 0, 𝑃 > 0 where 𝑃 is a polynomial, logical connec-
tives ∨, ∧, ¬, and existential and universal quantifiers).

While the above example of quantifier elimination may
indicate that quantifier elimination in the theory of the
reals is a simple problem, this is misleading as one realizes
if one tries to eliminate the existential quantifier from the
formula

(∃𝑋)𝑋4 + 𝑎𝑋2 + 𝑏𝑋 + 𝑐 = 0. (2)

The real hypersurface inℝ3 (coordinatized by 𝑎, 𝑏, 𝑐) de-
fined by the discriminant of the quartic polynomial 𝑋4 +
𝑎𝑋2 + 𝑏𝑋 + 𝑐 is shown in Figure 2. The number of real
zeros (counted with multiplicities) can be 0, 2, or 4. The
different connected components of the complement of the
discriminant hypersurface in ℝ3 correspond to real quar-
tics with simple roots and having 0, 2, or 4 real roots, and
these are labelled accordingly in Figure 2. A quantifier-free
formula equivalent to (2) should describe the union of the
closures of the connected components labelled by 2 and 4.

Such a formula is considerably more complicated than the
formula (1).1

Tarski-Seidenberg transfer principle. One important logical
consequence of Tarski’s theorem is that if 𝜙 is a sentence
(i.e., a formula without free variables) whose atoms are
polynomial inequalities with coefficients in a real closed
field R, then 𝜙 is true in the structure R if and only if it
is true over any real closed extension R′ ⊃ R. This is usu-
ally referred to as the Tarski-Seidenberg transfer principle. As
a special case we obtain that if a polynomial inequality
𝑃 < 0 where 𝑃 ∈ R[𝑋1, … , 𝑋𝑛] has a solution in R′𝑛 (i.e.,
the sentence ∃𝑋1⋯∃𝑋𝑛 𝑃(𝑋1, … , 𝑋𝑛) < 0 is true over R′),
where R′ is any real closed extension of R, then it already
has a solution in R𝑛.
Complexity: Of algorithms and certificates. Tarski’s proof of
quantifier elimination in the theory of the reals is construc-
tive and is based on (a parametrized version of a general-
ization of) Sturm’s theorem for counting real roots of a
polynomial.2 The complexity of this procedure and the
size of the quantifier-free formula that is output cannot be
bounded by any fixed tower of exponents as a function of
the size of the input formula (measured by the number of
atomic formulas and the maximum degree of the polyno-
mials appearing in them). However, because of its many
applications in different areas of mathematics as well as in
computer science, the question of understanding the true
complexity of quantifier elimination has been considered
a very important problem in real algebraic geometry—a
topic on which Marie-Françoise has made significant con-
tributions which we will discuss later.

There is a corresponding facet to Artin’s proof as well.
Artin’s original proof used a delicate specialization argu-
ment (now referred to as the Artin-Lang homomorphism
theorem [1], see also [3, Theorem4.1.2]). AbrahamRobin-
son [19, Chapter 6, Section 5] simplified Artin’s proof by
replacing the use of the Artin-Lang homomorphism the-
orem by an argument using the Tarski-Seidenberg transfer
principle making Artin’s proof quite simple to explain. We
first sketch this simplified proof below.

If 𝑃 ∈ R[𝑋1, … , 𝑋𝑛] is not a sum of squares in the field
R(𝑋1, … , 𝑋𝑛), then the field R(𝑋1, … , 𝑋𝑛) admits an order-
ing ≺ (via Zorn’s lemma) extending the order in R, in
which the evaluation of 𝑃 at (𝑋1, … , 𝑋𝑛) ∈ R(𝑋1, … , 𝑋𝑛)𝑛
is negative (with respect to the order ≺). The Tarski-
Seidenberg transfer principle applied to the real closure of
the ordered field (R(𝑋1, … , 𝑋𝑛), ≺) (i.e., the smallest real
closed field containing (R(𝑋1, … , 𝑋𝑛), ≺) as an ordered sub-
field), now implies there already exists (𝑥1, … , 𝑥𝑛) ∈ R𝑛
such that 𝑃(𝑥1, … , 𝑥𝑛) < 0.

1See Example 2.6.3 in [2] for such a description.
2A modern account of Tarski’s proof appears in [2, Chapter 2].
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It is quite clear from the highly abbreviated sketch of
(the simplified version of) Artin’s proof given above that
it is nonconstructive. Given a nonnegative polynomial 𝑃
the proof gives no indication of how to write it as a sum of
squares of rational functions. Indeed Artin mentions this
in his paper [1, page 110].

Dagegen sind unsere Beweise indirekt und liefern
keine explizite Vorschrift für die Zerfallung. Man
darf aber wohl erwarten, daß sich die Beweise nach
dieser Richtung hin vervollständigen lassen. . . 3

One should mention here that Hilbert also asked
whether the coefficients appearing in the rational func-
tions could be chosen to belong to the field generated by
the coefficients of the given polynomial [12] and Artin’s
proof being nonconstructive does not answer this ques-
tion. However, using model theoretic arguments Robin-
son [20, Theorem 5.1] proved this stronger version. More-
over, Robinson also proved [20, Theorem 8.2] the exis-
tence of a uniform bound on the degrees of the rational
functions in Hilbert’s 17th problem as a function of the
degree and the number of variables in the given nonnega-
tive polynomial. But this proof uses the compactness theo-
rem from first-order logic, and thus is nonconstructive. In
particular, it does not produce any explicit bound.

To find a constructive proof of Artin’s theorem is thus
a very natural question by itself. Kreisel provided such
a proof (see [8]), with primitive recursive degree bounds.
Finding better bounds for Hilbert’s 17th problem has
taken on added significance in recent times in view of de-
velopments in computer science (around sums-of-squares
proof systems [11]) and mathematical optimization (semi-
definite programming and what is now known as the
Lasserre hierarchy [13]). These applications make it impor-
tant to obtain explicit degree bounds on the polynomials
appearing in the sum of squares decomposition. We will
discuss Marie-Françoise’s contribution to this topic later in
the article.
Real étale topos and the real spectrum. The theorems of Artin
and Tarski belong to the first half of the twentieth century.
The subject of algebraic geometry underwent a revolution-
ary transformation in the second half of the twentieth cen-
tury with the ideas introduced by Grothendieck (namely,
that of schemes and Grothendieck topologies on them). It
is in this milieu in Paris that Marie-Françoise started her re-
search career. To describe her work one needs to describe
some background.

Sites, sheaves and topos. The fundamental notion of
Grothendieck topology or sites was introduced into algebraic
geometry by Grothendieck in the sixties. A site on a

3This roughly translates “In contrast our proofs are indirect and provide no ex-
plicit instructions for the decomposition. One may however expect that the proof
can be completed in this direction.”

category 𝐂 is a generalization of the notion of topology on
the category sets—where the role of open covers is replaced
by collections of morphisms (sieves) satisfying certain ax-
ioms. Every topological space gives rise to a site but not
vice versa. Moreover, the classical definition of sheaves on
topological spaces can be extended to sites.

Another notion introduced by Grothendieck that plays
an extremely important role is the notion of schemes.
Given a finitely generated 𝑘-algebra 𝐴 (for some field 𝑘),
we denote by Spec𝐴 the set of prime ideals of 𝐴. The set
Spec𝐴 is topologized by choosing as a basis of open sets
the subsets of the form

𝐷𝑎 = {𝔭 ∈ Spec𝐴 ∣ 𝑎 ∉ 𝔭}, 𝑎 ∈ 𝐴. (3)

The corresponding site is referred to as the Zariski site and
schemes of the form Spec𝐴 are called affine schemes. Gen-
eral schemes are built out of affine schemes by an alge-
braically defined glueing process.

A topos is a category satisfying certain axioms. A proto-
typical example is the category of sets, but the examples
which are more relevant to algebraic geometry are the cat-
egory of sheaves (of sets) on a topological space or the cat-
egory of sets with a group action and more generally the
category of sheaves on a site.

Topos and logic. Toposes carry an internal logic (which
is intuitionistic) which makes it possible to interpret logi-
cal formulas in an arbitrary topos. This makes it possible
to define models of so called geometric axioms (involving
only conjunctions, disjunctions and existential quantifiers,
without negations and universal quantifiers) in arbitrary
toposes. A typical example of such axioms is the defini-
tion of a ring (commutative and with a unit element) or
of a local ring which is a ring where for every element 𝑎,
either 𝑎 or 1+𝑎 is invertible. Thus, one obtains the notion
of a ring object in a topos. A classical ring is a ring object
in the topos of sets, while the ring object in the topos of
sheaves on a topological space is just a sheaf of rings.

Definition of spectrum. Considering objects in arbitrary
topos satisfying geometric axioms proves to be very useful
in solving certain universal problems which do not admit
solutions if restricted to the topos of sets only. Consider
for any ring 𝐴 the problem of finding a homomorphism 𝑓
from𝐴 to a local ring 𝐿(𝐴) such that for all such homomor-
phisms 𝑔 ∶ 𝐴 → 𝐵, there is a unique local homomorphism
ℎ ∶ 𝐿(𝐴) → 𝐵 such that 𝑔 = ℎ ∘ 𝑓 (a homomorphism be-
tween local rings is local if it reflects invertibility). The so-
lution to this problem unfortunately does not always exist
since a ring can have several prime ideals. But now sup-
pose we are allowed to change the topos while looking
for the universal homomorphism to a local ring (object)
now in a possibly larger topos. So now the universal prob-
lem becomes given a pair (𝐴, 𝐸) where 𝐴 is a ring object
in a topos 𝐸 find a pair ( ̃𝐴, ̃𝐸) and a geometric morphism
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𝑓 ∶ 𝐸 → ̃𝐸 such that ̃𝐴 = 𝑓(𝐴), and ̃𝐴 is a local ring object
in ̃𝐸, and the morphism 𝑓 has the obvious universal prop-
erty. The pair ( ̃𝐴, ̃𝐸) is then called the spectrum of the pair
(𝐴, 𝐸).

Zariski and étale spectra. In the case where 𝐸 = 𝐒𝐞𝐭𝐬,
so that 𝐴 is a classical ring, the spectrum of 𝐴 happens
to be the topos of sheaves on the Zariski topological space
Spec𝐴 (i.e., ̃𝐸 = Sh(Spec𝐴))), and the local ring object in ̃𝐸
is the structure sheaf ̃𝐴 defined on Spec𝐴—namely, which
associates to each open set𝐷𝑓 the ring𝐴𝑓 (𝐴 localized at 𝑓).
In this way one recovers the notion of the Zariski spectrum
of a ring.

Another example of a spectrum is obtained by consid-
ering the axioms of local rings with a separably closed
residue field. One obtains this way the topos of sheaves
on étale sites on schemes as the étale spectrum of a local
ring object. Étale sheaves and their cohomology play a cen-
tral role in algebraic geometry. They were introduced by
Grothendieck as a means to prove the Weil conjectures in
number theory. One important point to note is that the
étale site on a scheme is in general finer than the Zariski
site (i.e., the site induced by the Zariski topology) and that
the topos of sheaves on étale sites is not spatial (i.e., not
equivalent to the topos of sheaves on some topological
space). Indeed the étale spectrum of a field 𝑘 of charac-
teristic zero is the algebraic closure 𝑘 of 𝑘 equipped with
the action of the Galois group Gal(𝑘/𝑘).

Real spectrum. It is now very natural (from the point
of view of real algebraic geometry) to consider the spec-
trum associated with the axioms of local rings with a real
closed residue field (as opposed to being separably closed).
The corresponding spectrum (now called the real spectrum)
was investigated by Marie-Françoise and Michel Coste (in
“Topologies for real algebraic geometry,” appearing in the
book Topos theoretic methods in geometry, Various Publica-
tions Series, Vol 30, 37-100, 1979).

Unlike the étale spectrum, the real spectrum turns out
to be spatial (see Theorem 2 below)—and the underlying
topological space is often referred to as the real spectrum.
The role of the structure sheaf is now played by a sheaf
of functions on this topological space, namely the sheaf
of Nash functions. Since this marks the starting point of
Marie-Françoise’s work in real algebraic geometry, we start
our description of her work by describing her work on the
real spectrum.
2.2. The topos of real étale sheaves. LetR be a real closed
field and 𝑉(R) denote the R-points of a variety 𝑉 defined
by a finite set of polynomial equations 𝑃1 = ⋯ = 𝑃𝑚 = 0,
where 𝑃𝑖 ∈ R[𝑋1, … , 𝑋𝑛].
Definition (Real étale site). [6] The real étale site on 𝑉
is the site generated by collections of étale morphisms
(𝑊 𝑖 → 𝑊 ⊂ 𝑉)𝑖∈𝐼 such that (𝑊 𝑖(R) → 𝑊(R))𝑖∈𝐼 is a sur-
jective family.

There is another site defined on 𝑉 (called the semi-
algebraic topology [6]) whose coverings are generated by
covers of 𝑉(R) by open semi-algebraic subsets of 𝑉(R) (i.e.,
finite unions of subsets of 𝑉(R) defined by finite conjunc-
tions of strict inequalities). Note that despite its name it
is not really a classical topology—but only a Grothendieck
topology.

With Michel Coste, Marie-Françoise proved the follow-
ing two fundamental results clarifying the main properties
of real étale sheaves thereby answering questions raised
previously in the works of Brumfiel, Knebusch, and Delfs.

Theorem 1 ([6]). The topos of sheaves with respect to the real
étale site on 𝑉 is isomorphic to the topos of sheaves with respect
to the semi-algebraic topology site.

Theorem 2. The topos of sheaves with respect to the real étale
site on 𝑉 (and so using Theorem 1 also the topos of sheaves
with respect to the semi-algebraic topology on 𝑉) is spatial (i.e.,
isomorphic to the topos of sheaves on a topological space).

(Note that the underlying topological space of the spa-
tial topos in Theorem 2 is the real spectrum of the ring
R[𝑉] described below.)

The algebraic definition of the real spectrum is as fol-
lows. Let 𝐴 be a ring (commutative with a unit element).
A subset 𝛼 ⊂ 𝐴 is called a prime cone if it satisfies the prop-
erties:

(i) 𝛼 + 𝛼 ⊂ 𝛼,
(ii) 𝛼 ⋅ 𝛼 ⊂ 𝛼,
(iii) 𝐴2 ⊂ 𝛼,
(iv) −1 ∉ 𝛼, and
(v) 𝑎 ⋅ 𝑏 ∈ 𝛼⟹ 𝑎 ∈ 𝛼 or − 𝑏 ∈ 𝛼.
Definition (Real spectrum). The real spectrum, Sper𝐴, of
𝐴 is the set of prime cones of 𝐴. The set Sper𝐴 is topolo-
gized by choosing as a basis of open sets the subsets

𝐷𝑎 = {𝔭 ∈ Sper𝐴 ∣ 𝑎 ∉ 𝔭}, 𝑎 ∈ 𝐴 (4)

(compare with equation (3)).

Example. The real spectrum of a ring can be identified
with its set of preorderings. The real spectrum of a field
is the set of its total orderings. The real spectrum of the
ring 𝐴 = R[𝑋] can be described as follows

Sper𝐴 = {±∞} ∪ {𝛼, 𝛼−, 𝛼+ ∣ 𝛼 ∈ R},
where 𝛼 (resp. 𝛼−, 𝛼+) is the cone of elements of 𝐴 which
are nonnegative at 𝛼 (resp. immediately to the left of 𝛼,
immediately to the right of 𝛼), and −∞ (resp. +∞) is the
set of elements of 𝐴 which are positive at negative (resp.
positive) infinity.

The real spectrum Sper𝐴 shares some of thewell-known
properties of Spec𝐴 (for example, it is quasi-compact).

There is a canonical injection of 𝑉(R) into Sper𝐴, and
a bijection between open semi-algebraic subsets of 𝑉(R)
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and the compact open subsets of Sper𝐴. This last bijec-
tion gives a translation between geometric properties of 𝑉
and algebraic properties of𝐴. For example, the local (semi-
algebraic) dimension of 𝑉(R) at a point 𝑥 ∈ 𝑉(R) is equal
to the maximal length of a chain of prime cones terminat-
ing at 𝑥. We refer the reader to the book [3, Chapter 7]
for a detailed study of the real spectrum and its various
applications.

The fact that the topos of sheaves on the real étale site
of a real variety is spatial and isomorphic to the topos
of sheaves on the real spectrum makes the study of these
sheaves easier especially from the point of view of proving
various kinds of comparison theorems between different
cohomology theories on real varieties. This is exploited by
Scheiderer in [21] who amongst other things gave an alter-
native proof of Theorem 2 (avoiding the use of categorical
logic).

Like most other important notions in mathematics the
notion of real spectrum arose independently from several
directions such as in the work of Lou van den Dries in
model theory. It is also interesting to note that one conse-
quence of Theorems 1 and 2 is that abstract topos theory
from which the idea of real spectrum originated perhaps
becomes less relevant in real algebraic geometry—since the
real spectrum and its constructible subsets can be studied
using geometric tools without referring to Grothendieck
topologies etc. Nevertheless, as we shall see next, topos
theory (and intuitionistic logic that goes with it) seems to
have influenced many of Marie-Françoise’s works on top-
ics that are a priori far from logic and topos theory.
2.3. Algorithms in real algebraic geometry. A significant
part of Marie-Françoise’s work has been in the area of al-
gorithms in real algebraic geometry. This switch from
abstract topos theory to more algorithmic aspects of real
algebraic geometry was probably inspired by new devel-
opments in the then-new and extremely active field of
computer algebra in the late eighties. This is exemplified
by the biannual conference MEGA (Effective Methods in
Algebraic Geometry) which started in 1990, with Marie-
Françoise in its initial committee and has continued from
then.

The algorithmic problems addressed in Marie-
Françoise’s work include some of the fundamental algo-
rithmic problems in real algebraic geometry.4 The gamut
of her work in this area extends from the decision prob-
lem and more generally quantifier elimination in the the-
ory of the reals mentioned before, to problems with more
topological flavor (deciding connectivity of semi-algebraic
sets, computing higher Betti numbers and Euler-Poincaré
characteristics, dimension etc.) These algorithmic

4A unified treatment of a major part of this work appears in the book Algo-
rithms in Real Algebraic Geometry [2] (coauthored with Richard Pollack and
the author).

problems arise inmany applications—in discrete and com-
putational geometry, mathematical optimization, theoret-
ical computer science amongst others. Designing better
algorithms for such problems is clearly of wide interest. A
second (perhaps less well-known) aspect is that the math-
ematical results underlying the design of these algorithms
and often their complexity analysis yield quantitative re-
sults in real algebraic geometry. Indeed, the fact that these
two aspects are very intertwined is very explicit in Marie-
Françoise’s work. I mention some examples later.
Symbolic algorithms and their complexity. We first note that
by the word “algorithm” in this section we mean algo-
rithms which are exact, symbolic algorithms. This means
that the algorithms take as input polynomials with coeffi-
cients in some ordered domain D ⊂ R, use only rational
arithmetic and sign determinations on elements of D, and
terminate after a finite number of steps with the correct
output. By “complexity” of such an algorithm we mean
the number of arithmetic operations and sign determina-
tions. IfD = ℤ, then the number of bit-operations is called
the bit-complexity.

Algorithms come with upper bounds on their complex-
ity. These upper bounds are in terms of the size of the
input—and this is measured by the number of polynomi-
als (denoted by 𝑠), an upper bound on the degrees of the
input polynomials (denoted by 𝑑) and the number of vari-
ables 𝑘 (and the bit-lengths of the coefficients of the input
polynomials in case D = ℤ).
Doubly vs. singly exponential. Several important problems
in algorithmic real algebraic geometry can be solved using
a technique called cylindrical algebraic decomposition. Given
any semi-algebraic subset 𝑆 ⊂ R𝑘, a cylindrical algebraic
decomposition of R𝑘 adapted to 𝑆, is a partition of R𝑘 into
“cylindrical cells” (each semi-algebraically homeomorphic
to (0, 1)ℓ, 0 ≤ ℓ ≤ 𝑘), such that for each cell𝐶 of the decom-
position 𝐶 ∩ 𝑆 = 𝐶 or empty. If 𝑆 is closed and bounded
such a cylindrical decomposition can be refined to a semi-
algebraic triangulation of 𝑆. This technique was already
familiar to geometers, in particular Lojasiewicz [14]. This
was made algorithmic by Collins [5] using subresultants of
pairs of polynomials and became a widely known algo-
rithm. However, cylindrical algebraic decomposition is a
big hammer. Having a cylindrical decomposition at hand
allows one to solve all the algorithmic problems listed pre-
viously. However, since computation of a cylindrical de-
composition involves iterated projection in which the de-
grees and the number of polynomials (roughly) square in
each step—the size of a cylindrical decomposition (as well
as complexity of computing it) is necessarily doubly expo-

nential (of the form (𝑠𝑑)2𝑂(𝑘)
).

Critical point method. A major focus of research in algo-
rithmic real algebraic geometry has been in obtaining
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algorithms with singly exponential complexity. Even
though singly exponential complexity might already seem
very expensive from a practical point of view it should be
remembered that each of the problems mentioned previ-
ously is conjecturally very hard from the computational
complexity theory point of view (NP-hard or evenPSPACE-
hard), and that often the output itself has a singly exponen-
tial size in the worst case.

The key is to use more sophisticated ideas inspired by
Morse theory (often called the critical pointmethod), elim-
inating variables by blocks instead of eliminating variables
one at a time. Even though the critical point method has
been used by several researchers (in particular Grigoriev
and Vorobjov), it is fair to say that Marie-Françoise is a pi-
oneer in its application in a wide variety of settings achiev-
ing nearly optimal bounds in many cases.
Thom encoding. The key to the critical point method is to
compute the set of critical points of a function restricted
to certain real algebraic subsets of R𝑘. Using an initial de-
formation depending on one or more infinitesimals one
ensures that the set of critical points is finite. But there
still remains the problem of representing the coordinates
of these points (which are algebraic over the ring gener-
ated by the coefficients of the input polynomials). A very
elegant and also very general way of doing so is by using
Thom’s lemma—which was introduced to the area of sym-
bolic computation by Marie-Françoise in joint work with
Michel Coste (“Thom’s lemma, the coding of real algebraic
numbers and the computation of the topology of semi-
algebraic sets,” Journal of Symbolic Computation, Vol 5, 121–
129, 1988).

One consequence of Thom’s lemma is that each real
root 𝛼 ∈ R of a polynomial 𝑓 ∈ R[𝑇] is characterized by
the signs of the various derivatives of 𝑓 at 𝛼. (So the root
√2 of the polynomial 𝑋2−2 is distinguished from the root
−√2 by the signs of the derivative 2𝑋 at these two roots.)
The tuple

(𝐬𝐢𝐠𝐧(𝑓(𝑖)(𝛼)))1≤𝑖≤deg(𝑓) ∈ {0, 1, −1}deg(𝑓)

is now known as the Thom encoding of the root 𝛼 of 𝑓.
Moreover the sign determination algorithm, computing
the realizable sign conditions on a finite set of polynomi-
als at the roots of 𝑓 (see for example [2]), can be used to
determine the Thom encoding of the roots of 𝑓.

A point in R𝑘 can be described by a 𝑘-tuple of rational
functions

𝑢 = (𝑔1(𝑇)𝑔0(𝑇)
, … , 𝑔𝑘(𝑇)𝑔0(𝑇)

)

evaluated at a real root 𝛼 of another polynomial 𝑓 specified
by its Thom encoding 𝜎. The tuple (𝑓, 𝑔0, … , 𝑔𝑘) ∈ R[𝑇]𝑘+2
and the Thom encoding 𝜎, specifies the point

(𝑔1(𝛼)𝑔0(𝛼)
, … , 𝑔𝑘(𝛼)𝑔0(𝛼)

) .

This method of representing real points, which works over
arbitrary real closed fields (even non-Archimedean ones),
is called real univariate representation in [2], and was in-
troduced and used by Marie-Françoise in a series of pa-
pers. Parametrized versions of the same representations
also play an important role in algorithmic real algebraic
geometry in order to represent semi-algebraic curves (for
example, in algorithms for computing roadmaps of semi-
algebraic sets discussed below).
Sample points algorithm. The first application of the critical
points method is in designing an algorithm that given a
finite set 𝒫 of polynomials in R[𝑋1, … , 𝑋𝑘] as input, com-
putes a finite set of “sample points” guaranteed to intersect
every semi-algebraically connected component of the real-
izations of every realizable sign condition on 𝒫. The coor-
dinates of the points are represented by rational functions
evaluated at a real root of a univariate polynomial—the
real root specified by a Thom encoding. The main idea
is computing these points as critical points of a function
restricted to certain algebraic sets obtained by making in-
finitesimal perturbations of the polynomials in 𝒫, and so
technically they belong to some real closed extension of
R (field of algebraic Puiseux series with coefficients in R).
This algorithm which appears in the paper “On comput-
ing a set of points meeting every cell defined by a family of
polynomials on a variety,” Journal of Complexity, Vol 13, No.
1, 28–37, 1997 (coauthored with Richard Pollack and the
author), and whose complexity is bounded by 𝑠𝑘+1𝑑𝑂(𝑘),
is a crucial ingredient in many subsequent papers. More-
over, the degrees of the (univariate) polynomials appear-
ing in the output are bounded by 𝑂(𝑑)𝑘 (independent of
𝑠).
Quantitative curve selection lemma. A refinement of the de-
gree bound from the last paragraph has recently been ex-
ploited by Marie-Françoise and the author to prove quan-
titative upper bounds for the curve selection lemma in semi-
algebraic geometry (“Quantitative curve selection lemma,”
Mathematische Zeitschrift, Vol 300, No. 3, 2349–2361,
2022). The curve selection lemma is a key result in semi-
algebraic geometry which states the following: for every
semi-algebraic set 𝑆 and 𝑥 ∈ 𝑆 (the closure of 𝑆 in the
Euclidean topology) there exists a semi-algebraic curve
𝜑 ∶ [0, 1) → 𝑆, such that 𝜑(0) = 𝑥, 𝜑((0, 1)) ⊂ 𝑆. A quanti-
tative version of this lemma asks for a bound on the degree
of the Zariski closure of the image of 𝜑 in terms of the pa-
rameters of the formula defining 𝑆.

In what follows it is useful to begin with the following
definition.

Definition. Let 𝒫 ⊂ R[𝑋1, … , 𝑋𝑘]. We will call a quantifier-
free first-order formula (in the theory of the reals) with
atoms 𝑃 = 0, 𝑃 > 0, 𝑃 < 0, 𝑃 ∈ 𝒫 to be a 𝒫-formula and the
set defined by it a 𝒫-semi-algebraic set.
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We denote by R[𝑋1, … , 𝑋𝑘]≤𝑑 the subset of polynomials
in R[𝑋1, … , 𝑋𝑘] with degrees ≤ 𝑑. The following result was
proved by Marie-Françoise and the author.

Theorem 3 (Quantitative curve selection). Let 𝒫 ⊂
R[𝑋1, … , 𝑋𝑘]≤𝑑 be a finite set, 𝑆 a 𝒫-semi-algebraic set, and
𝑥 ∈ 𝑆. Then, there exist 𝑡0 ∈ R, 𝑡0 > 0, a semi-algebraic path
𝜑 ∶ [0, 𝑡0) → R𝑘 with

𝜑(0) = 𝑥, 𝜑((0, 𝑡0)) ⊂ 𝑆,
such that the degree of the Zariski closure of the image of 𝜑 is
bounded by

(𝑂(𝑑))4𝑘+3.

Notice that the bound on the degree of the image of the
curve 𝜑 in the above theorem has no combinatorial part,
i.e., there is no dependence on the cardinality of 𝒫.

The key ingredient in the proof of Theorem 3 is an ac-
curate analysis of the degrees of the polynomials output
in the sample points algorithm mentioned before, along
with the identification of the field of algebraic Puiseux se-
ries with coefficients in R, with germs of semi-algebraic
functions (0, 1) → R. This is a good illustration how accu-
rate complexity analysis of symbolic algorithms can lead
to quantitative mathematical results.
Quantifier elimination algorithm. The critical point method
can be used to eliminate whole blocks of quantifiers at the
same time, leading to improvement in complexity. The fol-
lowing theorem, proved by Marie-Françoise with Richard
Pollack and the author has been applied in many contexts
(“On the combinatorial and algebraic complexity of quan-
tifier elimination,” Journal of the ACM, vol 43, No. 6, 1002–
1045, 1996).

Theorem 4. Let 𝒫 ⊂ R[𝑋[1], … , 𝑋[𝜔], 𝑌]≤𝑑 be a finite set of
𝑠 polynomials, where 𝑋[𝑖] is a block of 𝑘𝑖 variables, and 𝑌 is a
block of ℓ variables. Let

Φ(𝑌) = (𝑄1𝑋[1])⋯ (𝑄𝜔𝑋[𝜔])Ψ(𝑋[1], … , 𝑋[𝜔], 𝑌)
be a quantified-formula, with 𝑄𝑖 ∈ {∃, ∀} and Ψ a quantifier-
free formulas with atoms 𝑃 = 0, 𝑃 > 0, 𝑃 < 0, 𝑃 ∈ 𝒫.

Then there exists a quantifier-free formula

Ψ(𝑌) =
𝐼

⋁
𝑖=1

𝐽𝑖

⋀
𝑗=1

(
𝑁𝑖𝑗

⋁
𝑛=1

𝐬𝐢𝐠𝐧(𝑃𝑖𝑗𝑛(𝑌)) = 𝜎𝑖𝑗𝑛),

where 𝑃𝑖𝑗𝑛(𝑌) are polynomials in the variables 𝑌 , 𝜎𝑖𝑗𝑛 ∈
{0, 1, −1},

𝐼 ≤ 𝑠(𝑘𝜔+1)⋯(𝑘1+1)(ℓ+1)𝑑𝑂(𝑘𝜔)⋯𝑂(𝑘1)𝑂(ℓ),
𝐽𝑖 ≤ 𝑠(𝑘𝜔+1)⋯(𝑘1+1)𝑑𝑂(𝑘𝜔)⋯𝑂(𝑘1),

𝑁 𝑖𝑗 ≤ 𝑑𝑂(𝑘𝜔)⋯𝑂(𝑘1),
equivalent to Φ, and the degrees of the polynomials 𝑃𝑖𝑗𝑘 are
bounded by 𝑑𝑂(𝑘𝜔)⋯𝑂(𝑘1).

The proof of Theorem 4 is effective, in that an algorithm
is described to obtain the quantifier-free formula Ψ given
the formula Φ as input, whose proof of correctness and
complexity analysis yield Theorem 4. The bounds on the
size of the quantifier-free formula Ψ in Theorem 4 and on
the degrees of the polynomials appearing in Ψ, are doubly
exponential in 𝜔 which is the number of alternations in
the blocks of quantifier (this is unavoidable) but is singly
exponential if𝜔 is fixed. The improvement comes from the
critical point method. Several quantifier elimination algo-
rithms with doubly exponential complexity in the number
of blocks exist [10, 18], but Theorem 4 is more precise by
treating differently the number of polynomials and their
degrees.
Combinatorial vs. algebraic complexity. Notice the different
roles played by the “combinatorial” parameter 𝑠 = card(𝒫)
and the “algebraic” parameter 𝑑 (a bound on the degrees
of the polynomials in 𝒫). This separation of the “combi-
natorial part” from the “algebraic part” in the complexity
upper bounds in algorithms aswell as in other quantitative
bounds in real algebraic geometry is an important distin-
guishing feature in many of Marie-Françoise’s papers on
quantitative and algorithmic aspects of real algebraic ge-
ometry. For example, the fact that the degrees of the poly-
nomials in the quantifier-free formulaΨ in Theorem 4 can
be bounded only in terms of the algebraic parameter 𝑑 (in-
dependent of 𝑠) has many applications (for example, it
plays a key role in several results in discrete and compu-
tational geometry).
Algorithmic vs. proof complexity. The critical point method
produces a “better” algorithm than that using cylindri-
cal algebraic decomposition in the sense of algorithmic
complexity—singly exponential as opposed to doubly ex-
ponential. However, the proof of the correctness of this
algorithm is much more complicated since it depends on
connectivity results. Thus, if one is interested in con-
verting an instance of a run of this algorithm into a for-
mal mathematical proof (starting from the axioms of real
closed fields) of the equivalence of the output and the in-
put formula—then an algorithm using the critical point
method is less suitable. In recent work (joint with Daniel
Perrucci) Marie-Françoise has given an algorithm with ele-
mentary recursive (fixed tower of exponents) complexity
algorithm for quantifier-elimination (“Elementary recur-
sive quantifier elimination based on Thom encoding and
sign determination,” Annals of Pure and Applied Logic, Vol
168, No. 8, 1588–1604, 2017). Though from the point
of view of algorithmic complexity this might seem much
worse than the algorithm in Theorem 4, or even than the
cylindrical algebraic decomposition algorithm, it is bet-
ter from the point of view of proof theory, since its proof
of correctness is purely algebraic (and does not require
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arguments involving connectivity which can be quite com-
plicated from the point of view of formal logic).

An algebraic proof of the fundamental theorem of algebra.
This is a natural place to mention the paper “Quantitative
fundamental theorem of algebra,” The Quarterly Journal of
Mathematics, Vol 70, No. 3, 1099–1037, 2019, (with the
same coauthor) which gives a new algebraic proof of one
of the oldest theorems of algebra—namely, the fundamen-
tal theorem of algebra which states that the field R[𝑖] is
algebraically closed (assuming that R is real closed). The
proof is based on a previous proof the same theorem by
Michael Eisermann [9] which uses an algebraic definition
of the winding number. The important new property of
the proof in the paper under discussion is that in order to
prove that every polynomial in R[𝑖][𝑇] of degree 𝑑 has a
root in R[𝑖], the intermediate value property for polyno-
mials in R[𝑇] is needed only for polynomials of degree at
most 𝑑2, using subresultant polynomials which makes re-
mainder sequences more efficient (subresultants are ubiq-
uitous in Marie-Françoise’s work). The classical proof due
to Laplace that one meets in many textbooks of abstract
algebra requires the use of the intermediate value property
for real polynomials of exponential degree.
Roadmaps and connectivity. There is another class of algo-
rithmic problems in real algebraic geometry that goes be-
yond the logical realm—namely, computing topological
invariants of semi-algebraic sets. While initially motivated
by problems of motion planning in robotics in the pio-
neering works of Jack Schwartz and Micha Sharir as well
as John Canny, it has developed into a very active area
of research in which Marie-Françoise has left an indeli-
ble mark. One of the first problems to be investigated
in this area was the problem of counting the number
of (semi-algebraically) connected components of a given
semi-algebraic set. An important construction—namely,
a semi-algebraic subset of a given semi-algebraic set of
dimension at most one (also called a roadmap) was in-
troduced by Canny in [4] to solve this problem within a
singly exponential complexity bound. Once a roadmap
of a semi-algebraic set has been computed, the problem
of counting the number of connected components simpli-
fies to a combinatorial problem of counting the number
of connected components of a graph for which efficient
algorithms are known. The history of the development of
algorithms for computing roadmaps is quite long with sev-
eral key contributions along the way (including contribu-
tions due to Marie-Françoise as well as Canny, Gournay,
Grigoriev, Heintz, Pollack, Risler, Solerno, and Vorobjov
amongst others.

We mention here two fundamental contributions due
to Marie-Françoise. In the paper “Computing roadmaps
of semi-algebraic sets on a variety,” Journal of the Amer-
ican Mathematical Society, Vol 13, No. 1, 55–82, 2000,

Marie-Françoise (with Richard Pollack and the author)
gave a deterministic algorithm for computing the roadmap
of a semi-algebraic set contained in a variety of dimension
𝑘′ whose complexity is bounded by 𝑠𝑘′+1𝑑𝑂(𝑘2).

The underlying geometric idea behind algorithms for
computing roadmaps has stayed the same over the years.
This is roughly as follows. Suppose the goal is to compute
the roadmap of a closed and bounded algebraic hypersur-
face 𝑉 ⊂ R𝑘. One first computes descriptions of two semi-
algebraic subsets 𝑉0, 𝑉1 ⊂ 𝑉 , where 𝑉1 = 𝜋−1(𝑀) ∩ 𝑉 ,
where 𝜋 ∶ R𝑘 → Rℓ is a linear projection map and
𝑀 ⊂ Rℓ is a certain well-chosen finite subset, and 𝑉0

is a certain polar subvariety of 𝑉 of dimension ℓ. Then,
dim(𝑉0) = ℓ, and dim𝑉1 = 𝑘 − ℓ − 1. One then proves
that 𝑉0 ∪ 𝑉1 has a good connectivity property with re-
spect to 𝑉—namely, that the intersection of 𝑉0 ∪ 𝑉1 with
each semi-algebraically connected component of 𝑉 is non-
empty and semi-algebraically connected. The algorithm
then makes recursive calls on 𝑉0 and 𝑉1 taking advantage
of the fact that the dimensions of 𝑉0, 𝑉1 are strictly smaller
than dim𝑉 .

The algorithm mentioned above (and in fact in all prior
algorithms for computing roadmaps) used ℓ = 1 in the
definition of 𝑉0 and 𝑉1, and in this case the quadratic
dependence on 𝑘 in the exponent of the complexity is
unavoidable (there are too many recursive calls). For a
decade afterwards, this remained the algorithm with the
best complexity bound for the problem and it was thought
that the quadratic dependence on 𝑘 was unavoidable. In
a series of two papers (“A baby step–giant step roadmap
algorithm for general algebraic sets,” Foundations of Com-
putational Mathematics, Vol 14, No. 6, 1117–1172, 2014,
with Mohab Safey-el-Din, Éric Schost, and the author, and
“Divide and conquer roadmap for algebraic sets,” Discrete
& Computational Geometry, Vol 52, No. 2, 278–343, 2014,
with the author), Marie-Françoise improved the exponent
(in the case of algebraic sets) to 𝑂(𝑘3/2) and then to �̃�(𝑘)
(suppressing poly-log factors). The latter is the best ex-
ponent currently known for the complexity of computing
roadmaps at the moment. The mathematical results that
make the advances in the above mentioned papers possi-
ble are new connectivity results similar to a result proved
in an earlier paper by Safey-el-Din and Schost. The distin-
guishing feature of the new connectivity results as opposed
to that in the prior work of Safey-el-Din and Schost is that
no assumptions (such as genericity) are needed on 𝑉 .

In another direction, it is natural to ask about the com-
plexity of computing the higher Betti numbers of semi-
algebraic sets (the number of connected components be-
ing the zeroth Betti number). Another contribution of
Marie-Françoise (with Richard Pollack and the author) is
the first singly exponential complexity algorithm for com-
puting the first Betti number (“Computing the first Betti
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number of a semi-algebraic set,” Foundations of Computa-
tional Mathematics, Vol 8, No. 1, 97–136, 2008). The key
new ingredient is an algorithm with a singly exponential
complexity for computing covers of semi-algebraic sets by
closed contractible semi-algebraic subsets. This construc-
tionwhich is also based on the roadmap algorithm is a fun-
damental ingredient for more recent works on computing
higher Betti numbers of semi-algebraic sets.
2.4. Quantitative real algebraic geometry. Real algebraic
geometry has important connections with the field of dis-
crete geometry which has blossomed in recent years—
partly because of the injection of algebraic methods into
incidence combinatorics due to Larry Guth and Nets Katz.
Marie-Françoise was an early pioneer. It is in this work
that she started her long collaboration with Richard Pol-
lack which led to many of the works mentioned above (I
was fortunate to be a part of some of them). A basic in-
gredient from real algebraic geometry is in proving upper
bounds on the number of combinatorially distinct geomet-
ric configurations of various kinds—for example, the max-
imum number of order types that can be realized by 𝑛 dis-
tinct points inℝ𝑘 (the order type of a set 𝑆 of 𝑛 points inℝ𝑘

is an element of {0, 1, −1}(
𝑆

𝑘+1), recording the orientation of
each (𝑘 + 1)-tuple of points of 𝑆). Questions of this type
often reduce to bounding the number of realized sign con-
ditions of certain finite sets of real polynomials restricted
to some real variety. Such an upper bound follows from a
bound on the number of connected components (the ze-
roth Betti number) of the realizations of every realizable
sign condition of the set of polynomials.

The problemof proving upper bounds on the Betti num-
bers of real varieties has a long history. An upper bound
on the sumof the Betti numbers of a real variety𝑉 ⊂ R𝑘 de-
fined by polynomials of degrees bounded by 𝑑 was proved
by Petrovskiı̆ and Oleı̆nik and later rediscovered by Milnor
and Thom. They proved:

Theorem.
∑
𝑖
𝑏𝑖(𝑉) ≤ 𝑑(2𝑑 − 1)𝑘−1.

An asymptotically tight upper bound on the number
of connected components (the zeroth Betti number) of
the realizations of all realizable sign conditions for finite
sets of polynomials in R[𝑋1, … , 𝑋𝑘]≤𝑑 was proved by Marie-
Françoise in a joint paper with Richard Pollack in (“On the
number of cells defined by a set of polynomials,” Comptes
Rendus de l’Académie des Sciences. Série I. Mathématique, Vol
316, No. 6, 573–577, 1993) and extended to sign con-
ditions restricted to varieties in (“On the number of cells
defined by a family of polynomials on a variety,” Mathe-
matika, Vol 43, No. 1, 1201–26, 1996, with Richard Pol-
lack and the author). It is in these papers that the for-
mal techniques of introducing infinitesimals, extending

the given real closed fields to the field of algebraic Puiseux
series in certain infinitesimals, and considering neighbor-
hoods of various algebraic sets using different infinitesi-
mals, were introduced, and these have proved to be the
standard techniques in quantitative study of real algebraic
geometry. A culmination of this line of work is the follow-
ing theorem due to Marie-Françoise (with Richard Pollack
and the author) which gives a bound on the sum of the
Betti numbers (in any fixed dimension not just 0) of the
realizations of all realizable sign conditions of a finite set
of polynomials of bounded degree restricted to a variety
(“On the Betti numbers of sign conditions,” Proceedings of
the American Mathematical Society, Vol 133, No. 4, 965–
974, 2005). An extra topological ingredient needed in
this semi-algebraic situation (compared to the Petrovskiı̆-
Oleı̆nik upper bound) is certain inequalities coming from
the Mayer-Vietoris exact sequence.

Theorem 5. The sum of the 𝑖-th Betti numbers of the realiza-
tions of all realizable sign conditions of a set of 𝑠 polynomials
in R[𝑋1, … , 𝑋𝑘]≤𝑑 restricted to a variety 𝑉 ⊂ R𝑘 of dimension
≤ 𝑘′ defined by polynomials of degree at 𝑑 is bounded by:

∑
1≤𝑗≤𝑘′−𝑖

(𝑠𝑗)4
𝑗𝑑(2𝑑 − 1)𝑘−1.

This theorem recovers prior bounds on the number of
connected components of sign conditions by substituting
𝑖 by 0.

It is to be noted that the techniques introduced in the
paper mentioned above have had an impact beyond real
algebraic geometry. They are crucial ingredients in quanti-
tative results on Betti numbers inmore general structures—
such as in o-minimal geometry and even in the theory of
algebraically closed valued fields of arbitrary characteris-
tics.
2.5. Constructive Positivstellensatz.
The language of “certificates” and analogy with Hilbert’s Null-
stellensatz. One suggestive way of viewing Artin’s theorem
is that it produces an algebraic certificate for the nonnegativ-
ity of a real polynomial 𝑃 ∈ ℝ[𝑋1, … , 𝑋𝑛] (or equivalently
the unrealizability of the formula 𝑃 < 0). A generalization
of this theorem which produces an algebraic certificate for
the unrealizability of more general formulas of the form

⋀
𝑖∈𝐼
(𝑃𝑖 ≠ 0) ∧⋀

𝑗∈𝐽
(𝑄𝑗 ≥ 0) ∧ ⋀

𝑘∈𝐾
(𝑅𝑘 = 0) (5)

was proved by Krivine and independently by Stengle. The
following formulation is due to Stengle.

Theorem. The formula in equation (5) is unrealizable in R𝑛
if and only if there exists 𝑃 belonging to the monoid generated
by the polynomials 𝑃2𝑖 , 𝑄 belonging to the nonnegative cone
generated by the polynomials 𝑄𝑗, and 𝑅 belonging to the ideal
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generated by the polynomials 𝑅𝑘, such that

𝑃 + 𝑄 + 𝑅 = 0. (6)

The equality (6) is called an algebraic certificate of the
unrealizability of the formula in (5).

This is known as the Positivstellensatz in analogy with the
case of algebraically closed fields where, as is well known,
Hilbert’s Nullstellensatz produces such an algebraic cer-
tificate for the unrealizability of polynomial equations—
namely, the emptiness of an algebraic set defined by poly-
nomial equations 𝑃1 = ⋯ = 𝑃𝑠 = 0 in C𝑛 where C is an
algebraically closed field, can always be certified by poly-
nomials 𝑄1, … , 𝑄𝑠 satisfying

1 = 𝑃1𝑄1 +⋯𝑃𝑠𝑄𝑠. (7)

Moreover, due to the work of Brownawell, Kollár, and
Jelonek, very tight (singly exponential) upper bounds are
knownon themaximumdegrees of the polynomials neces-
sary in such a certificate in terms of the maximum degrees
of the polynomials 𝑃𝑖. The following theorem proved by
Marie-Françoise, in joint work with Henri Lombardi and
Daniel Perrucci [16] provides the first elementary recursive
upper bound on the algebraic certificate in Hilbert’s seven-
teenth problem.

Theorem 6. Let 𝑃 ⊂ R[𝑋1, … , 𝑋𝑘]≤𝑑 be a nonnegative poly-
nomial. Then 𝑃 can be written as a sum of squares of rational
functions, and the degrees of the numerators and denominators
of these rational functions are bounded by

222
𝑑4𝑘

.
A similar bound (tower of five exponents) is also proved

for the algebraic certificate for the Positivstellensatz in the
same paper [16, Theorem 1.3.2].

We explain below some of the ideas that go into the
proof of Theorem 6.
Constructive proofs of Postivstellensatz. In joint work with
Henri Lombardi and Michel Coste [7], Marie-Francoise in-
troduced a very general method for producing construc-
tive proofs of theorems that guarantee the existence of
algebraic certificates (for example, Nullstellensatz for al-
gebraically closed fields, Positivstellensatz for real closed
fields, and even a Positivstellensatz for algebraically closed
valued fields).

We restrict to the case of real closed fields in the follow-
ing.

One starts with an algorithm for quantifier elimination
in the theory of the reals. Such an algorithm with input
the formula in (5) preceded by a block of existential quan-
tifiers will produce the output ‘FALSE’ if and only if the
semi-algebraic set defined by the formula in [16] is empty.
The steps taken by the algorithm can be thought of as a
tree with branchings depending on the signs of certain el-
ements of R computed by the algorithm.

This tree can be converted into a formal mathematical
“proof” having a special shape (referred to as a dynami-
cal proof in [7]). (It is interesting to mention here that
the dynamical theories and proofs have very close connec-
tions with Grothendieck toposes as explained in [7, Sec-
tion 1.1].)

As an illustration, at a certain step of the proof one
might want to infer the conclusion 𝑃(𝑢) > 0 ∨ 𝑃(𝑢) < 0
from the hypothesis 𝑃(𝑢) ≠ 0 (where 𝑢 is a tuple of inde-
terminates and 𝑃 ∈ R[𝑢]). More generally, such an infer-
ence will be usually needed in a “context” where the signs
of some other polynomials in 𝑣 = (𝑢, 𝑢′) are fixed.

A key notion defined first in a paper by Lombardi [15]
is weak inference and more generally weak existence.

Definition (Weak existence, weak inference). We follow
the same notation introduced above. A weak existence

(∃𝑡0)ℱ(𝑢, 𝑡0) ⊢ (∃𝑡1)ℱ1(𝑢, 𝑡1) ∨⋯ ∨ (∃𝑡𝑚)ℱ𝑚(𝑢, 𝑡𝑚)
is a construction which produces, given sign condition
ℋ(𝑢, 𝑢′) = (ℋ≠0,ℋ≥0,ℋ=0) and algebraic certificates for
the unrealizability of ℱ 𝑖 ∧ℋ, 𝑖 = 1, … ,𝑚 (these are called
initial incompatibilities in [16]), an algebraic certificate for
the unrealizability of ℱ ∧ ℋ (called the final incompatibil-
ity).

A weak inference is defined similarly but without the
existential quantifiers.

Since the final incompatibility is given by an explicit
construction taking as input the initial incompatibilities,
the degrees of the polynomials in the final incompatibil-
ity can be bounded explicitly in terms of the degrees of the
initial incompatibilities.

Going back to the preceding illustrative example, the
weak inference version says the following. We consider
a context given by sign conditions ℋ = (ℋ≠0,ℋ≥0,ℋ≥0)
and start from the two initial incompatibilities,

𝑃1 + 𝑄1 + 𝑅1 = 0,

𝑃2 + 𝑄2 + 𝑅2 = 0,
where 𝑃1, 𝑃2 belong to the monoid generated by the poly-
nomials𝐻≠0∪{𝑃2}, 𝑄1 is in the cone generated by𝐻≠0∪{𝑃}
(resp. 𝑄2 is in the cone generated by𝐻≥0∪{−𝑃} and 𝑅1, 𝑅2
are in the ideal generated by 𝐻=0.

The final incompatibility is constructed as follows: mul-
tiply both sides of

𝑃1 = −𝑄1 − 𝑅1,

𝑃2 = −𝑄2 − 𝑅2,
to obtain

𝑃1𝑃2 = −𝑄3 − 𝑅3,
where 𝑃1𝑃2 belongs to themonoid generated by the polyno-
mials 𝐻≠0 ∪ {𝑃2}, 𝑄3 is in the cone generated by 𝐻≥0 and
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𝑅3 is in the ideal generated by 𝐻=0. Thus, we obtain the
final incompatibility

𝑃1𝑃2 + 𝑄3 + 𝑅3 = 0.

The construction described above is quite simple and
the bounds on the degrees easy to obtain.

Here is a more complicated weak inference that is one
of the many (!) key steps in the proof of Theorem 6.

Weak inference version of the intermediate value theorem.

Theorem 7. [16, Theorem 3.1.3] Let 𝑃 = ∑0≤ℎ≤𝑝 𝐶ℎ ⋅ 𝑦ℎ ∈
R[𝑢][𝑦]. Then,

∃(𝑡1, 𝑡2)[𝐶𝑝 ≠ 0 ∧ 𝑃(𝑡1)𝑃(𝑡2) ≤ 0] ⊢ ∃𝑡𝑃(𝑡 = 0).

The degree of the monoid part of the final incompatibility is
bounded by a function which is doubly exponential in the degree
𝑝 of 𝑃 in 𝑦 (see [16] for a much more precise statement).

The proof of Theorem 7 (including the estimate on the
degree) is not straightforward and is based an inductive
argument on the degree of 𝑃, and is an adaptation of the
proof by Artin [1] that if a field is real (i.e., in which −1 is
not a sum of squares), then its extension by an irreducible
polynomial of odd degree is also real.

In summary, the idea behind the proof of Theorem 6
is the following. Start from a quantifier elimination algo-
rithm applied to the given sign condition (with empty re-
alization). Convert the steps of the algorithm into a proof
each of whose steps are logical deductions of a certain type.
Prove weak inference/existence versions of these steps and
make a careful accounting of how the degrees are growing
in each step. As one can imagine this is a formidable task
and includes as substeps giving new constructive proofs of
very classical theorems—like the Laplace’s algebraic proof
of the fundamental theorem of algebra, Hermite’s theo-
rem for counting real roots using signatures of quadratic
forms, the intermediate value theorem amongst others—
all the time keeping track of the degrees appearing in the
algebraic certificates.
2.6. Works not covered. I hope that in this article I have
been able to give a snapshot of Marie-Françoise’s work and
some of the beautiful mathematics behind them. Unfortu-
nately, because of its breadth and large volume, as well as
constraints on the length of this article, it was not possible
to discuss many very important aspects of her work. In par-
ticular, just tomention a few, I have not discussed her work
with Diatta, Diatta, Rouillier, and Sagraloff on efficient al-
gorithms for computing topology of curves, with Aviva
Szpirglas on Sylvester double sums, with Dima Pasech-
nik and the author on the topology of semi-algebraic sets
defined by “partly” quadratic polynomials, with Fatima
Boudaoud and Fabrizio Caruso on certificates of positiv-
ity using the Bernstein basis, with Thomas Lickteig on

Figure 3. Louis Mahé, Marie-Françoise Roy and Michel Coste
in Rennes, 2011.

Sylvester-Habicht sequences and fast Cauchy index com-
putation, and with Nicolai Vorobjov on complexification
and degree of semi-algebraic sets.
2.7. Impact. While the topic of real algebraic geometry is
now firmly rooted as a subdiscipline of mathematics wor-
thy of study—it was certainly not the case when Marie-
Françoise began her career. Indeed it is fair to say that
the book Géométrie algébrique réelle (with Jacek Bochnak
and Michel Coste) [3] published in 1987, and the once-a-
decade series of conferences in Rennes (1981, 1991, 2001,
and 2011) with published proceedings played a major role
in establishing the topic as an important area of research
in mathematics (one with many connections to both pure
and applied aspects of mathematics).

Within the community of real algebraic geometry (as I
hope it is clear from this article) Marie-Françoise has been
involved in a very wide spectrum of research—from the
very abstract, to constructive and computational. She has
had an unusually large number of collaborators some of
whom are from outside the area of real algebraic geom-
etry. I think what made this possible is Marie-Françoise’s
rather rare ability to grasp and communicate key ideas very
lucidly—even to mathematicians not versed in real alge-
bra. This led to building bridges between different areas—
such as between real algebraic geometry and discrete and
computational geometry as well as to the area of symbolic
computation. Indeed it was such a collaboration (with my
Phd advisor Richard Pollack) that brought me into con-
tact with her for which I am grateful. From her I learned
that one does not really understand a proof (even one’s
own) unless one is able to “see” it and the vital importance
of proper notation in writing and communicating mathe-
matics. Many ideas that have been mentioned above (use
of infinitesimals in algorithms, dynamical proofs, sub-
resultants etc.) existed prior to Marie-Françoise’s work.
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However, it is Marie-Françoise (in collaboration with var-
ious coauthors) who clarified and sharpened these ideas
leading to new advances. I would be remiss if I don’t men-
tion one other quality. Some of Marie-Françoise’s projects
have taken a long time to bring to fruition. This is indica-
tive of a particularly obstinate trait in her character—of not
giving up even when the technical obstacles to carrying
through a particular program might seem impossible to
overcome. In this she is a role model for all young mathe-
maticians.

Over her career Marie-Françoise has mentored many
mathematicians from many parts of the world (including
the author) and she (along with Michel Coste and Louis
Mahé) made Rennes a leading center of research in real
algebraic geometry with a constant stream of visitors and
weekly seminars.

3. Women in Mathematics
Marie-Françoise has been very active in promoting the
cause of women in mathematics in various national and
international forums. Marie-Françoise was one of the
founders of European Women in Mathematics (EWM),
and was the convenor of EWM between 2009 and 2013. In
1987 she cofounded the French organization for women
in mathematics, Femmes et Mathématiques, and became
the organization’s first president and was one of the found-
ing members of the African Women in Mathematics Asso-
ciation (founded in 2013). She was the first chair of the
IMU Committee for Women in Mathematics (CWM) be-
tween 2015 and 2022 and led the “Gender gap in science”5

project (funded by the International Science Council [ISC]
in cooperation with IUPAC). A book6 as well as a booklet7

containing the summary of the results of the project and a
full list of its recommendations in several languages have
been published.

4. Work in Africa and Niger
Marie-Françoise spent two years of her professional career
(1981–1983) at Abdou Moumouni University in Niger.
She has continued to be very deeply involved inmathemat-
ical and social projects in Africa and in particular in Niger.
She was the scientific officer for Sub-Saharan Africa in Cen-
tre International de Mathématiques Pures et Appliquées,
CIMPA] (2007–2013) and is the president of Associa-
tion d’Echanges Culturels Cesson Dankassari (Tarbiyya-
Tatali), an organization working to support the sustain-
able development of the commune of Dankassari in Niger
through the solidarity of the French commune Cesson-
Sévigné where she lives. Her book [17] (coauthored with
Nicole Moulin, Boubé Namaiwa, and Bori Zamo) is a

5https://gender-gap-in-science.org
6https://zenodo.org/record/3882609
7https://gender-gap-in-science.org/promotional-materials

sociopolitical work describing the history of a village
called Lougou in Niger and of its queen Saraouniya, its
encounter with colonialism and its aftermath.
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[17] Nicole Moulin, Boubé Namaiwa, Marie-Françoise Roy,
and Bori Zamo, Lougou et saraouniya, 2ème édition, Coedi-
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The Contributions of
Chuu-Lian Terng to Geometry

Karen Uhlenbeck
1. Introduction

Chuu-Lian Terng is a ge-
ometer who has made im-
portant contributions to
both submanifold geome-
try and integrable systems.
My collaboration with her
over many years has been
rewarding and profitable.
This article is an attempt
to share my appreciation of
her work with a wide audi-
ence. I am indebted to her
for decades of profitable
collaboration, a warm per-
sonal relationship and help
with writing this article.

The article is incomplete,
as space constraints do not allow me to discuss all of her
research. I chose to emphasize personal details and her
work on integrable systems. Many schools of mathemat-
ics contributed to the development of integrable systems
and I cannot include them all. The outline given in Section
6 is as I have come to see the subject. This is close, but not
identical to Terng’s view, and will differ from other views.
I hope to give a window opening onto her work, not to
provide a definitive treatise. The ideas belong tomany peo-
ple and errors are mine. The reader will surely join me in
thanking the referees for helpful comments and important
corrections.

2. Background and Education
Chuu-Lian Terng was born in 1949 in Hualian, Taiwan.
Her familymoved to Taipei when she was three. Her father
was in the army under Chiang Kai-shek and had moved
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from mainland China to Taiwan when the Communists
under Mao took over China in 1948. She was the eldest,
with three younger brothers, and her family was very poor.
She was warned that she had to do well in school, lest she
end up working as a maid.

Chuu-Lian was a good student, and graduated the
Taipei First Girls’ High School. Her comment: “Mathe-
matics was easy. I liked it.” When it came time to go to
college, she was automatically admitted to the National
Taiwan University on the basis of her grades. This was not
free, unlike the Normal University, but graduates of the
Normal University were expected to teach for ten years in
middle and high school after graduation. Her sights were
set higher. So she tutored middle school and high school
students for ten hours a week to earn tuition, books and
money to give her family. And she of course lived at home.

Chuu-Lian’s class had 8 women and 24 men. At first it
was a big shock for the women to study for the first time
with men. In the boys school many students had already
studied calculus and read English mathematics books on
their own. English was not Chuu-Lian’s strong suit. (More
about that later!) Her recollection is that the first year
there were two math courses: calculus and “What is Math-
ematics” from Courant and Robbins. However, the stu-
dents got together, ran a seminar and studied extra mate-
rial. There was a lot of homework, and the exams were
hard. She recalls that in her senior year she just missed
passing an algebra course with a 55 when 60 was passing.
Only one student had a higher grade. “The atmosphere
was good. The students worked together and presented
material, teaching themselves. I remember when I once
got the highest grades in my freshmen year, and the men
called me ‘brother Terng.’” She graduated at the top of her
class.

At that time there were no PhD programs in Taiwan.
The top students routinely went to the United States for
graduate study and most of them did get PhD’s. They of-
ten went to the top graduate schools and did well there.
But Chuu-Lian was faced with two problems. The first was
her lack of proficiency in English. It was her worst subject
and she hated it. All the Taiwanese students had to take
the TOEFL exams, and almost all graduate schools in the
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US required at least a score of 550. Chuu-Lian’s score was
520. She found three schools that only required 500, ap-
plied and was accepted into all three. She elected to go to
Brandeis.

The second problem was that her family had no money
and she had been giving them most of her tutoring earn-
ings. So she delayed for a year, working as a TA and taking
a few more courses. This time she kept her earnings for
her plane fare and a nest egg until settled at Brandeis. She
again sent money home during her graduate student years.

“I loved my courses at Brandeis. I also found out how
good my undergraduate training had been.” She still
speaks with enthusiasm of Ed Brown teaching topology,
Maurice Auslander who gave lot of homework and no lec-
tures and Dick Palais’s course on pseudo-differential op-
erators on the circle. And she remembers what many of
us discovered: that we loved complex variables, but that
the charm does not necessarily carry over to several com-
plex variables. Her subjects were geometry and topology.
No PDE and bad memories of a course in harmonic anal-
ysis. At the end of the first year she started working with
Dick Palais. Her first readings were his book on the Atiyah-
Singer index theorem and Spivak’s Differential Topology vol-
ume I. Her thesis was on the classifications of natural vector
bundles and natural differential operators.

3. Early Career
Terng’s first postdoctoral position was at the University of
California at Berkeley, where she went to study differential
geometry with S. S. Chern. When she went to ask him for a
problem, his reply was “I don’t give problems. Go to sem-
inars, library, talk to people and find your own problems.”
Then Chern became interested in solitons and Bäcklund
transformations.
3.1. The sine Gordon equation and Bäcklund transfor-
mations. The sine Gordon equation is the equation for
𝜙 ∶ ℝ2 → ℝ,

𝜙ᵆ𝑣 = sin(𝜙).

We easily see that a trivial solution is given by 𝜙 = 0. We
use the notation that subscripts denote partial derivatives.

Theorem 3.1.1. If 𝜙 is a solution of the sine-Gordon equation
and

{
𝜉ᵆ = 𝜙ᵆ + 2𝑎 sin 𝜉+𝜙

2
,

𝜉𝑣 = 𝜙𝑣 + 2𝑎−1 sin 𝜉−𝜙
2
,

for any constant 𝑎, then 𝜉 is also a solution of the sine Gordon
equation.

In fact, we see that the two equations for 𝜉 are compati-
ble only when 𝜙 solves the sine Gordon equation. Just as

a test, if 𝜙 = 0 is the trivial solution, then, we get

{
𝜉ᵆ = 2𝑎 sin 𝜉

2
,

𝜉𝑣 = 2𝑎−1 sin 𝜉
2
.

Changing variables to 𝑡 = 𝑎(𝑢 + 𝑣) and 𝑠 = 1𝑎−1(𝑢 − 𝑣)
gives equations 𝜉𝑠 = 0 and 𝜉𝑡 = 2 sin(𝜉/2), yielding a one-
parameter family of solutions. The process can be iterated,
giving a chain of solutions known as solitons. After two
steps there are relations between solutions known as per-
mutability formulas. We have found a chain of special so-
lutions to the partial differential equation by solving sys-
tems of ordinary differential equations. This is the purpose
of Bäcklund transformations.

The three classical “integrable systems” with Bäcklund
transformations, scattering and inverse scattering theory,
tau functions and Virasoro actions are:

(i) sine Gordon equation (SGE)

𝜙ᵆ𝑣 = sin(𝜙),
(ii) nonlinear Schrödinger equation (NLS)

𝑢𝑡 = 2𝑖(𝑢𝑠𝑠 + |𝑢|2𝑢),
(iii) Korteweg-de Vries equation (KdV)

𝑢𝑡 = 𝑢𝑠𝑠𝑠 − (𝑢3)𝑠.
These three equations have similar properties but very

different origins. The sine Gordon equation arose in 1862
in the investigation by Edmund Bour into constant Gauss-
ian curvature −1 surfaces in ℝ3. The angle between the
asymptotic lines satisfies the sine Gordon equation. Bäck-
lund discovered the transformations which bear his name
using line congruences. The Korteweg-de Vries equation
dates back to 1895 as a description of shallow water waves.
Themore recent nonlinear Schrödinger equation describes
a plethora of phenomena including the propagation of sig-
nals in fiber optic cables. Terng and I wrote an exposi-
tory article for the Notices describing more of the history
[TU00]. Chern was, of course, interested in the geometry
described by the first of these equations. He wanted to ex-
tend Bäcklund transformations to affine minimal surfaces
in ℝ3. Chuu-Lian read Chern’s notes on affine geometry,
and they obtained results very fast. However, they only ob-
tained a single transformation without a parameter. After
they obtained the results, the senior author said “You write
it up” [CT80]. It is in stories like this that we get hints of
how we might have been better thesis advisors and men-
tors.
3.2. Higher-dimensional versions. Chern then put
Chuu-Lian in touch with Keti Tenenblat, a Turkish-
Brazilian mathematician visiting Chern. The two women
collaborated on the problem, suggested by Chern, of gen-
eralizing the classical Bäcklund transformations to hy-
perbolic 𝑛-dimensional submanifolds in ℝ2𝑛−1. Later
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Ablowitz, Beals and Tenenblat found a Lax pair and did
the scattering and inverse scattering. Chuu-Lian found a
loop algebra given by involutions which have a suitable
splitting. There was a lot of interest in these equations at
the time. I recall driving Chuu-Lian to the University of
Chicago where she had been invited to talk on this work
to the theoretical physics group.
3.3. Chinese women mathematians. Chuu-Lian Terng
was not an isolated Chinese woman mathematician. As
we noted before, students from the National Taiwan Uni-
versity routinely went on to PhD’s in theUnited States. The
year before Chuu-Lian, a number of women whose names
you may recognize graduated: Alice Chang, Fan Chung,
Winnie Li, GloriaWu. The success of this group of Chinese
women mathematicians is not part of a general trend, and
cannot be easily explained. Chuu-Lian did know about
the other four, and discovered only recently that all of
them have similar backgrounds. They all credit their moth-
ers and an excellent education system which was open to
women. She took her teachers’ questionings “Did your fa-
ther help you with this?”, “Did your boyfriend help you
study?” and “You don’t like to look up the answers in the
back of the book?” as praise. As we attempt to diversify
the pool of individuals succeeding in research mathemat-
ics, we might pay attention to what worked here. I recom-
mend a forthcoming article by Allyn Jackson about this
group of Chinese women mathematicians.

4. Midcareer
After her postdoc at Berkeley, Terng moved on to an assis-
tant professorship at Princeton. Princeton had only started
admittingwomen students in 1969, and admission had be-
come gender blind in 1974. Chuu-Lian came to Princeton
in 1978 as the first female assistant professor in the mathe-
matics department. She was one of ten assistant professors
who used their time at Princeton to get as much research
done and move on to a “real” tenure track or tenured po-
sition elsewhere. Inconveniences, such as having an office
on the tenth floor when the only women’s bathroom was
on the third floor, happened all too often in those days.
But in general, it was a matter of being ignored rather than
treated badly.

When I came as a member to the Institute for Advanced
Study for the academic year 1979–1980, we tried to work
together for the first time. I recall that we had offices next
to each other in Building C, and at least once Professor
Langland slammed the door of the office we were working
in. Our husbands have also noted that we are not quiet
when we work together. Perhaps we were expected “to be
seen but not heard”? I had been learning Teichmüller the-
ory and was attending Bill Thurston’s course at the univer-
sity. We learned about hyperbolic three manifolds which
fiber over the circle topologically. No natural geometric

fibration was known. With my background in minimal
surfaces and Chuu-Lian’s command of tools in geometry,
the problem seemed made for us.

Alas, it was not to be. The problem is still unsolved.
When Bill Thurston heard of our project, he suggested that
these manifolds might be fibered by minimal surfaces. We
thought it more likely that there would be a fibration by
constant mean curvature surfaces. In 1979 the problem
was esoteric, but it is now known that every compact hy-
perbolic 3-fold has a cover that topologically fibers over
a circle; these are now essential examples in the study of
hyperbolic 3-folds.

I return to this problem periodically, but Chuu-Lian’s
next project explored polar actions and isoparametric sub-
manifolds. Due to the length limit of this article, we will
refer the readers to a survey article by G. Thorbergsson
[Th] and the book written by Terng and Palais [PT88] on
these topics. This research was carried out during Terng’s
years at Northeastern University. These were not easy years
with heavy teaching load, an unpleasant commute, and
the kind of mistreatment and outright sexism that was all
too common (which none of us enjoy revisiting). On the
good side, she had good interactions with Boston area
mathematicians and has fond memories of weekly joint
seminar with her colleagues in topology, PDE, and geome-
try. She also benefited from lectures on integrable systems
by Mark Adler and Pierre van Moerbeke at Brandeis. She
moved from Northeastern University to University of Cal-
ifornia at Irvine in 2004 and enjoyed very much the differ-
ential geometry group, the graduate students, a house on
campus, and the wonderful climate.

5. Soliton Equations in Geometry
My road into integrable systems was from the oppo-
site direction from Chuu-Lian’s introduction via Chern.
Through one of my PhD students Louis Crane, I learned
about the interest of the physics community in “loop
groups,” and read the papers of Louis Dolan on the sigma
model. I had kept up with Chuu-Lian and her husband,
only partly because I had relatives in the Boston area. Af-
ter I noted that Dolan’s loop group actions were dressing
actions and the classical Bäcklund transformations for sine
Gordon were given by actions of some rational loops, we
started to work together again. This section is intended to
connect examples of integrable equations with equations
familiar to geometers.
5.1. Finite dimensions. In finite dimensions, there is a
definition of completely integrable.

Definition 5.1.1. Let (𝑀, 𝜔) be a symplectic manifold.
The Hamiltonian system given by 𝐻 ∶ 𝑀 → ℝ is

𝑑𝛾
𝑑𝑡 = 𝑋𝐻(𝛾),
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where 𝑋𝐻 is the dual of 𝑑𝐻 with respect to 𝜔, i.e.,
𝜔(𝑋𝐻 , 𝑣) = 𝑑𝛾𝐻(𝑣) for all tangent vector 𝑣.

Definition 5.1.2. 𝐻𝑗 ∶ 𝑀 → 𝑅 is a conservation law for
the Hamiltonian system given by 𝐻 if for every solution 𝛾,
𝑑
𝑑𝑡
𝐻𝑗(𝛾) = 0, or equivalently,

{𝐻,𝐻𝑗} ≔ 𝜔(𝑋𝐻 , 𝑋𝐻𝑗 ) = 𝑑𝐻(𝑋𝐻𝑗 ) = 0.
A Hamiltonian system given by𝐻 on a manifold of dimen-
sion 2𝑚 is completely integrable if there are m conservation
laws𝐻 = 𝐻1, 𝐻2, … , 𝐻𝑚, which are in involution with each
other, i.e., {𝐻𝑗 , 𝐻𝑘} = 0.

If two Hamiltonians are in involution with each other,
their flows commute. This is the picture in finite dimen-
sions. However, in infinite dimensions, the integrable
systems in this article always have an infinite number of
conservation laws whose flows commute. Only in very
rare cases is there a theory which indicates “completeness.”
The example I know involves finding action angle coordi-
nates for a special case of KdV. Nevertheless, we shall see
that the infinite-dimensional theory is much richer than
the finite-dimensional theory.

The symplectic manifolds in this section are the Grass-
manians 𝑁 = 𝐺(𝑘, 𝑛), which are adjoint orbits in the Lie
algebra 𝑢(𝑛) of 𝑈(𝑛),

𝑁 = 𝐺(𝑘,𝑛) = {𝑔−1𝐽𝑔 | 𝐽 = 𝑖
2 diag(I𝑘, − I𝑛−𝑘)}.

Geometric information 5.1.3. For ℎ ∈ 𝑁,

(i) 𝑇ℎ𝑁 = {[𝑎, ℎ] | 𝑎 ∈ 𝑢(𝑛)}.
(ii) ⟨𝑎, 𝑏⟩ = − tr(𝑎𝑏).
(iii) The orthogonal projection 𝑎ℎ of 𝑎 on 𝑇ℎ(𝑁) is

𝑎ℎ = −[ℎ, [ℎ, 𝑎]] = −(ad ℎ)2(𝑎).
(iv) The symplectic form 𝜔 is

𝜔ℎ(𝑎, 𝑏) = tr([ℎ, 𝑎]𝑏).
(v) The associated complex structure in the tangent space

is
𝑖(ℎ)𝑎 = [ℎ, 𝑎].

It is important to know at least one example.

Example 5.1.4. Let 𝑎 ∈ 𝑢(𝑛) and let 𝐻𝑎(ℎ) = tr(𝑎ℎ). Then
the hamiltonian flow for 𝐻𝑎 is

𝑑ℎ
𝑑𝑡 = −[𝑎, ℎ].

Note that if 𝑎, 𝑏 ∈ 𝑢(𝑛) commute, then

{𝐻𝑎, 𝐻𝑏} = 𝑑𝐻𝑎(𝑋𝐻𝑏) = tr(𝑎[ℎ, 𝑏]) = tr(ℎ[𝑏, 𝑎]) = 0.
However, when 𝑛 > 2, [𝑎, 𝑏𝑗] = 0, does not imply that
[𝑏𝑗 , 𝑏𝑘] = 0. So the integrals for the Hamiltonian flow
𝑑ℎ
𝑑𝑡

= −[𝑎, ℎ] are not in involution. In this case, the symme-
tries are Poisson and we can expect to see such symmetries
for equations with target 𝑁 = 𝐺(𝑘,𝑛) with 𝑛 > 2.

5.2. Equations of global analysis. We now switch gears.
Geometers are familiar with the nonlinear elliptic equa-
tion of harmonic maps between Riemannian manifolds
and associated parabolic heat and hyperbolic wave map
equations. However, in the case that the image manifold
is symplectic, we have a geometric nonlinear Schrödinger
(GNLS) equation.

As a general principle, the image negatively curved sym-
metric spaces correspond to defocusing equations and
those with positive curvature correspond to focusing. For-
mally they appear similar, but technically and geometri-
cally they are very different. Terng and I considered the
case of the positively curved symmetric space 𝑁 = 𝐺(𝑘,𝑛)
described above.

We briefly describe the GNLS on ℝ × ℝ𝑛−1 with image
𝐺(𝑘,𝑛). We consider

𝐶𝐽(ℝ𝑛−1, 𝑁) = {ℎ ∶ ℝ𝑛−1 → 𝑁 |ℎ𝑥𝑖 ∈ 𝑆(ℝ𝑛−1, 𝑢(𝑛)},
where 𝑆(ℝ𝑛−1, 𝑢(𝑛)) is the Schwartz space and
lim𝑥→−∞ ℎ(𝑥) = 𝐽. Corresponding to the geometry listed
in 5.1.3, we have the following geometry in 𝐶𝐽(𝑅, 𝑁).
5.2.1. Geometric information in 𝐶𝐽(ℝ𝑛−1, 𝑁). For ℎ ∈
𝐶𝐽(ℝ𝑛−1, 𝑁),
(i) 𝑇ℎ𝐶𝐽(ℝ𝑛−1, 𝑁) = {[ℎ, 𝐴] | 𝐴 ∈ 𝑆(ℝ𝑛−1, 𝑁)}.
(ii) The formal inner product on the tangent space is

⟨𝐴, 𝐵⟩ = −∫
ℝ𝑛−1

tr(𝐴𝐵)(𝑑𝑥)𝑛−1.

(iii) The orthogonal projection𝐴ℎ of𝐴 ∈ 𝑆(ℝ𝑛−1, 𝑢(𝑛)) on
𝑇ℎ𝐶𝐽(ℝ𝑛−1, 𝑁) is

𝐴ℎ = −14(𝑎𝑑(ℎ))
2𝐴.

(iv) The symplectic structure on 𝐶𝐽(ℝ𝑛−1, 𝑁) is

Ω(ℎ)(𝐴, 𝐵) = −∫tr([ℎ, 𝐴]𝐵)(𝑑𝑥𝑛−1).

(v) The associated complex structure in the tangent space
to 𝐶𝐽(ℝ𝑛−1, 𝑁) at ℎ is

𝑖(ℎ)𝐴 = [ℎ, 𝐴].

Theorem 5.2.2. The Hamiltonian flow for 𝐻 = 1
2
⟨𝑑ℎ, 𝑑ℎ⟩ is

the GNLS equation

𝜕ℎ
𝜕𝑡 = [ℎ,△ℎ].

We will explain in Section 6 why this equation is inte-
grable for 𝑛 = 2.
5.3. Ward harmonic maps and space-time monopoles.
The 2- and 1+1-dimensional examples of harmonic maps
and wave maps into SU(𝑛) are examples of equations
which have many of the usual properties of soliton equa-
tions. However, there is a variant of the wave map equa-
tion in 1 + 2 into SU(𝑛) due to Ward which has solitons
and scattering and inverse scattering theories. We refer to
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Ward’s equation as the modified wave map. The wave map
equation for 𝑔 ∶ ℝ × ℝ2 → SU(2) is
𝜕
𝜕𝑡 ((

𝜕
𝜕𝑡𝑔) 𝑔

−1) − 𝜕
𝜕𝑥 ((

𝜕
𝜕𝑥𝑔) 𝑔

−1) − 𝜕
𝜕𝑦 ((

𝜕
𝜕𝑦𝑔) 𝑔

−1) = 0.

Ward’s equation is

𝜕
𝜕𝑡 ((

𝜕
𝜕𝑡𝑔) 𝑔

−1) − 𝜕
𝜕𝑥 ((

𝜕
𝜕𝑥𝑔) 𝑔

−1) − 𝜕
𝜕𝑦 ((

𝜕
𝜕𝑦𝑔) 𝑔

−1)

= [( 𝜕𝜕𝑥𝑔) 𝑔
−1, ( 𝜕𝜕𝑡 𝑔) 𝑔

−1] .

The Lax pair for this equation is more easily seen if we
transform using the variables 𝜉 = 1

2
(𝑡+𝑥) and 𝜂 = 1

2
(𝑡−𝑥).

Then the modified wave map equation simplifies to

𝜕
𝜕𝜉 ((

𝜕
𝜕𝜂
𝑔) 𝑔−1) − 𝜕

𝜕𝑦 ((
𝜕
𝜕𝑦𝑔) 𝑔

−1) = 0.

Proposition 5.3.1. There is a Lax pair for the modified wave
map of the form [𝐿(𝜆), ̃𝐿(𝜆)] = 0, where

𝐿(𝜆) = 𝜆 𝜕𝜕𝜉 − ( 𝜕𝜕𝑦 − ( 𝜕𝜕𝑦𝑔) 𝑔
−1) ,

̃𝐿(𝜆) = 𝜆 𝜕𝜕𝑦 − ( 𝜕𝜕𝜂 − ( 𝜕𝜕𝜂𝑔) 𝑔
−1) .

The frame 𝐸𝜆 is useful for constructing a large num-
ber of examples, which are not known for the wave map.
The modified wave map equation can be transferred (via
a gauge transformation similar to the Hasimoto transfor-
mation) to the space-time monopole equation, which is a
reduction of anti-self-dual Yang-Mills with signature (2, 2)
to a monopole equation in ℝ1,2.

Proposition 5.3.2 ([DTU06]). Solutions to the Ward equa-
tion can be identified with special solutions to the space-time
monopole equation in ℝ1,2,

∗𝐷𝐴Φ = 𝐹𝐴.
Here 𝐷𝐴 = 𝑑+𝐴, 𝐹𝐴 = {𝐷𝐴, 𝐷𝐴] is the curvature 2-form, Φ is
the (scalar) Higgs field in 𝑠𝑢(𝑛) and ∗ is the map from 1-forms
to 2-forms induced by the indefinite metric on ℝ1,2.

The analytic properties of the wave map problem
are hard theorems in geometric analysis and it is diffi-
cult to find explicit examples. Description of Euclidean
monopoles are only accurate at large spacings. However
there is both a scattering theory for the monopole equa-
tion and Bäcklund transformations for Ward’s equation
which are gauge equivalent to the Lax pair for the mono-
pole equation. This is due to the existence of Lax pairs
for both variants of the equation which are gauge equiva-
lent. For smooth decaying initial data, the scattering the-
ory shows that solutions exist for all time. Terng’s pa-
pers [DT07] and [DTU06] contain a wealth of information
about these solutions.

6. The Drinfel′d-Sokolov Construction
for the MNLS Hierarchy

In this section, we outline a very general procedure devel-
oped by many mathematicians of different backgrounds
for generating soliton equations and their properties.
There is a long list of contributors to this project, starting
with Zhakarov and Shabat in 1976. In the last and final
section we will come back to Terng’s ideas for classifying
them. Much of the work of Terng is based on a funda-
mental paper of Drinfel′d and Sokolov [DdS84]; hence I
have called the general scheme a Drinfel′d-Sokolov (DS)
construction. The flows are traditionally in the variables
(𝑥 = 𝑡1, 𝑡 = 𝑡2, 𝑡3). However, certain pieces of the struc-
ture can be applied with only part of the structure avail-
able. For example, Bäcklund transformations can be ap-
plied when there is only a single flow if there is a Lax
pair description. In perhaps most examples, the needed
factorizations for scattering theory and Bäcklund transfor-
mations are only local. The matrix nonlinear Schrödinger
equation (MNLS) is a generalization of the scalar NLS, and
our choice is motivated by the fact that the factorizations
are well-understood in this case. Also note that there may
be multiple descriptions of the same flows. The computa-
tions do not need to be done in any fixed order.
6.1. Choice of a triple group. Most flows are based on a
triple loop group (𝒢, 𝒢+, 𝒢−). Here 𝒢± are subgroups of
𝒢 and elements of 𝒢 factor into products in both orders
on an open, dense set. The loop parameter plays the role
of a spectral parameter 𝜆, and the group factoring is done
via Birkhoff factorization. These groups dependent on a
spectral or loop parameter are often called “loop groups,”
especially in the physics literature. There exists an open
dense set Ω of 𝒢 (big cell) such that for 𝑔 ∈ Ω, we can
factor

𝑔 = 𝑔+𝑔− = ℎ−ℎ+, 𝑔+, ℎ+ ∈ 𝒢+, 𝑔−, ℎ− ∈ 𝒢−.

In our example:

𝒢 = {𝑔(𝜆) ∈ GL(𝑛, ℂ) | 𝑔 defined and holomorphic in

{𝜆 ∶ 𝑘 < |𝜆| < ∞}, (𝑔( ̄𝜆))†𝑔(𝜆) = I},
𝒢+ = {𝑔 ∈ 𝒢 | 𝑔 extends holomorphically to ℂ},
𝒢− = {𝑔 ∈ 𝒢 | 𝑔(∞) = I, 𝑔 holomorphic in a

neighborhood of ∞}.

At the Lie algebra level (𝔊, 𝔊+, 𝔊−) we have 𝔊 = 𝔊+ ⊕
𝔊−. We can decompose a Laurent series converging in
{𝜆 ∶ 𝑘 < |𝜆| < ∞} into negative powers of 𝜆 and non-
negative powers of 𝜆. At the Lie group level, this is called
Birkhoff factorization and involves writing a power series
as the products of series that converge in the two regions.
It fails on the group, but is valid on a dense open subsetΩ
of what we call we call “the big cell.”
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6.2. Choice of a vacuum frame. A vacuum frame 𝑉0 ∈
𝐶(ℝ𝑠, 𝒢+) determines the flows. Different flows result
from different choices. For our example

𝑉0 = exp (
𝑛0
∑
𝑗=1

𝑡𝑗𝜆𝑗𝐽) ,

𝐽 = 1
2
diag(±𝑖)with k +’s and 𝑛−𝑘minuses. Here the upper

limit 𝑛0 is arbitrarily large. We never use infinite sums.
6.3. The dependent variable in the flow. Our first step is
completely formal. Choose an arbitrary element 𝑓 ∈ 𝒢−.
Factor

𝑉0𝑓−1 = 𝑀−1𝐸
for 𝑀−1 ∈ 𝒢−, 𝐸 ∈ 𝒢+.

Note that the scattering data 𝑓 does not depend on the
flow variables ⃗𝑡 = (𝑥 = 𝑡1, 𝑡 = 𝑡2, 𝑡3). Since 𝑉0 does,𝑀 and
𝐸 do as well. We call 𝐸 the frame and𝑀 the reduced frame
(also called the Baker function). The frame 𝐸 has positive
powers of 𝜆 and the reduced frame𝑀 has negative powers:

𝜕𝑥𝑀𝑀−1 +𝑀𝜕𝑥𝑉0𝑀−1 = 𝜕𝑥𝐸𝐸−1,
𝜕𝑥𝐸 𝐸−1 + [𝑀𝜕𝑥𝑉0𝑀−1]+ = 𝜆𝐽 + [𝑀−1, 𝐽].

Then 𝑢 = [𝑀−1, 𝐽] (or technically 𝜕𝑥+𝑢) will be our depen-
dent variable in the flow, where 𝑀−1 is the coefficient of
𝜆−1 the power series of 𝑀. Once the theory is sufficiently
developed, 𝜕𝑥 plays the role of the dual of the element
defining a central extension of 𝒢. Note that 𝑢 is in [𝐽, 𝑢(𝑛)]
and the flows generated by this framework are equations
for maps (𝑥 = 𝑡1, 𝑡 = 𝑡2, … , 𝑡ℓ).

If 𝑓 = 𝐼, 𝑢 is identically 0. This is the “vacuum” solu-
tion.
6.4. Lax pairs. Let

𝑄 = 𝑀𝐽𝑀−1 = ∑
𝑗=0

𝜆−𝑗𝑄𝑗 = 𝐽 + 𝜆−1[𝑀−1, 𝐽] + ∑
𝑗>1

𝜆−𝑗𝑄𝑗

( 𝜕
𝜕𝑡ℓ

𝑀)𝑀−1 = [𝑀𝜆ℓ𝐽𝑀−1]−.

The dependent variable for the flow is 𝑢 = 𝑄1 = [𝑀−1, 𝐽].
To get

𝜕
𝜕𝑡ℓ
𝑢, we compare the coefficients of 𝜆−1 to get

𝜕
𝜕𝑡ℓ
𝑀−1 = 𝑄ℓ+1, or

𝜕
𝜕𝑡ℓ

𝑢 = [𝐽, 𝑄ℓ+1] = [𝜕𝑥 + 𝑢,𝑄ℓ],

the ℓ-th flow in the MNLS hierarchy.
It is not necessarily true that the 𝑄𝑗 are determined al-

gebraically, which was first proved by Sattinger for our ex-
ample by using the following two equations.

𝑄2 = 𝐽2 = −14𝐼,
𝜕𝑥𝑄 = [(𝜆𝐽 + 𝑢), 𝑄].

Lemma 6.4.1. The 𝑄𝑗 are polynomials in 𝑢 and its derivatives
in 𝑥 of order up to 𝑗.

The Lax pair formulation is now

𝐿 = 𝜕𝑥 + 𝜆𝐽 + 𝑢,

̃𝐿𝑘 = 𝜕𝑡𝑘 + 𝐽𝜆𝑘 +
𝑘−1
∑
𝑗=0

𝜆𝑗𝑄(𝑘−𝑗)

and [𝐿, 𝐿𝑘] = 0. For ⃗𝑡 = (𝑡1, … , 𝑡𝑛0), we call 𝐸(𝜆, ⃗𝑡) a frame
for the MNLS hierarchy if 𝐸(𝜆, ⃗𝑡) is holomorphic for 𝜆 ∈ ℂ
and 𝐿𝑘𝐸 = 0 or equivalently

𝐸−1𝐸𝑡𝑘 = 𝐽𝜆𝑘 +
𝑘−1
∑
𝑗=0

𝜆𝑗𝑄(𝑘−𝑗)

for all 1 ≤ 𝑘 ≤ 𝑛0. In particular, for 𝜆 = 0, we get [𝜕𝑥 +
𝑢, 𝜕𝑡𝑘 + 𝑄𝑘(𝑢)] = 0, or equivalently, 𝑢 is a solution of the
𝑘-th flow 𝑢𝑡𝑘 = [𝜕𝑥 + 𝑢,𝑄𝑘(𝑢)] if and only if the system
𝑔−1𝑔𝑥 = 𝑢, 𝑔−1𝑔𝑡 = 𝑄𝑘(𝑢) is solvable for 𝑔 ∶ ℝ2 → 𝑈(𝑛).
It also follows that there exists an open subset Ω− of the
negative group 𝒢− such that we can factor

𝑉0(𝜆, ⃗𝑡)𝑓−1(𝜆) = 𝑀−1(𝜆, ⃗𝑡)𝐸(𝜆, ⃗𝑡),
𝑀(⋅, ⃗𝑡) ∈ 𝒢−, 𝐸(⋅, ⃗𝑡) ∈ 𝒢+.

Then
𝑢𝑓 = [𝑀−1, 𝐽]

is a solution of the MNLS hierarchy and 𝐸(𝜆, ⃗𝑡) is the frame
for 𝑢𝑓 with 𝐸(𝜆, 0⃗) = I.

We compute a few terms:

𝑄1(𝑢) = 𝑢 = ( 0 𝑞
−𝑞∗ 0) , 𝑄2(𝑢) = (−𝑖𝑞

∗𝑞 𝑖𝑞𝑥
𝑖𝑞𝑥 𝑖𝑞∗𝑞) ,

𝑄3(𝑢) = (−𝑞𝑞
∗
𝑥 + 𝑞𝑥𝑞∗ −𝑞𝑥𝑥 + 2𝑞𝑞∗𝑞

𝑞∗𝑥𝑥 + 2𝑞∗𝑞𝑞∗ 𝑞∗𝑥𝑞 − 𝑞∗𝑞𝑥
) .

6.5. Bäcklund transformations and dressing actions.
Since factorizations can be carried out on an open dense
subset (the big cell) Ω of 𝒢, dressing actions are locally de-
fined.

Proposition 6.5.1. If 𝐸(𝜆, ⃗𝑡) is a frame of a solution 𝑢( ⃗𝑡) for ⃗𝑡
in a compact domain 𝒪, then there exists an open subset Ω− of
𝒢− of the identity such that for 𝑔 ∈ Ω−, we can factor 𝐸𝑔−1 =
�̃�−1 ̃𝐸 with �̃� ∈ 𝒢− and ̃𝐸 ∈ 𝒢+, and

𝑔♯𝐸 ≔ ̃𝐸 = �̃�𝐸𝑔−1

is the frame for a new solution in 𝒪. In particular, if 𝑢 = 𝑢𝑓
for some 𝑓 ∈ 𝒢−, i.e., 𝐸 = 𝑀𝑉0𝑓−1 = 𝑓♯𝑉0, then 𝑔♯𝐸 is the
frame of 𝑢𝑔𝑓 and 𝑔♯𝐸 = �̃�𝑀𝑉0(𝑔𝑓)−1.

There is a fair amount of analysis needed to understand
more than this in the case of continuous scattering data.
The original results for our example are due to Beals and
Coifman, but the proofs and results vary by example.

When 𝑔 ∈ 𝒢− in the above Proposition is meromorphic
with a simple pole then the factorization 𝐸𝑔−1 = �̃�−1 ̃𝐸
can be written down explicitly, which gives a Bäcklund
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transformations. We identify particularly simple mero-
morphic examples in 𝒢−. For the group we have chosen,
with the reality condition 𝑔(𝜆)†𝑔(𝜆) = I, the examples with
simple poles are

𝑓𝑎,𝜋(𝜆) = 𝜋 + (𝜆 − ̄𝑎
𝜆 − 𝑎)𝜋

⟂.

Here 𝜋 is the Hermitian projection on a subspace, 𝜋⟂ =
I−𝜋 is the projection on the orthogonal subspace, and 𝑎 is
a complex number whose imaginary part is nonzero. Note
that

𝑓−1𝑎,𝜋(𝜆) = 𝜋 + 𝜆 − 𝛼
𝜆 − �̄�𝜋

⟂.
Given a frame 𝐸 = 𝐸(𝜆, 𝑥, 𝑡2), we can find a new 𝑓𝑎,𝜋#𝐸 for
a new solution.

Proposition 6.5.2. Given a simple element 𝑓𝑎,𝜋 and the frame
𝐸 of a solution 𝑢 of the flow, then �̃� = 𝑢 + (𝑎 − ̄𝑎)[𝐽, �̃�] is a
new solution with frame

𝑓𝑎,𝜋#𝐸 = 𝑓𝑎,�̃�( ⃗𝑡)𝐸𝑓−1𝑎,𝜋,

where �̃�(𝑥, 𝑡) is the Hermitian projection onto 𝐸(𝑎, ⃗𝑡)−1(ℑ𝜋).
Proof. Note that the residues of the right-hand side of
𝑓𝛼,𝜋#𝐸 are zero at 𝜆 = 𝛼 and 𝜆 = �̄� if and only if

�̃�( ⃗𝑡 )𝐸(𝑎, ⃗𝑡 )𝜋⟂ = 0,
�̃�( ⃗𝑡 )⟂𝐸( ̄𝑎, ⃗𝑡 )𝜋 = 0.

These are compatible. To see this, apply the complex trans-
pose to the second equation to see that 𝜋𝐸(𝑎, ⃗𝑡)−1�̃�⟂ = 0.
But both equations are equivalent to 𝜋(𝑥, 𝑡) being the pro-
jection on the subspace orthogonal to 𝐸(𝑎, ⃗𝑡)−1(ℑ𝜋). □

The permutability formulas follow easily from the fact
that a product of two such 𝑓’s with poles at 𝑎 and 𝑏 can be
factored with either pole first. This yields a rather compli-
cated identity between applications of two Bäcklund trans-
formations which is known as the permutability formula.
When Bäcklund transformations are generated by an alter-
native argument, these permutability formulae are myste-
rious. Solitons are generated by applying Bäcklund trans-
formations to the vacuum frame 𝑉0 of the trivial zero solu-
tion.
6.6. Symplectic structure and Hamiltonians. We have
generated flows using Lax pairs without mentioning ei-
ther a symplectic structure or Hamiltonians. These are,
however, already embedded in our computations. For
𝑢1, 𝑢2 ∈ 𝑆(ℝ, 𝒫), let

⟨𝑢1, 𝑢2⟩ = −∫
∞

−∞
tr(𝑢1𝑢2)𝑑𝑥.

We start with a basic symplectic structure (more about this
later)

𝜃(𝑢1, 𝑢2) = ⟨[𝐽, 𝑢1], 𝑢2⟩ = −⟨[𝐽, 𝑢2], 𝑢1⟩.

If we compute the gradient ∇𝐻 of a Hamiltonian 𝐻 as

𝑑𝐻(𝛿𝑢) = ⟨∇𝐻(𝑢), 𝛿𝑢⟩,
then the Hamiltonian flow for 𝐻 is

𝑢𝑡 = [𝐽, ∇𝐻].

Proposition 6.6.1 ([Ter97]). The 𝑗-th flow is the Hamilton-
ian flow for

𝐻𝑗(𝑢) = − 1
𝑗 + 1 ∫

∞

−∞
tr(𝑄𝑗+2(𝑢)𝐽)𝑑𝑥.

6.7. Sequences of symplectic structures. Terng tells me
she first noticed this bi-Hamiltonian structure in a very gen-
eral context in Drinfel′d and Sokolov [DdS84]: not only
can we formulate the flows as Hamiltonian flows of a se-
quence of Hamiltonians, we can fix the Hamiltonian and
vary the symplectic structure ([Ter97]).

Recall that our soliton equations have a phase space of
rapidly decaying smooth maps 𝑢 ∈ 𝒮(𝑅, [𝐽, 𝑢(𝑛)]), which
can be identified as a coadjoint orbit. Coadjoint orbits
come equipped with an orbit symplectic form, and the
symplectic form we used in Section 5 was exactly this form.
New symplectic structures are found by finding embed-
dings of the phase space in another coadjoint orbit (cf.
[Ter97]).
6.8. Relation between MNLS and GNLS. It was proved
in [TU06] that given 𝛾 ∶ ℝ → 𝑁 = 𝐺(𝑘,𝑛) there exists 𝑔 ∶
ℝ → 𝑈(𝑛) such that

𝛾 = 𝑔𝐽𝑔−1, 𝑢 ≔ 𝑔−1𝑔𝑥 ∈ [𝐽, 𝑢(𝑛)].
We call such 𝑔 an adjoint frame along 𝛾, and 𝑢 the adjoint cur-
vature defined by 𝑔. Moreover, if 𝑔1 is also an adjoint frame
along 𝛾, then there exists a constant 𝑐 ∈ 𝐾 = 𝑈(𝑘)×𝑈(𝑛−𝑘)
such that 𝑔1(𝑥) = 𝑔(𝑥)𝑐. Hence the adjoint curvature 𝑢1 de-
fined by 𝑔1 is 𝑢1 = 𝑐−1𝑢𝑐.

Given 𝛾 ∶ ℝ → 𝑁 = 𝐺(𝑘,𝑛) and 𝜉 ∶ ℝ → 𝑢(𝑛) such that
𝜉(𝑥) is tangent to 𝑁 at 𝛾(𝑥), we define

∇𝜉 = the orthogonal projection of 𝜉𝑥 onto 𝑇𝛾𝑁
= −ad(𝛾)2(𝜉𝑥).

A direct computation implies that 𝛾𝑥 = 𝑔[𝑢, 𝑎]𝑔−1 and
∇(𝑗)𝛾𝑥 = 𝑔[𝑢(𝑘)𝑥 , 𝑎]𝑔−1. Hence we have

𝑔𝑢(𝑗)𝑥 𝑔−1 = ad(𝛾)(∇𝑗𝛾𝑥).
We have seen that the adjoint curvatures 𝑢1, 𝑢 defined
by adjoint frames 𝑔 and 𝑔1 along 𝛾 are related by 𝑢1 =
𝑐−1𝑢𝑐 for some constant 𝑐 ∈ 𝐾. Hence 𝑔[𝑄𝑗(𝑢), 𝐽]𝑔−1 =
𝑔1[𝑄𝑗(𝑢1), 𝐽]𝑔−11 . This implies that

𝛾𝑡𝑗 = 𝑔[𝑄𝑗(𝑢), 𝐽]𝑔−1 ((∗)𝑗)

defines a flow on 𝐶∞(ℝ,𝑁) (independent to the choice of
adjoint frame) and is the 𝑗-th flow in the GNLS hierarchy.
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Use the formulas for 𝑄𝑗(𝑢) given in Section 6 to see that
the first three flows are

𝛾𝑡1 = 𝛾𝑥,
𝛾𝑡2 = [𝛾, 𝛾𝑥𝑥],
𝛾𝑡3 = −∇2𝛾𝑥 − (𝛾𝑥)3.

Notice that the second flow is the GNLS.

Theorem 6.8.1 ([TU06]). If 𝛾(𝑥, 𝑡) is a solution of ((∗)𝑗),
then there exists 𝑔 ∶ ℝ2 → 𝑈(𝑛) such that 𝑔(⋅, 𝑡) is an adjoint
frame along 𝛾(⋅, 𝑡) such that 𝑢 ≔ 𝑔−1𝑔𝑥 is a solution of the 𝑗-
th flow 𝑢𝑡 = [𝑄𝑗+1(𝑢), 𝐽] in the MNLS hierarchy. Conversely,
given a solution 𝑢(𝑥, 𝑡) of the 𝑗-th flow, let 𝑔 ∶ ℝ2 → 𝑈(𝑛) be
a solution of 𝑔−1𝑔𝑥 = 𝑢 and 𝑔−1𝑔𝑡 = 𝑄𝑗(𝑢). Then 𝛾(𝑥, 𝑡) =
𝑔(𝑥, 𝑡)𝐽𝑔(𝑥, 𝑡)−1 is a solution of ((∗)𝑗). Hence the Hamiltonian
theory of the MNLS can be translated to that of the GNLS.

6.9. A sketch of the construction of 𝜏 functions. Inte-
grable systems (of the type of KdV) appear in conformal
quantum field theory, and 𝜏 functions are the partition
functions. A 𝜏 function is a function associated to a so-
lution 𝑢( ⃗𝑡 ). Terng found a definition due to Wilson which
applies to all the systems under discussion. The second
derivatives of u can be derived from 𝜏; however, she also
discovered that in the general case, the map from 𝑢 → 𝜏 is
not injective. The definition of 𝜏 using second derivatives
of u appears in the physics literature [AvdL03].

The general definition of 𝜏 for a system depends on a
choice of central extension of the Lie group 𝒢, which in
turn depends on a skew symmetric bilinear form 𝑤 on its
Lie algebra 𝔊 which is compatible with the splitting 𝒢 =
𝒢+𝒢−. The choice of the bilinear form for our example is

𝑤(𝐴, 𝐵) = ( 𝜕𝜕𝜆𝐴, 𝐵) = ∑
𝑗
𝑗 tr(𝐴𝑗 , 𝐵−𝑗).

Here both 𝔊± are isotropic subspaces for 𝑤.
The central extension ̂𝒢 is the principal ℂ ⧵ 0 bundle

over ℒ with first Chern class 𝑤. Because 𝒢± are isotropic
subspaces for 𝑤, the central extension is canonically trivial
over 𝒢±, so there are canonical liftings of 𝒢± to ̂𝒢. We use
this to define Wilson’s 𝜇 functional over the big cell Ω in
which factorizations occur: For 𝑐 ∈ Ω, factor 𝑐 = 𝑓+𝑓− =
𝑔−𝑔+ with 𝑓±, 𝑔± ∈ 𝒢±. Then ̃𝑓+ ̃𝑓− and ̃𝑔− and ̃𝑔+ lies in
the same fiber, where ̃𝑓± and ̃𝑔± are natural lifts of 𝑓±, 𝑔±.
Hence they differ by a nonzero complex number.

Definition 6.9.1. For 𝑐 ∈ 𝐶, define 𝜇(𝑐) as the difference
between the canonical lifts given by two factorizations.

Definition 6.9.2 (Wilson). Let 𝐸 = 𝑀𝑉0𝑓−1 represent a
(partial) solution to an integrable system. Then the tau
function defined by 𝑓 ∈ 𝒢− is

𝜏𝑓( ⃗𝑡 ) = 𝜇(𝑉0𝑓−1).

The collective papers of Terng and myself work out
many of the details. For example, we prove in [TU16] (i)
the solution 𝑢𝑓 is determined by the second derivatives of
ln(𝜏𝑓) for the the Gelfand-Dickey n-KdV hierarchy, and (ii)
the second derivatives of ln 𝜏𝑓 determines the solution 𝑢𝑓
up to a conjugation by a constant in 𝑈(𝑘) × 𝑈(𝑛 − 𝑘).
6.10. The Virasoro action. We found in the previous sec-
tion that the 𝜏 function was in fact a function on the scat-
tering data. The same is true for the Virasoro action. Again,
we only give the prototype for the example we are using.

Definition 6.10.1. The Virasoro algebra is the real Lie al-
gebra 𝒱 with generators 𝜉𝑗 and relations

[𝜉𝑗 , 𝜉𝑘] = (𝑘 − 𝑗)𝜉𝑘+𝑗 .
The positive algebra 𝒱+ is the subalgebra generated by 𝑗 ≧
−1.

It is an important fact that the Lie algebra of the confor-
mal group of 𝑆2 is generated by {𝜉−1, 𝜉0, 𝜉1}. It is best to
think of 𝒱+ as generated by the operators

𝜉𝑗 = 𝜆𝑗+1 𝜕𝜕𝜆 , 𝑗 ≥ −1.

Again, we only give the action on our particular choice of
splitting.

Lemma 6.10.2. The formulae for a representation of 𝒱+ on 𝑓
is

𝛿𝑗𝑓(𝜆)𝑓−1(𝜆) = negative powers of (𝜆𝑗𝑓′(𝜆)𝑓−1(𝜆)).
Note that we will be able to compute the induced rep-

resentation on the flow variables from

𝐸 = 𝑀𝑉0𝑓−1,
𝛿𝑗𝐸 = 𝛿𝑗𝑀𝑀−1𝐸 − 𝐸𝛿𝑗𝑓𝑓−1.

Theorem 6.10.3 ([TU16]). The action of the positive half of
the Virasoro algebra on the scattering data 𝑓 induces an action
on the flows. In many cases this can be shown to be via partial
differential operators.

7. Terng’s Contributions
The previous section was an attempt to convey the ideas
and techniques used in investigating integrable systems.
Explaining in detail which piece is due to which mathe-
matician would not make for interesting or enticing read-
ing, although I have attempted to cite the major references.
I have also cited a number of Terng’s publications. Many of
those are joint with me, but anybody familiar with me will
reinforce my assertion that the bulk of the geometry is due
to Chuu-Lian. We cite here some of her most important
results.

Chuu-Lian served as AWM president [Ter22] from
1995–1997 and a co-organizer of the Women and Math
Program at the Institute for Advanced Study in Princeton.
Her influence on mathematics is evident in many ways.
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The observation that the gauge transformation between
the matrix nonlinear Schrödinger equation and the geo-
metric nonlinear Schrödinger equation used by Fadeev-
Tahkajen and Hasimoto is an application of moving
frames and the details surrounding this is due to her, as
is the worked out relationship between the modified wave
map and the space-time monopole equation. In order
to get geometric realization of Drinfel′d-Sokolov KdV-type
systems associated to a noncompact simple Lie group 𝐺,
she constructed curve flows on flat space with the sym-
metry group 𝐺. For example, affine curve flows on ℝ𝑛

with symmetry SL(𝑛, ℝ) are related to the 𝑛-KdV system
([TZ19]).

Terng made many contributions to the scheme of the
DS flow described in the previous section. The details of
applications to the various symmetric spaces are all hers.
But the novel contribution is the extension of the 2 × 2
KdV flow to 𝑛 × 𝑛 KdV flows using the structure of the Lie
group SL(𝑛, ℂ). We describe briefly the 2 × 2 KdV flow.

Here the major change is in the first step, the choice
of the Lie groups. Instead of restricting the flows to the
subgroups in which 𝑔(𝜆)†𝑔(𝜆) = I, we introduce a reality
condition on 𝑔:

𝐺(𝑔, 𝜆) = Φ(𝜆)𝑔(𝜆)Φ(𝜆)−1𝐺(𝑔, 𝜆) = 𝐺(𝑔, −𝜆),
where Φ = diag(1, −1)𝜆 + 𝑒2,1.

Now the flows are generated by the vacuum sequence

𝑉0 = exp (∑
𝑗≥0

𝐽2𝑗+1𝑡𝑗),

where 𝐽 = diag(1, −1)𝜆 + 𝑒1,2.
The extension to sl(𝑛, ℂ) turns out to generate the

Gelfand-Dickey or 𝑛-KdV flows. If we let 𝛼 = 𝑒(2𝜋𝑖/𝑛), we
similarly define a 𝐺(𝑔, 𝜆) with a different choice of Φ, and
require

𝐺(𝑔, 𝜆) = 𝐺(𝑔, 𝛼𝜆).
Now the vacuum sequence will be

𝑉0 = exp ( ∑
𝑗≠0 mod 𝑛

𝐽𝑗𝑡𝑗),

with 𝐽 = diag(1, 𝛼, … , 𝛼𝑛−1)𝜆 +∑𝑛−1
𝑘=1 𝑒(𝑘,𝑘+1).

The definition of Φ is very complicated involving the
roots of sl(𝑛, ℂ). See Theorem 2.1 of [TU11]. However,
one can see from that description that it can be extended
to loop groups constructed from other simple Lie algebras.

Theorem 7.0.1. With the appropriate choice of Φ, the DS
flows correspond to the Gelfand Dickey 𝑛-KdV integrable sys-
tems. In particular, the 𝜏 function and Virasoro actions corre-
spond to the constructions of Segal-Wilson [SW85].

This latter result is most satisfactory. The Segal-Wilson
construction uses pseudo-differential operators on the
line, and does not involve Birkhoff factorization. Note in

these examples involving complicated splittings, the map
from flows to 𝜏 functions is injective, meaning the 𝜏 func-
tions determine the flow. As just commented, with some
work, this construction may generalize to other Lie groups
and root systems.

8. Interesting Questions and Open Problems
The approaches of Terng and her collaborators to inte-
grable systems, when they are rigorous, involve rapidly de-
caying fields on the line (or ℝ2). Any question involving
periodic boundary conditions is intimately tied up with al-
gebraic geometry. The formal construction of the flows is
the same. However, the factorization

𝑉0𝑓−1 = 𝑀−1𝐸

cannot be made global so easily, even in specially chosen
examples. This is not an open problem, but a problem
which is addressed by a separate literature.

As we comment at the end of the previous section, the
Drinfel′d-Sokolov scheme of Section 6 appears to have a
good many abstract applications in geometry and an in-
ternal consistent structure derived from loop groups and
Birkhoff factorization. The problems we discuss now are
less abstract and have more to do with physical applica-
tions. The approach of integrable systems, with rapidly
decaying initial data, has very little overlap with questions
of analytic well-posedness. The goal of well-posedness is
to prove existence and smooth dependence on initial data
of the flows for small times 𝑡𝑗 , 𝑗 > 1 in Sobolev spaces of
minimal regularity and decay, and then to separately in-
vestigate finite time blow-up and the behavior at infinity.
To study well-posedness, it is necessary to choose a suit-
able gauge. An integrable system such as the space-time
monopoles equation can look very different in different
gauges [Czu10], [HY18]. There is also extensive work by
authors such as Deift [Dei19], [DZ02] on numerics for
Riemann Hilbert problems which is less familiar to me.
It should be possible to combine these approaches into
an organized scheme which takes advantages of what I
might call the geometric, the analytic and the algebraic ap-
proaches to integrable systems.

It should not be impossible to approximate other non-
linear equations (i.e., harmonic maps in 1 + 2) by inte-
grable ones (i.e., Ward wave maps) and derive new approx-
imation schemes for certain nonlinear equations using in-
tegrable equations. Much as we study nonlinear equations
using their linearizations. However, I am not myself aware
of any references.

My own favorite problem at the moment is the ques-
tion of integrability for the Gross-Pitaevskii hierarchy,
an infinite hierarchy of coupled linear inhomogeneous
PDE appearing in the derivation of nonlinear Schrödinger
from quantum many-particle systems. In fact, the
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entire hierarchy of flows appears in describing special solu-
tions. Recently Mendelson, Nahmod, Pavlovic and Staffil-
ini [MNPS19] have shown the existence of an infinite num-
ber of conservation laws, but as mentioned in the very be-
ginning of Section 5, this is not equivalent to showing in-
tegrability. And in fact, it is not clear what integrability
is. The key tool in their analysis is the existence of an in-
variant measure (due to Finetti). From the point of view
of the integrable systems in this article, the measure itself
would be the key ingredient to describing the geometric
structure of the GP hierarchy. While the problem has in-
terested many analysts, it cries out for the geometric inter-
pretation present in Terng’s work.

We return to a point addressed in Section 5. What is an
integrable system? Certainly any system of the Drinfel′d-
Sokolov type addressed in Section 6 is integrable. The
modified wave map, monopoles and self-dual Yang-Mills
are all equations with Lax pairs and posses at least some
of the same properties, as do equations in higher dimen-
sions which fail to be “algebraic” in the sense of algebraic
geometry, but which also have special rigidity properties.
Perhaps we should think of integrable as referring to the
circle of ideas presented in this article, rather than having a
precise definition (we mathematicians do love precision).

The final point is a philosophic one. Integrable systems
are very specialized algebraically rigid equations. Why do
they appear in so many subjects of mathematics? The sys-
tems considered by Terng and collaborators can most eas-
ily be described by the geometry connected with finite- or
infinite-dimensional group theory. However, KdV arises
in the study of shallowwater waves, nonlinear Schrödinger
arises in the description of waves in optical fibers and the
equations of 2-dimensional gravity are integrable. Even
more confusing, space-time monopoles and Ward wave
maps are gauge equivalent. How should we regard the sub-
ject?

If we were describing fundamental particles in physics,
we wouldn’t be surprised if they corresponded to equa-
tions determined by the geometry of loop groups. And
certainly there was a short period of time in which this was
a hope. So I am not surprised that integrable systems are
important in conformal field theory. But these are some-
what esoteric equations appearing in completely different
areas of mathematics.

There are two wildly different guesses as to why this
is. Maybe, in some Platonic sense, these equations are all
that is available to our human consciousness. So in mod-
eling phenomena, we mathematicians can only use what
is there. The opposite view would be that these equations
represent fundamental phenomena in the world we are try-
ing to describe. Hence we will use them in many different
applications to describe this same behavior.

The subject of integrable systems and Terng’s work in it
can be appreciated without knowing the answer.
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Catherine Goldstein:
The Question of
Long-Term Histories and
Mathematical Identity
Jenny Boucard and Jemma Lorenat
1. Introduction: Configurations in the History

of Mathematics
“Mathematics is the art of
giving the same name to
different things.” With
this quote from Henri
Poincaré’s The Future of
Mathematics (1908), Cather-
ine Goldstein opened the
plenary conference on the
history of mathematics for
the 2018 International Con-
gress of Mathematicians.1

It underlines two impor-
tant points. First, at the
beginning of the twenti-
eth century, this question
of absorbing mathematical
objects under the same

name—and the same general concept—was central to the
gradual establishment of a theory of structures. Second,
this point of view also played a important part in the
construction of a retrospective history of mathematics, by
looking to the (sometimes very distant) past for traces of
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the objects of current mathematics [Gol19a]. Goldstein is
one of several historians who, particularly since the 1980s,
have been working on a new history of mathematics, inte-
grating developments in the history of science and technol-
ogy while taking serious account of the specific nature of
mathematics. Two interrelated motifs run through Gold-
stein’s research: the identity of mathematics over time and
the implications of long-term histories.

Currently research director (directrice de recherche) at the
Institut de mathématiques de Jussieu-Paris Rive Gauche in
Paris, Goldstein began her research career in pure mathe-
matics. She was one of the first French students to com-
plete a thesis in number theory under the supervision of
John Coates at Université Paris-Sud.2 She defended her
doctoral thesis on 𝑝-adic 𝐿-functions in 1981, just as she
obtained a tenured position as a researcher in the Cen-
tre national de la recherche scientifique at the Mathemat-
ics Laboratory of the Université Paris-Sud. For histori-
ans of science, the 1980s “crackled with debate”—as his-
torian Lorraine Daston recounts—invigorated by ethno-
graphic and sociological approaches, feminist theory, and
political movements [Das09, 803]. Interested in the hu-
manities and social sciences, Goldstein seized the oppor-
tunity to attend a series of lectures on the history, sociol-
ogy, and philosophy of science organized by the philoso-
pher Michel Serres, along with other academics such as
Bernadette Bensaude-Vincent, Bruno Latour, and Isabelle
Stengers. This seminar became a collective book, A History
of Scientific Thought: Elements of a History of Science (pub-
lished in 1989 in French, translated into English in 1995),
for which Goldstein wrote two chapters. This experience
was a turning point for her.

The scholars involved in this collective project desired
to go beyond the so-called internalist (“that of concepts

2Coates, who had studied at the École Normale Supérieure, held positions in the
United States and Australia prior to joining the faculty at Paris-Sud.
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and results” [Gol19b, 1]) versus externalist (“that of in-
stitutions or scientific politics”) approach to history by
showing the inextricable interweaving of “internal con-
tents which are exclusively scientific and external condi-
tions which are exclusively social” [Ser95, 14] in the his-
tory of science and technology. Goldstein, along with
other historians of mathematics, was convinced that the
specific nature of mathematics (as compared to the natural
sciences) called for the use of appropriate historical meth-
ods. The aim of this paper is to present some of the meth-
ods that Goldstein developed to obtain new results in the
history of mathematics.

In her introduction to the second volume of Ernest
Coumet’s Collected Works, Goldstein recalls:

For many of us, it seemed that it was time to move
on [from the internalist/externalist debates]: that
it was appropriate to approach the texts of the
past as closely as possible, because it was in their
technical details, in their organisation, both mate-
rial and intellectual, at the bend of an unexpected
word or the unexpected meaning of a word, an
imported notation, an approximation of classifi-
cations or formulations, that the traces of a wider
culture, of a hitherto unsuspected collective, could
be caught; and, in the opposite direction, that it
was necessary to examine how these traces were
imprinted in symbolism, in a particular type of ex-
ercise, in priorities selecting the direction of the
development of mathematics. Everything here re-
mained to be done. [Gol19a, p. 11, to verif.]

This program is already apparent in the two chapters
written by Goldstein for Elements of a History of Science.
The first, titled “Stories of the Circle,” reveals the unex-
pected heterogeneity of seemingly uncontroversial pieces
of mathematics. Here, the plural of “stories” is essential: it
underlines the multiplicity of historical lines, as opposed
to the idea that there is one single, linear history—the true
history—of mathematical concepts. In this chapter, Gold-
stein proceeds from Mesopotamia and Egypt to Hilbert’s
Foundations of Geometry identifying multiple precise ways
that the circle has manifested within mathematics. The
circle in the Śulvasūtra (first millennium BCE, India) is in-
troduced with the constructive and numerical procedure
of converting a square into a circle of equal area, the cir-
cle in Euclid’s Elements (third century BCE, Greece) is a
plane figure like the straight line without numerical values,
while the algebraic approach to the circle (for instance, in
the work of Descartes in the seventeenth century) identi-
fies it “with the conics, whose equations are of the same
type” [Gol95a, pp. 182–184]. Such reorganization has
profound consequences. To take one among many, the cir-
cle as a conic section leads to the introduction of circular
points at infinity.

The second chapter deals with the question of “Work-
ing with Numbers in the Seventeenth and Nineteenth Cen-
turies,” going from what Goldstein calls Homo ludens to
Homo faber. Starting from the “same” mathematical state-
ment in the seventeenth and nineteenth centuries—what
is now known as Fermat’s last theorem, namely the impos-
sibility of the equation 𝑥𝑛+𝑦𝑛 = 𝑧𝑛 in nonzero integers—
Goldstein shows how different were the epistemological,
mathematical, and social contexts involved. Number the-
ory is a particularly good case for historical investigation:

The choice of mathematics and more particularly
number theory as a field of study is in this respect
more interesting for being an extreme case: among
the sciences, mathematics, and the theory of num-
bers in particular, retains, rightly or wrongly, a
reputation for splendid and unchanging isolation
which discourages over-hasty explanation of its
professional development. [Gol95c, p.345]

Number theory, both as an “extreme case” and as a
familiar field, has been Goldstein’s topic of historical in-
vestigation par excellence since the 1980s, even as her re-
search has also encompassed other themes in the history
of mathematics. The two chapters published in [Ser95],
investigations of a mathematical object and a mathemat-
ical domain over a long period of time, also reflect two
central questions in Goldstein’s work: how to construct
long-term histories of mathematics and to how to analyze
the identity of mathematical objects. These issues are also
fundamental in her keynote address for the 2018 Interna-
tional Congress of Mathematicians, titled “Long-Term His-
tory and Ephemeral Configurations.” Goldstein motivates
her choice of the history of Hermitian forms in the sec-
ond half of the nineteenth century as “a minimal exam-
ple: the concrete case of a rather technical and apparently
stable concept” [Gol19b, 493].3 She based her presenta-
tion on the sociological concept of configuration, which
she first borrowed and adapted from Norbert Elias in her
early work in the 1990s. Elias introduced the concept of
configurations in the early twentieth century to study inter-
dependent networks between individuals. Goldstein first
adapted configurations of “knowledge, objectives, and pri-
orities” to inform a social history of texts [Gol95b, p. 9].
She describes a configuration as the interaction of texts and
persons in which “mathematics weaves together objects,
techniques, signs of various kinds, justifications, profes-
sional lifestyles, epistemic ideas” [Gol19b, 491]. Marking
these configurations as ephemeral does not restrict the his-
tory of mathematics to local studies but rather is a call

3Goldstein defines Hermitian forms in this address as “simply an expression of
the type ∑𝑛

𝑖,𝑗=1 𝑎𝑖𝑗𝑥𝑖 ̄𝑥𝑗 , with coefficients 𝑎𝑖𝑗 in ℂ, such that 𝑎𝑖𝑗 = ̄𝑎𝑖𝑗 (here,
the bar designates the complex conjugation); in particular, the diagonal coeffi-
cients 𝑎𝑖𝑖 are real numbers.”
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to investigate “the various ways in which they [local stud-
ies] are, or not, connected” [Gol19b, 511] thereby forming
long-term histories of mathematics.

While the details are crucial to fully appreciating the
value of this scholarship, here we focus on three examples
of Goldstein’s research to provide a sense of how method-
ological frameworks can address questions of long-term
histories and identity through methods and concepts—
such as configurations—adapted from the human and so-
cial sciences. For a deeper investigation, the reader is rec-
ommended to read the original texts as cited in the bibli-
ography.

2. Mathematical Versus Historical Readings:
One Theorem and Its Multiple Identities

In the conclusion to Un théorème de Fermat et ses lecteurs
(A Fermat Theorem and Its Readers), Goldstein traces the
history of her book back to 1988 and “a question from a
colleague, Norbert Schappacher, about the identity of Fer-
mat’s and Frenicle’s proofs” [Gol95b, 177]. The theorem
in question—that the area of a right triangle with rational
sides is not a square—was proved by Pierre de Fermat and
Frenicle de Bessy at around the same time in the seven-
teenth century. At first Goldstein supposed that the proofs
were “similar”: Fermat and Frenicle had similar number-
theoretic knowledge, they wrote without algebraic symbol-
ism, used the method now known as infinite descent. But
then she began to have doubts, not just about the texts, but
about the stability of similarity.

To address this notion of stability and answer the cen-
tral question of her book—what a “historical description
of a mathematical theorem” can be—Goldstein identifies
two categories of readings: “mathematical readings aim to
find problems to solve, methods to use, in brief, a source of
inspiration to produce new mathematics”; whereas histor-
ical readings (perhaps by the same people!) “search in the
text for information about the activity of past mathematics
and its development in order to produce historical reflec-
tions and commentaries” [Gol95b, 6–7]. She is then able
to “observe at close hand the concrete reading andworking
practices” of mathematicians and historians [Gol95b, 16].
In presenting many mathematical and historical readings
of the famous theorem, Goldstein demonstrates how per-
ceptions ofmathematics are shaped by priormathematical
knowledge. She directs attention to the slippery question
of identity (which becomes a problem to be studied rather
than a self-evident given), the plurality of contexts, the in-
adequacy of historiographical dichotomies.

In spite of its geometrical appearance and apparent
specificity, the theorem, considered by Fermat and Freni-
cle as about numbers, can be seen as a “cornerstone (. . . )
of the study of quadratic forms (. . . and) of the arith-
metic of elliptic curves” [Gol95b, 5]. This position has

important effects for both types of reading. For exam-
ple, Goldstein analyzes how the rewriting of Fermat’s and
Frenicle’s proofs in algebraic symbolism erases specifities
of each text. An algebraic rewriting requires the clarifica-
tion of initially ambiguous points, such as the relation-
ships between elements introduced as a reasoning pro-
gresses, and standardizes initially differentiated terminolo-
gies [Gol95b, 88–89].

Goldstein compares the two texts “point by point”
[Gol95b, p.76] and shows how a nonalgebraic reading re-
veals the differences in Fermat’s and Frenicle’s approaches.
Both proofs rely on a method of infinite descent, but each
author had different conceptions of the process. Frenicle
considered the decrease in size of the triangles, the next is
smaller than the last “diminishing always” until forced to
stop at 1. Fermat, by contrast, first asserted that there can
only be a finite number of whole numbers smaller than a
given number without reference to the triangles.4 For the
study of right triangles, Frenicle’s approach is “more direct,
shorter, more economical” while that of Fermat is “richer
in varied connections with other problems” [Gol95b, 80].

Goldstein also discusses a historical reading of Fermat’s
theorem based on elliptic curves, showing how this ap-
proach “gives a unified meaning to a corpus of appar-
ently heterogeneous statements” [Gol95b, 100]. Gold-
stein notes that this second kind of reading is more con-
troversial because the concepts involved are a priori more
distant than the content of the original texts. But she high-
lights that all readings she studied are “strictly speaking
anachronistic” [Gol95b, 106]. More subtle instances of
anachronism underscore the fragility of identity of math-
ematics. As a case in point, neither Frenicle nor later his-
torical readings provide any justification that “if a prod-
uct of two prime numbers together is a square, each of the
two numbers must be so.” Does this assertion point to the
mathematical knowledge of the seventeenth century or is
it a feature of the style of his Traité des Triangles Rectangles
en Nombres? Goldstein asserts that ignoring the lack of jus-
tification or replacing the result would be to tacitly replace
“themathematical knowledge of the original readership by
another” [Gol95b, 59].

Evaluating a text depends on the configuration in which
it is read. That is, “the similarity between two mathemati-
cal texts, whether contemporary or distant in time, has no
absolute significance” [Gol95b, p.178]. These configura-
tions may articulate “a general conception of the history
of mathematics and of the subject to be dealt with (. . . );
technical knowledge; a vision of the state of themathemat-
ical field concerned, in the past and in the present, in par-
ticular problems or texts whose connection with the one

4As a further example of multiplicities of readings, Goldstein notes that Fermat’s
use of infinite descent has been read as anticipating the modern height function
[Gol95b, 11].
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studied may be relevant; an individual reading of the texts;
a chronology” [Gol95b, 108]. In particular, the construc-
tion of a long-term historical narrative depends on the sit-
uation of the historian and their choices accordingly. It
is in this sense that “the so-called long-term histories of
mathematics are local histories” [Gol95b, 111].

3. Men, Letters, and Numbers: A Micro-Social
Analysis to Solve Fermat’s Paradox
You sent me 360, whose aliquots5 are the same
number as 9 to 4, and I’m sending you 2016,
which has the same property. —Letter from Fer-
mat to Mersenne, February 20, 1639

In his history of mathematics “from Ancient to Mod-
ern Times,” Morris Kline states that “Fermat’s work in
the theory of numbers determined the direction of the
work in this area until Gauss made his contributions.”
He then claims that Fermat “had great intuition, but it
is unlikely that he had proofs for all of his affirmations”
[Kli72, 274–275]. More generally, contrasting biograph-
ical accounts on Fermat bring to light an apparent para-
dox: sometimes presented as a theorist, his correspon-
dence on number theory reveals a number of particular
statements, without proofs and where the methods are
very rarely made explicit. This combination led one of
his biographers, Michael S. Mahoney, to describe him as
a “problem-solver.”6 The quotation in the epigraph to this
section is in fact a typical example of Fermat’s exchanges
on number theory in his letters.

For Goldstein, two pitfalls explain the paradox that
seems to punctuate Fermat’s biography: a too narrow fo-
cus on Fermat and neglect of the fact that certain charac-
teristics of his work are not specific to him but are, on
the contrary, characteristic of the environment in which
he evolved. Our current knowledge of Fermat’s work on
number theory is based on the version annotated by Fer-
mat of Bachet’s edition of Diophantus’s Arithmetica, pub-
lished by Fermat’s son in 1670 as well as a collection of let-
ters, handwritten and partially published between the sev-
enteenth and twentieth centuries, and mostly exchanged
in the context of Marin Mersenne’s network. Fermat was
then a wealthy magistrate who worked in Toulouse and
Castres. He was in contact with the learned circles of Bor-
deaux and Paris, and corresponded with Mersenne, René

5The aliquot parts of a number are the divisors of that number, except itself. In
the case of Fermat’s example here, the aliquot parts of 360 are: 1, 2, 180, 3,
120, 4, 90, 5, 72, 6, 60, 8, 45, 9, 40, 10, 36, 12, 30, 15, 24, 18, 20. Their
sum is 810. We then have:

810
360

= 9
4
.

6See [Gol09, 25–27]. Goldstein introduces her paper with a paradoxical fic-
tional biogaphy of Fermat constructed from pieces taken from a dozen biogra-
phies and writings by the mathematician to underline this apparent paradoxal
aspect of Fermat’s historical persona, among others. Note that what follows con-
cerns Fermat’s number theory, but many of these results are also valid for his
work in geometry and probability.

Descartes, Bernard Frenicle de Bessy, Blaise, Pascal, and
Gilles Personne de Roberval, among others.7 Here again,
studying the configuration in which Fermat’s texts were pro-
duced allows the resolution of these apparent biographi-
cal contradictions. Goldstein engages in a micro-analysis
of Mersenne’s correspondence as a “specific social space
for mathematics” [Gol09, 41], studying letters as “both so-
cial links and texts” [Gol13, 254] and thereby underlying
the interdependance between mathematical content and
“paratextual and social features.”

Several important results are obtained by this socio-
historical approach of mathematical texts. The spe-
cific form of exchanges on number theory in Mersenne’s
correspondence—where sharing challenges and particular
problems prevail—can be explained: first, the different
participants in letter networks do not usually know each
other and this allows the exchange of mathematics with-
out disclosing methods before a relationship of trust is es-
tablished. It also has to be recalled that most of the cor-
respondents were amateurs in mathematics, in the sense
that they earn their living from another profession, which
left them little time to work on questions of numbers—
numerous correspondents, including Fermat, Descartes,
and De Beaune, explicitly complained about a lack of time.
Secondly, this form enabled assessing the difficulty of a
question and the value of the solution method without
making it explicit. A lexicographical analysis of the net-
work of letters (in which the word “method” appears very
frequently—“several dozen occurrences in Fermat’s corre-
spondence” [Gol95b, 135]) demonstrates the strategic in-
tention in the statement of problems, which might appear
disparate at first glance.

A global study of Mersenne’s correspondence does not
only make it possible to catch the collective rules in this
epistolary academy; it alsomakes it possible to distinguish
between what is specific to an individual and what comes
under the norms and values constituting a collective. First,
the fact that Fermat exchanged particular number prob-
lems confirms that he had a thorough understanding of
the collective norms of Mersenne’s correspondence. Then,
Fermat occupies a singular place. He was the only one
who mastered algebra and arithmetic and he was very fa-
miliar with the workings of the Mersenne academy. He
transformed his statements so that they were in the de-
sired form and adapted his questions to his readership:
if he sent a problem to an algebraist like Descartes, for

7Mersenne organized, between 1617 and his death in 1648, a network of math-
ematicians, first with meetings in Paris, then in the form of a network of cor-
respondents linking mathematical amateurs in French and European cities. At
least 2,000 letters were exchanged between 180 correspondents between 1635
and 1648 in this “all-mathematical academy.” At a time when mathematical
journals did not yet exist, this network was fundamental to mathematical com-
munication, especially for those who did not live in Paris or near other practi-
tioners in capital cities.
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example, he made sure that the question could not be
solved by algebra, whereas his questions for an arithmeti-
cian like Frenicle could only be solved by algebra. This
gave him a mathematical superiority even if he was in
a marginal geographical position and it allowed him to
prove (to others but also to himself) that his methods
were more efficient than algebra or the arithmetical meth-
ods used by Frenicle. This kind of social history of math-
ematics therefore shows Fermat “occupying a special po-
sition in a social configuration of knowledge practices,
where he dominated the operation and specific features”
[Gol09, 55] and at the same time resolves apparent con-
tradictions in historical images of Fermat.

4. From Great Men to Large Numbers?
Capturing the Collective in
Nineteenth-Century Number Theory
through Citation Networks
Our main goal in this part has been to reshape
the global representation of the history of the
D[isquisitiones] A[rithmeticae] [. . . ]. We were not
satisfied with the usual summary—a period of la-
tency and awe, then a succession of a small num-
ber of brillant contributors, one or two per gener-
ation, who were deeply involved with the book,
and finally the blossoming of algebraic number
theory at the turn of the twentieth century. What
we wanted was to pay more attention to the re-
lations among mathematicians (and among their
results), and to the actual mechanisms of knowl-
edge transfer, in particular from one generation to
another, that is, to understand some part of the
dynamics in the changing role of the D. A. and of
number theory. [GS07b, 97–98]

This quotation appears in the conclusion of the first
two long chapters by Goldstein and Schappacher intro-
ducing the collective book The Shaping of Arithmetic after
C. F. Gauss’s Disquisitiones Arithmeticae (2007). In under-
standing the dynamics of number theory publications in
the nineteenth century, Goldstein pursues a double ambi-
tion: to go beyond the “great number-theorists,” mostly
German, making up most of the stories about number
theory8 and to develop and test suitable methods for the
case under study, namely, identifying and analyzing a cor-
pus of nineteenth-century number-theoretic texts. From
the systematic exploration of research journals contain-
ing mathematics—which were booming throughout the

8From this point of view, the description given by André Weil and taken up by
Goldstein [Gol99, 189] as an example of this kind of heroic story is particularly
representative: “The great number-theorists of the last century are a small and
select group of men. The names of Gauß, Jacobi, Dirichlet, Kummer, Hermite,
Eisenstein, Kronecker, Dedekind, Minkowski, Hilbert spring to mind at once.
To these one may add a few more, such as the universal Cauchy, H. Smith, H.
Weber, Frobenius, Hurwitz” [Wei75, p. 1].

period—and several review journals created in the second
half of the nineteenth century such as the Jahrbuch über
die Fortschritte der Mathematik, she has studied number
theory over the long nineteenth century from several cor-
pora of texts: first, notes in the weekly proceedings of
the Paris Academy of Sciences [Gol94], then 3,500 articles
and books reviewed in the Jahrbuch, [Gol99], and finally
references to Gauss’s Disquisitiones arithmeticae in major
journals and complete works of identifiedmathematicians
published from 1801 to 1914 [GS07a,GS07b].

In purely quantitative terms, the initial results of these
surveys already contrast strikingly with the standard im-
age mentioned above: a handful of German mathemati-
cians are replaced by dozens of authors of various nation-
alities working on a wide variety of number-theoretic sub-
jects. However, despite an interest in quantitative meth-
ods for the study of collective phenomena, Goldstein un-
derlines the extent to which their application, relatively
common in social history, poses particular problems for
nineteenth-century mathematics, for example due to the
difficulty of “gathering (. . . ) homogeneous series of suf-
ficient size” [Gol99, 195]. Questions arise at every stage
of such a historical investigation. How do we select the
relevant texts, or in other words, how do we decide what
is and isn’t number theory? The “actors’ point of view” is
heterogeneous over the period under consideration, with
classification categories depending on the journals consid-
ered and evolving over time. Another example: purely
quantitative approaches put the texts in the corpus under
study on the same level, whether they are extensive aca-
demic works, a brief research note (the classic format of
the weekly proceedings of the Paris Academy of Sciences)
or a few lines of response to a question posed in a journal
aimed at mathematics amateurs and teachers (such as the
Educational Times). All these categories of text provide rele-
vant information, provided that their form and links with
other texts are taken into account. To create a social anal-
ysis of texts, Goldstein applied a form of network analysis
to these corpora. However, the heterogeneity of the texts
identified and the disparate citation practices in the nine-
teenth century preclude any automated processing of such
a corpus. On the contrary, it is necessary to work on the
basis of qualified links (i.e. differentiating between quo-
tations of a result or a method, of homage or opposition,
cf. [Gol99, 203–204]), taking into account explicit and im-
plicit quotations (such as the vague mention of a result).
It is then possible to identify clusters of texts, “character-
ized by strong intercitation” [Gol99, 205], by combining
computerized sorting and search capabilities with manual
groupings.

This approach, based on the analysis of qualified quota-
tions, renews our understanding of “the shaping of arith-
metic.” First of all, the status of number theory, its objects
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and methods, are far from stable. Goldstein and Schap-
pacher distinguish two main periods in the reception of
Gauss’s Disquisitiones arithmeticae. The very early reception
of the work was very timid and rather French. Attempting
to expand algebra (in the sense of equation theory), math-
ematicians mobilized the arithmetic tools of Gauss’s sec-
tion VII, which presents an algebraic method for solving
binomial equations, also providing the conditions of con-
structibility of regular polygons with ruler and compass.
In the 1820s, new readers of Gauss’s work became familiar
with Disquisitiones arithmeticae as part of their mathemati-
cal training, including Jacobi, Dirichlet, Galois, and Libri.
The numerous research projects undertaken at the time can
be grouped under a single, international research field in
the sense of the sociologist Pierre Bourdieu [GS07a, 52],
that Goldstein and Schappacher called Arithmetic Algebraic
Analysis. Contemporary research in analysis, for exam-
ple, on complex numbers, Fourier analysis, and elliptic
functions, is used to address a number of arithmetical
questions, such as those developed by Gauss in his work
on residues, reciprocity laws, and the theory of quadratic
forms. Here, the field of research is not organized around
a mathematical object per se, but is delimited by a set of
tools andmethods shared by the various players. However,
their practices are not uniform, and their objectives are of-
ten different. Note that many of them develop a common
discourse on the unity of mathematics, which gives legit-
imacy to number theory: the unity here comes from the
possibility of being able to build links between different
mathematical objects and different proofs, of being able
to transfer methods from one domain to another.

Then, for the period 1870–1914, three main text clus-
ters are identified, none of them linked directly to alge-
braic number theory. As for the previous period, they
do not fall within strictly national frameworks. The first
cluster, named “L–G cluster” (Legendre and Gauss), at-
tracted authors from a wide range of social positions (aca-
demics, teachers, engineers, military personnel, amateurs,
etc.), mostly British, French, and Italian. The texts referred
to both Legendre and Gauss, and avoided any recourse to
analysis. This network enabled nonacademic authors to
participate and constituted a gateway into circles where ad-
vanced number theory had no place. Nevertheless, most
of the authors had no students, and the number of pa-
pers of articles in this cluster declined rapidly. At the
end of the nineteenth century, they turned to media not
taken into account in the network analysis conducted so
far, such as the congress reports of the Association française
pour l’avancement des sciences, whose aim was to promote
useful and entertaining science. The authors and arith-
metic practices identified in this cluster have been the sub-
ject of a number of recent studies in the history of teaching
and the history of amateurs in sciences. A good example is

the highschool teacher Édouard Lucas (1842–1891), who
developed a “fabric geometry” that applies number the-
ory to textile issues, around the figure of the chessboard.
Along with other mathematicians, teachers, and engineers
in particular, he promoted mathematical recreations and
a visual number theory, not well represented in academic
circles, but adapted to pedagogical issues and the desire
to popularize mathematics at the time [Déc07]. The sec-
ond main cluster, the “D-cluster” (Dirichlet), groups to-
gether texts whose authors adopted a “complex-analytic
approach, inherited from Riemann and centering around
Dirichlet series” [GS07b, 74]. Ernesto Cesáro, Pafnuti
Tchebycheff, and Rudolf Lipschitz are among the regular
authors of this cluster. The third, “H–K cluster” (Hermite–
Kronecker), focuses on the arithmetic theory of forms, to
which authors such as Émile Picard and Luigi Bianchi con-
tribute. In addition to these three main clusters, there are
several smaller ones, one of which includes the texts that
engaged with Kummer’s number ideals, Dedekind’s ideals
and algebraic number theory in the form promoted by
Hilbert at the turn of the twentieth century. This cluster
is surprisingly small, as measured by the number of texts,
compared with its important place in the standard histori-
ography of number theory.

Indeed, the authors from the H–K cluster who stud-
ied decomposable forms considered them as an alterna-
tive to ideals. Some, such as the Germans Eduard Sell-
ing and Paul Bachmann, even began by generalizing Kum-
mer’s work on ideal numbers before turning to the theory
of ternary forms. A systematic study of number-theoretical
publications then shows the existence of “alternative paths
of development” [GS07b, 76], quantitatively and qualita-
tively important, to algebraic number theory and these di-
verse groupings are a far cry from an exclusively German
number theory centered on algebraic number theory.

5. Conclusion
In a conference given in a seminar on science policy, Gold-
stein remarked that her family had no connection whatso-
ever with academia. When she entered the mathematical
community, she was struck by the contradiction between,
on the one hand, her mathematician colleagues’ sense of
belonging to a strong organization with collective values
of integrity, rigor, care for others, etc., and, on the other,
an individualistic presentation of self, embedded in a his-
tory spanning several centuries built around a few “great”
white Western men [Gol21]. One of her goals upon enter-
ing the history of mathematics, was to analyze this contra-
diction by studying the craft or the art of mathematicans.
The “various ways” in which local configurations are, or
are not, connected is a way of understanding how mathe-
matics actually works, which is also important for under-
standing the nature of the work of mathematicians today.

MARCH 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 343



Construed broadly, mathematical practices are at once
technical and political, as the examples presented above
illustrate. Goldstein’s individual and collective research
contributions extend well beyond the themes treated in
this paper.9 Two recent projects highlight other historical
configurations that circumscribe the politics of mathemat-
ics.

First, politics can occupy center stage, as in the recent
collaborative project around the history of mathematics in
World War I. Until recently, this war was understood pri-
marily as a site of loss in whichmathematics was disrupted.
The War of Guns and Mathematics shows how the practices
and social position of mathematics were also impacted.
Pulling together international expertise and archival ac-
cess, the work draws on individual experiences of mathe-
maticians “in specific places through the war” demonstrat-
ing disparate experiences among similarly situated actors
as well as symmetries across national boundaries [AG14, p.
43]. Second, Goldstein’s own political activity has in-
cluded leadership in the formation and advancement of
Femmes et mathématiques.10 Goldstein served on the council
until 2002, was elected president in 1991, and has contin-
ually brought her historical expertise to bear in connected
scholarly contributions, such as interrogating the assump-
tions that underlie the popular, but poorly defined ques-
tion of whether there exists a particularly feminine kind
of mathematics [Gol94]. In her historical work on gen-
der and science, Goldstein again draws attention to the
pitfalls in assuming a “univocal, long-term historical pro-
cess,” in particular, that of “increasing estrangement be-
tween domestic women and public science” [Gol00, p. 3].
Such research corrects contemporary assumptions around
women as eternally domestic that ignores both “subtler
mechanisms of exclusion” and, in the other direction, op-
portunities, ideals, positive aspirations, and the actual pos-
sibilities of life [Gol00, pp. 8, 27].

Moreover, in her position at the Institut de
Mathématiques de Jussieu, Goldstein has supervised
doctoral research in the history of mathematics, from
seventeenth-century controversies over indivisibles to the
geometry of numbers in the twentieth century. This
breadth of time and mathematical discipline is under-
girded by sustained attention to and documentation of
specific methodological approaches, such as network anal-
ysis, social history of texts, and microhistory. Like in math-
ematical research, Goldstein has trained her students—
and exemplified through her talks and papers—the value
of clearly defining methodological choices, what counts as

9See http://webusers.imj-prg.fr/~catherine.goldstein for a more
complete documentation.
10The association began in 1987 with the objective of increasing the partici-
pation of girls and women in mathematical fields, from creating early educa-
tional programming to maintaining awareness of gender equality among scien-
tific professionals.

evidence, and the process of securing precise historical re-
sults.
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EARLY CAREER
The Early Career Section offers information and suggestions for graduate students, job seekers, early career academics
of all types, and those who mentor them. Krystal Taylor and Ben Jaye serve as the editors of this section. Next month’s
theme will be Math Instruction.
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Women’s History
Month
What Would It Mean for
Students to Bring Their
Entire Selves to the
Mathematics Classroom?

Ksenija Simić-Muller
In his influential essay “On proof and progress in mathe-
matics” William Thurston [8] poses “How do mathemati-
cians advance human understanding of mathematics?” as
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a fundamental question. We do not just do mathematics
for our own satisfaction, we also wish to share the joy of
doing mathematics with others. Thurston writes, “We are
inspired by other people, we seek appreciation by other
people, and we like to help other people solve their math-
ematical problems.” Those of us who love teaching love to
share that joy with our students, to help them solve their
mathematical problems. So why is it that so many of our
students do not feel this joy? Why is their mathematical
experience dehumanized?

To rehumanize our classrooms, we have to make differ-
ent decisions than we have in the past. By rehumanizing,
here I specifically refer to the recent conceptualization by
Rochelle Gutiérrez. Gutiérrez [3] writes about the dehu-
manizing nature of mathematics classrooms: students are
asked to leave their identities at the door and are taught
mathematics as an exercise in compliance; and mathemat-
ics is decoupled from joy and play, and from authentic con-
nections with the real world. While Gutiérrez primarily fo-
cuses on K–12 classrooms, her writing easily applies to col-
lege classrooms. She issues a call for rehumanizing mathe-
matics (rehumanizing rather than humanizing to acknowl-
edge ways people have long used mathematics in human-
izing ways) and, much like Su [7], advocates formathemat-
ics classrooms that focus on play and exploration; where
students’ identities are welcomed, honored, and centered
in the curriculum; and where mathematics is used not just
to solve abstract problems, but to make sense of the world,
including issues of power and oppression.

Gutiérrez [3, 4–5] identifies eight central traits of rehu-
manizing mathematics. All are important, and some are
traits shared with active learning classrooms, for example,
“Students collaborate and see each other as resources and
authorities; the instructor is no longer the sole authority
in the classroom,” or “Mathematics is a creative practice
rather than consisting simply of rule following.” I have
written about a few others in [6]. Here I would like to focus
on one trait that I think is particularly salient for sharing
the joy of doing mathematics with all students: “Emotions
have a place in a mathematics classroom; students are able to
bring their entire selves to the classroom; and they should be
able to feel joy when doing mathematics.” I am especially in-
terested in the question of what it would look like for stu-
dents to bring their entire selves to the classroom, particu-
larly for students who are typically marginalized in mathe-
matics classes, primarily Black, Indigenous, and People of
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Color (BIPOC) students, LGBTQ+ students, and students
with disabilities.

I teach at a medium-sized private liberal arts university
in the Pacific Northwest. I trained as a mathematician
and retrained as a mathematics educator, and I teach a
wide range of courses, from liberal artsmathematics to cap-
stone, formajors and nonmajors alike. I am awhite cisgen-
der, heterosexual, able-bodied woman who immigrated to
the United States from Eastern Europe in the 1990s. These
identities are all relevant to how I show up in the class-
room, engage with students, and work to rehumanize the
mathematical spaces I occupy. Below are some strategies
that I have found helpful in working toward the goal of
cocreating with students classroom spaces where they feel
safe bringing their whole selves.

Invest time in building a classroom community. Even
though it seems that it is taking away from time spent on
learning content, which is the primary purpose of a math
class, time spent on creating community pays back gen-
erously in student engagement and commitment to the
course. In my courses, we check in at the beginning of
each class. I share relevant campus events, and sometimes
students share events they are involved with. We almost al-
ways do warm-up activities. These are typically low-stakes,
the types of activities where the focus is on mathemati-
cal discourse rather than correct answers. I especially like
noticing and wondering, and especially about real-world
issues [6]. Students sit at tables in groups of 3-4, which
has been one of the simplest andmost effective ways I have
been able to build community in the courses I teach.

Appreciate the students exactly as they are. Typically,
we save our best interactions for students who are already
doing well in our classes. We encourage them to takemore
classes, to major in math, to be a grader, or to apply for a
scholarship. This seems like common sense. But we may
find that the students who are doing well are those who
look like us, who went to the same schools that we did,
or who had opportunities to take more challenging math
courses. We may tell ourselves we don’t have the time to
catch up the student who is behind, don’t have the skills
to work with the student with disabilities, or don’t need to
accommodate the student who is working multiple jobs.
And so we never know what potential we lost in the stu-
dents we chose not to encourage. I yearn to give every stu-
dent, regardless of how much math they know, or what
grade they got in their previous class, the same amount of
encouragement, faith, and respect. Even though I have a
long way to go, I am most successful when I remember
to enjoy the students as human beings, in all their quirki-
ness, insecurity, and confusion; when I connect with them
as human beings first and mathematics learners second.

Provide opportunities for hands-on learning, regard-
less of the course content. During the past academic year,

which was the first year since 2020 that felt almost nor-
mal, but not quite, I found hands-on learning especially
beneficial for reestablishing some engagement skills we
seem to have lost during the pandemic. When learning
about symmetry in a course for future teachers, students
made papel picado, a traditional Mexican craft made from
sheets of tissue paper with designs (often symmetric) cut
out of them. Then, for the remainder of the semester, I
put out construction paper and scissors every day so that
students could make other constructions, including paper
snowflakes. We hung the art pieces on the classroom wall,
where they stayed until the last day of classes, thus celebrat-
ing their creations and making the classroom more per-
sonable. In discrete mathematics and proofs classes, we
began class once a week with a team building activity with
interlocking cubes, where each student in a group gets a
clue card, and all clue cards are needed to build a required
object [1]. This prompted groups to bond: there was of-
ten laughter heard, in addition to lively discussions about
strategies for solving the problem. Most days I left the
cubes on the tables after the warm-up activities. I never
knew what elaborate structure I would find at the end of
class. One day a whole family of ninja turtles appeared,
on another day a family of ducks.

Allow different kinds of feelings in the classroom. In
a perfect world, there would always be joy in all my classes,
but this is not possible. My students are allowed to hate
math, as many who come to my classes for nonmajors do,
and with good reason, considering the histories they have
with the subject; my job is to show them that they can do
well in math and enjoy it, but not to force them to like it.
They are allowed to be frustrated and to dislikewhatever ac-
tivity we are working on, though if this happens it is a clear
message to me that I need to understand what it is about
the activity that is not working and revise it as needed. Ev-
eryone is allowed to have bad days. If it is a bad day in
the news, I acknowledge it and provide space for conver-
sation. The world is always challenging for young people,
but perhaps especially now in the era of climate disasters
and attacks on rights and liberties that, at least for many of
my students, are personal. Sometimes students really want
to talk about issues. Sometimes they just want to work
on math with their friends, and sometimes they want to
work quietly on their own and listen to music. These are
all valid, and I have learned to read the mood of the room
and ask students what they need, then adapt.

Do not be afraid of difficult conversations, and learn
how to facilitate them. I have difficult conversations with
students, even though (or especially because) they are dif-
ficult. If there is a current issue that students want to
discuss, I have learned to hold space for despair and for
hope, and to find a balance between the two. I also make
difficult conversations part of my curriculum. We use
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mathematics to analyze systemic racism, talk about the
limitations of Western mathematics, and analyze the myth
of the brilliant and troubled mathematician, among other
things. There are now great curriculum resources avail-
able to address social justice-related topics [4, 5], though
I still often create my own. I have learned to have con-
versations about complex issues, related to the curriculum
or not, from readings, professional development sessions,
and conference presentations, as facilitating difficult dis-
cussions is not something most of us learn in graduate
school. I have especially benefitted from participating in
book clubs with colleagues.

Be more flexible. This is a complicated suggestion, as I
know that faculty who are BIPOC, women, and/or trans,
may not automatically get respect from students. How-
ever, in my experience, my willingness to bend allows stu-
dents to be more comfortable being themselves, and fos-
ters learning. Does letting students make animals from
cubes during a proofs class negatively impact their learn-
ing? I have actually found that some students are able to
focus better. And last semester, the student who built the
most elaborate structures participated more in classroom
discussions the more he was allowed to build with cubes
in class. I have also learned that no pedagogical approach
needs to be followed exactly. Even though learning is most
meaningful in groups, sometimes students need to work
on their own; even though research suggests that groups
should be changed often and randomly, sometimes stu-
dents just need to sit with their friends all semester; even
though I think homework is essential, sometimes students
have good arguments for why less should be assigned, and
I listen to them (though grudgingly).

Do not sacrifice high expectations while being more
flexible. While there are times when mathematics learn-
ing can briefly be put aside to deal with a timely issue, en-
joy a side conversation, or just take a short break, learn-
ing always comes first. Nor is there a distinction in my
classes between “fun” warm-up activities at the beginning
of class and “serious work” afterward; all work should be
equally joyful, challenging, fun, and frustrating. It is al-
ways a balancing of setting high expectations and not tak-
ing our classes too seriously. In my classes we play games,
do a lot of hands-on activities, laugh, and listen to music;
but I also removemyself from the front of the classroom so
students can have more ownership, give honest feedback,
keep pushing, and never let a student say they are not good
at math.

Remember that you will never arrive at the final des-
tination. I recently received grade data from the 15 years
I have been at my institution. I was troubled but not sur-
prised to learn that I do not give nearly as many As or Bs
to Black students as I do to students of other races. It
was humbling to be reminded that all the professional

development I participate in and all the efforts I make to
include all students are not sufficient to undo my biases
and the impacts of living in a system that ranks and sorts
by race, class, gender, sexual orientation, or ability (among
others), as well as by perceived mathematical ability. It is
easy to become discouraged, but we can also become cu-
rious, dig deeper into the data, pay more attention to our
actions and student feedback, and keep learning.

Oftentimes we argue that we need to include previously
excluded students inmathematics (particularly BIPOC stu-
dents) because mathematics will benefit them, but we fail
to recognize howmathematics itself will benefit from their
perspectives. Even though written in 2002, this quote by
Gutiérrez still resonates today:

The assumption is that certain people will gain
from having mathematics in their lives, as op-
posed to the field of mathematics will gain from
having these people in its field. In other words,
most equity research currently assumes the deficit
lies within the students who need mathematics as
opposed to, or in addition to, lying within math-
ematics, which needs different people. Such pro-
grams seem to imply that the people being served
by the programs need to improve but that the
mathematics does not [2, p. 147].

I do not think that mathematicians can advance human
understanding of mathematics if they are not willing to let
humans rehumanize (and therefore advance) mathemat-
ics. Our courses are better and we are better when every
student has the opportunity to contribute in meaningful
and authentic ways. I still do not know what it would look
like for allmy students to be able to bring their entire selves
to my classroom, especially as this is not something I can
determine on my own without student input; but I think
I get occasional glimpses. Like when a future teacher and
a “Swiftie” writes a fantastic lesson about the inequities in-
volved in buying tickets for Taylor Swift concerts. When
a student solves a problem while bobbing his head to a
tune in his head, confident in his knowledge, and content
to be working on math with his group members. Or when
a student who was never successful in a math class excels
in a probability unit partly due to her being an experienced
Dungeons & Dragons player.

Whatever work we choose to do to create more eq-
uitable classrooms, departments, committees, research
teams, and universities is indefinitely ongoing. It is also
full of joy even when/because it is incredibly hard. Our hu-
manity is intertwined in the humanity of others, and the
project of rehumanizing mathematics necessarily includes
rehumanizing ourselves.
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The Infinite Possibilities
Conference: Creating
Moments of Belonging

Lily S. Khadjavi, Tanya Moore,
and Kimberly Weems
Sometimes remarkable creations come from a moment of
gratitude. In 2003, on an uncharacteristically misty after-
noon in Los Angeles, Spelman alumnae found themselves
serving as members of the audience for a dozen middle-
school-aged girls. All shades of brown skin reflected beau-
tifully against the white lab coats the students proudly
wore, as they explained their science experiments with big
smiles. Ostensibly, the Spelman graduates were to serve
as role models for the girls. They fulfilled their designated
role . . . and much more. The experience inspired them to
reflect on their time at Spelman as mathematics majors,
the uniqueness of their college experience, and the criti-
cal role of professors who served as role models that bal-
anced high expectations for academic performance with
support and encouragement. Although they did not real-
ize it at the time, those Spelman faculty offered them their
first glimpse of a mathematical community.

The two alumnae continued to talk with each other
about their college peers with whom they had worked col-
laboratively on problem sets and exam preparation. They
remarked on how many of the Spelman math majors had
gone on to graduate school, successfully completing mas-
ter’s and doctoral programs in mathematics, statistics, and
related fields. The conversation then veered to the recent
passing of Dr. Etta Falconer, a Spelman giant who was
instrumental in increasing opportunities that supported
Black women mathematicians and scientists. In appreci-
ation of the Spelman experience that launched so many
women into math careers, they thought out loud about
how great it would be to have a reunion or celebration
to bring everyone back together, to honor Dr. Falconer,
and to acknowledge the contributions of the math faculty
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in shaping their paths. Then Marlisa Johnson turned to
Tanya Moore and said, “You should do that.” At that mo-
ment, the Infinite Possibilities Conference (IPC) was born.
The first IPC. IPC was created with the mission to sup-
port, encourage, and celebrate underrepresented minority
(URM) women1 in the mathematical sciences. The first
IPC was organized under the leadership of Leona Harris,
Tanya Moore, and Nagambal Shah and took place at Spel-
man College in 2005. In grassroots fashion, they assem-
bled an organizing committee of URMwomenmathemati-
cians who, along with faculty and staff of Spelman College,
thought that IPC could form part of a response to the prob-
lem of underrepresentation.

Even as of 2018, only two percent of doctoral degrees
in mathematics were awarded to African-American, Latina,
and Native American women in the US [3,6], while those
same groups comprise approximately seventeen percent of
the US population. Even earlier in the pipeline, fewer than
six percent of bachelor’s degrees were awarded to URM
women in the mathematical sciences [6]. The largest share
of bachelor’s and doctoral degrees in the mathematical sci-
ences was awarded to white males, 32% and 51% respec-
tively [6]. While the overall number of doctoral degrees
in mathematics has increased between 2006 and 2018, the
number of URMwomen receiving those degrees has stayed
relatively flat. In tandem, the persistence of stereotypes of
the typical mathematician has held strong. In most minds,
the image of a mathematician or scientist conjures up a
white male, and the data regarding who receives a degree
in mathematics at the undergraduate and graduate level
support that association.2 The lack of diversity in themath-
ematical sciences becomes a self-fulfilling prophecy—a cy-
cle of acceptance around traditional notions of who rightly
belongs in the mathematical community.

Armedwith personal testimonies and their awareness of
the lack of representation of URM women in the broader
math community, the organizing committee set out to
design the first IPC. The initial planning discussions pro-
vided an opportunity to envision a conference they would

1Consistent with language which has been employed by academic institutions,
we use the terms “underrepresented” or “minority” (or URM) to refer to some-
one who self-identifies as Black/African-American, Hispanic/Latino(a), Na-
tive American or Alaska Native, Native Hawaiian, or other Pacific Islander.
We also use “women of color” to refer to racial or ethnic groups traditionally
marginalized in the United States and to those who self-identify with the term
woman. The term BIPOC, or Black, Indigenous, People of Color, recognizes the
complexity of marginalization. While some scholars have pointed out that ter-
minology can implicitly suggest white as neutral and in effect essentialize racial
groups, these more recent umbrella terms are embraced by many activists and
have the advantage of moving away from majority/minority designations.
2In a striking “Draw a scientist” study which originated in the late 1960s and
has been repeated in more recent eras, children drew male images far more often
than female. In the study’s first iteration, out of over 4800 drawings of scien-
tists, only 28 were of women (all drawn by girls). As of 2008, children still drew
twice as many male figures as female, whereas for professions such as teacher,
only a quarter of the sketches were of men [9].

want to attend. The organizing committee posed exciting
and empowering questions: What kind of workshops and
speakers should be featured? Should the conference target
only Black women, or all women? What were the key ele-
ments of environments, programs, and relationships that
supported success in completing graduate school? What
needs to be known and shared with other women inter-
ested in math?

It was ultimately decided that there was a unifying expe-
rience of African-American, Latina, and Native American
women in math, in that their identity stood in direct con-
trast to the stereotypical image of amathematician. So IPC
would be created intentionally for them, by them. There
was also a desire to create a platform to showcase differ-
ent career paths chosen by women who love math. IPC
could expand awareness beyond the perceived limited pro-
fessional opportunities available with a math degree as
well as combat conventional beliefs of who could domath;
hence, the organizers chose the name “Infinite Possibili-
ties.”

As the organizers planned a combination of plenaries,
panels, and smaller parallel sessions, they wanted to ad-
dress and share the multi-faceted factors contributing to
retention in the field, such as the importance of being seen
and valued, feeling connected, and finding the appropriate
level of challenge to excel. As the only (or one of a few)
URM women in their graduate program, many of the or-
ganizers had begun to question whether they belonged in
mathematics and if they could be part of the broader math
community without sacrificing their identity. If the con-
ference could provide an opportunity for URM women to
know that they were not alone and that relatable models
of success existed, then perhaps it could provide encour-
agement for those in attendance to persist.

Many of the Spelman graduates on the organizing com-
mittee had experienced the privilege of mentorship from
Spelman faculty that extended into their time at graduate
school. Was there something different about mentoring
women of color in mathematics that should be explored?
The organizing committee also aimed to have all aspects
of the pipeline represented, from students to profession-
als in the field, in order to provide opportunities to con-
nect to role models and encourage networking. These are
activities that have been identified as effective mentoring
strategies, especially for women of color in the mathemati-
cal sciences [5]. The first conference would include a panel
discussion onmentoringwomen inmathematics and a ses-
sion that proactively facilitated dialogues on mentoring
among women at different stages in their journey. Link-
ing high school students to undergraduates to graduate stu-
dents to professionals could provide connection points to
“near peers,” with the belief that near peers can often pro-
vide the most useful advice and insight for the next step in
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the journey. Moreover, the intent was for the conference
to create a community of mentors of various roles, such as
advocates, role models, peer mentors, and coaches, who
could augment existingmentoring structures at their home
institution or industry [2].

Figure 1. IPC Group Photo at UCLA, 2010.

Acknowledging that the gold standard for success in
academia is often publications, the organizers felt com-
pelled to support one another along the research path by
providing a supportive environment for sharing, receiving
feedback, and dialoguing about research, necessary steps
in the process of becoming a high-caliber mathematician
and researcher. It was important to include opportuni-
ties for IPC attendees to communicate their results during
the conference through Research Roundtables, concurrent
sessions of oral presentations that showcased the partic-
ipants’ work in applied mathematics, mathematical biol-
ogy, mathematics education, pure mathematics, and statis-
tics. Students could also make poster presentations. These
sessions would provide a supportive environment to dis-
cuss and receive feedback on theses, dissertations, works-
in-progress, and research reports.

The participation of Spelman alumnae and faculty in
the planning of the first IPC influenced another key deci-
sion. To honor the legacy of Etta Falconer, the IPC Steering
Committee, Spelman College Mathematics Department,
and the Falconer family established theDr. Etta Z. Falconer
Award for Mentoring and Commitment to Diversity. The
award recognizes the importance and value of individuals
who make significant efforts toward building connections
and community. For her dedication to increasing the num-
ber of women and African-American students in mathe-
matics, Janis Oldham of North Carolina A&T State Uni-
versity became the first Falconer recipient. As noted by her
nominators, Oldham embodies the spirit of Falconer by
having high expectations of her students and a willingness
to invest generous amounts of her time to nurture their
mathematical development.

Initially, the organizers planned to have just one confer-
ence. But after the closing banquet of IPC 2005—which
opened with a drum ceremony, gave tribute to Falconer,

presented an overview of the history of URM women in
mathematics by Sylvia Bozeman, and honored Oldham
with the Falconer award—the room was filled with tears
and full hearts. Initial feedback on evaluations from the
first conference further validated the organizers’ intuition
about the importance of providing a space for women of
color to feel supported and more connected within the
math community. As a result, planning for the next con-
ference began.
The power of reflection and critical mass. We can all
understand the power of images to influence our beliefs.
Many of the organizers for that first IPCwere newlyminted
PhDs and had their own personal experiences in gradu-
ate school fresh on their minds. They shared their need
to form their own communities outside of mathematics
or to seek therapy in order to cope with the stress, doubt,
and sense of isolation while in school. For those who at-
tended a Historically Black College or University (HBCU)
as undergraduates, their first introduction to a math com-
munity had included supportive faculty and peers. Profes-
sors and classmates served as living proof of the possibil-
ity to obtain educational degrees and achieve professional
success. The question of gender or race as linked with
skill in mathematics was implicitly removed from consid-
eration. While this knowledge fortified them, as they pur-
sued graduate-level education in environments that were
radically different from HBCUs, the sense of isolation and
the experience of not fitting in could still be painful and
challenging to navigate.

The numerical data for URMwomen inmath imply that
most are the only (or one of very few) women or URMs
at their respective institutions. One of the most common
themes from conference evaluations by attendees focused
on how IPC made them feel less isolated by being in the
presence of so many women with whom they identified.
Attending the conference encouraged them to continue
along their paths in mathematics.

Mostly it mademe feel less alone, which has made
me a little more comfortable pursuing the PhD.
(IPC attendee)

The conference is one of the most encouraging
conferences I have been to. I found inspiration
and made connections with women who ‘looked’
like me or had the same ‘walk.’ I am more deter-
mined to finish my PhD and to continue to build
my village. I sincerely will recommend this con-
ference to all mathematicians and scientists (fe-
males). Let me know how I can be more involved.
(IPC attendee)

Impostor syndrome is a common experience among many
students and professionals in the academic environment,
regardless of background or identity. This feeling chal-
lenges one’s belief that success in math is possible. The
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suspicion that one has been let in “by mistake” is further
exacerbated by the experience of not fitting in. Addition-
ally, when faced with microaggressions or more explicit
comments regarding doubt in ability, impostor syndrome
begins to feel like a credible belief. IPC provided a brief
but impactful respite from the questions and doubts of be-
longing by bringing in URM women en masse. When we
think about the fact that there are on average twenty URM
women that complete doctorates in math each year in the
US, being in a room with 100–200 URM women all at one
time takes on another level of significance (Table 1). With
this moment, there is an opportunity for seeing to trans-
late into believing that belonging in math is possible as a
URM woman.

While attending IPC I was very doubtful if I should
continue striving toward a PhD because I had one
more qualifying exam to pass that I had taken four
times already. But after attending IPC and talking
to many of the very inspiring women who were
just like me, it made me see that I am not alone,
and if they could do it, I could too. So that June I
took the test, passed it and even received a fellow-
ship for the next year. I am extremely grateful to
have been a part of IPC; it is a conference that was
both inspirational and educational to me. It is an
experience I will never forget. (IPC attendee)

My first conference was a pivotal moment in help-
ing me see my personal fear in pursuing a doctor-
ate degree (feeling like “I can’t do it”) and address
this fear along with seeing my true desire to earn
a degree and follow my passion. (IPC attendee)

It made me believe that I can be one of the profes-
sors in a future meeting. (IPC attendee)

20053 2007 2010 2012 2015 2018
Total Registrants 148 206 191 288 203 1354

% Female 95% 94% 96% 90% 86% 96%
% URM5 87% 70% 81% 70% 53% 78%
% URM Women 85% 67% 79% 67% 49% 76%

Table 1. IPC registrant totals and demographics between 2005
and 2018.

Wherever possible, IPC sought to put notable URM
women in math at the forefront of the conference. Crit-
ically, the organizers themselves reflected the intended
audience and the conference showcased the accomplish-
ments of women of color who were featured as plenary
speakers and panelists. Photographs of attendees were
included throughout the conference proceedings. The

3Estimate based on partial demographic data.
4Attendance intentionally capped because of space constraints at host
institution.
5URM includes African American, Hispanic/Latino, Native American, Pacific
Islander/Native Hawaiian and Bi- or Multi-Racial.

reflection of URMwomen in every aspect of the conference
was very purposeful and important.

For some of the organizers, the relationships with for-
mer undergraduate professors continued throughout grad-
uate school, helping them to contend with a sense of iso-
lation and a new environment. The conference became a
vehicle to express appreciation for the dedication of these
mentors. Mentors can have an especially significant role
in supporting long-term success for women of color in
STEM fields pursuing graduate degrees [7]. Yet, the work
of mentoring is often not as visibly acknowledged as other
aspects of professional activities. To honor this impor-
tant work, the culminating event of each IPC has been the
presentation of the Dr. Etta Z. Falconer Award for Men-
toring and Commitment to Diversity, recognizing indi-
viduals that were nominated by their mentees and col-
leagues and selected by a panel of reviewers. Past recipi-
ents of the Dr. Etta Z. Falconer Award include Janis Old-
ham, Sylvia Bozeman, Ivelisse Rubio, Roselyn Williams,
Genevieve Madeline Knight, and Javier Rojo.
Addressing intersections of identity.

Your conference fulfills a unique role in the math-
ematical community. You inspire and encourage
young and minority women to excel in mathemat-
ics and address the concerns of being a profes-
sional and leading a satisfying life. Your holistic
approach has produced two exciting conferences
that are to my knowledge completely new to the
math world. (IPC attendee)

From the outset, the Infinite Possibilities Conference
was implicitly designed to address the intersections of
identity. Noted legal scholar Kimberlé Crenshaw intro-
duced the idea of intersectionality in the late 1980s as a
legal theory in order to shine a light on the inadequacy
of the law in addressing racism and sexism, and indeed
other forms of discrimination, when it failed to take into
account the “intersection” of individuals’ identities. The
notion of intersection is of course fundamental to math-
ematicians. An intersectional perspective in this context
requires us, as a mathematical community, to take into
account how, for example, a woman of color might experi-
ence gender bias differently from a white woman. People
at the intersections can even inadvertently be displaced,
and there is a need to address their experiences. While
valuable mathematical programming has been created to
support women or to gather students and researchers of
color, few initiatives are aimed specifically at those in the
intersections. (To put anothermathematical spin on it, the
many labels for race/ethnicity, gender, sexual orientation,
marital status, religion, and so on, are not mutually exclu-
sive.) How, then, can we create a mathematical commu-
nity where we don’t have to check some part of our identity
at the door in order to enter?
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I was able to connect with other women of color
who are in [the] mathematics field and learn how
they navigated the academi[c] world. (IPC at-
tendee)

While mathematics has been a consistent theme at each
IPC with parallel research talks and poster sessions, over
the years the programming committee has always made
space for participants to directly discuss the intersections
of their identities and their academic experiences. Some-
times these conversations have taken place in plenary pan-
els and sometimes through small-group discussions. All
spaces created a comfortable venue to share experiences
and advice.

Sessions on race and gender issues elicited stories that il-
lustrated the common experiences of isolation, tokenism,
and more. Even seemingly incidental examples reported
in the very first Proceedings of IPC, paraphrased here, cap-
tured these sentiments: One student expressed frustration
at feeling like a token as an undergraduate when a fac-
ulty member said to her, “Do you know how good it
would make us feel to have a black female go to gradu-
ate school?” Discouragement could come from fellow stu-
dents, as in, “Many had teaching assignments and when
a student heard I [a Latina female] had a fellowship [that
year], he said, ‘Oh, if I changed my name and gender, I’d
have one too.”’

These encounters had not created a sense of belonging
in the programs where they occurred. Importantly, IPC
was an opportunity to air these frustrations and larger chal-
lenges, at every level of participants’ careers, in a safe space.
Attendees shared suggestions for building support.

Later IPC programs have included sessions on themany
intersections of our lives: sessions on balancing career and
personal life, challenges of motherhood, being LGBTQ in
mathematics, and more. Parallel sessions allowed us to
create smaller group discussions that also spoke to partici-
pants at their specific stage in education and career. While
college students could attend a session on applying to and
thriving in graduate school, those later in their studies or
career could discuss negotiation skills and fighting gender
and racial stereotypes in the workplace. Specifically target-
ing the retention and advancement of faculty, Kerry Ann
Rockquemore, founder of the National Center for Faculty
Development and Diversity, led a workshop on “Solo Suc-
cess: How to Thrive in the Academy When You’re the Only

in the Department.”

I have multiple identities: by race/ethnicity, gen-
der, as a math nerd, by my [sexual] orientation
. . . IPC has been a space where I can find commu-
nity. I feel a sense of belonging in themathematics
world here, with others who don’t need to match
me in every characteristic. (IPC attendee)

Living history and Hidden Figures.

It really gave me more push and motivation to fin-
ish my degree. I was surrounded by women who
were great mentors and inspiration for me. (IPC
attendee)

I got to see influential women in the mathemati-
cal sciences who looked like me but also who had
gone through struggles and overcome similar ob-
stacles like myself in order to pursue education.
(IPC attendee)

The first IPC featured a special keynote speaker, Evelyn
Boyd Granville, one of the first African-American women
to earn a PhD in mathematics. Granville’s very presence
gave conference attendees a powerful connection with
their history. Her rendition of the debate regarding the
first African-American woman—Euphemia Lofton Haynes,
Marjorie Lee Browne, or Granville—to receive a PhD in
mathematics served as a priceless testimony celebrating
this groundbreaking achievement as a whole rather than as
an individual accomplishment [1]. Even more, Granville’s
mentor Lee Lorch, himself a civil rights activist and mathe-
matician, also attended the event. To round out the weight
of the moment, after Granville spoke, she posed for a pic-
ture with Tasha Inniss, Sherry Scott and Kimberly Weems,
the first three African-American women to receive doctor-
ates in math from the University of Maryland in the same
year. Subsequent IPCs have featured trailblazers includ-
ing Freda Porter, an entrepreneur and one of the few Na-
tive American women with a PhD in mathematics, and
Ruth Gonzalez, recognized as the first US-born Mexican-
American woman to earn a PhD in mathematics [4].

Figure 2. (From left) Kimberly Weems, Tasha Innis, Evelyn
Boyd Granville, Lee Lorch, and Sherry Scott. IPC at Spelman
College, 2005.

So often, when history is discussed in mathematics
courses, the names mentioned are connected to the the-
orems and equations that fill textbooks. We know the
names of Euler, Descartes, and Pythagoras, but we are
less familiar with the names of Granville, Gonzalez, or
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Porter. These pioneers and role models are important to
inspire future generations of URM women. Not only have
they paved a way forward, but they also serve as exam-
ples that it is possible to complete advanced studies in
mathematics. Plenary speakers discussed a range of math-
ematical subjects, often sharing their personal journey in
mathematics—both highs and lows. The IPC provided an
opportunity to demonstrate that URM women have made
and are making meaningful contributions to the field of
mathematics.

Upon learning about the upcoming release of Hid-
den Figures, the book and movie that showcase African-
American women’s contributions to mathematics, com-
puting, and space exploration, IPC co-founder Tanya
Moore conceived the idea of creating some type of IPC
and Hidden Figures collaboration. The connection was
evident, with IPC striving to promote URM women in
mathematics and Hidden Figures shining a spotlight on un-
sung “shero” mathematicians behind aeronautical break-
throughs. The timing could not have been more perfect as
the film’s screen release date was in late December 2016—
just weeks prior to the largest gathering of mathematicians
in the country.

Thus, at the January 2017 Joint Mathematics Meet-
ings in Atlanta, IPC—along with its umbrella organiza-
tion, Building Diversity in Science—partnered with the
American Mathematical Society, Association for Women
in Mathematics, Enhancing Diversity in Graduate Educa-
tion, and the National Association of Mathematicians, to
sponsor a panel on “The Mathematics and Mathemati-
cians behind Hidden Figures.” Moderated by Moore, the
panel featuredMargot Lee Shetterly, author of the book on
which the movie is based; Christine Darden, retired NASA
“human computer” whose contributions are discussed in
the book; and Ulrica Wilson, Associate Professor of Math-
ematics at Morehouse College, who presented the work of
another hidden figure, Dorothy Hoover.

This panel broke down walls—literally and figuratively.
Originally, the event was assigned to a room with space
for about 200; at the last minute, staff removed room di-
viders to increase the capacity and accommodate the mas-
sive crowd. This panel marked the first time IPC pro-
grammingwas introduced to the broader, mainstream, (in-
ter)national mathematics community. To the delight of
the organizers, positive response to this panel was over-
whelming, and it is our hope that after hearing about the
struggles and accomplishments of hidden figures, atten-
dees who may have felt like outsiders began to experience
a sense of belonging in mathematics.

The power of learning this history is captured in inspir-
ing terms by Shetterly in the prologue to her book: “What
I wanted was for them to have the grand, sweeping narra-
tive that they deserved, the kind of American history that

belongs to the Wright Brothers and the astronauts, to
Alexander Hamilton and Martin Luther King Jr. Not told
as a separate history, but as a part of the story we all know.
Not at the margins, but at the very center, the protagonists
of the drama. And not just because they are Black, or be-
cause they are women, but because they are part of the
American epic. [8].”

Figure 3. (From left) Tanya Moore, Margot Lee Shetterly,
Christine Darden, and Ulrica Wilson. The Mathematics and
Mathematicians behind Hidden Figures Panel, Joint Math
Meetings, Atlanta, Georgia, 2017.

Looking towards the future. Each IPC has been planned
by a group of women from around the country who vol-
unteered their time to make IPC a reality. Membership in
the organizing committee intentionally changed for each
conference in order to continue to bring fresh ideas and di-
verse perspectives to the program. Meanwhile, at each host
institution, a local committee supported the conference
activities. A consistent group of women provided lead-
ership from year to year as members of an IPC Advisory
Board. Members of the IPC Advisory Board have included
Erika Camacho, Leona Harris, Lily Khadjavi, Tanya Moore,
Nagambal Shah, and Kimberly Weems, who shared their
perspectives on sites for the conference, key themes to
incorporate, and suggestions for organizing committee
members.

Though the first IPC was a grassroots effort, the lead-
ership realized the need to form collaborations for sus-
tainability of the initiative. After the first conference, IPC
formally joined a non-profit, Building Diversity in Science,
whose mission to inspire, empower, and support under-
represented groups in the pursuit of STEM careers aligned
with the goals of IPC. Early in the history came a partner-
ship with the NSF Math Institutes. These collaborations re-
sulted in increased staff support for essential tasks such as
registration, travel reimbursements, and advertising, and
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allowed the organizing committee to focus more of its en-
ergy on creative programming for the conference. Primary
and consistent conference support was obtained from the
National Science Foundation and, in various years, the Na-
tional Security Agency, host institutions, and other corpo-
rate funders. A significant portion of the funding went
towards providing student travel scholarships and for un-
derwriting the majority of conference expenses in order to
keep registration fees low. Partnerships have been critical
to IPC’s ability to endure over the last fifteen years.

The conference really lifted my spirits and helped
me to move forward. As a first year graduate stu-
dent, I needed to hear the stories of women who
look just like me who have also struggled with
racism, sexism, and favoritism in their respective
institutions but through faith, help, and support
from family and peers, and, most importantly,
with strong determination were able to overcome
these obstacles and succeed. After the conference
I came back to my school rejuvenated and ready
to take on the world. (IPC attendee)

As the only program of its kind, IPC has aimed, since
2005, to sustain the spark for women who have an in-
terest in math. IPC creates a space where personal iden-
tity doesn’t have to be separated from identity as a math-
ematician. Shared cultural experiences help establish a
community in mathematics so that participants are not
alone in their academic and professional pursuits. We
have learned that a two-to-three-day conference, as one
piece of a web/network of activities, can make a difference.
The founders set out to create a conference to honor their
alma mater and share the best of what they received with
other women like them. They wanted a conference that
created community, embraced the full identity of partici-
pants, and highlighted relatable models of success for stu-
dents and professionals. They came to see it as creating
belonging.

References
[1] Bettye Anne Case and AnneM. Leggett (eds.),Complexities:

Women in mathematics, Princeton University Press, Prince-
ton, NJ, 2005. MR2118372

[2] D. J. Dean, Getting the most out of your mentoring relation-
ships: A handbook for women in STEM, Springer, New York,
NY, 2009.

[3] A. L. Golbeck, T. H. Barr, and C. A. Rose, Report on the
2017–2018 New Doctoral Recipients, Notices Amer. Math.
Soc. 67 (2020), no. 8, 1200–1206.

[4] C. Mellado, Ruth Gonzalez: Looking for oil with math, His-
panic Engineer 9 (1993), no. 4, 18–20.

[5] National Academies of Sciences, Engineering, and
Medicine, Effective mentoring in STEMM: Practice, research,
and future directions: Proceedings of a workshop in brief, The
National Academies Press, Washington, DC, 2017.

[6] National Science Foundation, National Center for Sci-
ence and Engineering Statistics, special tabulations of US
Department of Education, National Center for Education
Statistics, Integrated Postsecondary Education Data Sys-
tem, Completions Survey, unrevised provisional release
data, 2016, https://nces.ed.gov/ipeds/.

[7] M. Ong, C. Wright, L. L. Espinosa, and G. Orfield, Inside
the double bind: A synthesis of empirical research on undergrad-
uate and graduate women of color in science, technology, engi-
neering, and mathematics, Harvard Educational Review 81
(2011), no. 2, 172–209.

[8] M. L. Shetterly, Hidden Figures: The American Dream and
the Untold Story of the Black Women Mathematicians Who
Helped Win the Space Race, Harper Collins, New York, NY,
2016.

[9] E. Yong, What we learn from 50 years of kids drawing scien-
tists, The Atlantic, March 20, 2018.

Credits

Figure 1 is courtesy of David Weisbart.
Figure 2 is courtesy of Frederick Moore.
Figure 3 is courtesy of Edray Herber Goins.

A Source List to Support
DEI/EDI Work in
Mathematical Sciences

Deborah Kent, Emilie Aebischer,
and Stuart Neave
Many mathematicians have recently become interested
in considering matters of diversity, equity, and inclusion
(DEI/EDI) in their professional work. For some, this is
prompted by documents such as the Mathematics Frame-
work1 proposed in 2021 by the California Department
of Education, or the Quality Assurance Agency (QAA)
2022 revised subject benchmark for Mathematics, Statis-
tics, and Operational Research2 (MSOR) in the United
Kingdom, both of which stress the importance of consid-
ering DEI/EDI work for the discipline. The QAA bench-
mark states that “Equality, diversity and inclusion (EDI)
is essential for the health of MSOR, and it is important
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that the discipline encourages inclusivity and access to en-
sure learners are attracted from diverse backgrounds, that
the curriculum and environment enable them to succeed
in their studies, and that the subject is enriched by input
from diverse practitioners.”

The source list presented in this article is available in
full and linked here to arXiv,3 is designed as a resource to
support work in the education and practice of mathemat-
ics that involves DEI/EDI. The project developed alongside
a UK network funded by the Issac Newton Institute to cre-
ate an environment for discussing the place of DEI/EDI in
mathematics curricula in higher education.

The associated source list provides a variety of start-
ing points for people interested in a range of concerns re-
lated to gender, race, ethnicity, (dis)ability, class, or sexu-
ality that currently impact the study and practice of mathe-
matical sciences at the postsecondary level. It makes no
claims of completeness—many individual sources listed
here could generate entire bibliographies of other relevant
material—but is intended to provide a collection of refer-
ences with a variety of perspectives that can serve as an in-
troduction to relevant literature for mathematical practi-
tioners. There is no explicit or implicit instruction to read
these in any particular order, or to read every source on
the list. Indeed, interested individuals will be in different
institutional contexts with a varied range of interests and
priorities related to DEI/EDI initiatives. This document is
intended as a resource for anyone looking to deepen their
own understanding of societal oppression, discrimination,
inequity; how these things could impact the teaching and
learning of mathematics; and ways instructors might re-
dress the situation. It will necessarily involve individual
efforts to implement resulting insights for a particular au-
dience or approach. Each section of the reading list is intro-
duced by a brief overview to assist readers with identifying
materials of interest to them.

The selected sources are organized by scale, startingwith
general interest works that interrogate gender, race, ethnic-
ity, (dis)ability, class, or sexuality in contemporary society.
This is followed by articles and books that present research
results about how matters of inequity, exclusion, and ho-
mogeneity surface in STEM educational contexts. Then
come sources focused specifically on the past and present
of interplay between these themes and the study and teach-
ing of mathematics. Each section includes a range of mate-
rial organized alphabetically by author and not further cat-
egorized. Taken all together, these sources indicate some
contours of current challenges that face mathematicians
engaged in efforts to create diverse, equitable, and inclu-
sive classroom environments.

The second part of the list looks at visions for and ap-
proaches to creating better environments for all students

3https://arxiv.org/archive/math

of mathematics in higher education. It begins with a col-
lection of sources that have a conceptual or theoretical ori-
entation toward the challenges of creating more inclusive
mathematics classrooms. The list then moves to consider
approaches that specifically involve the history of mathe-
matics as a tool to address the challenges faced by the com-
munity of mathematical practitioners. There are two pri-
mary threads of related research: one focuses on using pri-
mary sourcematerial to teachmathematical content, while
the other draws on historical research to increase represen-
tation in mathematical sciences.

General Social/Cultural Context
These general-interest books introduce a broad range of
issues related to inequity and discrimination in contem-
porary society. One core theme is a call to recognize nor-
mative conditions that create discriminatory perceptions
of “nonconforming” people. Both Lennard J. Davis in
the introduction to The Disability Studies Reader and Fiona
Kumari Campbell in a more technical tome, Contours of
Ableism, interrogate normativity in relation to perceptions
of people with disabilities. Similar considerations of ex-
clusionary norms appear in Reni Eddo-Lodge’s Why I’m
No Longer Talking to White People About Race and the in-
troduction to Nikesh Shukla’s The Good Immigrant. An-
other theme in this section is the recovery of neglected
histories. David Olusoga’s Black and British: A forgotten
history counters the narrative that excludes Black people
from British history before Windrush. In Racism, Class,
and the Racialized Other, Satnam Virdee presents a social
history of Britain where race is a vital factor in the devel-
opment of a working class. Selina Todd’s Snakes and Lad-
ders: The Great British Social Mobility Myth is another his-
torical work that provides social context relevant to the
matter of higher education in mathematics and other sub-
jects. While most of these works aim at a general audi-
ence, there is variation in approach and tone. Some, like
The Routledge Handbook of Epistemic Injustice are consider-
ably more technical than public-facing titles. On the more
personal-development end of the spectrum, Layla Saad’s
Me and white supremacy encourages the reader to engage in
self-reflective journalling alongside the text. Other works,
like Ibram X. Kendi’s How to be an Antiracist are more auto-
biographical. Similarly, Eileen Pollack’s The Only Woman
in the Room relies on her own experience as a mathematics
student at Yale to illuminate past and present biases in the
discipline.

In STEM Education
Inequity and discrimination based on gender, race, eth-
nicity, (dis)ability, class, and sexuality observed and ex-
perienced in society is also documented to exist in edu-
cational contexts in both the United States and the United
Kingdom. In 2015, the Council for Mathematical Sciences
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report on The Mathematical Sciences People Pipeline
found that in the UK, female students make up about 40%
of undergraduate students in the mathematical sciences,
but this number drops to 33% in postgraduate students in
themathematical sciences. This drops again formathemat-
ics postgraduate students, of which 28% identify as female.
Black students make up 3% of undergraduate students in
the mathematical sciences, which is lower than the 6% of
the general undergraduate student population. The pro-
portion of students with a reported disability is lower for
postgraduate students (5%) than undergraduate students
in the mathematical sciences (8%) and both of these are
lower than in the general student population. Beyond uni-
versity students, women made up only 15% of all active
authors in math, physics and computer science in the UK
in 2010 (see Huang J., Gates A. J., Sinatra R., Barabási A.-L.
[2020]).

The US Equal Employment Opportunity Commission
published its Annual Report: Women in STEM (FY2019)
which states “Overall, women accounted for 29.3 percent
of STEM federal workers. Science occupations had the
most (49,546), while math occupations in the federal sec-
tor had the fewest number of women (6,469). There were
significantly fewer women in Technology and Engineer-
ing than expected.” A common metaphor to describe the
phenomenon of more and more women dropping out of
STEM as they advance through education and their career
(at a higher rate than males), is that of a “leaky pipeline.”
The linked Catalyst4 website has extensive related data and
information.

It is generally acknowledged that the lack of diversity
and inclusion stems less from overt exclusion happen-
ing at the level of student acceptance and recruitment,
and more from deeper-seated societal pressures combined
with implicit stereotypes and expectations. The longstand-
ing Draw-a-Scientist5 project both reveals and questions
existing assumptions about the identity of a scientist as
white, able, and male. One suggested explanation for
this is that scientific epistemology represents an inher-
ently white, masculine world view. Other existing research
posits other possibilities, including: stereotypes of intel-
lectual brilliance and implicit bias; absence of role mod-
els; greater accessibility of science curricula to men than
women; lack of belonging; sexism; sexual harassment; and
a notion that “doing mathematics is doing masculinity.”
More generally, there is are questions of who can be a
mathematical practitioner and what doing mathematics
entails.

4https://www.catalyst.org/research/women-in-science
-technology-engineering-and-mathematics-stem/
5https://doi.org/10.1111/j.1949-8594.2002.tb18217.x

Past and Present in Mathematics
While the sources above explore questions of equity, diver-
sity, and inclusion in STEM educational contexts, this sec-
tion focuses more narrowly on mathematics. References
here vary widely in both intention and scope as they ex-
plore both historical development and contemporary fac-
tors that have contributed to persistent, systemic inequities
and discrimination in the field.

June Barrow-Green’s “TheHistorical Context of theGen-
der Gap in Mathematics,” analyzes cultural attitudes to
women involved in mathematics from the eighteenth cen-
tury onward. Similarly, Claire G. Jones’ Femininity, Math-
ematics and Science, 1880–1914 tracks the mechanisms of
inclusions and exclusions in science and mathematics nav-
igated by women at the turn of the twentieth century. In
Masculinity and Science in Britain, 1831–1918, Heather El-
lis investigates ways in which mathematics and science
gained a masculine identity. These three sources—and
others on the list—highlight matters related to gender
in mathematics. There are many additional factors that
impact inequities and exclusions in the field. Texts by
Joseph Dauben and Kapil Raj scrutinize approaches to
the history of mathematics through an exclusively west-
ern lens. Others, including Theodore M. Porter and Ruth
Schwartz Cowan, highlight how mathematical reasoning
created and perpetuated individual categories of people.
In another sense, the sources included here encourage the
reader to consider the scope of mathematics, and to recog-
nize its involvement particularly in the physical and invis-
ible world around us.

Mathematical and technical tools have at times facil-
itated the construction of an exploitative reality. For
example, Langdon Winner’s “Do Artifacts have Politics”
and subsequent book The Whale and the Reactor explain
how technological machines and constructions can con-
tain and exercise power on society. More recent works in-
vite an examination of everyday algorithms and how they
might codify systemic inequities. Cathy O’Neil’s Weapons
of Math Destruction is at the forefront of this work, show-
casing how mathematical algorithms perpetuate existing
biases. Studies about the deployment of algorithms by po-
lice departments has been especially insightful; as seen in
works by Virginia Eubanks and Sarah Brayne. Meanwhile,
Joanna Radin’s “Digital Natives” shows how demographic
data samples can be taken and reused in radically differ-
ent contexts, and can perpetuate patterns of “settler colo-
nialism” in the process. As the influences of big data and
algorithms grow, so too does the potential for them to per-
petuate oppression. Above is a sample of the themes rep-
resented in this section of the reading list. We encourage
the reader to dive in wherever their interest takes them.
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Alternative Visions and Approaches
Given the above articulations of various ways mathemat-
ical education faces challenges in this social context, this
section contains materials with suggestions on how one
might approach mathematics and mathematics education
differently. Central to such efforts is the realization that
mathematics is a social practice, which has been shaped
by (and reciprocally also has shaped) historical and social
trends: it is not acontextual or independent from human
experience. Rather than something existing independently
from humans, mathematical practice is continuously con-
structed and reconstructed by humans. Glas (2006) inves-
tigates how mathematics can be both objective and a his-
torically contingent practice.

The acknowledgment of mathematics as dependent on
human context is essential within a discussion of DEI/EDI
because it counters the pervasive notion that mathematics
is based on intuition, possessed by some and not others.
This myth serves to justify arguments which posit only cer-
tain people as capable of doing/understanding mathemat-
ics. Further, once mathematics is considered as a social
practice, it becomes possible to acknowledge that different
societies have different ways of doing mathematics, with-
out positing a hierarchy between them. This insight was
central to the development of ethnomathematics, a field
pioneered by Ubiratan D’Ambrosio, who critiqued the sep-
aration of mathematics from questions of social justice
and cultural issues. Many of the articles included in this
section thus argue that mathematics education should ad-
dress questions of justice and ethics, and aim to include
students’ backgrounds in the learning of mathematics.

From such a point-of-view, the history of mathemat-
ics is not only essential to the realization that mathemat-
ics has been constantly changing through societal interac-
tion and that different ways of doing mathematics have
existed, but it also becomes a central feature of mathe-
matics education. While some argue that the inclusion
of history in mathematics education serves to deepen the
knowledge/understanding of students and offers different
ways of learning and approaching mathematics (for such
approaches see the section on using primary sources for
mathematics education), others see it as a valuable end
in itself. Indeed, a study of the history of mathematics
confronts students with different ways of doing mathemat-
ics. This can both interrogate existing assumptions about
mathematical knowledge production and invite students
to position themselves not as passive recipients, but as
meaning-makers in the classroomwho are navigating their
identity in relation to mathematics.

There are a number of websites designed to increase vis-
ibility of diverse role models in mathematics. The web-
site that is now Mathematicians of the African Diaspora6

6https://www.mathad.com/home

was started in 1997 by Scott Williams to promote the
contributions to mathematical research from members of
the African diaspora. The name of the Mathematically
Gifted & Black7 website comes from a song sung by Nina
Simone and cowritten by Weldon Irvine. It was created
in 2016 and features the accomplishments of Black schol-
ars in the mathematical sciences. Marie A. Vitulli cre-
ated The Women in Math Project8 in 1997 to make ac-
cessible some resources and information for and about
women in mathematics. It is still hosted by the Univer-
sity of Oregon. As part of an ongoing project hosted by
Agnes Scott College, Biographies of Women mathemati-
cians9 spotlights achievements in mathematics from both
contemporary and historical women. The SACNAS10 biog-
raphy project has an online archive of stories by and about
Chicano/Hispanic and Native American scientists with ad-
vanced degrees. Spectra, The Association for LBGTQ+
Mathematicians hosts Out Lists11 to provide resources and
support for interested mathematicians.

Additional sources suggest other ways that careful and
thoughtful implementation of research in the history of
mathematics can contribute to the discipline developing
in a direction of greater inclusivity. Work in the history of
mathematics can provide a platform from which to view
the discipline critically and many of these works aim to
alter our view of mathematical knowledge, its production
and people. They have expanded the discussion to include
previously ignored contributions, to take a global view of
mathematical practice, and to challenge existing notions
about the mathematical professions. Such resources can
assist in highlighting past incidents of oppression and dis-
crimination, while uncovering some roots and causes of
persistent legacies today. Research in and resources from
the history of mathematics can also be effective tools to
help build a more inclusive discipline.

Additionally, there exists a body of work about using
primary historical sources to teach technical mathematical
content. This can facilitate differently accessible learning
and also create connections beyond the standard curricular
content.

Conclusion
One purpose of this source list is to facilitate an aim artic-
ulated in the recent QAA Benchmark Statement for MSOR:
“values of EDI should permeate the curriculum and ev-
ery aspect of the learning experience to ensure the diverse
nature of society in all its forms is evident.” Although
the collection of sources listed here is only a sample of
available resources, the list has been assembled as an aid to

7https://mathematicallygiftedandblack.com/
8https://pages.uoregon.edu/wmnmath/biographies.html
9https://mathwomen.agnesscott.org/women/women.htm
10https://www.sacnas.org/sacnas-biography-project
11http://lgbtmath.org/People.html
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make this work less daunting. It is not possible to provide
a single document that will target every particular concern
or priority given the wide range of contexts in which math-
ematical practitioners work. Specific implementation in a
particular context will necessarily involve personal effort
and perhaps attempts and revisions. This curated collec-
tion of resources nonetheless aims to give a broad range of
documents that can support DEI/EDI efforts. Particularly
important to this resource is the inclusion of work from
the history of mathematics alongside texts that document
DEI/EDI issues in broad cultural contexts as well as more
specific educational contexts. The history of mathematics
is especially well positioned to facilitate a move within the
discipline of mathematics toward greater inclusivity. His-
torical studies can not only illuminate roots and causes
of oppressive practices, but also challenge dominant nar-
ratives of who mathematics includes. The QAA statement
states “it is highly desirable that students encounter a wide
range of role models within higher education.” While the
community works to elevate an array of identifiable role
models, sources listed here can perhaps help ameliorate
challenging circumstances. In these ways and others, his-
torical scholarship provides resources to help set a brighter
course for the future of the mathematical sciences.

Deborah Kent Emilie Aebischer

Stuart Neave

Credits
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Challenges and Rewards
Facing Foreign-Born Female
Mathematicians in the US

Bhamini M. P. Nayar
My story begins with my father, who was a renowned edu-
cator and a well-known poet in Malayalam, the language
of Kerala State, India. I grew up watching his interactions
with colleagues and former students who often came to see
him and would discuss poetry and literature. I observed
how he cherished his students and how much he was ad-
mired. He devoted his life to teaching and learning and left
a lasting legacy of a true scholar. His ability to listen, ex-
plain things without making others feel intimidated, and
his directness in conveying ideas were some of his inim-
itable qualities. His students often commented about his
calm explanations and I observed thatmany sought the op-
portunity to be his students. He instilled in me a courage
based on humility and purpose. My father encouraged me
to study any subject I wanted but insisted that I study it
well. I wanted to follow his career choice as an educator
and chose to become a mathematician.

When I was in the tenth standard, my father wrote four
lines of a poem just for me, which translates as the follow-
ing:

My daughter, victory is at hand for actions of an unwa-
vering and incorruptible mind; darkness envelopes the
world with vengeance, but sun is sure to rise and rise
it will. [1]

The message of those four lines, were prophetic later
when I faced all of the challenges mentioned below. They
kept me going knowing that the sun’s rays were sure to rise
to chase away the darkness. The source of those rays came
in the form of dedicated mentors, colleagues, friends, and
especially students.

All my education was in India. I started my career in the
United States soon after I receivedmy PhD inmathematics
from the University of Delhi, India. When I arrived, I was
full of anticipation, especially since I was startingmy career
in a new country with a different culture. I was excited
to be an educator and to be responsible for helping and
preparing young students for their future careers. I knew it
was going to be challenging because I was unfamiliar with
the new environment. In retrospect, it was rewarding as
well as challenging.

Bhamini M. P. Nayar is a professor of mathematics at Morgan State University.
Her email address is Bhamini.Nayar@morgan.edu.

DOI: https://doi.org/10.1090/noti2897
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Dedicated mentors who stand by us when situations
become exceptionally challenging are invaluable. I was
extremely fortunate to have had such help. While I was
doing my PhD in India, I had the opportunity to read sev-
eral articles by Professor James. E. Joseph. When I arrived
in the United States, one of the first things I did was to
ask to meet with Professor Joseph. He was generous with
his time and during our first meeting he showed great in-
terest in my work [1]. To quote from what I said at the
time of Professor Joseph’s retirement, “I went to see Pro-
fessor Joseph that day with a very apprehensive mind of a
nervous student going to discuss his/her ongoing research
with a well-known and well established researcher in the
field and I came home with the relief of finding someone
with whom I felt comfortable to discuss my doubts, even
those I thought I ought to know. That has been my expe-
rience with Professor Joseph, ever since” [2]. Although I
had offers for positions from other universities, I accepted
a position in his department to work with and learn from
him [1]. He has been a mentor to me in the US until his
recent passing.

When I started teaching, I was not familiar with the ed-
ucational system in the US. As a young woman and fresh
PhD, I was very apprehensive despite being passionate
about teaching and research. I made every effort to pre-
pare any topic I was going to teach well in advance so that
I could teach my classes with confidence. I knew that a
good student could recognize an instructor who was not
confident about the subject and who was not in control of
the class. During one of my first semesters teaching Calcu-
lus, I found that the students did not do well on the first
test I gave. With the graded tests in hand, I asked the class
what the difficulty was on the test. One student was bold
enough to tell me, “well, we all speak English” and went
on to say something more. For someone who had all her
higher education in English, I had no doubt of my ability
to explain mathematics in English, but of course I had the
accent of someone who recently came from India. I did
not notice the undertone of that student’s comment until
after the class when several students came to apologize to
me for their classmate’s statement.

I was fortunate to have had excellent teachers through-
out my education. I graduated with an MSc in Mathe-
matics fromUnion Christian College (UCC), Kerala, India.
My success as an educator is significantly due to the early
training I received there. Two of my professors, M. Mad-
havankutty (MM) and N. S. Neelakantan (NSN) taught
me for seven years (two years of predegree courses, three
years of BSc courses, and two years of MSc courses). MM’s
ability to control the class with a winning smile, never be-
ing agitated and NSN’s ability to describe a problem in
meticulous detail are phenomenal. I learned from each of
these exemplary educators and I try to emulate them inmy

interactionwith students, both in and out of the classroom
[1]. The challenges we face in the classroom are generally
manageable with dedication to the profession and prior
preparation, with the understanding that the instructors
and students are in this journey together, and that with-
out challenge there is no excellence.

I recall that one of the questions I was asked by the
vice president for academic affairs during the interview be-
fore I was hired was how I would handle a class in which
students have different levels of prior preparation. My re-
sponse was that I would look at the students directly while
teaching so that if anyone was feeling lost, I would stop
and explain what was not clear. From that question, it
was evident to me that he valued an instructor’s ability to
communicate well with the students. I kept that in mind
throughout my career as an instructor. Later when one of
my graduate students commented that I move with stu-
dents in their journey of learning, I felt satisfied to note
that I was not unsuccessful in that attempt.

Every day brought new teaching challenges, primarily
because my educational background was from a different
system. In particular, the challenges were in navigating the
cultural and training differences of students in the US and
meeting the expectations of the profession without com-
promising my integrity. The rewards came in seeing my
students succeed as a result of my teaching and molding
their thinking about mathematics, as well as when I got to
know the students individually and was able to help them
navigate whatever difficult situations they were struggling
with. Also, I felt rewarded when students took the time
to let me know that all the hard work, I had expected of
them was worth it, though they did not realize at the time.
Anyone who has had similar experiences is bound to feel
the same immense satisfaction.

Outside of the classroom, I was originally extremely
happy to be among seemingly friendly colleagues and stu-
dents seekingme out for help. I did not mindmy office be-
ing crowded with students. When many of my colleagues
were happy and eager to attendmywedding reception, and
when the baby shower organized for me by the depart-
ment was attended by many of my colleagues, I thought
these were indications that I was accepted. Later, when it
came time for recognition and rewards and I saw the role
that power dynamics played, I understood the emptiness
of that acceptance. One of my trusted senior colleagues
had warnedme (often indirectly) not to believe every state-
ment of appreciation, yet I only realized later what a valu-
able lesson this was.

After that, I understood that I might have to face in-
timidating situations, both in the classroom and among
colleagues. This was confirmed by my experiences of be-
ing constantly tested, questioned, and doubted. When
I was asked to do a task for the department, I would
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complete it with professionalism and dedication, expect-
ing to be appreciated as a valuable team member. To my
dismay, my work would often be forgotten. For someone
who has done above and beyond their peers in similar situ-
ations, such blows wouldmakeme lose balance and create
self-doubt, which affected my overall well-being. When it
came to career advancement, I was required tomeet higher
expectations than what was asked of my male peers. This
made me wonder whether women must be better than
their male counterparts in order to receive the same level
of recognition. During each of these periods, my students
were always the shining light. Working with them, seeing
their appreciation of my dedication, and watching their
progress always brought joy to my life.

The early training I received from my teachers, and how
they listened to my doubts and guided me with respect,
molded my approach to my profession. As my father ex-
pressed in his poem, the “actions of unwavering and in-
corruptible mind” chase away the vicious darkness. For
me, what chases away the vicious darkness are the hard-
working students, dedicated mentors of incorruptible in-
tegrity, and professional colleagues and friends who make
the workplace atmosphere a supportive family environ-
ment.

Having gone through this journey as amathematician, I
wonder whether those who are starting their careers know
how to navigate a fulfilling professional journey, without
being battered along the path as I was. I think that this
question is more pronounced for female mathematicians
than for their male counterparts, especially those who
come from a different country and culture. I pondered
throughout my career how to mentor my students so that I
could look back later in life with the satisfaction of having
helped them achieve productive and satisfying careers. So,
when I was invited to write an article for the Early Career
section, I accepted the offer with the hope that sharing my
experiences might be of some help to others who are in
similar situations.

One lesson I have learned is that female mathemati-
cians originally from another country who choose to be
mathematics educators in the US may face the following
challenges:

1. In the beginning, we are naive and just happy to be
in the profession of our choice, so we might not be
aware of judgements about us. But they can hit us
hard later.

2. We are often subject to a disparity in career advance-
ment in terms of tenure, promotion, salary and com-
pensation, recognition, and workplace atmosphere,
which may be presented as “keeping standards up.”

The most important advice that I want to pass on is
the importance of finding a good mentor with experience

and integrity and following their guidance to navigate the
rough waters you may face in your professional journey.

I shall conclude this essay with another quote from the
article I wrote to Professor Joseph on the occasion of his
retirement.

I am fortunate to have had some great teachers
and I remember them quite affectionately. Even
though I was not fortunate to be one of your
formal students, among my teachers, you are in
the forefront. There was not a single instance
when I had a conversation with you and I had not
learned something, let it be mathematics or other-
wise. You taught me to continue to be a student
to be a better teacher; you taught me how to care
for the students, while being insistent about their
learning; you taught me not to be intimidated
by pretentious individuals; you taught me not to
lose self-respect while facing obnoxious and con-
descending opposition; you taught me to respect
an opposite point of view; you taught me not to
lose confidence in the right when faced with un-
fair opposition, and I am still learning from you
not to be vengeful, but to concentrate on the task
at hand. Yes, I was looking for a friend like you,
a friend whom I can always count on, a friend to
whom I can confide without being afraid of being
judged, a friend who will invariably try to make
me feel better when I feel sad, a friend who under-
stands what I say without reading between the sen-
tences, a friend who does not hesitate to oppose
me and correct me when I am wrong and a friend
whose silence is also eloquent. Yes, I was also look-
ing for a mathematician whose mathematical abil-
ities did not reach to arrogance. I thank God that I
found in you not only such a great mathematician,
but also a teacher, a friend and above all a genuine
integral human being. [2]

I believe the understandingwithout judgement and sup-
port without being asked that I received from Professor
Joseph are the type of mentoring that we all need. I know
very well how it prepared me to be strong and courageous,
and to speak the truth when necessary while maintaining
my professional integrity. I strive to be the kind of men-
tor to my students and my junior colleagues that he was to
me.

I hope that each person, especially a foreign-born fe-
male who embarks on a rewarding journey as an educa-
tor and mathematician, will find a mentor who will see
her inner strength and mold that strength into an unbreak-
able spine to stand tall. I hope she will have support-
ive colleagues to work with who value her contributions.
We all need that support to survive, flourish, and never
give up, even when faced with intimidating situations or
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pretentious opposition. As we stand tall with our profes-
sionalism and integrity, we create lasting images for gener-
ations of students to follow. That is our legacy.

ACKNOWLEDGMENTS. I acknowledge with sincere
appreciation the critical comments I received from my
friend and colleague Dr. Ahlam Tannouri of the Depart-
ment of Mathematics at Morgan State University and
from the editors of the Notices of the American Mathe-
matical Society. Their critical reading and editing made
this article a better reading than it was before the edit-
ing.
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Dear Early Career
Is it beneficial to pause the tenure clock after the ar-
rival of a baby?

—Assistant Professor
Dear Assistant Professor,

I am a tenured associate professor in mathemat-
ics at the Ohio State University and mother of two
young children, and I chose not to pause the tenure
clock. However, one of my colleagues in a similar po-
sition decided to pause the clock twice on account of
the birth of her two children. So, why do some peo-
ple decide to pause the clock while others do not?

I don’t think there is an easy answer to this ques-
tion, and it depends on personal circumstances and
the culture of your department, but I’ll share the in-
formation that I have gathered on the topic. Ulti-
mately, I hope this article acts as a catalyst for further
dialog.

The tenure evaluation process for assistant profes-
sors takes place after a fixed period of time that is
usually specified when the candidate is hired. Dur-
ing this time, the candidate is expected to produce a
portfolio that reflects their productivity and contribu-
tions, their “brand” really, as an academic and mem-
ber of the department. If you stop doing research
while taking care of a new baby, it may make it dif-
ficult to meet research expectations for tenure. Paus-
ing the clock is a way of “erasing” this inactive period
from your CV when you go up for tenure. The idea
being that no research is expected during this time.

There are primarily two types of tenure clock stop-
ping policies. Gender-neutral policies offer equal
benefits to both new mothers and fathers, while
female-only policies are only available to women.
For a discussion of the pros and cons of the two dif-
ferent types of policies see [1]. Note that pausing the
tenure clock is distinct from taking leave. If your uni-
versity offers paid leave or a semester course release,
then take advantage of this.

My first son was born shortly before I was eligi-
ble to go up for tenure, and I felt that my file was al-
ready in good shape for promotion. I did not want to
spend another year worrying about it, and so I chose
not to pause the clock. If I had my children at the
beginning of my tenure-track position, I may have
chosen differently.

My aforementioned female colleague, however,
had both of her children in the early years of her as-
sistant professorship. From talking with her, I got
the impression that stopping the clock was a neces-
sity. When asked about her decision, she said, “it was
imperative that I extend the clock as I did not get much
of a break to rebound back health/work wise quickly. . . . I
would encourage others to extend the clock since it ends
up being difficult to get back into the swing of research
after having a child (although, the time and effort of be-
ing a parent never ceases even after the year of giving
a birth). And by doing so, this allows the option to be-
come more of a norm for other women without stigmatiz-
ing them.”

I strongly encourage you to talk with other par-
ents at your university to hear about their experi-
ences. Be assertive and don’t hesitate to ask for advice
about how and what to ask for when discussing your
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situation with your chair or dean. Did they get a
course release? Did they take paid leave? Also, if pos-
sible, find someone in your department who already
paused the clock and ask them if it was worth it. You
may also talk to your human resources department
to learn about your university’s offerings to support
the birth or adoption of a child.

Deciding to pause the tenure clock or not depends
largely on your individual circumstances, including
the culture of your department and the timing of the
arrival of your baby. Stopping the clock will mean
you get tenure later, but you will have more time to
bolster your record. On the other hand, if you are
confident that your academic file is already in good
shape for tenure, then you may decide not to stop
the clock. This comes with the benefit of being pro-
moted earlier and having the task of getting your file
together for tenure off your plate. For ideas on keep-
ing the momentum going while on parental leave,
see this piece by Yumeng Ou [2]. Congratulations
on the addition to your family, and best of luck in
your research endeavors.
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Have a question that you think would fit into our
Dear Early Career column? Submit it to Taylor
.2952@osu.edu or bjaye3@gatech.edu with the
subject Early Career.
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The Joan and Joseph Birman Fellowship for Women Scholars awards exceptionally talented 
women extra research support during their mid-career years. 

Greta Panova, Gabilan Distinguished Professor of Science and Engineering and 
professor of mathematics at the University of Southern California, received the 2024–
2025 Birman Fellowship for her research in Algebraic Combinatorics with connections 
to Representation Theory, Computational Complexity Theory within Theoretical 
Computer Science and with Probability and Statistical Mechanics. Separately, she 
works with a team of molecular biologists on modeling DNA repair dynamics.

Joan S. Birman earned her Ph.D. in mathematics at 
41 years of age and went on to become a leading 
scholar of braid theory and knot theory. Read about her 
career and her reasons for creating this fellowship on 
www.ams.org/giving/giving_op/birman-fellowship-fund.
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Joan and Joseph Birman Fellowships awarded to date:

2023–2024 Jennifer Balakrishnan

2022– 2023 Bianca Viray
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2020–2021 Karin Melnick
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The Ruth Lyttle Satter Prize was established in 1990 by Joan S. Birman in memory of her sister, 
botanist Ruth Lyttle Satter.

The 2023 Ruth Lyttle Satter Prize is awarded to Panagiota 
Daskalopoulos of Columbia University and Nataša 
Šešum of Rutgers University for their groundbreaking 
work in the study of ancient solutions to geometric 
evolution equations.
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Ruth Lyttle Satter Prizes awarded to date:

2021 Kaisa Matomäki

2019 Maryna Viazovska
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1995 Sun-Yung Alice Chang

1993 Lai-Sang Young
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The Unfailing Optimism
of Dr. Gloria Ford Gilmer
(1928–2021)
Tanya Moore and Josh Levy

Introduction

Figure 1. Gloria Ford Gilmer,
undated.

Chatting with a friend at
a wedding reception one
day, a guest’s braided hair
caught Gloria Gilmer’s eye.1

Her friend, unimpressed,
turned to her and said, “I
can’t stand that hairstyle!”
“But look at his scalp,”
Gilmer replied. “It’s com-
pletely tessellated with
hexagons!” Her friend
laughed. Gloria Ford Gil-
mer was known for seeing
mathematics in places oth-
ers did not. But she was
also known for understand-
ing the power mathematics

could have in building amore just and equitable world. So
the tessellations stayed with her, and within a few years be-
came the basis for a project that aimed to bring hair braid-
ing into the math classroom, asking not only how their
geometry could help students build skills but how math
could help stylists outside the classroom build community
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wealth. Over the course of a long career, Gilmer brought
a unique vision and drive to her classrooms, to the profes-
sional spaces of the mathematics community, and to the
growing international ethnomathematics movement.

In 2022, Gloria Gilmer became the first Black woman
mathematician to have her papers archived in the Library
of Congress. Her career blended a lifelong effort to em-
power students to learn math for themselves with a spec-
trum of broader civil rights concerns, linking what she
sometimes called “mathematical power” to a deep com-
mitment to equity and justice. Rooted in the deep men-
torship she received in the classrooms and communi-
ties of segregated Baltimore, including at the historically
Black Morgan State College, Gilmer developed a peda-
gogy grounded in research and focused on empowerment
and care. Already a leader focused on educational pol-
icy at a national level, in the early 1980s she encoun-
tered the ethnomathematics movement, and thereafter her
focus turned increasingly toward global intersections of
math and culture. Always, however, she remained most
urgently concerned with equalizing access to mathemati-
cal resources and skills. In many ways, her work remains
an innovative response to issues that remain urgent, her
interventions still capable of generating enthusiasm.

The Gloria Ford Gilmer Papers at the Library of Con-
gress, now open for research, provide a rich new resource
for understanding Gilmer’s life and career, the history of
the ethnomathematics movement in the United States,
and its intersections with organizations like the American
Mathematical Society and Mathematical Association of
America. The collection runs to tens of thousands of items,
ranging from meticulous daily logs that record Gilmer’s
prolific networking to her lesson plans, correspondence,
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research files, and extensive documentation of her commit-
tee work. Foreshadowing more recent discussions related
to racial and gender inequities within the mathematics
profession, the collection especially documents Gilmer’s
unique ability to merge an unstoppable activism with an
unfailing optimism.

Early Life and Education
Born in 1928, Gloria Ford grew up in Baltimore, Maryland.
Her father, James Ford, was an immigrant from Barbados
and, by the 1930s, the owner of Ford’s Grocery Store on
Baltimore’s George Street. Her mother, Mittie Ford (née
Hall), had been a teacher in her native Georgia, but left
home to study business in New York. An obituary of Mit-
tie Hall Ford in a 1992 issue of the Baltimore Sun shares
that in New York the two had met, having two daughters
in Chicago before coming to Maryland where Gloria was
born, the youngest of three. The 1940 census shows the
Fords living in a rowhouse in the city’s Harlem Park neigh-
borhood, a transitioning area of West Baltimore where
White residents had, just a few years earlier, finally failed
in their efforts to keep out African American homebuyers,
and which had become a center of the city’s Black middle
class. James Ford reported working 90 hours per week in
the family grocery that year, and Mittie 35. At just four
blocks from home, the children spent much of their time
there as well.

Gilmer later remembered Ford’s Grocery as the place
she first became comfortable with math. “There,” she re-
called,” I was always counting, weighing (measuring), lo-
cating items, and reasoning with customers.” Later in life,
she would identify those four activities, along with playing
and designing, as the core practices fromwhichmathemat-
ics derives, and which she argued were common to all of
the world’s cultural groups. In school, she encountered
teachers whose mentorship extended outside of the class-
room. There was Mrs. Henderson, a first-grade teacher
whose simple act of placing a caring arm on her shoulder
still resonated into adulthood. Miss Young, who recog-
nized a fourth-grade Gloria’s talent and asked her to arrive
early to school to tutor classmates and to help grade arith-
metic papers. And teachers from Mrs. Henderson, to a
high school algebra instructor, to a college calculus profes-
sor who all did double duty in her church, as her Sunday
school teachers.

Gilmer’s early education, fueled by community support
and peer learning, was probably as much a product of her
own ambition as of the city’s segregated, crumbling public
schools. While the city’s Black teachers were, on average,
better credentialed than its White teachers—about 25%
more had college degrees—Black children attended over-
crowded schools in substandard facilities. A 1940 report

by the Baltimore Afro-American newspaper found students
in dilapidated portable buildings infested with rats and
filth, an elementary school equipped with only chemical
toilets, and several schools operating in long-condemned
buildings. A newly revitalized local NAACP chapter lob-
bied urgently for improvements, and Baltimorean Thur-
good Marshall began his career as the organization’s lead
attorney with a lawsuit demanding a new high school for
the Black students of Baltimore County. What historians
call the “long Civil RightMovement”was unfolding inGlo-
ria’s own backyard, her classrooms a site of political ac-
tivism long before she reached adulthood.

After high school Gloria enrolled at Morgan State Col-
lege, a historically Black school in northeast Baltimore,
and pursued a degree in math. There, in her junior year,
she encountered Clarence Stephens, whom she later cred-
ited with teaching her “how to learn mathematics.”2 Some
of the staples of his pedagogy, flexibility with teaching
methods, avoiding lecturing, and a conviction that, as
Stephens later put it, “I could teachmathematics effectively
to most of my students only if I were successful in protect-
ing and strengthening their self-esteem,” later emerged as
core elements of Gilmer’s teaching as well. She graduated
Morgan in 1949with a BS degree, high honors, and amath
prize, placing fifth in her class.

The addresses at Gilmer’s commencement foreshad-
owed a certain willingness to do the impossible. As a 13-
year-old, Gloria had written to the Afro-American in 1941
to share her “goofy ambition” of sitting on a rainbowwhile
painting it. Now she heard Methodist Bishop Alexander
Preston Shaw exhort the graduates to perfection, and his-
torian Merze Tate demand they not allow race to become
a barrier to their betterment of a world plunged into a new
atomic age, and in urgent need of their help.3 She seemed
prepared for a challenge.

Out Into the World
In the summer of 1949, the Afro-American reported that
Gilmer’s application to the University of Maryland at Col-
lege Park had been ignored by admissions officers, along
with those of six other African American applicants. Col-
lege Park, her dream school, had never before admitted a
Blackmathematics student. Several of the applicants chose
to sue, and NAACP lawyers took up their defense. Un-
der cross-examination by Thurgood Marshall the follow-
ing year, university president Harry Clifton “Curley” Byrd
admitted that, outside of its law school, the university had

2Clarence Stephens was noted for his innovative teaching methods and was the
ninth African American to earn a PhD in mathematics.
3Remarks to the graduates were highlighted in the June 7, 1949 issue of Bal-
timore Afro-American, an African American newspaper established in the
1890s.
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refused admission to all qualified Black applicants to the
College Park campus as a matter of policy, either divert-
ing them to institutions likeMorgan State or offering them
scholarships to schools outside Maryland. In 1951 the uni-
versity bowed to legal pressure and enrolled one of those
students, Hiram Whittle, as the campus’s first Black un-
dergraduate. By then, Gilmer was already wrapping up a
mathematics master’s program at University of Pennsylva-
nia, paid in part through a scholarship funded by Mary-
land’s segregationist legislature.

At Penn, she found herself without familiar support sys-
tems, in classes taught by professors like number theorist
Hans Rademacher, from whom she received her first C in
a math course. That environment, Gilmer later recalled,
caused her to doubt her abilities and “the quality of my
former education in an all-black setting.” But she gradu-
ated with good marks, and in 1952 began a position with
the US Army, calculating exterior ballistics and bombing
trajectories at the Aberdeen Proving Ground back in Mary-
land. Finding the work tedious, she remained only for
the summer, launching into a peripatetic teaching career
that had already included a stint at Hampton Institute, and
now brought her to Virginia State College and then back
to Morgan State. At Morgan, she coauthored two peer-
reviewed mathematics journal articles with Luna Mishoe,
the first to be published by an African American woman,
and found encouragement to pursue further study.4

In 1956, Gilmer began a PhD program at the Univer-
sity of Wisconsin-Madison, where she soon felt so iso-
lated she began to seek out friends by chatting up other
Black people she ran into on the street. By the end of
1957, she had married Jay Gilmer, the son of a prominent
Milwaukee doctor who, a few years earlier, had been ap-
pointed one of that city’s first Black housing inspectors—
and who would later rise to become administrator of the
state’s Equal Rights Division. “Defecting” from Madison
to raise their two children, Gilmer returned to the class-
room, first in the public schools of exurban Buffalo and
then in Milwaukee, where she became that system’s first
African American math teacher. As she moved through
historically Black and predominantly White institutions,
Gilmer built a pedagogy grounded in a radical ethic of in-
clusion and care, one meant to cut against cultural frames
that, as Sara Hottinger writes, assume a “normative, white,
masculine mathematical subjectivity.” One of her Morgan

4The articles were the first non-PhD theses to be published by an African Amer-
ican woman. Luna I. Mishoe and Gloria C. Ford, “On the Limit of the Coef-
ficients of the Eigenfunction Series Associated with a Certain Non-self-adjoint
Differential System,” Proceedings of the American Mathematical Society
7, no. 2 (April 1956), 260–266; Luna I. Mishoe and Gloria C. Ford, “On the
Uniform Convergence of a Certain Eigenfunction Series,” Pacific Journal of
Mathematics 6, no. 2 (1956), 271–278.

State students later recalled a “dynamically enthusiastic at-
titude” that was so jarring as to be, at first, “somewhat
traumatic,” calling Gilmer’s classroom manner “demand-
ing, inspirational, and understanding” and stirring him to
“never settle for mediocrity in personal achievements.”

Returning to tertiary education, in 1965 Gilmer became
the first African American mathematics instructor at Mil-
waukee Area Technical College, taking a second job as the
University of Wisconsin-Milwaukee’s first Black woman
mathematics instructor the following year. In 1973, she
began a PhD program in curriculum and instruction at
Marquette University. Though feeling unsupported by her
advisor and by the institution, the work she did at Mar-
quette allowed her to take a step back, to consider how
curricular design and systemic inequities structured class-
room instruction and helped produce racial differences in
math achievement. Gilmer had long made the National
Association of Colored Women’s Club’s motto, “lifting as
we climb,” a constant refrain. Now she began to codify
her teaching philosophy, thinking more critically about
her earliest years in front of the blackboard when shemim-
icked her own teachers and blamed her students when they
failed. “In order to inspire my students,” she insisted, “I
must like them. In liking them, I shall seek to understand
them in the same manner as I feel compelled to under-
stand the subject I teach.” It was a humanizing philos-
ophy, one that emphasized personal relationships in the
classroom and the impact of teachers who expect their
students to succeed, and which urged instructors to em-
power students to support their own learning. Gilmer ul-
timately became the first Black woman to graduate from
Marquette’s School of Education, her commitment to leav-
ing open the doors she had walked through stronger than
ever.

By 1979, PhD in hand, the Gilmers were on the move
again. Gloria took an associate professorship at Atlanta
University and then one at Morehouse before moving to
Washington, DC to serve as a research associate for the Na-
tional Institute of Education. By 1980, she had also be-
come the first Black woman on the Board of Governors
of the Mathematical Association of America, and that role
brought her into math classrooms all over the country. By
1983, she was in China, touring classrooms with 57 other
educators at the behest of the Chinese Mathematical Soci-
ety, not entirely impressed with what she saw but clearly
moved by mathematical stories of the Great Cultural Revo-
lution. Gilmer describedmath studies that were once “pro-
tracted” and “infusedwith political content,” curricula “de-
signed for immediate social needs” taught with intuitive
instruction that built on student experiences, and math
courses that combined algebra, geometry, and trigonome-
try. Encountering the foreign through the lens of her own
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experiences, as travelers often do, she began to imagine
what useful things she might extract for classrooms back
home.

The Gloria Gilmer of the early 1980s, driven by unhesi-
tating ambition and unusual extroversion, had added an
array of new skills to her repertoire: in education policy
and grantmaking, in committee work and curricular de-
sign, and in activism.

Building Power through Connection
In 1968, the James Brown hit “I’m Black and I’m Proud”
signaled a time of transition from the Civil Rights Move-
ment to the Black Power era. Gilmer’s career, and her ac-
tivism, bridged both periods. In 1963, she attended the
March on Washington. As she moved into college-level in-
struction in Milwaukee, her teaching and scholarship be-
gan to evolve in concert with wider movements dedicated
to Black pride and a reclamation of identity, culture, and
community. On campus, Gilmer increasingly merged ad-
vocacy for her African American students with sharp cri-
tiques of institutional racism. In a 1976 speech before the
UW-Milwaukee Board of Regents, for instance, she insisted
that the university’s struggle to retain African American stu-
dents stemmed from their “academic and social isolation,”
and called for a suite of changes ranging from multidis-
ciplinary evaluations of minority student achievement to
the elimination of dull remedial courses that foreclosed
self-directed discovery and stifled innovative thinking. Off-
campus, she became involved in a dizzying array of com-
munity organizations, her activism often intersecting with
her educational concerns.

Gilmer was a dedicated Episcopalian who described her
ministry as “anti-racism wherever it leads me.” She was a
soror, a member of Alpha Kappa Alpha since her time at
Morgan State. She was a member of the YWCA, and in
1970 became one of the framers of a revision to its mis-
sion statement, an added phrase committing the organi-
zation “to eliminate racism wherever it exists and by any
means necessary.” In the following decades, Gilmer would
take on leadership positions with the National Council of
Negro Women (as chair of their Commission on Educa-
tion) and the National Urban Coalition (as member of
their Technical Advisory Board). She served as an advisor
on the National Urban League’s Project PRISM, a national
education reform project. She joined the Milwaukee Eth-
nic Council and the Haiti-based Desgranges Foundation,
and attended meetings of the Milwaukee Socialist Party
well into her 80s, according to a web profile she drafted
in 2000.

Always, Gilmer refused to compartmentalize her faith,
commitment to social justice, and focus on solutions for
improving educational outcomes. Instead, they combined

to bring an intersectional lens to her work nomatter where
she found herself. When she saw civil rights organiza-
tions working to address classroom issues without the aid
of professional mathematicians, she offered her aid as an
academic. When she saw the academic community work-
ing fruitlessly to solve problems for minorities in mathe-
matics, she offered her cultural expertise. By 1986, Gilmer
had launched the Family Math Project, an initiative de-
signed to help preschoolers from low-income, primarily
African American families develop math skills by enabling
their parents to develop their own math literacy. It was a
research-driven approach that aimed to help families in-
tegrate mathematical concepts into their daily lives, em-
power parents to teach math to their own children, and
foster computer literacy for everyone in the process. It was
also a staple of Gilmer’s activist philosophy, a nuts-and-
bolts solution to systemic issues of racism and poverty,
grounded in a faith that both could ultimately be solved.
As she had argued at Marquette, children could only “grow
and flourish in all the beauties of their inner spirits and
outer gifts” when racism had been “eliminated,” and she
clearly believed the elimination of racism was possible.

Increasingly, as Gilmer moved from institution to insti-
tution, found opportunities to observe the teaching of oth-
ers, and deepened her commitment to social justice, she
came to recognize how inequities in math achievement
had become a natural byproduct of institutional racism. In
the mid-1970s, she wrote that one of the major functions
of America’s educational system had been to “channel
privilege—to determine who will receive wealth, power,
and prestige.” African American students, she argued, “are
painfully aware that the white university was not made to
accommodate them.” If it had been, she believed, univer-
sities would have created learning environments in which
Black students could also “achieve academically and de-
velop intellectually and emotionally.” It was a problem
she believed could be solved.

Remediation efforts were one of her targets. Gilmer ar-
gued that remedial mathematics courses limited academic
advancement and disempowered African American stu-
dents by appealing to “the areas of their greatest weak-
nesses and at the dullest level of the subject.” She advo-
cated for strategies that inspired a desire for knowledge
and self-directed explorations that allowed students to fo-
cus on “areas of personal strength rather than repeating
and failing the basics.” Students had to be empowered,
and connected—first to their peers, then to their teachers.
The use of standardized testing was another issue. The
tests, she insisted, had often served as gatekeepers, steer-
ing African American students into remedial classes, and
were inadequate measures of student learning. Recogniz-
ing that test designers and administrators may not have
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intended to discriminate, Gilmer nevertheless argued that
“neutral and objective tests which are administered for one
purpose but which lead directly to racist policies are racist,”
and that scores could not be properly interpreted without
a recognition of disparate access to resources and differ-
ences in curriculum implementation. In a Cold War po-
litical environment increasingly concerned over students
losing their edge in STEM education, and often turning to
standardization for help, Gilmer insistently embraced in-
dividuality and cultural distinctiveness as the true routes
to effective education.

At times, Gilmer’s problem solving even verged into
techno-optimism. Already seeing disparities in student
access to computers in the 1980s, she argued that, “un-
less steps are taken now, ‘new’ inequities will exacerbate
current ones.” For all children, she saw computers as a
tool to strengthen and complement instruction and ap-
plication, one that might help them apply math to sim-
ulations of real life problems. Computers, she believed,
could empower students to solve ever more complex prob-
lems, to use “inductive approaches that motivate mathe-
matical conjecturing,” and to discover graphical interfaces
that would help sharpen their intuition and foster a lib-
erating mathematical experimentation. Always attuned to
the equitable distribution of educational resources, she
envisioned a brighter future where democratized comput-
ing equalized access to mathematical skills. But she envi-
sioned a darker future as well, one where an innovative
new resource again fell largely into the hands of those that
needed it the least.

Gilmer shared these critiques and solutions widely,
through publications and workshops, conference papers
and conversations. And in 1984, she made another inter-
national trip, this time to Adelaide, Australia, for the Fifth
International Congress of Mathematical Education (ICME-
5). There she presented a paper on the IEA Mathematics
Study, an international math assessment test, offering sug-
gestions for future improvements like using the test to in-
form curriculum planning and professional development.
Her attendance at ICME-5 would prove to be fortuitous.
Already a professional with a national profile, Gilmer was
about to encounter a framework that would help to crys-
talize her work and activism, and expand her ministry to a
global platform.

Ethnomathematics and the Beginning
of a Global Movement
As Gilmer was building a pedagogy grounded in a pur-
suit of equity and the recognition of the classroom as
a cultural and political space, Ubiratan D’Ambrosio, a
Brazilian mathematics educator and historian, was articu-
lating an approach to make mathematics instruction more

accessible to a broader population. D’Ambrosio felt that
greater math literacy could serve as a counterweight to in-
equities among individuals and communities, and con-
tribute to creating a more peaceful society. Inspired by
the knowledge and practice of mathematics in Brazilian
indigenous cultures and grounded in his own research in
the history of mathematics, he found himself at the cut-
ting edge of research on the intersection of mathematics
and culture. At ICME-3 in Germany in 1976, D’Ambrosio
had organized a panel entitled “Why Teach Mathematics.”
That panel helped create a new field in mathematics ed-
ucation, ethnomathematics. Eight years later, at ICME-
5, D’Ambrosio was delivering the plenary address, enti-
tled “Socio-Cultural Bases for Mathematical Education,”
in which he argued that mathematics instruction should
be grounded in the social and cultural context of students.

D’Ambrosio’s remarks must have captured Gilmer’s in-
terest right away. He seemed to be giving voice to many of
the ideas she had already been formulating. Gilmer later
summarized her reaction to the speech:

“Before that, like Bertrand Russell, I too had expe-
rienced the cold and austere beauty of mathemat-
ics. Early in my career, as a student and later col-
league of Clarence Stephens, I learned to value the
rigor, precision and resilience of mathematicians
and to appreciate the social and humanitarian val-
ues implicit in this scholarly community such as
respect, solidarity and cooperation. Then as now,
my modes of understanding, learning styles, intu-
ition, emotions, and use of mathematics are all
closely bound to my cultural heritage both as an
African American Christian and as an active mem-
ber of the mathematical community. Now, how-
ever, I am more aware of the immense potential
in the development and acquisition of mathemat-
ical knowledge by the inclusion of the concept of
ethnomathematics. Ethnomathematics as a field
of study connects mathematical concepts, their ac-
quisition and application through cultural origins.
In this way, ethnomathematics paves the way for
reform in mathematics education and new hori-
zons in mathematical research.”

D’Ambrosio framed math as a cultural product, an in-
sight that resonated with Gilmer’s own experiences and
observations, and with her prior research.

One tenet of ethnomathematics that especially spoke
to Gilmer was its assertion that the cultural neutrality
of mathematics was a myth, an insight that opened the
door to almost limitless explorations of how mathemati-
cal ideas might be iterated throughout the world. It also
supported her existing commitment to helping students
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Figure 2. Gloria Ford Gilmer at her Milwaukee home, c. 1970s.

connect math to their everyday lives. D’Ambrosio’s dis-
tinction between learned mathematics and ethnomathe-
matics proved useful to her as well. Learned mathematics
refers to the formal math most often taught in schools, a
body of knowledge that developed slowly over time but
largely became disconnected from the social environment
of most students. Learned mathematics, D’Ambrosio ar-
gued, serves to reinforce privileged pathways into higher
education, foreclosing practical applications that could be
meaningful to a broader population of students. Ethno-
mathematics, on the other hand, examines how different
cultures conceptualize, communicate, and apply mathe-
matical ideas in their everyday life. The opportunity to in-
troduce students to the social context of mathematics and
make lessons more culturally relevant, Gilmer believed,
could help build student self-confidence and demonstrate
howmath could contribute to their success. By 1985 at the
National Council Teacher of Mathematics (NCTM) meet-
ing in San Antonio, Gilmer, D’Ambrosio, and Rick Scott
of the University of New Mexico decided to form a study
group in ethnomathematics. Gilmer would serve as its first
chair.

One of Jill Gilmer’s earliest memories of her mom was
of her sitting on a stool in their kitchen, talking on the
phone. “That was her favorite spot,” she recalled. “Just sit-
ting on that little stool. She was usually laughing. I mean,
she loved people. I call her an extreme extrovert, which
is a little unusual for mathematicians. But she absolutely
loves people.” One of Gilmer’s great gifts was as a builder
of relationships, and she brought those skills to bear in her
longtime role as chair of the International Study Group
on Ethnomathematics (ISGEm), a position she held from
1985 to 1996. Gilmer developed an increasingly global
footprint, traveling to places such as Haiti, Budapest,

Australia, the Soviet Union, Quebec, Bahia, and China as
she built and sustained relationships with other organiza-
tions in the mathematical community. Her influence al-
lowed for the cross-pollination of ideas and the formation
of new partnerships to inform curriculum development,
shift assumptions about what underrepresented students
could achieve, and share solutions that could broaden par-
ticipation in mathematics.

Already an experienced hand at committee work,
Gilmer began to bring her ethnomathematics commit-
ments to professional mathematics organizations as well.
In 1985, she was appointed chair of the AMS-MAA-AAAS
joint Committee on Opportunities in Mathematics for Un-
derrepresented Minorities (COMUM) by American Math-
ematical Society president Julia Robinson. Expanding
Gilmer’s work as director of the MAA’s Blacks and Math-
ematics program, COMUM’s charge was to broaden the
membership of the sponsoring organizations and increase
participation by underrepresented minorities. “The real is-
sue for people of color,” Gilmer argued in 1995, “is the in-
tellectual climate that claims ‘this cannot be done by you.”’
To change it, she proposed a suite of changes, from publi-
cizing the work of successful achievers, to connecting mi-
noritymathematicians to larger professional communities,
to developing a directory of minorities in mathematics-
related careers and holding information sessions at re-
gional and national meetings. Gilmer also began to co-
ordinate a series of skits, held at Joint Math Meetings as
a way to dramatize issues related to gender and racial
awareness. Often, she sought out opportunities to inter-
ject ethnomathematics research into professional mathe-
matics spaces, and to leverage her inquisitive and inclusive
nature to share ideas that could shift the culture of mathe-
matics.

Her work with curriculum development began to inter-
sect with ethnomathematics as well. “Mathematics curric-
ula,” she wrote, “have been slow to change, due partly to
a failure to separate the universality of truth of mathemati-
cal ideas. . . with the cultural basis of that knowledge.” The
need had become urgent, she insisted, “tomulticulturalize
the mathematics curricula.” In 1984, Gilmer had founded
a small consulting business, Math-Tech, which helped
her bring ethnomathematics theories into classroom prac-
tice through the development of new programs and eval-
uations of existing initiatives. Often, Gilmer served as
a charismatic interpreter of discoveries made by others.
She was fond of sharing the stories she first heard from
D’Ambrosio at ICME-5, of the geometrical patterns passed
down through generations of indigenous boat and house
builders in the Amazon. She spoke about Marcia Ascher’s
work on a game called Mū tōrere played by the Māori peo-
ple of New Zealand, and Paulus Gerde’s examination of
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Figure 3. Gilmer’s notes following a presentation on
mathematics and hair braiding, c.1990s. Gloria Ford Gilmer
papers, Manuscript Division, Library of Congress.

diverse arithmetical relationships in Angolan sand draw-
ings. In 1993, she served as project director of a major text-
book series published by Addison-Wesley, entitled Build-
ing Bridges to Mathematics: Cultural Connections, perhaps
her most comprehensive curation of ethnomathematical
approaches adapted for practical classroom use. And she
traveled the country and the world, observing classrooms
wherever she could and arguing thatmathematics could be
found everywhere in everyday life, in functional artifacts
ranging from fishing nets and quilts to baskets, chimneys,
and calculating devices.

Gilmer developed her own lesson plans as well. One
introduced the concepts of mean, variation and standard
deviation by examining comparative shopping costs for
food at different markets, and further introduced statisti-
cal ideas by having students engage in studies of profes-
sional journals related to their major. Another showed
how the UPC codes found on products could be translated
as symbolic representations of a number and product. She
designed lessons centered around origami cranes, and the
distances, angles, and paths Michael Jordan followed as he
traveled down the court to make a basket. Like her ethno-
mathematics colleagues, she found herself always in search
of the perfect metaphor, the everyday activity or object that
silently harbored generations of mathematical wisdom.

So in the spring of 1998, Gilmer joined Ron Eglash be-
fore an excited, overflow crowd to talk about the geometry
of African American hairstyles. It was the National Coun-
cil of Teachers of Mathematics annual meeting, held that
year inWashington, DC, and 40minutes prior to their start
time the large room had nearly filled to capacity. Organiz-
ers, with growing concern over the city’s fire codes, were ul-
timately forced to turn some of the curious away. Gilmer
was animated. She roamed the crowd and pointed out pat-
terns in the hairstyles of audience members. She showed
images of tessellations, spirals, concentric circles, symme-
tries, and fractal patterns in braided hair. She insisted that
students were capable of drawing mathematical concepts
from culture and nature, and emphasized the power of
math skills to generate community wealth. Eglash traced
braiding patterns back to African material culture, and sto-
ryboarded a computer math lab students might use to

explore them in the future, a descendant of which is still
in use by students today.5

“The idea,” Gilmer later wrote, “was to determine what
the hair braiding and hair weaving enterprise can con-
tribute to mathematics teaching and learning what math-
ematics can contribute to the enterprise.” Meticulously
researched in hair salons and in beauty magazines, hair
braiding became the metaphor Gilmer was most known
for, one that linked the beauty of natural hair to the poli-
tics of inequitable access to mathematical knowledge, and
to the economics of community business. It still resonates.

Conclusion
Mathematicians often use power as a synonym for an ex-
ponent’s multiplier effect. Gilmer offered her own defi-
nition of mathematical power: the ability to “discern and
investigate through a variety of mathematical methods the
mathematical relationships observed in patterns and struc-
tures in one’s own surroundings.” Other intersections of
math and power structured much of her life and career:
the inequitable distribution of educational resources by
race and class, the underrepresentation of minorities in
professional mathematics spaces, the earning power math
skills can bring to individuals and communities, the hege-
mony of a mathematics curriculum that purports to be cul-
ture neutral, the geopolitical consequences for a nation
falling behind in STEM education. Gilmer also held her
own kind of power, an influence born of a radical empa-
thy and charismatic extroversion, and the ability to view
deeply ingrained issues like institutional racism as just an-
other problem to solve, if she could only make the right
calculations.

What makes Gilmer’s work particularly compelling is
how relevant it remains. Jill Gilmer has said that she
wishes her mother’s views had been more widely under-
stood and embraced, particularly her underlying beliefs
that the capacity to learn is within everyone and that each
person has something to contribute. Like a good teacher,
much of Gilmer’s legacy can be found in the ways she
inspired people to increasingly higher levels of achieve-
ment. Yet, of course, inequities still persist in mathematics
achievement. “It feels like we’re kind of still back where we
were,” Jill has said, “trying to figure this thing out. So that’s
a little bit frustrating but, that’s the beauty of having her pa-
pers at the Library of Congress. Maybe the word will get
out and we’ll start to realize it’s not as hopeless as it looks,
there’s work in this area that’s already been done.”

In 2020, the AMS established the Claytor-Gilmer fellow-
ship in order to further excellence in mathematics research
and help generate wider and sustained participation by

5See the Cornrow Curves project at: https://csdt.org/culture
/cornrowcurves/index.html.
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Figure 4. Gilmer in front of the US Supreme Court and Library
of Congress during Barack Obama’s 2009 presidential
inauguration.

Black mathematicians. It is named for William S. Claytor,
the first African American man to publish a research article
in a peer-reviewed mathematics journal, and Gloria Ford
Gilmer.

Tanya Moore Josh Levy
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An Enchantress of Number?
Reassessing the Mathematical
Reputation of Ada Lovelace
Adrian Rice

Introduction

Figure 1. Ada Lovelace,
pictured around 1843.

If any reader of the Notices
were asked to name a fe-
male mathematician of the
20th or 21st century, they
would have no difficulty
whatsoever. Giving them
the same task but chang-
ing the parameter to the
19th century would present
more of a challenge, but the
names of several notable
figures would no doubt still
emerge. Mathematicians
such as Sophie Germain,
Sofia Kovalevskaya, Chris-
tine Ladd-Franklin, Char-
lotte Scott, and Mary Som-

erville would probably all feature—along perhaps with
Emmy Noether, who although born in 1882 did all her
significant mathematics in the 20th century. But if this sec-
ond task were given to the general public, far fewer names
would appear, and the occurrence of one would proba-
bly outweigh all others by a considerable margin: Ada
Lovelace.
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This is not surprising as today Lovelace ranks as one of
the most famous female scientists in history. Lauded as
“the first computer programmer” and praised for her vi-
sionary ideas, she is held up regularly as an inspiration
for women in science and mathematics. She has been im-
mortalized in literature, in plays, and on the screen. Ex-
hibits relating to her life and legacy crop up in numerous
science museums around the world, while her biography
and earnest appraisals of her work adorn countless blogs
and websites. Her homeland has been similarly keen to
commemorate her as one of its own: between 2015 and
2020 her picture featured inside every newly issued British
passport and in 2023 the UK’s Royal Mint issued a com-
memorative £2 coin in her honor. And all of this despite
the fact that she made no major mathematical or scientific
discovery, proved no theorems, and her entire scholarly
output amounts to a single paper published in 1843.

Augusta Ada King, Countess of Lovelace was born in
London on December 10, 1815. The only legitimate child
of the romantic poet Lord Byron, she lived a privileged
but somewhat isolated life. After her parents’ separation
in early 1816, she was raised largely by her mother, the re-
doubtable Lady Byron, but never managed to escape the
all-embracing effects of her father’s immense fame. She
was what we would today call a “celebrity,” famous in
her lifetime simply for being Lord Byron’s daughter, with
her every move watched and scrutinized by polite soci-
ety. Even after her death on November 27, 1852, at the
early age of 36, her obituaries still focused on her By-
ronic connection. A fitting modern analogy would be the
life of Lisa Marie Presley. Both women were the only
children of fathers who died young, having experienced
unprecedented levels of fame, enormous wealth, and
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notoriety. Both women lived lives defined, whether they
liked it or not, by their status as the sole offspring of a dead
celebrity. And both women themselves sadly succumbed
to untimely deaths.

But that is where the analogy ends. Lovelace lived the
privileged life of an English Victorian aristocrat, moving
in social circles that included royalty and influential nobil-
ity, whose servants tended to her every need, and whose
leisure activities included riding to hounds, lavish soirées,
and nights at the opera. She was unusual for a woman
in the 19th century, not only for having interests in sci-
ence and mathematics, but for having been encouraged
to pursue them, first by her mother and then by her hus-
band, the Earl of Lovelace, who also cultivated an ama-
teur interest in scientific matters. Her mathematical pro-
clivity culminated in her publication of the 66-page paper
on which her present-day fame rests [Men16]. It contains
a theoretical account of a machine called the analytical en-
gine, designed by the Victorian mathematician, inventor,
and polymath Charles Babbage, which, had it ever been
built, would have been the world’s first general purpose
computer—100 years before the beginning of the modern
computer age.

Lovelace’s paper contained seven lengthy appendices,
or “Notes,” with the last one, “Note G” [Men16, pp. 94–
105], being her chief claim to fame. In this, in addition to
some thoughts on the possibility of artificial intelligence,
she outlined an iterative process by which Babbage’s ma-
chine could compute Bernoulli numbers, coefficients of
the 𝑥𝑛/𝑛! terms in the infinite series expansion

𝑥
𝑒𝑥 − 1 =

∞
∑
𝑛=0

𝐵𝑛
𝑥𝑛
𝑛! .

Lovelace described how to use this definition to derive a
useful identity that would generate each Bernoulli number
in turn. Since the above equation is equivalent to

𝑥
𝑥 + 𝑥2

2!
+ 𝑥3

3!
+⋯

= 1 − 𝑥
2 +

∞
∑
𝑛=1

𝐵2𝑛−1
(2𝑛)! 𝑥

2𝑛

or

1
1 + 𝑥

2!
+ 𝑥2

3!
+⋯

= 1 − 𝑥
2 + 𝐵1

𝑥2
2! + 𝐵3

𝑥4
4! +⋯ ,

multiplying through by 1 + 𝑥
2!
+ 𝑥2

3!
+⋯ would give

1 = (1 + 𝑥
2! +

𝑥2
3! +⋯)(1 − 𝑥

2 + 𝐵1
𝑥2
2! + … )

or
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1
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2

+ (𝐵12 ⋅ 1
2 ⋅ 3 +

1
5! −

1
2 ⋅ 4! +

𝐵3
4! ) 𝑥

4 +⋯ .

From this expression, it followed that the general coef-
ficient of the 𝑥2𝑛 term would be

1
(2𝑛 + 1)! −

1
2 ⋅

1
(2𝑛)! +

𝐵1
2! ⋅

1
(2𝑛 − 1)!

+ 𝐵3
4! ⋅

1
(2𝑛 − 3)! +⋯+ 𝐵2𝑛−1

(2𝑛)! = 0

or, when multiplied by (2𝑛)!

− 1
2 ⋅

2𝑛 − 1
2𝑛 + 1 + 𝐵1 ⋅

2𝑛
2 + 𝐵3 ⋅

2𝑛 ⋅ (2𝑛 − 1) ⋅ (2𝑛 − 2)
4!

+⋯+ 𝐵2𝑛−1 = 0.
Lovelace then described how, using a series of punch-

cards, the analytical engine could be instructed to succes-
sively plug 𝑛 = 1, 2, 3, … into this formula to produce
the famous but nonintuitive sequence of Bernoulli num-
bers, 𝐵1 = 1

6
, 𝐵3 = − 1

30
, 𝐵5 = 1

42
, 𝐵7 = − 1

30
, etc. (The

Bernoulli numbers 𝐵2, 𝐵4, 𝐵6, … are all zero. It should also
be observed that Lovelace’s notation for the Bernoulli num-
bers differs somewhat from that commonly used today,
in which they would be listed as 𝐵0 = 1, 𝐵1 = − 1

2
, 𝐵2 =

1
6
, 𝐵3 = 0, 𝐵4 = − 1

30
, 𝐵5 = 0, 𝐵6 = 1

42
, 𝐵7 = 0, 𝐵8 = − 1

30
,

etc.) Although the algorithm she devised was never run
and the computer for which it was intended was never
built, it is the process based on this algebraic manipula-
tion for which Ada Lovelace is chiefly remembered today.
And this is what has gone down in history as the world’s
“first computer program.”

As we will see, in the 180 years since the appearance
of Lovelace’s paper, opinions on her mathematical profi-
ciency have varied considerably, with some assessments
verging on the hagiographic, giving her credit for more
than is perhaps due, while other writers have cast consider-
able doubt on whether she had the ability to understand—
let alone write—such a technically proficient account, im-
plying that it was in fact due to Babbage. On the one hand,
in order to explain the process of calculating Bernoulli
numbers, Lovelace must have had an understanding of the
mathematics underlying the procedure, which was by no
means trivial. On the other, this would largely have been
beyond the capability of anyone who had not had some
kind of university-level training in mathematics, which in
the mid-19th century was unavailable to women, since
they were not allowed to attend college or university. So
which view of Lovelace’s mathematical ability is correct?
Did she have the mathematical competence to write and
understand themathematics contained in her 1843 paper?
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Or was she essentially a mathematical ignoramus, as some
have argued?

In this article, we will attempt to answer this ques-
tion. While others have focused their attention on assess-
ing Lovelace’s theoretical understanding of the mechani-
cal operations of the analytical engine, we limit our anal-
ysis purely to an assessment of her mathematical ability.
We begin with a brief survey of the mathematical topics to
which she would have been exposed in the ten-year period
culminating with the publication of her 1843 paper. We
then look at the changing perspectives on Lovelace’s intel-
lectual caliber over the years, from the 19th century to the
present day, before focusing on the three most fundamen-
tal (and compelling) arguments that have influenced al-
most all negative assessments of her mathematical ability.
Finally, we close with a timely postscript on Ada Lovelace
and artificial intelligence. Much of the analysis below is
informed by research carried out in collaboration with my
colleagues Christopher Hollings and Ursula Martin, com-
prising a detailed study of the mathematical papers in
the Lovelace archive, now housed in the Bodleian Library
in Oxford. This research resulted in the research papers
[HMR17a] and [HMR17b], as well as an illustrated expos-
itory book [HMR18], all of which may be consulted for
further details.

Lovelace’s Mathematical Education
Throughout her childhood, Ada’s keen interest in science
and mathematics was actively fostered by her mother. By
the age of 18, her mathematical education consisted of a
thorough grounding in arithmetic and some basic geome-
try, already surpassing the level attained by most children
at the time. Her introduction to London’s high society in
1833 led to her meeting two of the foremost British math-
ematical scientists of the day, Charles Babbage and Mary
Somerville, both of whom encouraged the continuation of
her mathematical studies.

On the advice of a family friend, Dr. William King, who
had studied mathematics at Cambridge in the early 1800s,
she began a focused course of reading under his direction.
He advised:

Begin with Euclid, then Plane & Spherical Trigo-
nometry, which is found at the end of Simson’s
Euclid, then Vince’s Plane & Spherical Trigonome-
try, then Bridge’s Algebra [HMR17a, p. 229].

But this guidance, while standard for a British university
course circa 1800, was quite out of date by the 1830s. By
this time, the old-fashioned synthetic, geometrical meth-
ods in vogue in England at the beginning of the cen-
tury were quickly being replaced by newer and more pro-
gressive analytic and algebraic techniques imported from
continental Europe, with which Lovelace’s friends like

Somerville and Babbage were quite familiar. Somerville
in particular was able to provide some useful assistance on
various mathematical points, later recalling that Ada was
“much attached” to her and “always wrote to me for an ex-
planation when she met with any difficulty” [Ste85, p. 50].
Indeed, by 1835, shortly after her marriage, we find the 19-
year-old Ada writing to Mrs. Somerville about her current
mathematical studies [Too92, p. 83]:

I now read Mathematics every day & am occupied
in Trigonometry & in preliminaries to Cubic & Bi-
quadratic Equations. So you see that matrimony
has by no means lessened my taste for those pur-
suits, nor my determination to carry them on. . . .

Figure 2. Augustus De
Morgan.

Although her marriage
caused no immediate in-
terruption of her mathe-
matical education, bearing
three children in quick suc-
cession between 1836 and
1839 certainly did. But
she was eager to resume her
studies and, in the summer
of 1840, she began a course
of study under the tutelage
of the mathematician and
logician Augustus De Mor-
gan. After about eighteen
months, Lovelace had cov-
ered much of the material
included in a typical under-

graduate course of the time: basic algebra, trigonometry,
logarithms, complex numbers, functions, limits, infinite
series, differentiation, integration, and differential equa-
tions. It was during this period that she learned the skills
that would be essential for her mathematical commentary
on Babbage’s analytical engine a couple of years later. In
particular, it was via her study with De Morgan that she
first came across Bernoulli numbers.

In late 1842, Lovelace was invited by the scientist
Charles Wheatstone to translate an account of Babbage’s
analytical engine, recently published in French by the Ital-
ian politician and engineer Luigi Menabrea. On learning
that she was working on an English translation, Charles
Babbage asked her

why she had not herself written an original paper
on a subject with which she was so intimately ac-
quainted? To this Lady Lovelace replied that the
thought had not occurred to her. I then suggested
that she should add some notes to Menabrea’s
memoir; an idea which was immediately adopted
[Bab94, p. 136].

376 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 71, NUMBER 3



This led to the composition of Lovelace’s seven lengthy
“Notes” which, at 41 pages, when added to her 25-page
translation, resulted in a paper more than double the
length of the original.

Lovelace spent the first half of 1843 feverishly working
on her “Notes,” with multiple revisions and corrections
flying back and forth between her and Babbage. As she
told him, “I am working very hard for you; like the Devil
in fact” [Too92, p. 198]. It was in July that she came up
with the idea for her final note:

I want to put in something about Bernoulli’s Num-
bers, in one of my Notes, as an example of how
an implicit function may be worked out by the en-
gine, without having been worked out by human
head & hands first [Too92, p. 198].

Figure 3. Charles Babbage.

Babbage later recalled
that he wrote out the neces-
sary algebra for her, “to save
Lady Lovelace the trouble,”
but that “she sent [it] back
to me for an amendment,
having detected a grave mis-
take which I had made
in the process” [Bab94, p.
136]. The result was the fa-
mous “Note G” containing
her well-known “program.”

When the paper was pub-
lished at the end of the sum-
mer, Lovelace made no at-

tempt to hide the obvious pride she felt in her work, declar-
ing herself “very much satisfied with this first child of
mine” [Too92, p. 211]—although before long this satisfac-
tion had morphed into considerable hubris. Using the
word “analyst” as it was often used in those days, to mean
“mathematician,” she wrote [Too92, p. 215]:

I do not believe that my father was (or ever could
have been) such a Poet as I shall be an Analyst. . . .
The more I study, the more irresistable do I feel
my genius for it to be.

Yet despite this bold claim (and several others), her
paper of 1843 remained her only publication and the
only other mathematics she wrote—none of it original—is
contained in her surviving letters to Babbage, Somerville,
and De Morgan. It is perhaps for this reason that subse-
quent opinions on her mathematical merits have not al-
ways been favorable, as we shall see.

Evolving Perspectives on Lovelace
Given Lovelace’s high social rank and the scarcity of
women in any branch of science in those days, it is

perhaps unsurprising that contemporary evaluations of
her mathematical talent were uniformly positive. But,
even taking these factors into account, they are still over-
whelmingly effusive. Shortly after her paper on his ma-
chine had appeared in 1843, Babbage was referring to her
as “the Enchantress of Number,” going even further in a
letter to Michael Faraday, in which he described her as

that Enchantress who has thrown her magical
spell around the most abstract of Sciences and has
grasped it with a force which few masculine intel-
lects (in our own country at least) could have ex-
erted over it. [Jam96, p. 164]

The following year, De Morgan, who as her tutor had
witnessed her mathematical development firsthand, wrote
that her “power of thinking on these matters . . . [was] ut-
terly out of the common way for any beginner, man or
woman.” He went on to say

Had any young [male] beginner, about to go to
Cambridge, shown the same power[s], I should
have prophesied . . . that they would have certainly
made him an original mathematical investigator,
perhaps of first-rate eminence [Ste85, p. 82].

After her death, obituarists were at pains to empha-
size her mathematical talents. The Athenæum reported
[Ano52a]: “Like her father’s Donna Inez, in Don Juan—
‘Her favourite science was the mathematical,’” while the
Examiner observed [Ano52b]:

Her genius, for genius she possessed, was not
poetic, but metaphysical and mathematical, her
mind having been in the constant practice of in-
vestigation, and with rigour and exactness. With
an understanding thoroughly masculine in solid-
ity, grasp, and firmness, Lady Lovelace had all the
delicacies of the most refined female character.

The years that followed saw similarly fulsome praise
come from a variety of sources. In 1860, the English au-
thor John Timbs praised “the noble and all-accomplished”
translator of Menabrea’s memoir, remarking that

The profound, luminous, and elegant notes form-
ing the larger, and by far the most instructive, part
of the work, and signed A. A. L., are all by that
lamented lady. [Tim60, p. x]

In his 1864 autobiography, Babbage concurred with this
assessment of Lovelace’s “Notes,” believing that “Their
author has entered fully into almost all the very diffi-
cult and abstract questions connected with the subject”
[Bab94, p. 136].

A generation later, in an effort to collate and preserve
documents relating to his father’s life’s work, Babbage’s
son Henry published a substantial volume of writings
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in 1889, including the entirety of Lovelace’s 1843 paper.
Sixty years later, as the modern computer age dawned, this
book was rediscovered by the Cambridge physicist Dou-
glas Hartree, who found himself drawn to Lovelace’s paper.
Struck by the fact that “some of her comments sound re-
markably modern” and impressed by her discussion of the
numerical computations and iterative procedures, he ob-
served that “she must have been a mathematician of some
ability” [Har49, p. 70].

Hartree’s book was read by Alan Turing, who in a fa-
mous paper of 1950, challenged Lovelace’s views on artifi-
cial intelligence [Tur50] (see Postscript). Turing also con-
tributed to a volume of essays on computing edited by the
scientist and educationalist B. V. Bowden, who agreed with
Hartree’s assessment of Lovelace’s abilities, describing her
as “a mathematician of great competence” [Bow53, p. xi].
But we note here that, with the passage of time and in-
creasing reliance on second- and third-hand information,
assessments of Lovelace’s intellect, while still positive, had
become a littlemoremeasured, withwords like “some abil-
ity” and “competence” replacing the more indulgent uses
of “first-rate” and “genius” by Lovelace’s contemporaries.

By now, along with Babbage, the name of Ada Lovelace
was known and accepted among those in the burgeoning
community of computer programmers and engineers as
one of the pioneers in the prehistory of their field. It was in
this spirit that the US Department of Defense chose Ada as
the name of its newly developed programming language
in 1979.

The 1970s saw the publication of the first full-scale bi-
ography of Lovelace, by experienced Byron scholar Doris
Langley Moore. This study, like many which were to
follow, benefitted substantially from access to the large
collection of unpublished Lovelace-Byron manuscript pa-
pers, made available to scholars via their recent deposit in
the Bodleian Library. Although a fine historian, Langley
Moore was less authoritative when it came to mathemat-
ics, able to offer little more than a description of Lovelace’s
“curious letters” to De Morgan as being full of “pages with
equations, problems, solutions, algebraic formulae, like a
mathematician’s cabalistic symbols.” [LM77, p. 99]

The first Lovelace biography to focus on the mathemat-
ics and science was Ada: A Life and a Legacy (1985) by
Dorothy Stein. Also the first intellectual study to delve
deeply into the archives, Stein’s book examined Lovelace’s
mathematical and scientific papers in painstaking detail,
and laid bare lesser-known aspects of her life, includ-
ing extramarital liaisons, gambling and drug addictions,
and physical and mental illnesses. Her key thesis was,
essentially, that Lovelace was “a figure whose achieve-
ment turns out not to deserve the recognition accorded it”
[Ste85, p. xii]. Perhaps inevitably, given Lovelace’s own

grandiose claims about her mathematical ability, Stein’s
conclusion is not flattering:

It is unusual to find an interest inmathematics and
a taste for philosophical speculation accompanied
by such difficulty in acquiring the basic concepts
of science as she clearly displayed. We can only
be touched and awed by the questing spirit that
induced her to launch so slight a craft upon such
deep waters [Ste85, p. 280].

To this day, Stein’s text remains a standard work for any-
one interested in Lovelace’s scientific endeavors, its author-
ity bolstered by the sheer weight of documentary evidence
employed to defend its thesis. For this reason, Stein’s con-
clusions have strongly influenced subsequent studies, par-
ticularly those with negative viewpoints. For example, in
1990 historian of computing Allan Bromley concluded:
“Not only is there no evidence that Ada ever prepared a
program for the Analytical Engine, but her correspondence
with Babbage shows that she did not have the knowledge
to do so” [ABCK+90, p. 89]. More damning still was Bruce
Collier who described Lovelace as “mad as a hatter . . .with
the most amazing delusions about her own talents,” call-
ing her “themost overrated figure in the history of comput-
ing” [Col90, preface]. Recent studies have been more mea-
sured, however, with Thomas Misa’s 2016 survey of the
debate concluding that the 1843 “Notes” were “a product
of an intense intellectual collaboration” between Lovelace
and Babbage [Mis16, p. 18].

It was against this background that Hollings, Martin,
and I undertook our research project to provide what we
hope is a more nuanced and historically accurate assess-
ment of Lovelace’s mathematical proficiency. In particu-
lar, our work challenged—and, we argue, refuted—Stein’s
judgement that

The evidence of the tenuousness with which she
grasped the subject of mathematics would be diffi-
cult to credit about one who succeeded in gaining
a contemporary and posthumous reputation as a
mathematical talent, if there were not so much of
it [Ste85, p. 90].

Stein’s case against Lovelace’s mathematical compe-
tence boils down to three main arguments, which, at first
sight, seem quite compelling. And these arguments have
influenced the subsequent judgements of others for nearly
four decades. But as we will now show, all three arguments
fail when subjected to further contextual analysis.

Argument 1: A Trigonometric Identity
The first argument given by Stein is that “despite hardwork,
skill and ingenuity in themanipulation of symbols did not
come easily to her” [Ste85, p. 56]. And certainly, as we

378 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 71, NUMBER 3



found in our study, many of the letters from Lovelace to
her tutor De Morgan, particularly early on in her course of
study, contain either algebraic errors or evidence of diffi-
culty in symbolic manipulation. However, the first exam-
ple given by Stein to illustrate this algebraic incompetence
predates these letters by five years. Dating from 1835, it
is contained in two letters to Mary Somerville, concerning
the algebraic manipulation of trigonometric identities.

At this point, Lovelace was studying trigonometry and
had attempted unsucccessfully to derive certain identities
from others algebraically. To give a flavor, we will just look
at the first (and easiest) problem. Given the addition for-
mulae

sin(𝑎 + 𝑏) = sin 𝑎 cos 𝑏 + sin 𝑏 cos 𝑎
𝑅

cos(𝑎 + 𝑏) = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏
𝑅 ,

the question was to deduce the corresponding difference
formulae

sin(𝑎 − 𝑏) = sin 𝑎 cos 𝑏 − sin 𝑏 cos 𝑎
𝑅

cos(𝑎 − 𝑏) = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏
𝑅 .

Figure 4. Mary Somerville.

In her letter to Somerville,
Lovelace quotes her text-
book as saying: “The values
for the sine & cosine of the
differences (𝑎 − 𝑏) may eas-
ily be deduced from these two
formulas.” But she admits,
“Now however easily de-
duced, I have not succeeded
in doing it” [Ste85, p. 55].

On seeing this, the mod-
ern reader will undoubt-
edly have two principal re-
actions. The first would be
to ask “what is 𝑅?” And the
second would be to enter-

tain serious doubts, along with Stein and others, about
Lovelace’s mathematical competence if she could not even
make simple substitutions such as sin(−𝑥) = − sin 𝑥 and
cos(−𝑥) = cos 𝑥.

The convention of teaching trigonometry with reference
to a circle of radius 1 is a relatively recent development and
had certainly not been uniformly adopted in Lovelace’s
time. In her day, all trigonometric functions were defined
with respect to a circle of arbitrary radius 𝑅. Rather than ra-
tios, they were understood as simple chord sections, with
respect to an arc, which of course would correspond to
an angle, subtended from the center of the circle. So,
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Figure 5.

for example, in Figure 5, the angle ∠ACM would corre-
spond to the arc APM. The sine of that angle was defined
as being “a line drawn from one extremity of the arc per-
pendicular to a diameter drawn through the other extrem-
ity” [Vin00, p. 44]. Thus sin∠ACM is the line segment
MH, cos∠ACM is the line segment CH, and sin2(∠ACM) +
cos2(∠ACM) = CM2 = 𝑅2.

We referred earlier to Ada’s somewhat outmoded course
of study in the 1830s, as recommended by her family
friend, Dr. King. This included reading on algebra (largely
comprising methods for solving polynomial equations),
Euclid’s Elements for basic plane geometry, and A Treatise
on Plane and Spherical Trigonometry (1800) by the Reverend
Samuel Vince. This last work was a highly synthetic, geo-
metrical treatment of the subject, in which there was no
mention of negative angles, no use of algebraic substitu-
tions, and in fact, little use of algebra at all.

Here, for example, is the rather verbose—but entirely
rigorous—way that Ada would have learnt how to derive
the addition formula for the sine, with reference to Figure
5 [Vin00, pp. 55–56]. The reader is invited to follow the
reasoning.

Let ACM, MCN be the two given angles, of which
ACM is the greater; make the angle MCP = MCN,
and then ∠ACN is the sum of the two given an-
gles, and ∠ACP their difference. Draw the chord
PN, intersecting CM in D; then as the angle ∠PCD
= ∠NCD, PC = CN, and CD is common to the
triangles PCD, NCD, we have (by Euclid, Book I,
Prop. 4) PD = DN, and the angle ∠PDC = ∠NDC,
therefore each of them is a right angle. Draw NG,
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DB, MH, PK, perpendicular to AC, and therefore
parallel to each other, and DF, P𝑥E parallel to AC,
and therefore parallel to each other (by Euclid,
Book I, Prop. 30). Now as ND = DP, we have (by
Euclid, Book VI, Prop. 2) NF = FE = D𝑥, and P𝑥
= E𝑥 = DF; therefore BK = GB = DF. Also, the tri-
angle NDF is similar to the triangle CBD, for the
angle ∠NDF = ∠CDB, each being the complement
of ∠FDC, and the angles at F and B are right an-
gles; but ΔCDB is similar to ΔCMH, the angle at
C being common, and the angles at B and H right
angles; therefore ΔNDF is also similar to ΔCMH.

The book then uses the similarity of these triangles to de-
duce that

CM ∶ MH ∷ CD ∶ DB,
CM ∶ CH ∷ ND ∶ NF,

and therefore
MH ⋅ CD + CH ⋅ND

CM
= DB +NF

= FG +NF = NG.
Thus, letting ∠ACM = 𝑎, ∠MCN = 𝑏, and the line length
CM = 𝑅, it arrives at

sin(𝑎 + 𝑏) = sin 𝑎 cos 𝑏 + sin 𝑏 cos 𝑎
𝑅 .

The corresponding difference formula would therefore fol-
low, not via the algebraic substitution of negative-angle
identities, but by further geometric reasoning:

MH ⋅ CD − CH ⋅ND
CM

= DB − NF

= DB − D𝑥 = B𝑥 = PK,
which gives the desired result.

Given Lovelace’s exposure to this style of reasoning in
trigonometry, it is not difficult to see why the thought of
algebraic substitutions either did not occur to her, or did
not come easily at first. Although we might regard such
operations as obvious today, if we had not been trained in
the algebraic style of doingmathematics, the need for such
procedures would be far from evident. Thus, to base an
argument of algebraic ineptitude on this example fails to
take into account precisely what kind of mathematics and
what style of mathematical thinking Lovelace had been ex-
posed to up to this point.

Argument 2: The Case of the Missing Case
Stein’s next argument concerned what she believed to be
“perhaps themost telling and consequential” [Ste85, p. 90]
piece of evidence against Ada’s mathematical proficiency.
It was contained in the 1843 paper, not in Lovelace’s
“Notes” at the end of her translation of Menabrea’s arti-
cle, but in the text of the translation itself. In his original

article, Menabrea had discussed how the analytical engine
might deal with computations that theoretically required
an infinite number of steps. The example he gave was the
following multiple of the Wallis product

2 ⋅
𝑛
∏
𝑘=1

( 2𝑘
2𝑘 − 1 ⋅

2𝑘
2𝑘 + 1) ,

the value of which, as 𝑛 → ∞, is 𝜋.
Since plugging in a value of 𝑛 = ∞ would obviously be

impossible, Menabrea suggested that, in this case, a punch-
card containing the numerical value of the output could
simply be substituted in place of having the machine actu-
ally do the calculation. In Lovelace’s translation, the full
passage reads as follows [Men16, pp. 53–54]:

Let us now examine the following expression:

2 ⋅ 22 ⋅ 42 ⋅ 62 ⋅ 82 ⋅ 102⋯(2𝑛)2
12 ⋅ 32 ⋅ 52 ⋅ 72 ⋅ 92⋯(2𝑛 − 1)2 ⋅ (2𝑛 + 1)2 ,

which we know becomes equal to the ratio of the
circumference to the diameter, when 𝑛 is infinite.
We may require the machine not only to perform
the calculaiton [sic] of this fractional expression,
but further to give indication as soon as the value
becomes identical with that of the ratio of the cir-
cumference to the diameter when 𝑛 is infinite, a
case in which the computation would be impos-
sible. Observe that we should thus require of the
machine to interpret a result not of itself evident,
and that this is not amongst its attributes, since it
is no thinking being. Nevertheless, when the cos
of 𝑛 = ∞ has been foreseen, a card may imme-
diately order the substitution of the value of 𝜋 (𝜋
being the ratio of the circumference to the diam-
eter), without going through the series of calcula-
tions indicated. This would merely require that
the machine contain a special card, whose office
it should be to place the number 𝜋 in a direct and
independent manner on the column indicated to
it.

Although a little long-winded, the majority of this ex-
tract is intelligible enough, but there is one notable excep-
tion: the sentence concerning “the cos of 𝑛 = ∞.” Not
only is this phrase obviouslymeaningless, but it also raises
the question of what on earth the cosine function has to do
with this example anyway. Referring back to Menabrea’s
article in French, we find that sentence originally was ren-
dered as follows:

Cependant lorsque le cos. de 𝑛 = ∞ a été prévu,
un carton peut ordonner immédiatement la sub-
stitution de la valeur de 𝜋 (𝜋 étant le rapport de la
circonférence au diamètre), sans passer par la série
des calculs indiqués.
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Figure 6. Portion of Menabrea’s article containing the original
misprint.

This is exactly the same as in Lovelace’s translation. Why
then is there mention of cos∞? The answer is simple:
Menabrea’s paper contained a typo. The relevant phrase
should have read: “lorsque le cas de 𝑛 = ∞ a été prévu,”
or “when the case of 𝑛 = ∞ has been foreseen,” which
obviously makes much more sense. Thus, in Stein’s view,
“Ada had translated a printer’s error” [Ste85, p. 91], thereby
revealing her limited understanding of this section of
Menabrea’s paper.

One can certainly agree that, by giving a literal trans-
lation of this passage without noticing the printing error,
Lovelace did not show her eye for detail and proofreading
skills in the best possible light. But at the same time it’s
hardly indicative of mathematical incompetence. Several
other typographical errors also slipped past her, including
themisspelling of the word calculation as calculaiton in the
same passage and the rendering of her initials A. A. L. as
“A. L. L.” at the end of the paper. It should also be remem-
bered that the “cos of 𝑛 = ∞” typo did not just slip past
Lovelace andMenabrea; it went unnoticed by several schol-
ars who we know read the article in detail, including Bab-
bage and Wheatstone in the 19th century and Turing and
Hartree in the 20th.

Stein’s case is further weakened by her subsequent frank
admission that this mistake “has been reprinted several
times” [Ste85, p. 91]. In addition to its first occurrence in
Menabrea’s paper and subsequent inclusion in Lovelace’s
translation, it also appeared in Henry Babbage’s collection
of papers in 1889, where for some unknown reason, he
gave the phrase as “the cos of 𝑛 = 1/0,” which makes
even less sense than before. This rendering was also subse-
quently reproduced in Philip and EmilyMorrison’sCharles
Babbage and his Calculating Engines, published in 1961. In
fact, themistake was only spotted in 1953, when B. V. Bow-
den reprinted Lovelace’s paper in its entirety with the error
silently corrected [Bow53, p. 359]. But the fact that it took

110 years before the mistake was noticed gives some indi-
cation that it is not quite as “telling and consequential” as
Stein would have us believe.

Argument 3: Chronic Algebraic Inability?
The final piece of evidence presented by Stein is, without
doubt, potentially the most damaging. Indeed, if correct,
this example alone would be enough to cast serious doubt
on Lovelace’s ability to comprehend anything but themost
elementary mathematics. Like the first argument, it im-
plies that she had a chronic inability to manipulate alge-
braic expressions. That first argument is based on evidence
from 1835, when Lovelace was only 19 and had yet to start
her intensive study of university-level mathematics with
De Morgan. But by contrast, Stein’s final argument dates
its evidence from the end of 1842—two and a half years
after the commencement of those studies and, most wor-
ryingly of all, almost exactly contemporaneous with the
beginning of her work on her famous paper.

Stein insists that Lovelace continued to display an in-
ability “to assimilate the symbolic processes with which
alone highly complex and abstract matters may be rigor-
ously treated,” which rendered her incapable of grasping
algebraic reasoning and “in the end limited her under-
standing of science” [Ste85, p. 84]. This insistence is, of
course, essential to her overall thesis that by 1843 Lovelace
was in no way sufficiently prepared to write on a mathe-
matical subject.

As we have already indicated, there is no doubt that
Lovelace found algebra challenging at first, and her let-
ters to De Morgan contain many examples where she has
made elementary algebraic errors or displayed a novice’s
misunderstanding. Several examples are highlighted, for
example, in [HMR17b] and [Ric21]. But it is equally clear
from their correspondence that not only did her algebra
improve over time, but that it was soon applied to far more
demanding topics, such as, for example, second-order dif-
ferential equations, which she was studying by November
1841. Thus, while still prone to the odd algebraic mis-
take or misunderstanding, these increasingly arose from
far more sophisticated mathematics.

To begin our analysis of Stein’s third argument, we
quote the relevant passage from her book in full, in or-
der to convey the full weight of the alleged evidence
[Ste85, p. 90]:

The last surviving letters in Lovelace’s mathemati-
cal correspondence with De Morgan are dated 16
and 27 November 1842 (hence shortly before she
translated the Menabrea memoir). In them we
find her wrestling with an elementary problem in
functional equations. (The problem was: Show
that 𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦) = 2𝑓(𝑥)𝑓(𝑦) is satisfied by
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Figure 7. Problem from page 206 of De Morgan’s Elements of
Algebra.

𝑓(𝑥) = (𝑎𝑥 + 𝑎−𝑥)/2.) She was still unable to take
a mathematical expression and substitute it back
into the given equation. It was the same “princi-
ple” that had plagued her in her correspondence
with Mary Somerville and in earlier letters to De
Morgan. On 27 November, after having struggled
for at least eleven days, she sighed,

I do not know when I have been so tanta-
lized by anything, & should be ashamed
to say how much time I have spent upon
it, in vain. These functional Equations
are complete Will-o-the-Wisps to me. The
moment I fancy I have really at last got
hold of something tangible & substantial,
it all recedes further & further & vanishes
again in thin air. . . . I believe I have left no
method untried.

The obvious inference is that if Lovelace was unable to
handle algebraic manipulations like these in November
1842, after more than two years of studying mathematics
at a much higher level than this, how are we to believe
that she was capable of writing such a mathematically flu-
ent account of Babbage’s analytic engine in the first half of
1843?

Lovelace’s course of study with De Morgan began
around July 1840 and, although dominated from fairly
early on by calculus-related topics, periodic excursions
into more elementary topics were necessary due to gaps
in her prior studies. As De Morgan reminded her in Sep-
tember of that year: “You understand of course that your
Differential Calculus must be delayed from time to time
while you make up those points of Algebra and Trigonom-
etry which you have left behind” [HMR17b, p. 206].

As part of this remedial study, Lovelace was instructed
to read De Morgan’s 1835 textbook The Elements of Al-
gebra, subtitled, appropriately enough, Preliminary to the

Differential Calculus. By November, she had reached the
book’s short Chapter 10 entitled “On the notation of func-
tions.” There, in just four pages, De Morgan showed how
to express functions—writing for instance 𝜙𝑥 where we to-
day would usually write 𝑓(𝑥)—and introduced the idea of
solving functional equations. (A simple example would
be something like 𝜙(𝑥𝑦) = 𝜙𝑥 + 𝜙𝑦, of which one possi-
ble solution is 𝜙𝑥 = ln 𝑥.) It was this topic that caused
Lovelace problems.

In a letter dated November 10, but with no year given,
she wrote to De Morgan: “I do not know why it is exactly,
but I feel I only half understand that little Chapter X, and
it has already cost me more trouble with less effect than
most things have. I must study it a little more I suppose”
[HMR17b, p. 224].

A subsequent letter written on November 16 finds her
going into more detail [HMR17b, p. 225]:

I can explain exactly what my difficulty is in Chap-
ter X. . . . That I do not comprehend at all the
means of deducing from a Functional Equation
the form which will satisfy it, is I think clear from
my being quite unable to solve the example at
the end of the Chapter ‘Shew that the equation
𝜙(𝑥 + 𝑦) + 𝜙(𝑥 − 𝑦) = 2𝜙𝑥 × 𝜙𝑦 is satisfied by
𝜙𝑥 = 1

2
(𝑎𝑥 + 𝑎−𝑥)’. I have tried several times, sub-

stituting first 1 for 𝑥, then 1 for 𝑦 but I can make
nothing whatever of it, and I think it is evident
there is something that has preceded, which I have
not understood. The 2nd example given for prac-
tice ‘Shew that 𝜙(𝑥+𝑦) = 𝜙𝑥+𝜙𝑦 can have no other
solution than 𝜙𝑥 = 𝑎𝑥’, I have not attempted.

The problem to which Lovelace is referring appears on
page 206, at the end of Chapter 10 of De Morgan’s alge-
bra textbook (see Figure 7). Again, she has given the date
but no year on this letter. However, immediately below
her handwritten date, a 20th-century hand, possibly that
of an archivist, has added a further detail: the year “1842”
appears quite legibly on the letter in pencil. Lovelace’s fi-
nal contribution to this particular topic is the letter dated
November 27 (but again, with no year) quoted by Stein
above. It is thus easy to see why Stein believed that this
particular episode dates from November 1842, as all the
evidence thus far presented points in that direction.

It looks pretty bad for Lovelace doesn’t it?
But wait! There is a flaw in Stein’s analysis; namely, she

does not appear to look at De Morgan’s replies to these
letters from Lovelace. And it turns out that one letter in
particular carries a vital clue.

In a letter seemingly composed in reply to Lovelace’s
initial letter of November 10, De Morgan wrote back, say-
ing: “The notation of functions is very abstract. Can you
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put your finger upon the part of Chapt. X at which there
is difficulty[?]” [HMR17b, p. 224]. The content of this let-
ter not only makes it obvious that it is an integral part of
this specific epistolary conversation, but crucially, reveals
it to be the one and only letter from this sequence that ac-
tually contains a full date. At the end, just to the left of his
signature, De Morgan has written in his distinctive hand-
writing: “Novr. 14/40.” In other words, this conversation
began, not in 1842, but in 1840. We are now left with
the possibility that the first two letters in the discussion
(from November 10 and 14) were both written in 1840,
with two subsequent letters following two years later, on
November 16 and 27, respectively. This looks potentially
even worse for Lovelace’s mathematical reputation since
it would imply that even after two further years of higher
mathematical study, she still couldn’t solve this relatively
simple problem!

But one final possibility also exists, and this only be-
comes clear when you read all of the letters in this particu-
lar conversation. There are actually six letters in this back-
and-forth exchange (three from Lovelace and three from
De Morgan) and, when read in the correct order, they shed
crucial light onto what was really happening and, most im-
portantly, when it was happening.

On November 10, 1840, Lovelace first wrote to com-
plain that she felt “I only half understand that little Chap-
ter X.” Four days later, in a letter dated November 14,
1840, De Morgan replied, asking “Can you put your finger
upon the part of Chapt. X at which there is difficulty[?].”
Lovelace then responded on November 16, “I can explain
exactly what my difficulty is in Chapter X,” which she then
proceeded to do. DeMorgan’s answer to this, merely dated
“Friday,” gave her a short hint, to which she then replied
on November 27 [HMR17b, p. 225]:

I have I believe made some little progress towards
the comprehension of the Chapter on Notation of
Functions, & I enclose you my Demonstration of
one of the Exercises at the end of it : “Show that
the equation 𝜙(𝑥 + 𝑦) = 𝜙𝑥 + 𝜙𝑦 can be satisfied
by no other solution than 𝜙𝑥 = 𝑎𝑥.” At the same
time I am by no means satisfied that I do under-
stand these Functional Equations perfectly well,
because I am completely baffled by the other Exer-
cise: “Shew that the equation 𝜙(𝑥+𝑦)+𝜙(𝑥−𝑦) =
2𝜙𝑥 × 𝜙𝑦 is satisfied by 𝜙𝑥 = 1

2
(𝑎𝑥 + 𝑎−𝑥) for ev-

ery value of 𝑎.”. . . These Functional Equations are
complete Will-o’-the-Wisps to me. . . .

Lastly, in a letter dated “Monday,” De Morgan closed
the episode with a final reply [HMR17b, p. 225]:

I can soon put you out of yourmisery about p. 206.
You have shown correctly that 𝜙(𝑥 + 𝑦) = 𝜙(𝑥) +
𝜙(𝑦) can have no other solution than 𝜙𝑥 = 𝑎𝑥, but

the preceding question is not of the same kind; it
is not show that there can be no other solution
except

1
2
(𝑎𝑥 + 𝑎−𝑥) but show that

1
2
(𝑎𝑥 + 𝑎−𝑥) is

a solution: that is, try this solution. [He then
demonstrates the solution.]. . . I think you have got
all youweremeant to get from the chapter on func-
tions.

It is therefore clear that this entire discussion, rather
than dating from 1842 as Stein claimed, actually took
place two years earlier in 1840, close to the very beginning
of Lovelace’s studies with De Morgan, rather than right
at the end of them. And since Stein’s argument hinged
on these letters dating from 1842, our redating of them
leads to the inevitable conclusion that her negative assess-
ment of the state of Lovelace’s mathematical abilities by
late 1842 was in fact incorrect. (For the first in-depth anal-
ysis of the Lovelace–De Morgan correspondence by histo-
rians of mathematics, see [HMR17b].)

On the face of it, and taken together, all three of Stein’s
key arguments seemed at first to present a compelling pic-
ture of Lovelace as someone whose mathematical skills
were considerably weaker than had previously been sup-
posed. But as this article has shown, further contextual
analysis reveals fundamental flaws in each of these argu-
ments, throwing considerable doubt, not just on Stein’s
negative conclusions, but on those of subsequent authors
who accepted her findings. This results in a more nuanced
assessment of Lovelace’s abilities. And while it does not
prove that she was solely responsible for the 1843 “Notes,”
nor does it in any way suggest that she was a genius, it does
provide strong evidence that she did indeed have themath-
ematical competence to write and understand the mathe-
matics contained in her famous paper of 1843.

Postscript
In recent months, the subject of artificial intelligence (AI)
has featured prominently in news stories, due to rapid
developments in the abilities of AI software applications
such as ChatGPT, Google Bard, and Microsoft Bing. Aca-
demics and educators have exhibited a mixture of excite-
ment and terror at the sheer volume of convincingly hu-
manlike responses now capable of emanating from their
computers. But of course, speculation about the possibil-
ity of AI is nothing new and, as is well known, also ap-
peared in Lovelace’s 1843 paper. For this reason, it seems
appropriate to conclude this article with a timely postscript
on Ada Lovelace and artificial intelligence.

Lovelace’s views on the possibility of artificial intelli-
gence can be summed up in her own words on the po-
tential of Babbage’s theoretical machine: “The Analytical
Engine has no pretensions whatever to originate anything.
It can do whatever we know how to order it to perform”
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[Men16, p. 94]. A century later, while agreeing with her
that all the thinking had to be done beforehand by the
human hardware and software designers, Douglas Hartree
countered: “This does not imply that it may not be pos-
sible to construct electronic equipment which will ‘think
for itself,’ or in which, in biological terms, one could set
up a conditioned reflex, which would serve as a basis for
‘learning’” [Har49, p. 70].

This view was famously expanded by Alan Turing in
his seminal 1950 paper “Computing machinery and in-
telligence,” in which he posed the classic question: “Can
machines think?” [Tur50, p. 433]. Describing himself as
being “in thorough agreement with Hartree” on the ques-
tion of whether machines might one day have the power
to think for themselves, he speculated “that the evidence
available to Lady Lovelace did not encourage her to believe
that they had it” [Tur50, p. 450]. Turing believed that by
the end of the 20th century, “one will be able to speak of
machines thinking without expecting to be contradicted”
[Tur50, p. 442]; he then gave—and attempted to refute—
nine counter-arguments to this opinion, the sixth of which
was “Lady Lovelace’s Objection” [Tur50, p. 450].

Figure 8. Alan Turing.

Turing chose to intepret
Lovelace’s view as being
that a machine can never
“take us by surprise” and
tried to counter it with a
few rather lame examples
of how humans can be sur-
prised by computers, due
perhaps to insufficient or
erroneous assumptions on
the part of the programmer.
But he admitted that this
wasn’t particularly convinc-
ing. Of greater importance,

of course, was his “imitation game” or Turing test, as it
is now known. This was a thought experiment via which,
if successful, a computer could produce output that was
indistinguishable from that of a human brain. But while
most today would agree that the Turing test has been sat-
isfied, Lovelace’s objection remains a harder criterion to
fulfill.

For this reason, a 21st-century upgrade of the Turing test,
known as the Lovelace test, was formulated. Instead of fo-
cusing on the mere replication of humanlike intelligence,
this new benchmark concentrates on Lovelace’s use of the
word “originate” to ask whether a machine could ever be
able to produce an original, creative piece of work unfore-
seen by its programmer. Put simply, a computer would
pass this test if it created something new and original (such

as a poem or a piece of music) in such a way that no pro-
grammer could explain the process.

To this end, the author of this article conducted a casual
experiment. On one occasion, he instructed ChatGPT to
“write a limerick about Ada Lovelace.” A limerick was duly
composed. He then made up a limerick of his own. Fi-
nally, on a separate occasion, he gave the same instruction
again to ChatGPT, and the software produced another lim-
erick. The three limericks are presented here, in a different
order from their initial composition.

There once was a woman named Ada
Whose writings are said to have played a
Part in the formation
Of machine computation
That’s now used to analyze data.

Of computing and numbers a fan,
In mathematics as strong as a man;
With all of her might
She worked day and night
To invent the computer program.

But was she as smart as they say?
Some answer this question, “No way!”
While others maintain
She did all that they claim
And her legend persists to this day.

Three things should now be noted. Firstly, the limer-
icks are all atrocious, for which the author can only apol-
ogize. Secondly, in this experiment there is no doubt that
ChatGPT passed the Turing test, as the two AI-generated
limericks are indistinguishable in quality from the human-
composed verse—all three limericks being equally terrible.
But thirdly and most significantly, the software failed the
Lovelace test because, although it can be seen to have “orig-
inated” something, namely two brand-new limericks, it
only did exactly what it was instructed to do. And if it
had been told to write a good limerick, the chances are that
it would have failed entirely. It is thus clear from this very
unscientific experiment that this particular piece of AI soft-
ware still has some way to go before it can be said to have
satisfied the Lovelace test.

At the beginning of her famous “Note G,” while warn-
ing of “exaggerated ideas that might arise as to the powers
of the Analytical Engine,” Lovelace noted

a tendency, first, to overrate what we find to be al-
ready interesting or remarkable; and, secondly, by
a sort of natural reaction, to undervalue the true
state of the case, when we do discover that our no-
tions have surpassed those that were really tenable
[Men16, p. 94].

It is ironic that she was in fact warning against attributing
too much (or too little) to the machine with respect to its
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abilities, when that is exactly the fate that subsequently be-
fell perceptions of her ownmathematical skill. Let us hope
that this article goes some way toward setting the record
straight.

ACKNOWLEDGMENTS. My thanks are due to
Christopher Hollings and Ursula Martin for valu-
able feedback on an earlier version of this article.
Transcriptions of Lovelace’s correspondence with
De Morgan were made by Christopher Hollings
in 2015 and may be viewed online (along with
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https://www.claymath.org/online-resources
/ada-lovelaces-mathematical-papers.
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OPINION

Redefining Math
Conferences: A Panel
Robyn Brooks and Padi Fuster Aguilera

Note: The opinions expressed here are not necessarily those of Notices.

Introduction
In January 2023, a panel called “Redefining Math Confer-
ences” took place at the Joint Math Meetings (JMM); this
panel grew out of our work as founders of the Math for
All conference. The goal of this panel was to create a space
where organizers of inclusive conferences could share their
experiences, successes, and thoughts about the work in-
volved in organizing these events. In this article, we dis-
cuss our intentions for the panel, and its main takeaways.

This article is not meant to be a set of inclusive confer-
ence guidelines; for articles of this nature, the interested
reader way wish to look at [JSTM+22,CH19] as a starting
point. We want to acknowledge that the following com-
ments, except those in quotes, are our own and have been
filtered through our own personal biases and experiences.

The Math for All conference was founded with the pur-
pose of fostering inclusivity in mathematics, with an ex-
plicit focus on nurturing a sense of belonging amongst at-
tendees. As founders and organizers, we continue to in-
vest time in learning how to provide participants with an
open and friendly environment in which to learn and dis-
cuss mathematics. A big part of the work that we do relies
on having an open mind and the desire to keep learning.

Robyn Brooks is a postdoctoral fellow in the Science Research Initiative at the
University of Utah. Her email address is robyn.brooks@utah.edu.
Padi Fuster Aguilera is an NSF MPS-Ascend postdoctoral fellow of mathemat-
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Figure 1. Flyer for the panel.

One way of doing this is to brainstorm and talk to others
doing this work. This is why we decided to hold this panel
with organizers of several math conferences that are cen-
tered around building welcoming math spaces. Moreover,
we saw this space as an opportunity to create a networking
platform and to foster community for all those engaged
and interested in doing this work.

Intention and Panel Organization
The following is a list of the conferences and the panelist
representatives. (If you wish to know more about these
conferences, we have included their websites as footnotes.)

• Graduates Achieving Inclusion Now (GAIN).1

Panelist: Seppo Niemi-Colvin, postdoctoral fel-
low at Indiana University at Bloomington

1https://sites.google.com/view/gainconference
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• The Math For All in Clemson Conference.2 Pan-
elist: Keisha Cook, assistant professor at Clemson
University

• The Nebraska Conference for Undergradu-
ate Women in Mathematics (NCUWM).3 Pan-
elist: Christine Kelley, professor at University of
Nebraska-Lincoln

• The Online Undergraduate Resource Fair for
the Advancement and Alliance of Marginalized
Mathematicians (OURFA2M2).4 Panelist: Zoe
Markman, senior math major at Swarthmore Col-
lege

• The Underrepresented Students in Topology
and Algebra Research Symposium (USTARS).5

Panelist: Christopher O’Neill, associate professor
at San Diego State University

Figure 2. Conferences represented on the panel.

The purpose of this panel was to both create a network-
ing place for organizers of conferences and use the visibil-
ity that the JMM provides to reach out to a wider audience,
and create awareness on the criticality of creating inclusive
conferences spaces. Our goal for the panel was not to con-
vince others that such spaces are necessary, but instead to
work on growing and learning with community on how
to effectively create more welcoming spaces for all. We
also aimed to disrupt the JMM space by bringing these con-
versations there, with the hope that the JMM organizers
would adopt some of the effective organizational practices
discussed by the panelists.

By organizing this panel, we wanted to highlight the im-
portance of creating inclusive conferences because we be-
lieve that having a welcoming space is key for participants
to really engage and do great mathematics. As graduate
students, we had been to many conferences where we had
no sense of belonging—even with all the privilege that we
carry, being white, cis-women, coming from families with
members in academia—and this kept us from enjoying the
mathematics. Those of you who have felt this before will
immediately understand what we are talking about.

2http://tinyurl.com/mathforallconference
3https://math.unl.edu/ncuwm
4https://sites.google.com/view/ourfa2m2
5https://www.ustars.org

Insecurities and imposter syndrome are invisible barri-
ers which hinder people from being able to enjoy and do
mathematics. Welcoming spaces can help remove some
of these weights and invite people to bring their full selves
and thrive. Mathematics is more fruitful when these invisi-
ble barriers are recognized and counteracted. It is naive to
believe that mathematicians can focus on just doing math-
ematics without removing these barriers, because of the
mental energy that is required to exist in noninclusive aca-
demic spaces. This means that, when organizing a con-
ference, figuring out how to remove barriers and create
welcoming spaces must be centered. This focus is as im-
portant as thinking about the mathematical content of a
conference. Ensuring that conference participants are able
to fully contribute should be a central goal, not an after-
thought.

We wished for our panel to be a place where we could
work towards facilitating genuine community for all, and
for it to be a meeting point for those wishing to do this
work. By inviting organizers of these exemplary confer-
ences, we ended up with a diverse group of panelists,
which suggests that these conferences are already doing
work to ensure diverse perspectives within their organiz-
ing committee.

The prepared questions for the panel were meant to
have the panelists reflect on their intentions and experi-
ences when organizing. We believe that conference or-
ganizing requires critical thinking, care, and constant re-
assessment of the small details. This time and effort is cru-
cial when centering the participants and their experiences.
We also wanted to identify and share specific conference
practices that have been developed over time, from the cre-
ativity of the participants and organizers. We wanted to
give the panelists time to share useful tips for other orga-
nizers or those who are thinking of doing this work. Fi-
nally, acknowledging that doing this work can also cause
harm, we wanted to give panelists time to share some of
their mistakes, and what they learned.

During the event, panelists introduced themselves, their
conferences, and answered the following three questions:

• In the context of creating a conference that has a
welcoming environment, what do you think is the
most important thing to consider when organiz-
ing?

• Are there any good changes/ideas that you imple-
mented in your conference that ended up in some-
body being able to enjoy the conference?

• What mistakes have you made while organizing,
for example, encountering a tough moment dur-
ing the conference, and how did you deal with
these mistakes?
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Takeaways
We summarize the main takeaways from this panel as four
points: accessibility, intention, diversity of voices, and
growth mindset.
Accessibility. Accessibility was one of the main topics
around which the panel discussion was centered. One fo-
cus of the conversation was that in-person conferences are
not accessible to everyone—there are many reasons why
in-person conference participation is unfeasible. To name
a few, people may be unable to attend due to financial,
health, or safety issues, care giving responsibilities, or be-
cause conferences are often only designed for able-bodied
individuals. Since the pandemic started, in-person con-
ference attendance has been increasingly challenging (or
even impossible) for many of our colleagues. Moreover,
many country- or state-specific laws can become invisible
barriers for participants, such as abortion bans, anti-trans
legislation, anti-immigration laws, etc. As a commitment
to accessibility, conference organizers can provide a virtual
participation option.6

During the panel, the OURFA2M2 panelist spoke about
their focus on accessibility on many different levels. The
OURFA2M2 conference is fully virtual. They use Alt text in
all their advertising and encourage others to do the same.
Alt text (Alternative text) gives an image description, which
can be read aloud by screen-reading tools, among other
uses. The OURFA2M2 panelist also spoke about accessi-
bility, in the context of removing barriers in the form of
knowledge of the field. Within their conference and as re-
sources on their website, OURFA2M2 offers workshops on
topics such as using LaTeX, applying for an REU, and crash
courses as introductions to math research areas. Finally,
OURFA2M2 organizers are intentional in their work to in-
vite participants and new organizers from community col-
leges and two-year degree granting institutions. By doing
this, students from institutions that typically have less vis-
ibility and access to resources have a chance to be exposed
to new opportunities to do math research, and venues to
participate in the broader math community.

Along with these points, the Math For All panelist
shared their poster workshops as a way to increase acces-
sibility. These poster workshops are held at local institu-
tions prior to the conference and are usually led by under-
grad or grad students. The main focus of these workshops
is to demystify the process and to give tools to undergrads
for creating a scientific poster from scratch. In particular,
in these workshops facilitators introduce students to LaTeX
and Overleaf and discuss topics such as how to find a men-
tor and a poster topic, as well as how to present a poster

6Letter to the AMS: A call to defend bodily autonomy in the mathematics
community: https://sites.google.com/view/bodily-autonomy-in
-math

effectively. Additionally, free poster printing is provided
to all participants presenting a poster at the conference.

Another common feature amongst USTARS, NCUWM,
and Math For All is that they provide travel funding for
participants at different levels. (Note that GAIN and
OURFA2M2 are fully virtual, so the cost of travel is zero.)
When possible, conference organizers pay directly for food,
travel, and lodging instead of providing reimbursements.
This practice can be key in allowing participation of those
without the financial resources to pay costs ahead of time.
Intentionality. Intentionality was a recurring topic
brought up during the panel in order to set up inclusive
and safe spaces. Safe spaces cannot be possible without
collective agreement and effort from all participants. In
order to create this collective action and mindset, confer-
ence organizers must be intentional in setting the stage at
the beginning of the conference and throughout the event.

In this spirit, the Math For All panelist talked about
their conference opening remarks in which they include
snippets of the history of the place where the conference
takes place, in order to disrupt the predominantly white
cis-male academic space and create space for those who
do not identify with this group. Additionally, the confer-
ence has an ethical conduct agreement which participants
agree to abide by during registration. This agreement is
also read out loud at the start of the conference to set the
tone and allow participants to reflect on it. The goal of this
is to center the importance of the agreement to the confer-
ence dynamics, and to remind participants that a safe and
welcoming space is not possible without everyone’s collab-
oration.

The NCUWM panelist talked about assigning seating
for the opening banquet where each table has a faculty
member, undergrads from different institutions, and an
invited guest or mentor in order “for participants to meet
several others right away and become comfortable talk-
ing with others they do not know.” The conference inten-
tionally invites speakers and mentors from diverse back-
grounds and experiences, such as career trajectory, type of
institution, racial, ethnic, and sexual orientation. This is so
that “each participant [can] recognize someone who they
can identify with who may inspire them (like an “I can do
this, too” realization).”

During the NCUWM networking dinner, invited pro-
fessionals and other mentors are assigned specific tables,
and the undergraduate participants choose where to sit. At
dessert, seats are rotated, so that participants have the abil-
ity to network with a larger group of people. This gives
students who may be more shy or less confident a means
of meeting role models.

The GAIN conference has the goal of being a space
for mathematicians to talk about issues of discrimination
and systemic inequity. The GAIN panelist spoke about
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how this goal shaped the conference: what kind of top-
ics would be discussed and the structure of the talks and
participant interaction. For instance, the conference was
spread over several weekends. Each weekend had a differ-
ent discussion topic including sexism, racism, homopho-
bia, ableism, and mental health. During these weekend
events, a mathematician would give an introductory talk
about the specific issue, and space was allotted for partic-
ipants to discuss and debrief on the issue itself, as well
as its impact on the mathematical community. The pan-
elists emphasized the importance of bringing these issues,
which are often not considered mathematical topics, into
mathematical spaces. Without talking about and working
to address these issues, which affect manymathematicians,
inclusivity is not achievable.
Diversity of voices. A recurring theme during the panel
was the importance of 1) having a diverse group of orga-
nizers in order to better serve the conference participants
and 2) listening to the people that you want to serve.

The OURFA2M2 conference was created by undergrad-
uate students who identified a need to create resources
for their peers and themselves. Within the organizational
group, there is a diversity of voices to better serve their par-
ticipants’ needs. For example, all the accessibility practices
mentioned before came from having organizers with dif-
ferent accessibility needs. The OURFA2M2 panelist spoke
specifically about how the organizers focus on creating
an exhaustive list of groups that need to be included and
served within the mathematical community.

Similarly, the USTARS conference was originally started
by graduate students from underrepresented groups in
math. The current set of organizers are past attendees who
were positively impacted by the conference, and wanted to
continue the work, so that future students would also have
a place where they felt that they belonged. Specifically, the
USTARS panelist talked about how this practice preserves
the founding goals and allows the conference to adapt to
the needs of the groups that it works to serve.

As a result of the numerous iterations of USTARS and
NCUWM and their continuity in serving students in math-
ematics, they have built a very strong community both
at and across conferences. More generally, all the confer-
ences represented by the panel have made a big impact on
the math identity of participants.
Growth mindset. Another common theme was the neces-
sity of having a growth mindset when organizing confer-
ences. This involves not seeing the practices and structure
of the conference as fixed, but instead spending time re-
flecting and updating these practices based on feedback
from the participants.

For example, the NCUWM panelist mentioned their im-
plementation of small group discussions during the con-
ference with topics focused on intersectional issues faced

by women in math. This conference component was im-
plemented as a suggestion from a past participant, and has
become a very valuable space for connection among atten-
dees.

Through explaining challenging moments that the or-
ganizers had faced, the Math For All panelist mentioned
the importance of having volunteers whom you trust to be
able to handle situations that might come up during the
conference. However well-intentioned, careful, or trained
an organizer is, there may be instances where certain prac-
tices or oversight can cause harm. Given this possibility, it
is important to have a structure in place to address issues
as they arise so that conference organizers can listen and
respond to unexpected situations. In addition, making
space for reflection and implementing changes based on
feedback from participants can help improve future con-
ference iterations.

Apart from these main takeaways, the questions of the au-
dience brought up other important themes. One of the
themes was that, while many people attempt to address
the presence of sexism, racism, etc in mathematical spaces,
often classism and its effects are not mentioned. Classism
is present and rooted in academia, not only because of the
cost of higher education, but also because of the inherent
privilege that comes with being able to access higher edu-
cation. Additionally, there is a hierarchy within academic
spaces, e.g., level of position and salary, that creates classes
within the mathematical community. During the panel
there was not a concise idea of how to address this issue
while organizing conferences, other than creating spaces
where academic hierarchy is not a barrier to participant in-
teraction, or reaching out and advertising to colleges with
fewer resources. In any case, this remains a subject for us
to reflect on.

Another theme that was discussed was how to reach
out to those who do not care about the importance of in-
clusivity and diversity. The general sentiment was that it
is not the responsibility of a conference organizer to con-
vince others of the benefits that come from inclusive prac-
tices in mathematics. The focus of the work should go to-
wards intentionality and care toward the community. A
commitment from each participant to listen, learn, and
challenge one’s biases is essential to work towards creating
safer spaces.

The last theme discussed was how big conferences such
as the JMM could implement some of the good practices
that had been brought up during the panel. In the later
years, big conferences have started adapting ethical con-
duct agreements and safe practices but given the resources
and staff available to the organizations that run these con-
ferences, more can be done. For example, having a con-
duct agreement but not bringing it up throughout the con-
ference makes it somehow a static document and it can
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become meaningless. For safe practices to have meaning,
they need to be accompanied by actions and commitment
on behalf of the organizations responsible for designing
the event.

One main practice that was brought up was the fact
that JMM has no virtual option for participants and there
seems to be no intention of implementing this option in
the foreseeable future.7 In fact, this was one of the down-
sides when organizing this panel, because we did not have
control over having a virtual option for it. This type of ac-
cessibility has a huge impact on who is able to attend and
benefit from these conferences, and this in turn acts as a
gateway, preventing participation and limiting opportuni-
ties for many people.

Concluding Remarks
The main message that we would like to convey is that cen-
tering inclusion throughout conferences can only give
rise to more prolific mathematics, as everyone is able
to engage in mathematical topics and with the confer-
ence community. Therefore, if the goal of a conference
is truly to maximize the mathematical outcomes, then
this side of conference organization cannot be omitted.
It is just as important to provide welcoming and safe
spaces in which people can collaborate and reimagine
how to live in a better, more just world for everybody.
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The Math You Need
A Comprehensive Survey of
Undergraduate Mathematics

By Thomas Mack. The MIT
Press, 2023, 496 pp., $55.

The Math You Need is a collec-
tion of fundamental under-
graduate topics in mathemat-
ics. I found it to be quite
complete; it has chapters for
group theory, commutative
algebra, linear algebra, topol-

ogy, real analysis, multivariable analysis, complex analysis,
number theory, and probability. The text presents its con-
tents using the traditional “Definition – Theorem – Proof”
style of writing to which many mathematicians are accus-
tomed. Since it does not contain excessive prose or many
examples, I found the book well-suited to be a reference,
likely useful for a graduate student who has already grap-
pled with the ideas and proofs in an introductory course.
It could be used as a textbook, however, as it contains exer-
cises at the end of each of its nine chapters. While reading,
I was reminded of many of the standard proof techniques
of algebra, analysis, and topology that I saw in graduate
school. I expect an advanced (and motivated!) undergrad-
uate student could expand upon what they saw in their
introductory courses and would appreciate what the book
adds to their background.

I believe this book would be an excellent addition to
the textbooks and reference books in the libraries of math-
ematics students, professors, and hobbyists. It might take
you back to your graduate school days, as it did for me. I
especially think a department could use it to add advanced
topics to what is covered in their undergraduate courses or
guide graduate students to the background material they
will be expected to know as they take graduate courses or
study for their preliminary exams.

This Bookshelf was prepared by Notices Associate Editor Emily J. Olson.
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ment by the Notices or by the AMS.
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Around the World in Eighty Games
From Tarot to Tic-Tac-Toe, Catan to Chutes
and Ladders, A Mathematician Unlocks the
Secrets of the World’s Greatest Games

ByMarcus du Sautoy. Basic Books,
2023, 384 pp., $30.

As you might have guessed by its
title, this book about games is
playful and fun. In 80 vignettes,
the author explores games from
all over the globe. In interludes,
he ponders aspects of a “game.”

What are the qualities that turn an activity into a game?
While he and others have tried to define it and we can
certainly provide examples, the definition of a “game” is
nearly impossible to pin down.

I found joy in reading about games familiar to me:
backgammon, chess, Go, mancala, SET, and Nim. There
were games that were new to me, such as Carrom from
India, Hanafuda from Japan, and Truco from many coun-
tries in South America. The author turned the book into
a game as well; he encourages a nonlinear reading of the
text and suggests that the reader should roll a die to de-
termine the next chapter to explore. He hypothesizes that
games are popular in how they build community as well
as offer a refuge from the complexities of daily life—they
are rule-bound microcosms with a definite ending.

The book includes the general rules of each game, where
it originated, and where mathematical concepts appear.
The author also writes about parallels between games and
mathematics. There are common traits of games across
cultures as well as unique aspects provided by each. We
often appreciate the aesthetics of a game and how simple
rules give rise to complexity. They both offer a chance to
overcome barriers to reach an end—a victory in a game or
a QED in a proof. “The rules of the game are like the ax-
ioms of mathematics. Playing a game is like exploring the
consequences of those axioms. Games for me are a way of
playingmathematics.” This is a fun book about games and
how math plays a role in them. Consider using it in a his-
tory of math course, as part of a math club, or for personal
interest.

392 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 71, NUMBER 3



AMS
BOOKSHELF

The AMS Book Program serves the mathematical community by publishing books that further mathematical research, awareness,
education, and the profession while generating resources that support other Society programs and activities. As a professional
society of mathematicians and one of the world’s leading publishers of mathematical literature, we publish books that meet the
highest standards for their content and production. Visit bookstore.ams.org to explore the entire collection of AMS titles.

Finite Fields, with Applications
to Combinatorics
By Kannan Soundararajan.
STML/99, 2022, 170 pp.

Over the past hundred years,
finite fields—nontrivial finite
commutative rings where every
nonzero element has a multi-
plicative inverse—have shown
themselves to be indispens-
able throughout number the-
ory, coding theory, and cryptog-

raphy. The book under review offers a self-contained but
expansive development of the theory of finite fields, along-
side several applications. It originated as the course text
for a class at Stanford targeting highly motivated first-year
students.

The first chapter begins with the definitions of “rings”
and “groups”; the last (ninth) chapter finishes with the
classification theorem for finite fields. The audience is ex-
pected to have some calculus under their belt and have had
some exposure to “vector spaces.” No prior knowledge
of abstract algebra is assumed, and the needed theory of
groups and rings is developed, cleanly and efficiently, in
Chapters 1, 3, 4, and 6. Chapter 2 and Chapter 5 discuss
topics in number theory useful for contextualizing results
about finite fields.

Chapter 7 showcases a number of delightful applica-
tions in combinatorics, specifically to Sidon sets, to per-
fect difference sets, and to de Bruijn sequences. Chapter 8
is an exposition of the Agrawal–Kayal–Saxena (AKS) test,
the first provably fast (“polynomial-time”) algorithm for
deciding whether a given integer is prime or composite;
finite fields play an essential role in the proof of the algo-
rithm’s correctness. Thematerial of Chapters 7 and 8 is not
contained in standard textbooks, and so the wonderfully

This AMS Bookshelf is by Paul Pollack, professor of mathematics at the Univer-
sity of Georgia. His email address is pollack@uga.edu.
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lucid treatment here is quite welcome.
This is a splendid introduction to finite fields. The writ-

ing is crisp, clean, and down-to-earth, and the mathemat-
ics is not only unusually elegant but extraordinarily useful.

Analytic Number Theory for
Beginners: Second Edition
By Prapanpong Pongsriiam.
STML/103, 2023, 375 pp.

Students might find it surpris-
ing that there is a subject
known as “analytic number
theory.” What does analysis,
which investigates the continu-
ous, have to contribute to the
study of the discrete set of nat-
ural numbers? This book pro-

vides an answer to that question, assuming only a modest
mathematical background on the part of the reader.

Consistent with the title of the book, the exposition is
unusually down-to-earth. Dirichlet’s theorem on primes
in arithmetic progressions is demonstrated by an elemen-
tary method of Gelfond–Linnik and Shapiro, so that this
part of the text can be appreciated without a course in com-
plex functions. The prime number theorem, one of the
landmark results in the subject, is given its simplest known
proof based around ideas of Newman, Zagier, and Kore-
vaar. Complex analysis is needed there, but the relevant
facts are given a thorough review in Chapter 8. Through-
out, arguments are written in detail and are easy to follow,
making the text conducive to self-study.

The author has not been shy about inserting his own
tastes and interest. The results on the floor function in
Chapter 3, some of which draw on the author’s own re-
search, will be new even to experts in number theory. Each
chapter features extensive end notes, offering the reader a
glimpse of modern results. Exercises are another strong
point of the book; there are quite a few, many of which
are original and nonroutine. This second edition makes
the text available to readers outside Thailand and includes
a new chapter on sieve methods and additive number the-
ory.

MARCH 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 393

http://bookstore.ams.org


Shock Waves and PDEs
A Conversation with Barbara Lee Keyfitz

Fariba Fahroo and Reza Malek-Madani

1. Introduction
For the past half century, hyperbolic conservation laws
have served as an important subfield of applied mathemat-
ics, especially in its relation to physics, chemistry, and bi-
ology. The way we model the behavior of elastic materi-
als and fluid flows is inherently through partial differen-
tial equations (PDEs). When we explore dynamics (wave
propagation), we end up analyzing a special class of PDEs,
which are often hyperbolic and nonlinear, and are capa-
ble of modeling features such as shocks, dislocations, and
fracture, because they are able to support discontinuous
functions as their solutions. One of the grand challenges
in mathematics in the past fifty years has been to develop
a framework to make sense of what it means to have a dis-
continuous solution of a differential equation.

Barbara Keyfitz has spent her entire career in this field.
One of the goals of this article is to highlight her contribu-
tions. We have had extensive conversations with Barbara
and will describe some of her substantial contributions in
her own voice. While we will present some of the details
of her technical contributions, our emphasis will be on al-
lowing Barbara to share hermathematical journey over the
past several decades, first by describing her triumphs, and
some of the challenges she has encountered, but also by
sharing some of her unique achievements in providing ser-
vice to our community, at the national and international
level.

Barbara’s education started at the University of
Toronto in 1962. After earning her bachelors degree in
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mathematics, she enrolled as a graduate student in the
Courant Institute of Mathematical Sciences in 1966 where
she studied conservation laws under the direction of Peter
D. Lax. Our conversation with Barbara began from this
stage of her career, and we proceeded to learn about the
path that took her to Columbia University, Princeton, Ari-
zona State University, University of Houston, and Ohio
State, where she is now an emeritus professor. In addition,
while she has served on numerous national and interna-
tional committees, we will concentrate on hearing from
Barbara about her contributions as the president (2005–
2007) of the Association for Women in Mathematics, the
president of the International Council for Industrial and
Applied Mathematics (2011–2015), and as director of the
Fields Institute (2004–2008).

But first a few definitions.
1.1. Hyperbolicity and PDEs. The simplest conservation
law is the scalar partial differential equation

𝑢𝑡 + (𝑓(𝑢))𝑥 = 0, (1)

which is typically supplemented with the initial condition
𝑢(𝑥, 0) = 𝑢0(𝑥). In (1), 𝑡 stands for time, 𝑥 for space, and 𝑢
for a physical concentration. Standard generalizations of
(1) are to one-dimensional systems of equations

𝐮𝑡 + 𝐴(𝐮)𝐮𝑥 = 𝟎, (2)

where 𝐮 ∶ 𝑅×𝑅+ → 𝑅𝑛, and to multidimensional systems

𝐮𝑡 +
𝑑
∑
𝑖=1

𝐴𝑖(𝐮)𝐮𝑥𝑖 = 0, (3)

where 𝐮 ∶ 𝑅𝑑 × 𝑅+ → 𝑅𝑛. Many fundamental equations
of mathematical physics fall in the category of (1), (2), or
(3).

Equation (2) is called hyperbolic if the 𝑛 × 𝑛matrix 𝐴(𝐮)
has 𝑛 real eigenvalues, which in the case of (1) reduces to
𝑓′(𝑢) simply existing. The corresponding definition for (3)
is that ∑𝐴𝑖(𝑢)𝜉𝑖 have real eigenvalues.
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Equation (2) shows why conservation laws are special.
A standard way of solving the wave equation (2) is to fol-
low the behavior of solutions along characteristics, curves
defined in the (𝑥, 𝑡) plane by the equations

𝑑 ̂𝑥𝑖
𝑑𝑡 = 𝜆𝑖(𝑢( ̂𝑥𝑖, 𝑡)), ̂𝑥𝑖(0, 𝑡) = 𝜉𝑖, 𝑖 = 1, … , 𝑛, (4)

where 𝜆𝑖 is an eigenvalue of 𝐴. In the case of (1), the
characteristic curves are defined by the ordinary differen-
tial equations

𝑑 ̂𝑥
𝑑𝑡 = 𝑓′(𝑢( ̂𝑥, 𝑡)), ̂𝑥(0) = 𝜉. (5)

Unlike the linear wave equation, where 𝑓′(𝑢) is a constant
𝑐 and the characteristics are therefore parallel straight lines
and never intersect, the characteristics of a nonlinear con-
servation law depend on the solution 𝑢, and could inter-
sect at a finite time 𝑇 > 0. This behavior is the key ob-
servation why the analysis of conservation laws is so chal-
lenging. To elaborate on this further, consider the case of
𝑓′(𝑢) = 𝑢 in (1), the inviscid Burgers equation. Keeping
𝜉 ∈ 𝑅 fixed, the characteristic curves ̂𝑥(𝜉, 𝑡) of (5) now
take the form

𝑑 ̂𝑥
𝑑𝑡 = 𝑢( ̂𝑥(𝜉, 𝑡), 𝑡), ̂𝑥(0) = 𝜉. (6)

A simple computation shows the source of the problem:
The quantity 𝑢( ̂𝑥(𝜉, 𝑡), 𝑡), that is, the solution 𝑢 confined
to a fixed characteristic curve, remains constant in 𝑡, as can
be seen from

𝑑
𝑑𝑡 (𝑢( ̂𝑥(𝜉, 𝑡), 𝑡)) = 𝑢𝑡 +

𝑑 ̂𝑥
𝑑𝑡 𝑢𝑥( ̂𝑥(𝜉, 𝑡)) = 𝑢𝑡 + 𝑢𝑢𝑥 = 0,

and therefore 𝑢( ̂𝑥(𝜉, 𝑡), 𝑡)) = 𝑢0(𝜉). So in fact the equation
in (6) reduces to

𝑑�̂�
𝑑𝑡

= 𝑢0(𝜉), a constant in 𝑡, so the char-
acteristics of Burgers equation are again straight lines, but
their slopes now depend on 𝑢0. Consequently, if the ini-
tial state 𝑢0 is such that 𝑢0(𝜉1) > 𝑢0(𝜉2) for 𝜉1 < 𝜉2, then
the two characteristics that initiate at 𝜉1 and 𝜉2 will meet
in finite time, and the solution 𝑢 will become multival-
ued. At this point we say that the solution has developed
a discontinuity or a shock. Much research in the past sev-
eral decades has been dedicated to making sense of how a
solution of a PDE with smooth initial data can develop a
discontinuity in finite time, and once it does, how we are
supposed to extend the solution beyond this point. This is
the starting point of much of the research in conservation
laws, including Barbara’s research.
1.2. Student of Peter Lax. One of the first questions
we asked Barbara Keyfitz was how she came to study at
Courant and how she chose conservation laws as her topic.

“When I think about it, there was a certain amount of
serendipity involved. I was an undergraduate at theUniver-
sity of Toronto, where the mathematics honors program

was quite advanced relative to US schools. In my final
year, one of the courses I took (I am pretty sure we did
not have a course in partial differential equations) was an
advanced ODE course with F. V. Atkinson. He introduced
the method of characteristics for quasilinear scalar equa-
tions (see above!), as a way of showing how to use ODEs
to solve PDEs. I was entranced. I determined to go to
graduate school to study partial differential equations. In
1966, this was not that easy. (Remember, in 1966, PDE
was considered ‘applied math’, and the focus was not on
analysis.) At the time, Canadian graduate programs were
still quite small, and some were unwelcoming to female
graduate students. So I applied to a few programs in the
US . . . and then another very important person in my life
comes into the story. That was Chandler Davis. He said,
‘Go to NYU and work with Peter Lax’. I sent a letter to NYU
and nothing happened.

“After a while Chandler asked me how the application
was going and I said I haven’t heard anything. He askedme
what I had done. I said I wrote to NYU, and he said ‘No,
no, no, that’s not the way it works, you need to write to the
Courant Institute’. So I wrote to the Courant Institute, and
they said ‘you’re late, but since you were recommended by
Chandler Davis, we’ll consider it’. So I applied and was
accepted.

“The Courant institute had just moved into a new build-
ing at 251 Mercer Street, and I had a desk in a beautiful
office with windows on two sides (there were four desks
there) and a telephone on my desk. I picked up the tele-
phone; I phoned Peter Lax and said ‘I’d like to take your
functional analysis course’, and he said, politely, ‘well ac-
tually this course is meant for people who know some-
thing’. I enrolled anyway. (Fortunately, the course was not
graded.)

“On a sunny afternoon, beautiful California weather, at
an AMS Summer School in Berkeley on Global Analysis
in 1968, after rather little further interaction between us,
Peter suggested a research topic to me. He described the
evolution of a scalar conservation law by the method of
characteristics (see above, again!), and how the character-
istics collide; and he said, I remember the phrase, ‘but the
flow must go on’.

“Peter Lax’s research has spannedmuch ofmodern PDE;
he was directing the research of other students, many of
whom have gone on to brilliant careers in a number of
fields. How did he pick conservation laws for me?

“He talked aboutweak solutions, and then he leftme on
my own. When I couldn’t think of anything to do, he sug-
gested, ‘look at the 𝐿1 difference between two solutions of
a scalar equation. As long as the solutions are smooth, it’s
a simple calculation that the difference remains constant,
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but once you get weak solutions, I don’t know, I think it
might go bad.’ So that was the challenge.”

As the earlier example of the inviscid Burgers equa-
tion showed, one expects that solutions to the initial-
value problems of conservation laws exist in a classical
sense on a maximal time interval. Once a discontinu-
ity is formed, however, we need to consider the solu-
tion in a weak sense. For the scalar conservation law
𝑢𝑡+(𝑓(𝑢))𝑥 = 0, 𝑢(𝑥, 0) = 𝑢0(𝑥), the weak formulation
of the problem takes the form

∫
∞

−∞
∫

∞

0
𝑢(𝑥, 𝑡)𝜙𝑡(𝑥, 𝑡) + 𝑓(𝑢)𝜙𝑥(𝑥, 𝑡) 𝑑𝑥𝑑𝑡

+∫
∞

−∞
𝑢0(𝑥)𝜙(𝑥, 𝑡) 𝑑𝑥 = 0,

where 𝜙 is any function belonging to 𝐶∞
0 (𝑅, 𝑅+), the

space of smooth functions with compact support.
While this formulation presents a natural generaliza-
tion from the classical formulation of the problem,
with a natural connection to how conservation laws ap-
pear in continuum physics, it does not lead to a well-
posed problem: simple examples of initial-value prob-
lems exist that exhibit multiple weak solutions. The
challenge then became to come upwith additional con-
ditions capable of selecting a unique solution. These
conditions, often called entropy conditions, have had
enormous success for two important classes of conser-
vation laws: scalar conservation laws in 𝑅𝑑 (such as the
equation in (3) with 𝑛 = 1), and systems of conserva-
tion laws in𝑅 (such as the one in (2)). In fact, as shown
in Chapter 5 of [Daf10], weak solutions of these conser-
vation laws, under appropriate conditions on the non-
linearities and endowedwith an entropy condition, are
well-posed: they have unique solutions and are stable
in 𝐿1.

“I made the naive (and very restrictive) assumption that
the solution was piecewise smooth, and that the only ir-
regularities were shocks. It then becomes a simple calcu-
lus problem to compute the 𝐿1 difference: as long as you
have a convex conservation law, like Burgers equation, and
the shocks are going in the right direction, which is to say,
the left states are higher than the right states, the 𝐿1 norm
strictly decreases when shocks are present. If the conser-
vation law isn’t convex, then sometimes it decreases and
sometimes it doesn’t, but I wrote down a condition on
discontinuities that would give the desired inequality. I
brought this back to Lax and he said, ‘that condition looks
familiar; I think Oleinik had something to say about that.’
So we looked it up and we found that indeed the Oleinik

Figure 1. Peter Lax and some of his students, at the
conference for the 80th birthdays of Peter Lax and Louis
Nirenberg, Toledo, Spain. In the picture, BLK leaning over to
talk with Peter Lax (seated). Standing, from left to right: part
of David Levermore, Alex Chorin, Stephanos Venakides, and
Sebastian Noelle. Visible at lower right corner, Haim Brezis.

condition was necessary and sufficient for the norm to de-
crease ([Ole63]). So that became my thesis . . . The rule of
thumb seems to be that when you prove a result that your
adviser didn’t believe, you then have a dissertation.

“The result itself turned into a paper, [Qui71], pub-
lished about the same time I got my degree. It attracted
some interest: my result showed that the entropy solutions
to a scalar conservation law form a contractive semigroup
in 𝐿1. That year, 1970, was a prime time for applying semi-
group theory to PDEs. I had found a semigroup, but I
had no idea of what people were talking about when they
spoke about the generator of a semigroup, which I had
not looked for or found. (Crandall’s paper, a few years
later, notes this, and does find the generator [Cra72].) At
the same time, the PDE community was also discovering
that Soviet mathematicians had been studying conserva-
tion laws a little bit earlier. The well-known and much
cited paper of Kruzkov [Kru70], translated into English
in 1970, had been published in Russian, I think in 1968.
There was also work of Vol’pert [Vol86]; he had done gen-
uine analysis. That is, he had looked at weak solutions that
didn’t have the simplified structure I considered. I was res-
cued a little bit by Dave Schaeffer who showed that, gener-
ically, solutions of a convex conservation law do have a
piecewise continuous structure, [Sch73].

“I spent a couple of years trying to figure out more esti-
mates, which turned out not to be very useful.”
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2. Research in Nonstrictly Hyperbolic Systems
of Conservation Laws

Our conversation at this point turned to the realities of
life after graduate school; how does one get a job, how
to balance personal life with building a career, and what
research projects to pursue.

“The real problem was that I didn’t know what to do
next. For personal reasons I needed to stay in New York.
I got a job at Columbia University, in the engineering
school. They were willing to hire me because there had
been an institute for flight studies, and, okay, conservation
laws govern compressible flow. Right after they hired me,
that institute was disbanded. And once again, I was res-
cued by a tremendous piece of good luck.

“Another Courant graduate at Columbia, John (C. K.)
Chu, was in the mechanical engineering department. We
talked a bit. He tried to get me interested in Tokamak reac-
tors and fusion, but I didn’t find anything to work on. But
a couple of years later Herb Kranzer, a friend of his and
another Courant graduate, had a sabbatical and decided
to spend it with John. John introduced me to Herb. One
of Herb’s students, Dennis Korchinski, in his PhD disser-
tation [Kor77] had looked at an interesting problem that
he had not been able to analyze completely. It involved
an extremely simple system of conservation laws, where
he had considered the Riemann problem, a simple initial
value problem with two constant states. For states that
were close to together (‘small data’), you could get regular
solutions, for other states (‘large data’) he couldn’t analyt-
ically find a solution, and when he tried to do it numeri-
cally . . . because what else can you do . . . solutions seemed
to blow up; they became unbounded. Herb described the
problem to me, and then he said the magic words, ‘Would
you like to work on this problem with me?’

“This is now 1974. As we started working on it, we re-
alized that we didn’t know very much about systems of
conservation laws. It was the early days of the field. There
was Glimm’s theorem, which had been around by then
for almost ten years, which almost nobody understood,
ourselves included, and there was not much else. There
was a lot of work by Joel Smoller, but Smoller’s results
didn’t help with our problem. Smoller had been a visi-
tor at Courant my last year as a student there; he was ex-
tremely kind, and somebody I could talk to about conser-
vation laws, but his parting warning was that life beyond
studenthood was brutal.

“Conservation law research on systems, up to that point,
had required that characteristics be distinct, and Korchin-
ski’s problem didn’t have that feature, so we started to
think about nonstrictly hyperbolic conservation laws.

In [KK80] Keyfitz and Kranzer introduced the follow-
ing canonical example of a nonstrictly hyperbolic con-
servation law:

𝑢𝑡 + (𝜙𝑢)𝑥 = 0, 𝑣𝑡 + (𝜙𝑣)𝑥 = 0, (7)

where 𝜙 = 𝜙(𝑢, 𝑣). This problem is an example of the
system described in (2) where the 2 × 2 matrix 𝐴 may
not have distinct eigenvalues for a subset Σ of (𝑢, 𝑣)-
space, and therefore may not be diagonalizable. A mo-
tivating example of 𝜙 is

𝜙(𝑢, 𝑣) = 1 + 𝛿 (𝑟 − 1)2
𝑟 , where 𝑟2 = 𝑢2 + 𝑣2

which appears in certain stress-strain laws of nonlinear
elasticity. The Riemann problem for (7) is the solution
to this system subject to the initial condition

𝑈(𝑥, 0) = { 𝑈 𝑙, 𝑥 < 0,
𝑈𝑟, 𝑥 > 0,

where 𝑈 = (𝑢, 𝑣) and 𝑈 𝑙 and 𝑈𝑟 are constants.

“When we started looking at nonstrict hyperbolicity, we
observed that there were two things that could happen,
and you can easily see what they are if you think about
a 2 × 2matrix with two equal eigenvalues: is it diagonaliz-
able or is it not? We started out by looking at a planar
elastic string, modeled by a pair of second order equa-
tions, or equivalently, a system of four first-order equa-
tions (see [AMM88]) . . . we knew we couldn’t handle the
four-dimensional problem, so we created two first order
equations, instead of second order equations, and when
we did that, we got a matrix that was not diagonalizable.
(This was, in fact, the result of a modeling error on our
part.)

“Reviewing what was known about large data Riemann
problems for strictly hyperbolic systems, we discovered
a condition which we called opposite variation, somewhat
more general than conditions that Smoller and Johnson
[SJ69] had advanced. If systems satisfied this condition,
we could also solve Riemann problems for any pair of non-
strictly hyperbolic equations where the behavior of eigen-
vectors near characteristic crossings was of a certain type.
The solutions weren’t as well-behaved as for strictly hy-
perbolic Riemann problems, but we could describe the
sense in which they satisfied continuous dependence on
the data.

“Eventually, we noticed that in fact with the elastic
string problem, for the full four-dimensional system, the
matrix is diagonalizable where the eigenvalues become
equal in pairs. We solved the Riemann problem for that
system, as well as our ersatz nondiagonalizable example.
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The paper appeared in the Archive for Rational Mechanics
and Analysis, [KK80].”

The paper [KK80] has received over four hundred cita-
tions. For several years following its publication in 1980,
this paper set the stage for much of the research in non-
strictly hyperbolic conservation laws. The paper [SS86] is
a notable body of research on these equations where the
authors present a classification of the behavior of Riemann
problems for 2 × 2 systems motivated by simulation of
oil recovery problems. This particular application, some-
times referred to as the ‘reservoir problem’, was a focus
of research by James Glimm and his associates during the
decade of the 80’s, and introduced a new set of theoreti-
cal and computational challenges, culminating in formula-
tion of the “front tracking” approach for shock waves, first
for numerical simulation (see [GGL+98] for details) and
eventually, triumphantly, to Alberto Bressan’s celebrated
results providing the first proofs of the well-posedness of
the Cauchy problem for general, strictly hyperbolic sys-
tems [Bre00].

“The intersection of our work with Glimm’s was the
nondiagonalizable problem, which we’d solved by mis-
take but published anyway along with the result relevant
to elastic strings. It was one of Glimm’s simple reservoir
models. Eli Isaacson and Blake Temple, at that time two
of Glimm’s postdocs, had solved it, and planned to give
a talk about it in an upcoming Joint Math Meeting. I saw
their abstract and wrote to them, ‘you might want to know
that we have a published paper that solves this problem’.
They withdrew the paper they had submitted for publica-
tion (I still have the preprint), and graciously talked about
our result instead at the JMM. We had sent our published
paper to Glimm, but of course he hadn’t looked at it, and
all he said to them was, ‘you ought to read the literature’.

“I still feel badly about it. When this happened I had a
tenure-track job and they were postdocs; they were junior
and it wouldn’t have hurt me to be kinder. Why did I have
to treat them as though they were stealing my result?

“But then another direction opened up. At the time it
seemed totally screwball, but it sustained Herb’s and my
research for another 15 years or so. We started thinking
about what happens if instead of opposite variation, when
these characteristics cross, you have the same variation in
the two families, and here I give credit to the mathemati-
cian Michelle Schatzman, a friend. I was trying to explain
this problem to her, that you could have the characteristics
crossing in the shape of an 𝑋 , in opposite orientation, or
you could have the characteristics crossing still as an 𝑋 , but
a distorted𝑋 , with the lines going from lower left to the up-
per right, from both sides. Michelle took a marker to my
𝑋 and simply separated the lines . . . . So now you have a
system that is strictly hyperbolic, as the two characteristics

are separated. It didn’t take us long to write down an ex-
ample, to try to solve the Riemann problem, and to find
that indeed we couldn’t solve it, even for the strictly hyper-
bolic equation. When we resorted to numerical methods,
the solution blew up, just as Dennis Korchinski’s example
had: solutions became unbounded.”

In 2011, Barbara published the paper [Key11] which,
as its title indicates, gave a retrospective on her contri-
bution to the concept of singular shocks and the inspira-
tion she received from her conversations with Michelle
Schatzman.

Singular shocks were first discovered by Keyfitz and
Kranzer in their attempt to finding solutions to Rie-
mann problems in certain strictly hyperbolic problems
based on a peculiar reformulation of the governing
equations for isothermal, isentropic gas dynamics. De-
spite the fact the system is genuinely nonlinear, they
discovered a large region of state space where the Rie-
mann problem cannot be solved using shocks and rar-
efactions. They produced approximate unbounded so-
lutions which do not satisfy the equation in the clas-
sical weak-solution sense. This discovery has led to
a rich, new area of conservation laws with deep con-
nections to the Dafermos-DiPerna regularization the-
ory, and to geometric singular perturbation theory
(the manifold theory for singular dynamical systems).
The paper by Tsikkou [Tsi16] gives an excellent review
of this field, in addition to describing how singular
shocks appear in chromatography. See also [Sev07] for
a systematic exposition of what was known about sys-
tems with singular shock solutions fifteen years ago.

Barbara continued to share her recollections of her
mathematical journey.

“After my (deservedly) failing to get tenure at two fine
institutions—Columbia and Princeton—but by then hap-
pily married and a mother, I and my mathematician hus-
band Marty Golubitsky found jobs at Arizona State Uni-
versity. A brief foray on my part into applications of singu-
larity theory (Marty’s field) was a springboard to jobs for
both of us at the University of Houston, and ultimately at
Ohio State.

“In 1992, at Houston, I got a State of Texas grant to
hire a postdoc, Sunčica (Sunny) Čanić. A colleague of
mine, David Wagner, a former student of Smoller’s, had
noted an example of a two-dimensional Riemann prob-
lem, described in a paper of Brio andHunter, [BH92]. This
was another lucky chance where something came along
at exactly the right moment. At the time very little was
known about systems of conservation laws in two space
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dimensions. David suggested that we ‘bite off a little bit of
multi-dimensional systems’. Sunny and I started looking
at these 2D Riemann problems and found that we needed
to learn about elliptic equations, something that hyper-
bolic people usually avoid like the plague. And, serendip-
itously, Sunny moved to Iowa State University, and met
Gary Lieberman, who was the best person in the world to
help us, and did, [ČanićKL00].”

Barbara’s collaboration with Sunny Čanić was another
productive period in her mathematical career. In more
than a dozen papers, Barbara and Sunny attacked a num-
ber of hard problems in conservation laws: The work on
degenerate elliptic PDEs appeared in [ČanićKL00]. The
paper proves existence of a solution to a free boundary
problem for the transonic small-disturbance equation—
the free boundary is the position of a transonic shock di-
viding two regions of smooth flow; the equation is hyper-
bolic upstream where the flow is supersonic, and elliptic
in the downstream subsonic region. Joined later by an-
other postdoc, Eun Heui Kim, they analyzed a prototype
for Mach stems [ČanićKK05]. Gui-Qiang Chen and Misha
Feldman and their students and associates havemade great
strides with this approach, documented in their mono-
graph, [CF18].

One of the remarkable aspects of Barbara’s career is her
service and mentoring record, the strength of which par-
allels her research record. In the remainder of this article,
rather than bringing readers up to date on the field of con-
servation laws, now so much more extensive than in 1970,
we report on our conversation on how she prepared her-
self for the high-level community service positions she has
held.

Barbara attributed much of her success to her ability to
listen and to engage, abilities she acquired and mastered
early in her career. The statement ‘one thing led to another’
was a common refrain as she described how opportunities
presented themselves, paralleling the serendipity present
in so many of her research collaborations.

3. Community Service and Mentoring
During her long career, Barbara has been on the leader-
ship of many national and international organizations, in-
cluding serving as the vice president for programs at SIAM
and the treasurer of ICIAM; but serving as the president of
the Association of Women in Mathematics (see [Key22]),
and as the president of ICIAM, particularly stand out. Her
tenure as the director of the Fields Institute, and the many
initiatives she was able to launch in that position, ended
up being the main focus of our conversation.

“In terms of highlights, Fields was the highlight. Be-
ing the director of Fields was a job that I think I enjoyed
more than anything else in my career. For the first six

Figure 2. Akershus Castle, Abel Prize ceremony 2014 (the
winner was Yakov Sinai). This was a banner year for women.
From left to right, Maria J. Esteban (member of the Abel Prize
Committee), me (president of ICIAM), Ragni Piene (chair of the
Abel Committee), Ingrid Daubechies (president of IMU), and
Marta Sanz-Sole (president of the European Mathematical
Society). [Not at the ceremony, but rounding out the theme,
Ruth Williams had just completed a term as president of IMS.]

months I just walked around the campus of the University
of Toronto smiling—people would stop me to ask, ‘What
are you smiling about?’”

During the four and half years of her directorship at
Fields, Barbara was able to introduce several programs,
many of them intended to improve the participation of
women in the research programs at the Fields Institute, as
well as in programs at other partner institutions in On-
tario.

“I wanted to make Fields more accommodating to
women. For example, there were distinguished lecture se-
ries that had never had women lecturers. There was no
kind of affirmative action. I asked our Board of Directors
for a mandate, and they said, ‘Go ahead’. Yes!

“Another function at Fields was organizing workshops
at other universities, as well as thematic programs, which
are like the ones in the US institutes. A large fraction of
the Fields budget was spent on short-term events, typically
one-week workshops that took place at different partner
institutions in Canada. We would solicit proposals, and
we would have to evaluate them. On one occasion my
deputy director wrote to a proposer, ‘I see your list of in-
vited speakers doesn’t include a single woman. Could you
please explain your thinking to me?’”

At the end of our conversation, we asked Barbara about
her impressions related to dedicating workshops or awards
solely to women.

“I have mixed feelings about that. Some women math-
ematicians take exception to being recognized in part be-
cause they’re women. Instead of seeing it as an opportu-
nity, a foot in the door, they don’t want to accept an honor
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that in their interpretation is sullied by this. And they see
attending a workshop for women, from which important
male scholars are excluded, as an inefficient use of their
time. . . . On the other hand BIRS, the Banff math institute,
now has one workshop a year for women. These appear to
have been extremely successful. I think it’s because they
bring women together physically. There’s a story here.

“For a while, BIRS had been rather unfriendly about
women’s participation; for example, they refused to al-
low people to bring children—no daycare, no accommo-
dations. If a woman didn’t want to come under those con-
ditions, then she didn’t need to come. Since many places
had startedmaking daycare arrangements, I felt BIRS could
have at least thought about it, or at least not complained
about my asking. So out of the blue the director said, ‘how
about this year we give you one week for women, you can
do whatever you want with it. It is yours.’ It happened it
was the week of Rosh Hashanah, which is possibly why no-
body wanted it. I was willing to give up Rosh Hashanah
for one year and so we ran a workshop. It wasn’t primarily
a scientific workshop, and had the unimaginative name
‘Women in Mathematics’. The idea was to discuss ‘what
can women do to get ahead.’ We had participants from
Canada, US and Mexico, because BIRS is run by all three
countries. Our workshop report was titled ‘Women in the
Academic Ranks: A Call to Action’.” (It can be found on
the BIRS workshop report page at https://www.birs.ca
/workshops/2006/06w5504/report06w5504.pdf).”

4. Afterword
We started planning this project in June of 2023. Barbara
has been enormously generous with her time over the past
4 months: In addition to two sessions on July 24 and Aug
1 where we had the opportunity to meet remotely, we have
been in frequent contact with Barbara with our questions.
This article is built on extracts from those many, many
hours of communications. We hope it gives a glimpse of
the impact of Barbara’s career.

The article does not do justice to two aspects of our in-
teractions: We haven’t been able to adequately depict Bar-
bara’s sharp and engaging sense of humor. Our sessions
were always enlivened by her infectious laughter, which
we felt we couldn’t get enough of. Second, while neither
of us has been Barbara’s student, it was clear during the
past few months that she is a master teacher. Our con-
versation sessions were filled with Barbara describing de-
tails of her work, using examples and analogies that we
could embrace, which is reminiscent of the important role
canonical and reducedmodels have played throughout her
research career . . . Barbara’s lectures are now available on
social media, which we highly recommend.

For the past several decades Barbara Keyfitz has partic-
ipated in, has led and organized many national meetings
and PDE conferences. Her approach to research in applied
mathematics has led to posing new questions and pursu-
ing new directions. Her lifelong desire to work to improve
the environment of research for women has already had
an enduring effect. We have been so fortunate that she has
always been approachable and ready to share and to en-
gage.
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University of Minnesota chapter members 

Pi Day pie

Photos courtesy of their respective chapters.

How do AMS Graduate Student Chapters support
the mathematical community and beyond?

University of Minnesota
Chapter members run a variety of events throughout the academic year, including 

weekly teas, periodic social events, and a seminar series. Past events have includ-

ed Pi Day pie and trivia competitions and the Unary Day, featuring Guest Speaker 

Max Engelstein, Assistant Professor. 



Utah State University Chapter

Presentation at the Duke University Chapter

www.ams.org/studentchapters

The Chapter Program makes meaningful contributions to the
professional development of graduate students in the mathematical
sciences and connects graduate students with AMS offerings.

Utah State University
The Utah State graduate students invite guest speakers throughout the aca-

demic year. One lecture, by Dr. Charles Torre, Professor and Associate De-

partment Head of the Physics Department at Utah State, focused on general 

relativity and solutions to Einstein’s equations.  

Duke University
This Chapter builds community among students by promoting conver-

sation, collaboration, and friendship across research and institutional 

milieus. They will host the 9th annual Triangle Area Graduate Mathe-

matics Conference (TAGMaC) in 2023, at which graduate students from 

Duke, University of North Carolina at Chapel Hill, and North Carolina 

State University give talks about research-level mathematics.
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NEW! Elias M. Stein Prize for 
Transformative Exposition

The Elias M. Stein Prize for Transfor-
mative Exposition is awarded for a 
written work, such as a book, survey, 
or exposition, in any area of math-
ematics that transforms the mathe-
matical community’s understanding 
of the subject or reshapes the way it 
is taught.

About this Prize
This prize was endowed in 2022 by 

students, colleagues, and friends of Elias M. Stein to honor 
his remarkable legacy of writing monographs and text-
books, both singly and with collaborators. Stein’s research 
monographs, such as Singular Integrals and Differentiability 
Properties of Functions and Harmonic Analysis, became canon-
ical references for generations of researchers, and textbooks 
such as the Stein and Shakarchi series Princeton Lectures 
in Analysis became instant classics in undergraduate and 
graduate classrooms. Stein is remembered for his ability 
to find a perspective to make a method of proof seem so 
natural as to be inevitable, and for his strategy of revealing 
the essential difficulties, and their solutions, in the simplest 
possible form before elaborating on more general settings. 
This prize seeks to recognize mathematicians at any career 
stage who, like Stein, have invested in writing a book or 
manuscript that transforms how their research community, 
or the next generation, understands the current state of 
knowledge in their area.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Submit a letter of nomination 
describing the candidate’s accomplishments including 
complete bibliographic citations for the work being nom-
inated, a CV for the nominee, and a brief citation that 
explains why the work is important.

Information on how to nominate can be found here:
https://www.ams.org/stein-exposition.

AMS Prizes and Awards
NEW! I. Martin Isaacs Prize 
for Excellence in 
Mathematical Writing

The I. Martin Isaacs Prize is awarded 
for excellence in writing of a research 
article published in a primary journal 
of the AMS in the past two years.

About this Prize
The prize focuses on the attributes of 
excellent writing, including clarity, 
grace, and accessibility; the quality 
of the research is implied by the ar-
ticle’s publication in Communications 

of the AMS, Journal of the AMS, Mathematics of Computation, 
Memoirs, Proceedings of the AMS, or Transactions of the AMS, 
and is therefore not a prize selection criterion.

Professor Isaacs is the author of several graduate-level 
textbooks and of about 200 research papers on finite 
groups and their characters, with special emphasis on 
groups—such as solvable groups—that have an abundance 
of normal subgroups. He is a Fellow of the American Math-
ematical Society, and received teaching awards from the 
University of Wisconsin and from the School of Engineer-
ing at the University of Wisconsin. He is especially proud 
of his 29 successful PhD students.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Submit a letter of nomination 
describing the candidate’s accomplishments including 
complete bibliographic citations for the work being nom-
inated, a CV for the nominee, and a brief citation that 
explains why the work is important.

Information on how to nominate can be found here: 
https://www.ams.org/isaacs-prize.

I. Martin Isaacs

Elias M. Stein
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unusually effective industrial mathematics internship 
program, a department that has promoted mathemat-
ics so successfully that a large fraction of its university’s 
undergraduate population majors in mathematics, or a 
department that has made some form of innovation in its 
research support to faculty and/or graduate students, or 
which has created a special and innovative environment 
for some aspect of mathematics research.

About this Award
This award was established in 2004. For the first three 
awards (2006–2008), the prize amount was US$1,200. 
The prize was endowed by an anonymous donor in 2008, 
and starting with the 2009 prize, the amount is US$5,000.
This US$5,000 prize is awarded annually. Departments of 
mathematical sciences in North America that offer at least 
a bachelor’s degree in mathematical sciences are eligible.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: A letter of nomination may be 
submitted by one or more individuals. Nomination of the 
writer’s own institution is permitted. The letter should de-
scribe the specific program(s) for which the department in 
being nominated as well as the achievements which make 
the program(s) an outstanding success, and may include 
any ancillary documents which support the success of the 
program(s). Where possible, the letter and documentation 
should address how these successes came about by 1) sys-
tematic, reproducible changes in programs that might be 
implemented by others, and/or 2) have value outside the 
mathematical community. The letter should not exceed 
two pages, with supporting documentation not to exceed 
an additional three pages. 

Information on how to nominate can be found here:
https://www.ams.org/department-award.

Award for Impact on 
the Teaching and Learning 
of Mathematics
This award is given annually to a mathematician (or group 
of mathematicians) who has made significant contribu-
tions of lasting value to mathematics education.

Priorities of the award include recognition of:
(a) accomplished mathematicians who have worked 

directly with precollege teachers to enhance teach-
ers’ impact on mathematics achievement for all 
students, or

(b) sustainable and replicable contributions by mathe-
maticians to improving the mathematics education 
of students in the first two years of college.

Mary P. Dolciani Prize 
for Excellence in Research
The AMS Mary P. Dolciani Prize for Excellence in Research 
recognizes a mathematician from a department that does 
not grant a PhD who has an active research program in 
mathematics and a distinguished record of scholarship. 
The primary criterion for the prize is an active research 
program as evidenced by a strong record of peer-reviewed 
publications.

Additional selection criteria may include the following:
 • Evidence of a robust research program involving 

undergraduate students in mathematics;
 • Demonstrated success in mentoring undergradu-

ates whose work leads to peer-reviewed publica-
tion, poster presentations, or conference presen-
tations;

 • Membership in the AMS at the time of nomina-
tion and receipt of the award is preferred but not 
required.

About this Prize
This prize is funded by a grant from the Mary P. Dolciani 
Halloran Foundation. Mary P. Dolciani Halloran (1923–
1985) was a gifted mathematician, educator, and author. 
She devoted her life to developing excellence in mathe-
matics education and was a leading author in the field 
of mathematical textbooks at the college and secondary 
school levels. 

The prize amount is $5000, awarded every other year 
for five award cycles.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Nominations should include a 
letter of nomination, the nominee’s CV, and a short citation 
to be used in the event that the nomination is successful. 

Information on how to nominate can be found here:
https://www.ams.org/dolciani-prize.

Award for an Exemplary 
Program or Achievement in 
a Mathematics Department
This award recognizes a department which has distin-
guished itself by undertaking an unusual or particularly 
effective program of value to the mathematics community, 
internally or in relation to the rest of society. Examples 
might include a department that runs a notable minority 
outreach program, a department that has instituted an 
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David P. Robbins Prize
The Robbins Prize is for a paper with the following char-
acteristics: it shall report on novel research in algebra, 
combinatorics, or discrete mathematics and shall have a 
significant experimental component; and it shall be on 
a topic which is broadly accessible and shall provide a 
simple statement of the problem and clear exposition of 
the work. Papers published within the six calendar years 
preceding the year in which the prize is awarded are eligible 
for consideration.

About this Prize
This prize was established in 2005 in memory of David P. 
Robbins by members of his family. Robbins, who died in 
2003, received his PhD in 1970 from MIT. He was a long-
time member of the Institute for Defense Analysis Center 
for Communications Research and a prolific mathema-
tician whose work (much of it classified) was in discrete 
mathematics.

The current prize amount is US$5,000 and the prize is 
awarded every 3 years.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure:  Submit a letter of nomination, a 
complete bibliographic citation for the work being nom-
inated, and a brief citation that explains why the work is 
important. 

Information on how to nominate can be found here: 
https://www.ams.org/robbins-prize.

E. H. Moore Research 
Article Prize
The Moore Prize is awarded for an outstanding research 
article to have appeared in one of the AMS primary re-
search journals (namely, the Journal of the AMS, Proceedings 
of the AMS, Transactions of the AMS, Memoirs of the AMS, 
Mathematics of Computation, Electronic Journal of Conformal 
Geometry and Dynamics, and Electronic Journal of Representa-
tion Theory) during the six calendar years ending a full year 
before the meeting at which the prize is awarded.

About this Prize
The prize was established in 2002 in honor of E. H. Moore. 
Among other activities, Moore founded the Chicago 
branch of the American Mathematical Society, served as 
the Society’s sixth president (1901–1902), delivered the 
Colloquium Lectures in 1906, and founded and nurtured 
the Transactions of the AMS.

About this Award
The Award for Impact on the Teaching and Learning of 
Mathematics was established by the AMS Committee on 
Education in 2013. The endowment fund that supports 
the award was established in 2012 by a contribution from 
Kenneth I. and Mary Lou Gross in honor of their daughters 
Laura and Karen.

The US$1,000 award is given annually.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Letters of nomination may be 
submitted by one or more individuals. The letter of nomi-
nation should describe the significant contributions made 
by the nominee(s) and provide evidence of the impact these 
contributions have made on the teaching and learning of 
mathematics. The letter of nomination should not exceed 
two pages, and may include supporting documentation not 
to exceed three additional pages. A brief curriculum vitae 
for each nominee should also be included. The nonwinning 
nominations will automatically be reconsidered, without 
further updating, for the awards to be presented over the 
next two years.

Information on how to nominate can be found here: 
https://www.ams.org/impact.

Ciprian Foias Prize 
in Operator Theory
The Ciprian Foias Prize in Operator Theory is awarded 
for notable work in Operator Theory published during 
the preceding six years. The work must be published in a 
recognized, peer-reviewed venue.

About this Prize
This prize was established in 2020 in memory of Ciprian 
Foias (1933–2020) by colleagues and friends. He was an 
influential scholar in operator theory and fluid mechanics, 
a generous mentor, and an enthusiastic advocate of the 
mathematical community.

The current prize amount is US$5,000, and the prize is 
awarded every three years.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Nominations require CV of the 
nominee, a letter of nomination, and a citation.

Information on how to nominate can be found here: 
https://www.ams.org/foias-prize.
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Leroy P. Steele Prize 
for Mathematical Exposition
The Steele Prize for Mathematical Exposition is awarded for 
a book or substantial survey or expository research paper.

About this Prize
These prizes were established in 1970 in honor of George 
David Birkhoff, William Fogg Osgood, and William Caspar 
Graustein, and are endowed under the terms of a bequest 
from Leroy P. Steele. From 1970 to 1976 one or more 
prizes were awarded each year for outstanding published 
mathematical research; most favorable consideration was 
given to papers distinguished for their exposition and 
covering broad areas of mathematics. In 1977 the Council 
of the AMS modified the terms under which the prizes are 
awarded. In 1993, the Council formalized the three cate-
gories of the prize by naming each of them: (1) The Leroy 
P. Steele Prize for Lifetime Achievement; (2) The Leroy P. 
Steele Prize for Mathematical Exposition; and (3) The Leroy 
P. Steele Prize for Seminal Contribution to Research. 

The amount of this prize is US$5,000.

Next Prize: January 2025

Nomination Period: February 1 – March 31

Nomination Procedure: Nominations for the Steele Prizes 
for Mathematical Exposition should include a letter of 
nomination, a complete bibliographic citation for the 
work being nominated, and a brief citation to be used in 
the event that the nomination is successful. Nominations 
will remain active and receive consideration for three con-
secutive years.

Information on how to nominate can be found here: 
https://www.ams.org/steele-exposition.

Leroy P. Steele Prize 
for Seminal Contribution 
to Research
The Steele Prize for Seminal Contribution to Research is 
awarded for a paper, whether recent or not, that has proved 
to be of fundamental or lasting importance in its field, or 
a model of important research.

Special Note: The Steele Prize for Seminal Contribution 
to Research is awarded according to the following six-year 
rotation of subject areas:
1. Analysis/Probability (2020)
2. Algebra/Number Theory (2021)
3. Applied Mathematics (2022)
4. Geometry/Topology (2023)

The current prize amount is US$5,000, awarded every 
three years.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Submit a letter of nomination, a 
complete bibliographic citation for the work being nom-
inated, and a brief citation that explains why the work is 
important.

Information on how to nominate can be found here: 
https://www.ams.org/moore-prize.

Leroy P. Steele Prize 
for Lifetime Achievement
The Steele Prize for Lifetime Achievement is awarded for 
the cumulative influence of the total mathematical work of 
the recipient, high level of research over a period of time, 
particular influence on the development of a field, and 
influence on mathematics through PhD students.

About this Prize
These prizes were established in 1970 in honor of George 
David Birkhoff, William Fogg Osgood, and William Caspar 
Graustein, and are endowed under the terms of a bequest 
from Leroy P. Steele. From 1970 to 1976 one or more 
prizes were awarded each year for outstanding published 
mathematical research; most favorable consideration was 
given to papers distinguished for their exposition and 
covering broad areas of mathematics. In 1977 the Council 
of the AMS modified the terms under which the prizes are 
awarded. In 1993, the Council formalized the three cate-
gories of the prize by naming each of them: (1) The Leroy 
P. Steele Prize for Lifetime Achievement; (2) The Leroy P. 
Steele Prize for Mathematical Exposition; and (3) The Leroy 
P. Steele Prize for Seminal Contribution to Research.

The amount of this prize is US$10,000.

Next Prize: January 2025

Nomination Period: February 1 – March 31

Nomination Procedure: Nominations for the Steele Prize 
for Lifetime Achievement should include a letter of nomi-
nation, the nominee’s CV, and a short citation to be used in 
the event that the nomination is successful. Nominations 
will remain active and receive consideration for three con-
secutive years.

Information on how to nominate can be found here: 
https://www.ams.org/steele-lifetime.
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Nomination Period: February 1–May 31

Nomination Procedure: Nominations with supporting 
information should be submitted online. Nominations 
should include a letter of nomination, a short description 
of the work that is the basis of the nomination a complete 
bibliographic citation for the article being nominated.

Information on how to nominate can be found here: 
https://www.ams.org/conant-prize.

Mathematics Programs 
that Make a Difference
This Award for Mathematics Programs that Make a Differ-
ence was established in 2005 by the AMS’s Committee on 
the Profession to compile and publish a series of profiles 
of programs that:
1. aim to bring more persons from underrepresented 

backgrounds into some portion of the pipeline be-
ginning at the undergraduate level and leading to 
advanced degrees in mathematics and professional 
success, or retain them once in the pipeline;

2. have achieved documentable success in doing so; and
3. are potentially replicable models.

About this Award
This award brings recognition to outstanding programs that 
have successfully addressed the issues of underrepresented 
groups in mathematics. Examples of such groups include 
racial and ethnic minorities, women, low-income students, 
and first-generation college students.

One program is selected each year by a selection com-
mittee appointed by the AMS president and is awarded 
US$1,000 provided by the Mark Green and Kathryn Kert 
Green Fund for Inclusion and Diversity.

Preference is given to programs with significant partici-
pation by underrepresented minorities. Note that programs 
aimed at pre-college students are eligible only if there is 
a significant component of the program benefiting indi-
viduals from underrepresented groups at or beyond the 
undergraduate level. Nomination of one’s own institution 
or program is permitted and encouraged.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: The letter of nomination should 
describe the specific program being nominated and the 
achievements that make the program an outstanding 
success. It should include clear and current evidence of 
that success. A strong nomination typically includes a 
description of the program’s activities and goals, a brief 
history of the program, evidence of its effectiveness, and 
statements from participants about its impact. The letter of 

5. Discrete Mathematics/Logic (2024)
6. Open (2025)

About this Prize
These prizes were established in 1970 in honor of George 
David Birkhoff, William Fogg Osgood, and William Caspar 
Graustein, and are endowed under the terms of a bequest 
from Leroy P. Steele. From 1970 to 1976 one or more 
prizes were awarded each year for outstanding published 
mathematical research; most favorable consideration was 
given to papers distinguished for their exposition and 
covering broad areas of mathematics. In 1977 the Council 
of the AMS modified the terms under which the prizes are 
awarded. In 1993, the Council formalized the three cate-
gories of the prize by naming each of them: (1) The Leroy 
P. Steele Prize for Lifetime Achievement; (2) The Leroy P. 
Steele Prize for Mathematical Exposition; and (3) The Leroy 
P. Steele Prize for Seminal Contribution to Research.

The amount of this prize is US$5,000.

Next Prize: January 2025

Nomination Period: February 1–March 31

Nomination Procedure: Nominations for the Steele Prize 
for Seminal Contribution to Research should include a 
letter of nomination, a complete bibliographic citation for 
the work being nominated, and a brief citation to be used 
in the event that the nomination is successful.

Information on how to nominate can be found here: 
https://www.ams.org/steele-research.

Levi L. Conant Prize
This prize was established in 2000 in honor of Levi L. 
Conant to recognize the best expository paper published 
in either the Notices of the AMS or the Bulletin of the AMS 
in the preceding five years.

About this Prize
Levi L. Conant was a mathematician and educator who 
spent most of his career as a faculty member at Worcester 
Polytechnic Institute. He was head of the mathematics de-
partment from 1908 until his death and served as interim 
president of WPI from 1911 to 1913. Conant was noted as 
an outstanding teacher and an active scholar. He published 
a number of articles in scientific journals and wrote four 
textbooks. His will provided for funds to be donated to the 
AMS upon the death of his wife.

Prize winners are invited to present a public lecture 
at Worcester Polytechnic Institute as part of their Levi L. 
Conant Lecture Series, which was established in 2006. 

The Conant Prize is awarded annually in the amount 
of US$1,000.

Next Prize: January 2025
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The current prize amount is $5,000 and the prize is 
awarded every 2 years.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Submit a letter of nomination 
describing the candidate’s accomplishments including 
complete bibliographic citations for the work being nom-
inated, a CV for the nominee, and a brief citation that 
explains why the work is important.

Information on how to nominate can be found here: 
https://www.ams.org/satter-prize.

Joint Prizes and Awards
Frank and Brennie Morgan 
Prize for Outstanding 
Research in Mathematics by 
an Undergraduate Student
(AMS-MAA-SIAM)

The Morgan Prize is awarded each year to an undergrad-
uate student (or students for joint work) for outstanding 
research in mathematics. Any student who was enrolled as 
an undergraduate in December at a college or university in 
the United States or its possessions, Canada, or Mexico is 
eligible for the prize.

The prize recipient’s research need not be confined to a 
single paper; it may be contained in several papers. How-
ever, the paper (or papers) to be considered for the prize 
must be completed while the student is an undergraduate. 
Publication of research is not required.

About this Prize
The prize was established in 1995. It is entirely endowed by 
a gift from Mrs. Frank (Brennie) Morgan. It is made jointly 
by the American Mathematical Society, the Mathematical 
Association of America, and the Society for Industrial and 
Applied Mathematics.

The current prize amount is $1,200, awarded annually.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: To nominate a student, submit a 
letter of nomination, a brief description of the work that is 
the basis of the nomination, and complete bibliographic 
citations (or copies of unpublished work). All submissions 
for the prize must include at least one letter of support 

nomination should not exceed two pages, with supporting 
documentation not to exceed three more pages. Up to three 
supporting letters may be included in addition to these 
five pages. Nomination of the writer’s own institution 
or program is permitted. Nonwinning nominations will 
automatically be reconsidered for the award for the next 
two years.

Information on how to nominate can be found here: 
https://www.ams.org/make-a-diff-award.

Oswald Veblen Prize 
in Geometry
The award is made for a notable research work in geometry 
or topology that has appeared in the last six years. The work 
must be published in a recognized, peer-reviewed venue.

About this Prize
This prize was established in 1961 in memory of Professor 
Oswald Veblen through a fund contributed by former stu-
dents and colleagues. The fund was later doubled by the 
widow of Professor Veblen. An anonymous donor gener-
ously augmented the fund in 2008. In 2013, in honor of her 
late father, John L. Synge, who knew and admired Oswald 
Veblen, Cathleen Synge Morawetz and her husband, Her-
bert, substantially increased the endowment.

The current prize amount of US$5,000 is awarded every 
three years.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Submit a letter of nomination, a 
complete bibliographic citation for the work being nom-
inated, and a brief citation that explains why the work is 
important.

Information on how to nominate can be found here: 
https://www.ams.org/Veblen-prize.

Ruth Lyttle Satter Prize 
in Mathematics
The Satter Prize recognizes an outstanding contribution to 
mathematics research by a woman in the previous six years.

About this Prize
This prize was established in 1990 using funds donated by 
Joan S. Birman in memory of her sister, Ruth Lyttle Satter. 
Professor Birman requested that the prize be established to 
honor her sister’s commitment to research and to encour-
age women in science. An anonymous benefactor added 
to the endowment in 2008.
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from a person, usually a faculty member, familiar with the 
student’s research.

Information on how to nominate can be found here: 
https://www.ams.org/morgan-prize.

JPBM Communications 
Award
This award is given each year to reward and encourage com-
municators who, on a sustained basis, bring mathematical 
ideas and information to non-mathematical audiences.

About this Award
This award was established by the Joint Policy Board for 
Mathematics (JPBM) in 1988. JPBM is a collaborative 
effort of the American Mathematical Society, the Mathe-
matical Association of America, the Society for Industrial 
and Applied Mathematics, and the American Statistical 
Association.

Up to two awards of US$2,000 are made annually. Both 
mathematicians and non-mathematicians are eligible.

Next Prize: January 2025

Nomination Period: open

Nomination Procedure: Nominations should be submit-
ted on mathprograms.org. Note: Nominations collected 
before September 15th in year N will be considered for an
award in year N+2.

Information on how to nominate can be found here: 
https://www.ams.org/jpbm-comm-award.

AMS-SIAM Norbert Wiener 
Prize in Applied Mathematics
The Wiener Prize is awarded for an outstanding contribu-
tion to “applied mathematics in the highest and broadest 
sense.”

About this Prize
This prize was established in 1967 in honor of Professor 
Norbert Wiener and was endowed by a fund from the De-
partment of Mathematics of the Massachusetts Institute of 
Technology. The endowment was further supplemented by 
a generous donor.

Since 2004, the US$5,000 prize has been awarded every 
three years. The American Mathematical Society and the 
Society for Industrial and Applied Mathematics award 
this prize jointly; the recipient must be a member of one 
of these societies.

Next Prize: January 2025

Nomination Period: February 1–May 31

Nomination Procedure: Submit a letter of nomination 
describing the candidate’s accomplishments including 
complete bibliographic citations for the work being nom-
inated, a CV for the nominee, and a brief citation that 
explains why the work is important.

Information on how to nominate can be found here: 
https://www.ams.org/wiener-prize.

AMS Programs  
and Fellowships
AMS-Simons Travel Grants
The AMS-Simons Travel Grant program acknowledges 
the importance of research interaction and collaboration 
in mathematics and aims to facilitate these activities for 
recent PhD recipients. AMS-Simons Travel Grants are 
administered by the AMS with support from the Simons 
Foundation. These grants provide support for committed 
researchers who have limited opportunities for travel and 
conferences and for collaborative work. For the 2024–2025 
award cycle, each grant will provide an early-career mathe-
matician with $3,000 per year for two years to be used for 
research-related travel. Annual discretionary funds for the 
enhancement of a grantee’s department will be available 
to institutions that administer the grant on behalf of the 
AMS. No additional institutional overhead or indirect costs 
will be covered with these award funds.

About this Grant
Eligible applicants for the 2024–2025 application cycle are 
early-career mathematicians who are located in the United 
States (or are US citizens employed outside the United 
States) and who have completed the PhD (or its equivalent) 
within the last four years (between April 1, 2020, and June 
30, 2024, inclusive).

The applicant’s research must be in a disciplinary re-
search area supported by the Division of Mathematical 
Sciences at the National Science Foundation. Previous 
AMS-Simons Travel Grant recipients and early-career 
mathematicians who already receive substantial external 
funding for research and travel exceeding $3,000 per year 
(such as from the National Science Foundation) are not 
eligible to apply.

Recipients may use grant funds for research-related 
travel, such as travel to a conference, a university, or an 
institute, or to visit a collaborator. Funds may also be used 
for a collaborator to visit the grantee to engage in research 
activities. Other research-related travel may be supported, 
subject to the approval of the grantee’s mentor. Detailed 
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to conference participation, institute visits, collaboration 
travel (grantee or collaborator), computer equipment or 
software, family-care expenses, hiring a teaching assistant, 
publication expenses, stationery, supplies, books, and 
membership fees to professional organizations. During 
the three-year funding period, the grantee may spend up 
to $2,500 on electronic devices to support their research 
activities.

Application Period: Applications will be collected via 
MathPrograms.org January 9, 2024–March 18, 2024 
(11:59 p.m. EST). Find more application information at 
https://www.ams.org/AMS-Simons-PUI-Research. For 
questions, contact the Programs Department, American 
Mathematical Society, 201 Charles Street, Providence, RI 
02904-2294; ams-simons-pui@ams.org.

Fellows of the American 
Mathematical Society
The Fellows of the American Mathematical Society pro- 
gram recognizes members who have made outstanding 
contributions to the creation, exposition, advancement, 
communication, and utilization of mathematics.

AMS members may be nominated for this honor during 
the nomination period which occurs in February and March 
each year. Selection of new Fellows (from among those 
nominated) is managed by the AMS Fellows Selection 
Committee, comprised of 12 members of the AMS who 
are also Fellows. Those selected are subsequently invited 
to become Fellows and the new class of Fellows is publicly 
announced each year on November 1.

Learn more about the qualifications and process for 
nomination at www.ams.org/profession/ams-fellows.

Credits
Photo of I. Martin Isaacs is courtesy of Yvonne Nagel.
Photo of Elias M. Stein is courtesy of William Crow/Prince-

ton University.

guidelines will be provided to the grantee. Only eligible 
travel expenses that have advance approval from the grant-
ee’s mentor will be reimbursed.

Application Period: Applications will be collected via 
MathPrograms.org February 15, 2024–March 31, 2024 
(11:59 p.m. EST). Find more application information at 
https://www.ams.org/AMS-SimonsTG. For questions, 
contact the Programs Department, American Mathematical 
Society, 201 Charles Street, Providence, RI 02904-2294; 
ams-simons@ams.org.

AMS-Simons Research 
Enhancement Grants for 
Primarily Undergraduate 
Institution (PUI) Faculty
With generous funding from the Simons Foundation; the 
AMS; and Eve, Kirsten, Lenore, and Ada of the Menger 
family, the AMS-Simons Research Enhancement Grants 
for Primarily Undergraduate Institution (PUI) Faculty 
program was established in 2023 to foster and support 
research collaboration by mathematicians employed full-
time at colleges and universities that do not award doctoral 
degrees in mathematics. Each year for three years, grantees 
will receive $3,000 to support research-related activities. 
Annual discretionary funds for a grantee’s department and 
administrative funds for a grantee’s institution will be avail-
able to institutions that administer the grant on behalf of 
the AMS. No additional institutional overhead or indirect 
costs will be covered with these award funds.

About this Grant
Mathematicians with an active research program employed 
full-time in tenured or tenure-track positions at PUIs in 
the United States are eligible to apply. For the purpose of 
this program, PUI institutions are those that do not confer 
doctoral degrees in mathematics. Additionally, to be eligi-
ble, applicants must have earned a PhD degree at least five 
years before the start of the grant. For the 2024 application 
cycle, applicants must have earned a PhD degree prior to 
August 1, 2019.

The applicant’s research must be in a disciplinary re-
search area supported by the Division of Mathematical 
Sciences of the National Science Foundation. Faculty with 
appointments solely in statistics departments are not el-
igible. The grantees may not concurrently hold external 
research funding exceeding $3,000 per year and may not 
be in residence at a National Science Foundation institute.

Activities that will further the grantee’s research program 
are allowed. These expenses include but are not limited 
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Apply by March 18 for
AMS-Simons Research
Enhancement Grants
for PUI Faculty
Apply for the 2024 AMS-Simons Research Enhancement
Grants for Primarily Undergraduate Institution (PUI) Fac-
ulty program by 11:59 p.m. ET on Monday, March 18,
2024. Applicants will be notified of their status in June
2024, and grants will begin on July 1, 2024. These research
grants provide $3,000 a year for three years.

For in-depth information about the program, down-
load the one-hour webinar for prospective applicants
from November 9, 2023 [URL below]. In this webinar,
Sarah Bryant, director of AMS Programs, describes the pro-
gram and its eligibility requirements and shares advice on
strengthening your application. Bryant and the 2023 com-
mittee cochairs, Francis Su and Deborah Lockhart, also
field questions from the real-time webinar attendees.

The presentation is available for download at https://
www.ams.org/ams-simons-pui-research. This page
also contains more information about activities supported
by the grant. Questions? Email ams-simons-pui@ams
.org.

—AMS Programs Department

An Industry Perspective:
Alan Lee of Analog Devices, Inc.,
Briefs Capitol Hill
The American Mathematical Society (AMS) and the In-
stitute for Pure & Applied Mathematics (IPAM) jointly
hosted a Congressional briefing titled “Math Changes
Everything—The Importance ofMathematics to theUS: An
Industry Perspective” on December 6, 2023, on Capitol

DOI: https://doi.org/10.1090/noti2904

Hill in Washington, DC. The briefing was given by Alan
Lee, chief technology officer of Analog Devices, Inc.

The AMS holds annual Congressional briefings as a
means to communicate to policymakers the pivotal roles
of the mathematical sciences in American life. Speakers
bring science directly to Capitol Hill decisionmakers. They
explain how federal investment in basic research in math
and science pays off for American taxpayers and helps the
nation remain a world leader in innovation. Each briefing
showcases work connected to one of the National Science
Foundation-funded Mathematical Sciences Institutes; this
year featured IPAM.

Beginning with the personal story of his start in math,
Lee delivered a broad survey of how mathematics is fun-
damental in a very wide variety of applications. He in-
troduced the audience to the work of mathematicians—
Julia Robinson; Ronald Rivest, Adi Shamir, and Leonard
Adleman; Terence Tao and Emmanuel Candès; Karen
Uhlenbeck—and how their mathematics have advanced
technologies and improved our understanding of the uni-
verse.

Lee then connected specific mathematics to topics of
current concern to Congress, such as artificial intelligence;
financial systems; networks, cybersecurity, and the mod-
ern defense ecosystem; human health; the health of our
planet; and manufacturing, transport, and infrastructure.
Noting that other countries are investing more in mathe-
matics education, he gave direction for opportunities for
the nation to grow domestic talent and simultaneously at-
tract top talent from abroad.

In a compelling argument for strategic federal invest-
ment in mathematics research, Lee highlighted the role of
the NSF-funded Mathematical Sciences Research Institutes
in advancing this research and supporting the math com-
munity at large. It was a beautiful presentation; the audi-
ence was very attentive and Congressional staff asked great
questions.

Lee’s slides, as well as further information about
AMS Congressional briefings and previous speakers, will
be posted at https://www.ams.org/government/dc
-outreach.

—Karen Saxe, Associate Executive Director, AMS
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Fifty Graduate Programs
Participate in 2023 Online
Fall Graduate School Fair
Fifty US math graduate programs, as well as Math Alliance,
the EDGE Program, and the AMS Programs and Member-
ship departments, exhibited at the annual AMSOnline Fall
Graduate School Fair, whichwas hosted on theGather plat-
form on October 17, 2023.

At the fair, representatives of graduate programs in the
mathematical sciences staffed virtual tables and answered
questions about their programs. Undergraduates learned
about possibilities for graduate study and master’s stu-
dents explored opportunities for PhD study.

Register in late spring 2024 for the fall 2024 online
fair. For more information, visit https://www.ams.org
/gradfair or email the AMS Programs staff at prof-serv
@ams.org.

—AMS Programs Department

Introduction to Advocacy:
AMS Welcomes Virginia
High-School Students
Thirty students from John R. Lewis High School in Spring-
field, Virginia, visited the AMS Office of Government Rela-
tions in Washington, DC, in October 2023 as part of the
school’s Lewis Leadership Program.

After exploring the National Mall using the Mathemat-
ical Association of America’s Field Guide to Math, the
students learned about AMS policy and advocacy work;
shared their own experiences and perspectives aboutmath-
ematics education; and explored the role of mathematics
as a tool for positive social change.

The group was hosted by Karen Saxe, director of the
AMS Office of Government Relations, and Tyler Kloefkorn,
associate director. Saxe and Kloefkorn discussed the value
of mathematics and its importance to future progress in
science, engineering, and technology innovation, includ-
ing artificial intelligence. They also taught the young lead-
ers how to influence the legislative process through advo-
cacy. As an example, the students were encouraged to use
AMS resources to support legislation for a Congressional
Gold Medal for Bob Moses, the late founder of the Algebra
Project. Moses was a public education advocate, math lit-
eracy educator, and like their high school’s namesake, an
influential civil-rights activist.

In its second year, the Lewis Leadership Program pro-
vides Lewis High School’s 1,690 students with real-world,
hands-on learning about leadership, justice, service, and
advocacy inside and outside the classroom. The visit to
Washington was part of a broader series of Leadership Pro-
gram events designed to foster joy and curiosity in math-
ematics among students who experience systemic barriers
to enrichment. Students in grades 9–12 engaged in col-
laborative learning in Spanish and English with AMS lead-
ers, Fairfax County Public Schools staff from Lewis High
School and the Office of Curriculum and Instruction, and
community partners from TODOS: Mathematics for ALL.

—AMS Office of Government Relations

Deaths of AMS Members
Lawrence A. Zalcman, of Israel, died on May 31, 2022.
Born on June 9, 1943, he was a member of the Society
for 55 years.

Asvald Lima, of Norway, died on April 11, 2023. Born
on October 1, 1942, he was a member of the Society for
46 years.

Joseph A. Wolf, of Berkeley, California, died on August
14, 2023. Born on October 18, 1936, he was a member of
the Society for 66 years.

Eric A. Nordgren, of Durham, New Hampshire, died on
August 16, 2023. Born on March 31, 1933, he was a mem-
ber of the Society for 60 years.

Joseph B. Roberts, of Portland, Oregon, died on August
31, 2023. Born on September 9, 1923, he was a member
of the Society for 67 years.

Walker E. Hunt, of San Antonio, Texas, died on Septem-
ber 1, 2023. Born on June 7, 1937, he was a member of
the Society for 56 years.

Eugenio Calabi, of Bryn Mawr, Pennsylvania, died on
September 5, 2023. Born on May 11, 1923, he was a mem-
ber of the Society for 73 years.

Margaret W. Taft, of Arlington, Massachusetts, died on
October 14, 2023. Born on November 4, 1945, she was a
member of the Society for 52 years.

LawrenceHuestonHarper, of Riverside, California, died
on October 20, 2023. Born on August 1, 1938, he was a
member of the Society for 2 years.

Gary M. Seitz, of Seattle, Washington, died on October
30, 2023. Born on May 10, 1943, he was a member of the
Society for 57 years.

Gerald T. Cargo, ofWindsor, Colorado, died onNovem-
ber 10, 2023. Born on March 1, 1930, he was a member
of the Society for 66 years.
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Mathematics People

Hickok, Kooloth Win 2024
AWM Dissertation Prize
Abigail Hickok and Parvathi M. Kooloth have been
awarded the 2024 Association for Women in Mathematics
(AWM) Dissertation Prize, recognizing exceptional work
in a dissertation defended in the last 24 months. The
award is intended to be based entirely on the dissertation
itself, not on other work of the individual. The prizes were
presented at the Joint Mathematics Meetings in San Fran-
cisco, CA.

Hickok received her PhD in 2023 at UCLA under the
supervision of Mason Porter. She is currently an NSF Post-
doctoral Fellow at Columbia University. Hickok’s disserta-
tion consists of work from six papers and a book chapter
in the area of topological and geometric data analysis.

Kooloth received her PhD in Mathematics in 2022 at
the University of Wisconsin-Madison under the direction
of Leslie M. Smith. She is currently a postdoctoral research
associate at the Pacific Northwest National Laboratory. In
her thesis, ”Moist potential vorticity and coherent struc-
tures in the atmosphere,” Kooloth solved a longstanding
puzzle in the fluid dynamics of the atmosphere and the
ocean.

—Association for Women in Mathematics

Women and Mathematics
Program Awarded 2023 AWM
Presidential Recognition Award
The Association for Women in Mathematics (AWM) pre-
sented its 2023 Presidential Recognition Award to the
Women and Mathematics Program (WAM) at the Institute
for Advanced Study (IAS) for its 30-year record of celebrat-
ing excellent mathematics and for fostering exceptional
community citizenship.

DOI: https://doi.org/10.1090/noti2903

Founded by Karen Uhlenbeck and Chuu-Lian Terng in
1993 as part of the Park City Mathematics Institute, WAM
was established at IAS in 1994. To date, the program
has welcomed more than 1,650 participants, resulting in
a powerful network. WAM’s core curriculum includes an
intensive multiday workshop on the IAS campus that fea-
tures lectures, seminars, and working sessions on a se-
lected topic.

—Association for Women in Mathematics

Pacific Rim Conference on
Mathematics to be Held
June 2024
The Ninth Pacific Rim Conference on Mathematics
(PRCM) will be held June 17–21, 2024 at the Darwin Con-
vention Centre, in Darwin (Northern Territory, Australia),
hosted by the Mathematical Sciences Institute (MSI), Aus-
tralian National University (ANU).

“The PRCM is a broad mathematical event held every
few years that covers a wide range of exciting research in
contemporary mathematics,” according to its organizers.
“Its objectives are to offer a venue for the presentation to
and discussion among a wide audience of the latest trends
in mathematical research, and to strengthen ties between
mathematicians working in the Pacific Rim region.”

Scheduled plenary speakers are Binyong Sun (Zhe-
jiang University), Jun-cheng Wei (University of British
Columbia), Gabor Lugosi (Pompeu Fabra University
Barcelona), Allan Sly (Princeton University), Mohammed
Abouzaid (Stanford University), Kay Owens (Charles Sturt
University), Minhyong Kim (ICMS Edinburgh and Ko-
rea Institute for Advanced Study), Alexandre Ern (Univer-
sity of Paris-Est), and Gerhard Huisken (Oberwolfach Re-
search Institute for Mathematics).

For more information, see https://maths.anu.edu
.au/news-events/events/ninth-pacific-rim
-conference-mathematics-darwin.

—Pacific Rim Conference on Mathematics
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NEWS

JMAA Announces 2022
Ames, Wong Awards
The editorial board of the Journal of Mathematical Analysis
and Applications (JMAA) has selected and announced the
winners of the 2022 Ames Awards and James S. W. Wong
Prize.

Awarded annually, the JMAA Ames Awards honor the
memory of William F. Ames, former editor-in-chief of the
JMAA. The papers, in pure and applied mathematics, were
selected by a journal selection committee from all papers
published in the journal in the last three years. Each award
consists of a certificate of merit and a monetary prize of
$2,500.

Winners of the 2022 Ames Awards are Paolo Marcellini,
for their paper “Growth conditions and regularity for weak
solutions to nonlinear elliptic PDEs” J. Math. Anal. Appl.
501 (2021), no. 1, 124408, and Davide Barbieri, Euge-
nio Hernández, and Victoria Paternostro, for their paper
“Spaces invariant under unitary representations of discrete
groups” J. Math. Anal. Appl. 492 (2020), no. 1, 124357.
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A biennial award, the Wong Prize recognizes an out-
standing paper published in the JMAA in the preceding ten
years and consists of a cash award of $10,000. The Wong
Prize fund was established in 2012 by the family of Dr.
James S. W.Wong and Elsevier in honor of Dr. Wong’s con-
tributions to mathematics, career accomplishments, and
editorial service to the JMAA. Winners of the 2022 Wong
Prize are Angelo Alvino, Friedemann Brock, Francesco Chi-
acchio, Anna Mercaldo, and Maria Rosaria Posteraro, for
their paper “Some isoperimetric inequalities on ℝN with
respect to weights |x|𝛼” J. Math. Anal. Appl. 451 (2017),
no. 1, 280–318.

—Journal of Mathematical Analysis and Applications
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Applications

Matrix Models for 
Population, Disease, and 
Evolutionary Dynamics
J. M. Cushing, University of Ari-
zona, Tucson, AZ

This book offers an introduction 
to the use of matrix theory and 
linear algebra in modeling the 
dynamics of biological popula-
tions. Matrix algebra has been 
used in population biology since 
the 1940s and continues to play 

a major role in theoretical and applied dynamics for pop-
ulations structured by age, body size or weight, disease 
states, physiological and behavioral characteristics, life cycle 
stages, or any of many other possible classification schemes. 
With a focus on matrix models, the book requires only 
first courses in multivariable calculus and matrix theory 
or linear algebra as prerequisites.

The reader will learn the basics of modeling method-
ology (i.e., how to set up a matrix model from biological 
underpinnings) and the fundamentals of the analysis of 
discrete time dynamical systems (equilibria, stability, bi-
furcations, etc.). A recurrent theme in all chapters concerns 
the problem of extinction versus survival of a population. 
In addition to numerous examples that illustrate these 
fundamentals, several applications appear at the end of 
each chapter that illustrate the full cycle of model setup, 
mathematical analysis, and interpretation. The author has 
used the material over many decades in a variety of teaching 
and mentoring settings, including special topics courses 
and seminars in mathematical modeling, mathematical 
biology, and dynamical systems.

This item will also be of interest to those working in differential 
equations.

Student Mathematical Library, Volume 106
May 2024, approximately 305 pages, Softcover, ISBN: 978-
1-4704-7334-1, LC 2023050951, 2020 Mathematics Subject 

Analysis

Fourier Analysis on 
Polytopes and the 
Geometry of Numbers
Part I: A Friendly Introduction
Sinai Robins, University of São 
Paulo, Brazil

This book offers a gentle in-
troduction to the geometry of 
numbers from a modern Fouri-
er-analytic point of view. One of 
the main themes is the transfer 
of geometric knowledge of a 

polytope to analytic knowledge of its Fourier transform. 
The Fourier transform preserves all of the information of 
a polytope, and turns its geometry into analysis. The ap-
proach is unique, and streamlines this emerging field by 
presenting new simple proofs of some basic results of the 
field. In addition, each chapter is fitted with many exercises, 
some of which have solutions and hints in an appendix. 
Thus, an individual learner will have an easier time absorb-
ing the material on their own, or as part of a class.

Overall, this book provides an introduction appropriate 
for an advanced undergraduate, a beginning graduate stu-
dent, or researcher interested in exploring this important 
expanding field.

This item will also be of interest to those working in discrete 
mathematics and combinatorics.

Student Mathematical Library, Volume 107
May 2024, approximately 349 pages, Softcover, ISBN: 978-
1-4704-7033-3, 2020 Mathematics Subject Classification: 
51M20, 11P21, 32A50, 11H06, 11H16, 11H31, 52B20, 
List US$59, AMS Institutional member US$47.20, MAA 
members US$47.20, All Individuals US$47.20, Order 
code STML/107

bookstore.ams.org/stml-107

http://bookstore.ams.org/stml-107
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Contemporary Mathematics, Volume 793
April 2024, approximately 356 pages, Softcover, ISBN: 
978-1-4704-7104-0, LC 2023045277, 2020 Mathematics 
Subject Classification: 34C15, 34D05, 34D20, 34D23, 
37M20, 39A28, 39A30, 92B05, List US$135, AMS mem-
bers US$108, MAA members US$121.50, Order code 
CONM/793

bookstore.ams.org/conm-793

Geometry and Topology

Recent Advances in 
Diffeologies and Their 
Applications
Jean-Pierre Magnot, Université 
d’Angers, France, and Lycée Jeanne 
d’Arc, Clermont-Ferrand, France, 
Editor

This volume contains the pro-
ceedings of the AMS-EMS-SMF 
Special Session on Recent Ad-
vances on Diffeologies and Their 
Applications, held from July 18–

20, 2022, at the Université de Grenoble-Alpes, Grenoble, 
France.

The articles present some developments of the theory 
of diffeologies applied in a broad range of topics, ranging 
from algebraic topology and higher homotopy theory to 
integrable systems and optimization in PDE.

The geometric framework proposed by diffeologies is 
known to be one of the most general approaches to prob-
lems arising in several areas of mathematics. It can adapt 
to many contexts without major technical difficulties and 
produce examples inaccessible by other means, in partic-
ular when studying singularities or geometry in infinite 
dimension. Thanks to this adaptability, diffeologies appear 
to have become an interesting and useful language for 
a growing number of mathematicians working in many 
different fields. Some articles in the volume also illustrate 
some recent developments of the theory, which makes it 
even more deep and useful.

Contemporary Mathematics, Volume 794
April 2024, approximately 264 pages, Softcover, ISBN: 978-
1-4704-7254-2, LC 2023049999, 2020 Mathematics Subject 
Classification: 14D23, 14M25, 37K10, 46T05, 49Q10, 
53D20, 57R30, 57R55, 58B10, 81R50, List US$135, AMS 
members US$108, MAA members US$121.50, Order code 
CONM/794

bookstore.ams.org/conm-794

Classification: 92D25, 92D30, 39A50; 37N25, 15B99, 
List US$59, AMS Institutional member US$47.20, MAA 
members US$47.20, All Individuals US$47.20, Order 
code STML/106

bookstore.ams.org/stml-106

New in Contemporary 
Mathematics
Applications

Mathematical and 
Computational Modeling 
of Phenomena Arising in 
Population Biology and 
Nonlinear Oscillations
Abba Gumel, University of Mary-
land, College Park, MD, Editor

This book consists of a series of 
papers focusing on the math-
ematical and computational 
modeling and analysis of some 
real-life phenomena in the nat-

ural and engineering sciences. The book emphasizes three 
main themes: (i) the design and analysis of robust and 
dynamically-consistent nonstandard finite-difference 
methods for discretizing continuous-time dynamical sys-
tems arising in the natural and engineering sciences, (ii) the 
mathematical study of nonlinear oscillations, and (iii) the 
design and analysis of models for the spread and control 
of emerging and re-emerging infectious diseases.

Specifically, some of the topics covered in the book in-
clude advances and challenges on the design, analysis and 
implementation of nonstandard finite-difference meth-
ods for approximating the solutions of continuous-time 
dynamical systems, the design and analysis of models for 
the spread and control of the COVID-19 pandemic, mod-
eling the effect of prescribed fire and temperature on the 
dynamics of tick-borne disease, and the design of a novel 
genetic-epidemiology framework for malaria transmission 
dynamics and control.

The book also covers the impact of environmental 
factors on diseases and microbial populations, Monod 
kinetics in a chemostat setting, structure and evolution 
of poroacoustic solitary waves, mathematics of special 
(periodic) functions and the numerical discretization of a 
phase-lagging equation with heat source.

ONTEMPORARY
ATHEMATICS

C
M

793

Mathematical and 
Computational Modeling 

of Phenomena Arising 
in Population Biology 

and Nonlinear Oscillations
 

Abba Gumel
Editor
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C
M

794 

Recent Advances 
in Diffeologies 

and Their Applications
 

Jean-Pierre Magnot
Editor
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Analysis

Global Regularity for Gravity 
Unstable Muskat Bubbles
Francisco Gancedo, Universidad de Sevilla, Spain, Eduardo 
García-Juárez, Universidad de Sevilla, Spain, Neel Patel, Uni-
versity of Maine, Orono, ME, and Robert M. Strain, University 
of Pennsylvania, Philadelphia, PA

Memoirs of the American Mathematical Society, Volume 
292, Number 1455
January 2024, 87 pages, Softcover, ISBN: 978-1-4704-6764-
7, 2020 Mathematics Subject Classification: 35A01, 35D30, 
35D35, 35Q35, 35Q86, List US$85, AMS members US$68, 
MAA members US$76.50, Order code MEMO/292/1455

bookstore.ams.org/memo-292-1455

Geometry and Topology

SYZ Geometry for Calabi-Yau 3-folds:  
Taub-NUT and Ooguri-Vafa  Type Metrics
Yang Li, Massachusetts Institute of Technology, Cambridge, MA

This item will also be of interest to those working in analysis.

Memoirs of the American Mathematical Society, Volume 
292, Number 1453
January 2024, 126 pages, Softcover, ISBN: 978-1-4704-
6782-1, 2020 Mathematics Subject Classification: 53C25, 
53C21, 32Q20, 32Q25; 14J30, 14J32, 14J33, 97I80, 
53C38, List US$85, AMS members US$68, MAA members 
US$76.50, Order code MEMO/292/1453

bookstore.ams.org/memo-292-1453

Eulerian Spaces
Paul Gartside, University of Pittsburgh, PA, and Max Pitz, 
Universität Hamburg, Germany

Memoirs of the American Mathematical Society, Volume 
292, Number 1456
January 2024, 86 pages, Softcover, ISBN: 978-1-4704-
6784-5, 2020 Mathematics Subject Classification: 54F15, 
54C10; 05C45, 05C63, 57M15, 54F50, List US$85, AMS 
members US$68, MAA members US$76.50, Order code 
MEMO/292/1456

bookstore.ams.org/memo-292-1456

New in Memoirs 
of the AMS
Algebra and 
Algebraic Geometry

The Generation Problem in Thompson Group F
Gili Golan Polak, Ben Gurion University of the Negev, Be’er 
Sheva, Israel

Memoirs of the American Mathematical Society, Volume 
292, Number 1451
January 2024, 94 pages, Softcover, ISBN: 978-1-4704-6723-
4, 2020 Mathematics Subject Classification: 20F10, 20F65; 
20E28, List US$85, AMS members US$68, MAA members 
US$76.50, Order code MEMO/292/1451

bookstore.ams.org/memo-292-1451

Finite Groups Which Are Almost 
Groups of Lie  Type in Characteristic p
Chris Parker, University of Birmingham, United Kingdom, 
Gerald Pientka, Halle, Germany, Andreas Seidel, Magde-
burg, Germany, and Gernot Stroth, Universität Halle–Wit-
tenberg, Germany

Memoirs of the American Mathematical Society, Volume 
292, Number 1452
January 2024, 182 pages, Softcover, ISBN: 978-1-4704-
6729-6, 2020 Mathematics Subject Classification: 20D05; 
20D06, 20D08, List US$85, AMS members US$68, MAA 
members US$76.50, Order code MEMO/292/1452

bookstore.ams.org/memo-292-1452

Hyperbolic  Actions and 2nd Bounded 
Cohomology of Subgroups of Out(Fn)
Michael Handel, CUNY Lehman College, New York, NY, and 
Lee Mosher, Rutgers University–Newark, NJ

Memoirs of the American Mathematical Society, Volume 
292, Number 1454
January 2024, 170 pages, Softcover, ISBN: 978-1-4704-
6698-5, 2020 Mathematics Subject Classification: 20F65; 
20E05, 20E36, List US$85, AMS members US$68, MAA 
members US$76.50, Order code MEMO/292/1454

bookstore.ams.org/memo-292-1454

http://bookstore.ams.org/memo-292-1455
http://bookstore.ams.org/memo-292-1451
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New AMS-Distributed 
Publications
Algebra and 
Algebraic Geometry

The Structure of 
Pro-Lie Groups
Karl H. Hofmann, Technische 
Universität, Darmstadt, Germany, 
and Tulane University, New Orle-
ans, LA, and Sidney A. Morris, 
La Trobe University, Bundoora, 
Australia, and Federation Univer-
sity Australia, Ballarat, Australia

Lie groups were introduced in 
1870 by the Norwegian mathe-
matician Sophus Lie. A century 

later Jean Dieudonn quipped that Lie groups had moved to 
the center of mathematics and that one cannot undertake 
anything without them.

A pro-Lie group is a complete topological group G in 
which every identity neighborhood U of G contains a nor-
mal subgroup N such that the quotient G/N is a Lie group. 
Every locally compact connected topological group and 
every compact group is a pro-Lie group. While the class of 
locally compact groups is not closed under the formation 
of arbitrary products, the class of pro-Lie groups is.

For half a century, locally compact pro-Lie groups have 
drifted through the literature; yet this is the first book 
which systematically treats the Lie theory and the structure 
theory of pro-Lie groups irrespective of local compactness. 
So it fits very well into that current trend which addresses 
infinite dimensional Lie groups. The results of this text 
are based on a theory of pro-Lie algebras which parallels 
the structure theory of finite dimensional real Lie algebras 
to an astonishing degree even though it has to overcome 
technical obstacles.

A topological group is said to be almost connected if the 
quotient group of its connected components is compact. 
This book exposes a Lie theory of almost connected pro-Lie 
groups (and hence of almost connected locally compact 
groups) and illuminates the variety of ways in which their 
structure theory reduces to that of compact groups on the 
one hand and of finite dimensional Lie groups on the other. 
It is, therefore, a continuation of the authors’ monograph 
on the structure of compact groups (1998, 2006, 2014, 
2020, 2023) and is an invaluable tool for researchers in 
topological groups, Lie theory, harmonic analysis and 

representation theory. It is written to be accessible to ad-
vanced graduate students wishing to study this fascinating 
and important area of research, which has so many fruitful 
interactions with other fields of mathematics.

A publication of the European Mathematical Society (EMS). Distributed 
within the Americas by the American Mathematical Society.

EMS Tracts in Mathematics, Volume 36
November 2023, 840 pages, Hardcover, ISBN: 978-3-
98547-048-8, 2020 Mathematics Subject Classification: 
22–02; 22A05, 22D05, 22E20, 22E65, List US$129, AMS 
members US$103.20, Order code EMSTM/36

bookstore.ams.org/emstm-36

Representations 
of Algebras and 
Related Structures
International Conference 
on Representations 
of Algebras, ICRA 2020, 
November 9–25, 2020
Aslak Bakke Buan, Norwegian 
University of Science and Technol-
ogy, Trondheim, Norway, Henning 
Krause, Universität Bielefeld, 
Bielefeld, Germany, and Øyvind 

Solberg, Norwegian University of Science and Technology, 
Trondheim, Norway, Editors

This volume contains a collection of articles devoted to rep-
resentations of algebras and related topics. Distinguished 
experts in this field presented their work at the International 
Conference on Representations of Algebras in 2020.

The book reflects recent trends in the representation 
theory of algebras and its interactions with other central 
branches of mathematics, including combinatorics, com-
mutative algebra, algebraic geometry, topology, data anal-
ysis, Lie algebras, quantum groups, homological algebra, 
and theoretical physics.

There are thirteen independent articles, written by 
leading experts in the field. Most are expository survey 
papers, but some are also original research contributions. 
This collection is addressed to researchers and graduate 
students in algebra as well as to a broader mathematical 
audience. It contains open problems and new perspectives 
for research in the field.

A publication of the European Mathematical Society (EMS). Distributed 
within the Americas by the American Mathematical Society.

EMS Series of Congress Reports, Volume 19
December 2023, 428 pages, Hardcover, ISBN: 978-3-98547-
054-9, 2020 Mathematics Subject Classification: 16–06; 

http://bookstore.ams.org/emstm-36
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Parametrix for Wave 
Equations on a 
Rough Background IV: 
Control of the Error Term
Jérémie Szeftel, CNRS & Labora-
toire Jacques-Louis Lions, Sorbonne 
Université, France

This book is dedicated to the 
construction and the control of a 
parametrix to the homogeneous 
wave equation ◻gϕ=0, where g 
is a rough metric satisfying the 

Einstein vacuum equations. Controlling such a parametrix 
as well as its error term when one only assumes L2 bounds 
on the curvature tensor R of g is a major step of the proof 
of the bounded L2 curvature conjecture, solved jointly with 
S. Klainerman and I. Rodnianski.

On a more general level, this book deals with the control 
of the eikonal equation on a rough background, and with 
the derivation of L2 bounds for Fourier integral operators 
on manifolds with rough phases and symbols, and as such 
is also of independent interest.

This item will also be of interest to those working in analysis.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 444
November 2023, 314 pages, Softcover, ISBN: 978-2-85629-
978-4, 2020 Mathematics Subject Classification: 83C05, 
35Q75, 58J45, 35S30, 58J40, List US$90, AMS members 
US$72, Order code AST/444

bookstore.ams.org/ast-444

General Interest

International Congress of 
Mathematicians: July 6–14, 2022
Volumes 1–7 (Set)
Dmitry Beliaev, University of Oxford, UK, 
and Stanislav Smirnov, Université de 
Genève, Switzerland, Editors

Following the long and illustrious tra-
dition of the International Congress 
of Mathematicians, these proceedings 

18–06, 13–06, 14–06, List US$95, AMS members US$76, 
Order code EMSSCR/19

bookstore.ams.org/emsscr-19

Differential Equations

The Connes Character 
Formula for Locally 
Compact Spectral Triples
Fedor Sukochev, University of 
New South Wales, Kensington, 
Australia, and Dmitriy Zanin, 
University of New South Wales, 
Kensington, Australia

A fundamental tool in noncom-
mutative geometry is Connes’s 
character formula. This formula 
is used in an essential way in the 

applications of noncommutative geometry to index theory 
and to the spectral characterization of manifolds.

A non-compact space is modeled in noncommutative 
geometry by a non-unital spectral triple. The authors’ aim 
is to establish Connes’s character formula for non-unital 
spectral triples. This is significantly more difficult than in 
the unital case, and they achieve it with the use of recently 
developed double operator integration techniques. Previ-
ously, only partial extensions of Connes’s character formula 
to the non-unital case were known.

In the course of the proof, the authors establish two 
more results of importance in noncommutative geometry: 
an asymptotic for the heat semigroup of a non-unital spec-
tral triple and the analyticity of the associated ζ-function.

The authors require certain assumptions on the under-
lying spectral triple and verify these assumptions in the 
case of spectral triples associated to arbitrary complete Rie-
mannian manifolds and also in the case of Moyal planes.

This item will also be of interest to those working in analysis.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 445
December 2023, 150 pages, Softcover, ISBN: 978-2-85629-
982-1, 2020 Mathematics Subject Classification: 83C05, 
35Q75, 58J45, 35S30, 58J40, List US$65, AMS members 
US$52, Order code AST/445

bookstore.ams.org/ast-445

http://bookstore.ams.org/emsscr-19
http://bookstore.ams.org/ast-444
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December 2023, 5900 pages, Hardcover, ISBN: 978-3-
98547-058-7, 2020 Mathematics Subject Classification: 
00Bxx, List US$999, AMS Individual member US$899.10, 
AMS Institutional member US$799.20, Order code 
EMSICM/2022

bookstore.ams.org/emsicm-2022 

include contributions based on the invited talks that were 
presented at the Congress in 2022.

Published with the support of the International Mathe-
matical Union and edited by Dmitry Beliaev and Stanislav 
Smirnov, these seven volumes present the most important 
developments in all fields of mathematics and its applica-
tions in the past four years. In particular, they include lau-
dations and presentations of the 2022 Fields Medal winners 
and of the other prestigious prizes awarded at the Congress.

The proceedings of the International Congress of Math-
ematicians provide an authoritative documentation of 
contemporary research in all branches of mathematics and 
are an indispensable part of every mathematical library.

Image credit: ljubaphoto / E+ via Getty Images
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The AMS strives to ensure that participants in its activities 
enjoy a welcoming environment. Please see our full Policy 

on a Welcoming Environment at https://www.ams 
.org/welcoming-environment-policy.

The Meetings and Conferences section of the Notices gives 
information on all AMS meetings and conferences ap-
proved by press time for this issue. Please refer to the page 
numbers cited on this page for more detailed information 
on each event. Paid meeting registration is required to submit 
an abstract to a sectional meeting.

Invited Speakers and Special Sessions are listed as soon 
as they are approved by the cognizant program committee; 
the codes listed are needed for electronic abstract sub-
mission. For some meetings the list may be incomplete. 
Information in this issue may be dated. 

The most up-to-date meeting and conference informa-
tion can be found online at www.ams.org/meetings.

Important Information About AMS Meetings: Potential 
organizers, speakers, and hosts should refer to https://
www.ams.org/meetings/meetings-general for general 
information regarding participation in AMS meetings and 
conferences.

Abstracts: Speakers should submit abstracts on the 
easy-to-use interactive Web form. No knowledge of LaTeX 
is necessary to submit an electronic form, although those 
who use LaTeX may submit abstracts with such coding, and 
all math displays and similarly coded material (such as ac-
cent marks in text) must be typeset in LaTeX. Visit www.ams 
.org/cgi-bin/abstracts/abstract.pl. Questions 
about abstracts may be sent to abs-info@ams.org. Close 
attention should be paid to specified deadlines in this issue. 
Unfortunately, late abstracts cannot be accommodated.

Associate Secretaries of the AMS
Central Section: Betsy Stovall, University of Wisconsin–
Madison, 480 Lincoln Drive, Madison, WI 53706; email: 
stovall@math.wisc.edu; telephone: (608) 262-2933.

Eastern Section: Steven H. Weintraub, Department of 
Mathematics, Lehigh University, Bethlehem, PA 18015-
3174; email: steve.weintraub@lehigh.edu; telephone: 
(610) 758-3717.

Southeastern Section: Brian D. Boe, Department of Math-
ematics, University of Georgia, 220 D W Brooks Drive, 
Athens, GA 30602-7403; email: brian@math.uga.edu; 
telephone: (706) 542-2547.

Western Section: Michelle Manes, University of Hawaii, 
Department of Mathematics, 2565 McCarthy Mall, Keller 
401A, Honolulu, HI 96822; email: mamanes@hawaii.edu; 
telephone: (808) 956-4679.
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https://www.ams.org/welcoming-environment-policy


www.ams.org/math-imagery

Enjoy hundreds of images—sculptures, digital works, origami, textiles,
beads, glass, and more —created with and inspired by mathematics.

Also view the Twitter feed, Museum links, and Article/Resources belowAlso view the Twitter feed, Museum links, and Article/Resources belowAlso view the Twitter feed, Museum links, and Article/Resources below



MEETINGS & CONFERENCES

Meetings & Conferences 
of the AMS

IMPORTANT information regarding meetings programs: AMS Sectional Meeting programs do not appear in the print 
version of the Notices. However, comprehensive and continually updated meeting and program information with links 
to the abstract for each talk can be found on the AMS website. See https://www.ams.org/meetings. 

Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL.

New: Sectional Meetings Require Registration to Submit Abstracts. In an effort to spread the cost of the sectional 
meetings more equitably among all who attend and hence help keep registration fees low, starting with the 2020 fall 
sectional meetings, you must be registered for a sectional meeting in order to submit an abstract for that meeting. 
You will be prompted to register on the Abstracts Submission Page. In the event that your abstract is not accepted or 
you have to cancel your participation in the program due to unforeseen circumstances, your registration fee will be 
reimbursed.
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Tallahassee, Florida
Florida State University

March 23–24, 2024
Saturday – Sunday

Meeting #1193
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 2

Deadlines
For organizers: To be announced
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Wenjing Liao, Georgia Institute of Technology, Exploiting low-dimensional data structures in deep learning.
Olivia Prosper, University of Tennessee, Knoxville, Modeling Malaria at Multiple Scales.
Jared Speck, Vanderbilt University, Singularity Formation for the Equations of Einstein and Euler.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advanced Numerical Methods for Partial Differential Equations and Their Applications, Seonghee Jeong, Louisiana State 
University, Sanghyun Lee, Florida State University, and Seulip Lee, University of Georgia.

Advances in Financial Mathematics, Qi Feng, University of Southern California, and Alec N Kercheval and Lingjiong 
Zhu, Florida State University.
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Advances in Shape and Topological Data Analysis, Emmanuel L Hartman, Eric Klassen, and Ethan Semrad, Florida State 
University.

Algebraic Groups and Local-Global Principles, Suresh Venapally, Emory University, and Daniel Reuben Krashen, Uni-
versity of Pennsylvania.

Bases and Frames in Hilbert Spaces, Laura De Carli, Florida International University, and Azita Mayeli, City University 
of New York.

Combinatorics in Geometry of Polynomials, Papri Dey, Georgia Institute of Technology.
Control, Inverse Problems and Long Time Dynamics of Evolution Systems, Shitao Liu, Clemson University, and Louis Roder 

Tcheugoue Tebou, Florida International University.
Data Integration and Identifiability in Ecological and Epidemiological Models, Omar Saucedo, Virginia Tech, and Olivia 

Prosper, University of Tennessee/Knoxville.
Diversity in Mathematical Biology, Daniel Alejandro Cruz and Skylar Grey, University of Florida.
Fluids: Analysis, Applications, and Beyond, Aseel Farhat, Florida State University, and Anuj Kumar, Indiana University 

Bloomington.
Geometric Measure Theory and Partial Differential Equations, Alexander B. Reznikov, John Hoffman, and Richard Ober-

lin, Florida State University.
Geometry and Symmetry in Data Science, Dustin G. Mixon, The Ohio State University, and Thomas Needham, Florida 

State University.
Homotopy Theory and Category Theory in Interaction, Ettore Aldrovandi and Brandon Doherty, Florida State University, 

and Philip John Hackney, University of Louisiana at Lafayette.
Mathematical Advances in Scientific Machine Learning, Wenjing Liao, Georgia Institute of Technology, and Feng Bao and 

Zecheng Zhang, Florida State University.
Mathematical Modeling and Simulation in Fluid Dynamics, Pejman Sanaei, Georgia State University.
Mathematical Models for Population and Methods for Parameter Estimation in Epidemiology, Yang LI, Georgia State University, 

and Guihong Fan, Columbus State University.
Moduli Spaces in Algebraic Geometry, Jeremy Usatine, Florida State University, Hulya Arguz and Pierrick Bousseau, 

University of Georgia, and Matthew Satriano, University of Waterloo.
Nonlinear Evolution Partial Differential Equations in Physics and Geometry, Jared Speck and Leonardo Abbrescia, Van-

derbilt University.
Numerical Methods and Deep Learning for PDEs, Chunmei Wang, University of Florida, and Haizhao Yang, University 

of Maryland College Park.
PDEs in Incompressible Fluid Mechanics, Wojciech S. Ozanski, Florida State University, Stanley Palasek, UCLA, and 

Alexis F Vasseur, The University of Texas At Austin.
Recent Advances in Geometry and Topology, Thang Nguyen, Samuel Aaron Ballas, Philip L. Bowers, and Sergio Fenley, 

Florida State University.
Recent Advances in Inverse Problems for Partial Differential Equations and Their Applications, Anh-Khoa Vo and Thuy T. 

Le, UNC Charlotte.
Recent Development in Deterministic and Stochastic PDEs, Quyuan Lin, Clemson University, and Xin Liu, Texas A&M 

University.
Recent Developments in Numerical Methods for Evolution Partial Differential Equations, Thi-Thao-Phuong Hoang, Yanzhao 

Cao, and Hans-Werner Van Wyk, Auburn University.
Regularity Theory and Free Boundary Problems, Lei Zhang, University of Florida, and Eduardo V. Teixeira, University of 

Central Florida.
Stochastic Analysis and Applications, Hakima Bessaih, Florida International University, and Oussama Landoulsi, FLOR-

IDA INTERNATIONAL UNIVERSITY.
Stochastic Differential Equations: Modeling, Estimation, and Applications, Sher B Chhetri, University of South Carolina 

Sumter, Hongwei Long, Florida Atlantic University, and Olusegun M. Otunuga, Augusta University.
Theory of Nonlinear Waves, Nicholas James Ossi and Ziad H Musslimani, Florida State University.
Topics in Graph Theory, Songling Shan, Auburn University, and Guantao Chen, Georgia State University.
Topics in Stochastic Analysis/Rough Paths/SPDE and Applications in Machine Learning, Cheng Ouyang, University of Illinois 

At Chicago, Fabrice Baudoin, University of Connecticut, and Qi Feng, University of Southern California.
Topological Algorithms for Complex Data and Biology, Henry Hugh Adams, Johnathan Bush, and Hubert Wagner, Uni-

versity of Florida.
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Topological Interactions of Contact and Symplectic Manifolds, Angela Wu, University College of London and Louisiana 
State University, and Austin Christian, Georgia Institute of Technology.

Contributed Paper Sessions
AMS Contributed Paper Session, Brian D. Boe, University of Georgia.

Washington, District of Columbia
Howard University

April 6–7, 2024
Saturday – Sunday

Meeting #1194
Eastern Section
Associate Secretary: Steven H. Weintraub 

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 2

Deadlines
For organizers: Expired
For abstracts: February 13, 2024

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Ryan Charles Hynd, University of Pennsylvania, Extremals of Morrey’s Inequality.
Jinyoung Park, Institute for Advanced Study, Threshold Phenomena for Random Discrete Structures.
Jian Song, Rutgers, State University of New Jersey, Geometric Analysis on Singular Complex Spaces.
Talitha M Washington, Clark Atlanta University & Atlanta University Center, The Data Revolution (Einstein Public 

Lecture in Mathematics).

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advanced Mathematical Methods in Naval Engineering Research (Code: SS 1A), Michael Traweek, Office of Naval Research, 
and Anthony Ruffa, Emeritus Naval Undersea Warfare Center.

Algebraic and Enumerative Combinatorics (Code: SS 2A), Samuel Francis Hopkins, Howard University, Joel Brewster 
Lewis, George Washington University, and Peter R. W McNamara, Bucknell University.

Analysis of PDE in Inverse Problems and Control Theory (Code: SS 3A), Matthias Eller, Georgetown University, and Justin 
Thomas Webster, University of Maryland, Baltimore County.

Artificial Intelligence Emergent From Mathematics and Physics (Code: SS 4A), Bourama Toni, Howard University, and 
Artan Sheshmani, MIT IAiFi.

Automorphic Forms and Langlands Program (Code: SS 5A), Baiying Liu and Freydoon Shahidi, Purdue University.
Automorphic Forms and Trace Formulae (Code: SS 6A), Yiannis Sakellaridis, Johns Hopkins University, Bao Chau Ngo, 

University of Chicago, and Spencer Leslie, Boston College.
Coding Theory & Applications (Code: SS 7A), Emily McMillon, Eduardo Camps, and Hiram H. Lopez, Virginia Tech.
Commutative Algebra and its Applications (Code: SS 8A), Hugh Geller, West Virginia University, and Rebecca R.G., 

George Mason University.
Complex Systems in the Life Sciences (Code: SS 9A), Zhisheng Shuai, University of Central Florida, Junping Shi, College 

of William & Mary, and Seoyun Choe, University of Central Florida.
Computability, Complexity, and Algebraic Structure (Code: SS 10A), Valentina S Harizanov, George Washington University, 

Keshav Srinivasan, The George Washington University, and Philip White and Henry Klatt, George Washington University.
Computational and Machine Learning Methods for Modeling Biological Systems (Code: SS 11A), Christopher Kim, Vipul 

Periwal, Manu Aggarwal, and Xiaoyu Duan, National Institutes of Health.
Control of Partial Differential Equations (Code: SS 12A), Gisele Adelie Mophou, Universite des Antilles en Guadeloupe, 

and Mahamadi Warma, George Mason University.
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Culturally Responsive Mathematical Education in Minority Serving Institutions (Code: SS 13A), Lucretia Glover, Lifoma 
Salaam, and Julie Lang, Howard University.

Elementary Number Theory and Elliptic Curves (Code: SS 14A), Sankar Sitaraman and Francois Ramaroson, Howard 
University.

Fresh Researchers in Algebra, Combinatorics, and Topology (FRACTals) (Code: SS 15A), Dwight Anderson Williams II, 
Morgan State University, and Saber Ahmed, Hamilton College.

GranvilleFest 100: A Celebration of the Legacy of Evelyn Boyd Granville (Code: SS 16A), Edray Herber Goins, Pomona 
College, Torina D. Lewis, National Association of Mathematicians, and Talitha M Washington, Clark Atlanta University 
& Atlanta University Center.

Interactions Between Analysis, Geometric Measure Theory, and Probability in Non-Smooth Spaces (Code: SS 17A), Luca 
Capogna, Smith College, Jeremy Tyson, University of Illinois at Urbana-Champaign, and Nageswari Shanmugalingam, 
University of Cincinnati.

Mathematical Modeling, Computation, and Data Analysis in Biological and Biomedical Applications (Code: SS 18A), Maria 
G Emelianenko and Daniel M Anderson, George Mason University.

Mathematical Modeling of Type 2 Diabetes and Its Clinical Studies (Code: SS 20A), Joon Ha, Howard University.
Mathematics of Infectious Diseases: A Session in Memory of Dr. Abdul-Aziz Yakubu (Code: SS 21A), Abba Gumel, University of 

Maryland, Daniel Brendan Cooney, University of Pennsylvania, and Chadi M Saad-Roy, University of California, Berkeley.
Modeling and Numerical Methods for Complex Dynamical Systems in Biology (Code: SS 22A), Hye Won Kang and Bradford 

E. Peercy, University of Maryland, Baltimore County.
Moduli Spaces in Geometry and Physics (Code: SS 23A), Artan Sheshmani, MIT IAiFi.
New Trends in Mathematical Physics (Code: SS 24A), W. A. Zuniga-Galindo, University of Texas Rio Grande Valley, and 

Tristan Hubsch, Howard University.
Nonlinear Hamiltonian PDEs (Code: SS 25A), Benjamin Harrop-Griffiths, Georgetown University, and Maria Ntek-

oume, Concordia University.
Optimization, Machine Learning, and Digital Twins (Code: SS 26A), Harbir Antil, Rohit Khandelwal, and Sean Carney, 

George Mason University.
Permutation Patterns (Code: SS 27A), Juan B Gil, Penn State Altoona, and Alexander I. Burstein, Howard University.
Post-Quantum Cryptography (Code: SS 28A), Jason LeGrow, Virginia Tech, Veronika Kuchta, Florida Atlantic University, 

Travis Morrison, Virginia Tech, and Edoardo Persichetti, Florida Atlantic University.
Qualitative Dynamics in Finite and Infinite Dynamical Systems (Code: SS 29A), Roberto De Leo, Howard University, and 

Jim A Yorke, University of Maryland.
Quantum Mathematics: Foundational Mathematics for Quantum Information Theory, Science and Communication (Code: SS 

30A), Tepper L. Gill, Howard University.
Recent Advances in Harmonic Analysis and Their Applications to Partial Differential Equations (Code: SS 31A), Guher Cam-

liyurt and Jose Ramon Madrid Padilla, Virginia Polytechnic Institute and State University.
Recent Advances in Optimal Transport and Applications (Code: SS 32A), Henok Mawi, Howard University (Washington, 

DC, US), and Farhan Abedin, Lafayette College.
Recent Advances on Machine Learning Methods for Forward and Inverse Problems (Code: SS 33A), Haizhao Yang, University 

of Maryland College Park, and Ke Chen, University of Maryland, College Park.
Recent Developments in Geometric Analysis (Code: SS 34A), Yueh-Ju Lin, Wichita State University, Samuel Perez-Ayala, 

Princeton University, and Ayush Khaitan, Rutgers University.
Recent Developments in Noncommutative Algebra and Tensor Categories (Code: SS 35A), Kent B. Vashaw, Massachusetts 

Institute of Technology, Van C. Nguyen, U.S. Naval Academy, Xingting Wang, Louisiana State University, and Robert 
Won, George Washington University.

Recent Developments in Nonlinear and Computational Dynamics (Code: SS 36A), Emmanuel Fleurantin and Christopher 
K. R. T. Jones, University of North Carolina.

Recent Developments in the Study of Free Boundary Problems in Fluid Mechanics (Code: SS 45A), Huy Q. Nguyen, University 
of Maryland, and Ian Tice, Carnegie Mellon University.

Recent Progress on Model-Based and Data-Driven Methods in Inverse Problems and Imaging (Code: SS 37A), Yimin Zhong, 
Auburn University, Yang Yang, Michigan State University, and Junshan Lin, Auburn University.

Recent Trends in Graph Theory (Code: SS 38A), Katherine Perry, Soka University of America, and Adam Blumenthal, 
Westminster College.

Riordan Arrays (Code: SS 39A), Dennis Davenport and Lou Shapiro, Howard University, and Leon Woodson, SPIRAL 
REU At Georgetown.
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Skein Modules in Low Dimensional Topology (Code: SS 40A), Jozef Henryk Przytycki, George Washington University.
Spectral Theory and Quantum Systems (Code: SS 41A), Laura Shou, University of Maryland, and Shiwen Zhang, U Mass 

Lowell.
Stochastic Methods in Fluid Mechanics (Code: SS 42A), Hussain Ibdah, Univeristy of Maryland, Theodore D. Drivas, 

S, and Kyle Liss, Duke University.
Tensor Algebra & Networks (Code: SS 43A), Giuseppe Cotardo, Gretchen Matthews, and Pedro Soto, Virginia Tech.
Variational Problems with Lack of Compactness (Code: SS 44A), Cheikh Birahim Ndiaye, Howard University, and Ali 

Maalaoui, Clark University.

Contributed Paper Sessions
AMS Contributed Paper Session (Code: CP 1A), Steven H Weintraub, Lehigh University.

Milwaukee, Wisconsin
University of Wisconsin-Milwaukee

April 20–21, 2024
Saturday – Sunday

Meeting #1195
Central Section
Associate Secretary for the AMS: Betsy Stovall

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 2

Deadlines
For organizers: Expired
For abstracts: February 20, 2024

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Mihaela Ifrim, University of Wisconsin-Madison, The small data global well-posedness conjecture for 1D defocusing dis-

persive flows.
Lin Lin, University of California, Berkeley, Title To Be Announced.
Kevin Schreve, LSU, Homological growth of groups and aspherical manifolds.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic methods in graph theory and applications I (Code: SS 1A), Tung T. Nguyen, University of Chicago/ Western 
University, Sunil K. Chebolu, Illinois State University, and Jan Minac, Western University.

Algorithms, Number Theory, and Cryptography I (Code: SS 3A), Jonathan P Sorenson, Butler University, Eric Bach, Uni-
versity of Wisconsin at Madison, and Jonathan Webster, Butler University.

Applications of Algebra and Geometry I (Code: SS 8A), Thomas Yahl, University of Wisconsin - Madison, and Jose Israel 
Rodriguez, University of Wisconsin Madison.

Applications of Numerical Algebraic Geometry I (Code: SS 14A), Emma R Cobian, University of Notre Dame.
Artificial Intelligence in Mathematics I (Code: SS 9A), Tony Shaska, Oakland University, Alessandro Arsie, The University 

of Toledo, Elira Curri, Oakland University, Rochester Hills, MI, 48126, and Mee Seong Im, United States Naval Academy.
Automorphisms of Riemann Surfaces and Related Topics I (Code: SS 4A), Aaron D. Wootton, University of Portland, 

Jennifer Paulhus, Grinnell College, Sean Allen Broughton, Rose-Hulman Institute of Technology (emeritus), and Tony 
Shaska, Research Institute of Science and Technology.

Cluster algebras, Hall algebras and representation theory I (Code: SS 5A), Xueqing Chen, University of Wisconcin, White-
water, and Yiqiang Li, SUNY At Buffalo.

Combinatorial and geometric themes in representation theory I (Code: SS 23A), Jeb F. Willenbring, UW-Milwaukee, and 
Pamela E. Harris, University of Wisconsin, Milwaukee.

Complex Dynamics and Related Areas I (Code: SS 16A), James Waterman, Stony Brook University, and Alastair N Fletcher, 
Northern Illinois University.
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Computability Theory I (Code: SS 25A), Matthew Harrison-Trainor, University of Illinois Chicago, and Steffen Lempp, 
University of Wisconsin-Madison.

Connections between Commutative Algebra and Algebraic Combinatorics I (Code: SS 10A), Alessandra Costantini, Okla-
homa State University, Matthew James Weaver, University of Notre Dame, and Alexander T Yong, University of Illinois 
at Urbana-Champaign.

Developments in hyperbolic-like geometry and dynamics I (Code: SS 11A), Jonah Gaster, University of Wisconsin-Milwaukee, 
Andrew Zimmer, University of Wisconsin-Madison, and Chenxi Wu, University of Wisconsin At Madison.

Geometric group theory I (Code: SS 28A), G Christopher Hruska, University of Wisconsin-Milwaukee, and Emily Stark, 
Wesleyan University.

Geometric Methods in Representation Theory I (Code: SS 2A), Daniele Rosso, Indiana University Northwest, and Joshua 
Mundinger, University of Wisconsin - Madison.

Harmonic Analysis and Incidence Geometry I (Code: SS 17A), Sarah E Tammen and Terence L. J Harris, UW Madison, 
and Shengwen Gan, Massachusetts Institute of Technology.

Mathematical aspects of cryptography and cybersecurity I (Code: SS 24A), Lubjana Beshaj, Army Cyber Institute.
Model Theory I (Code: SS 15A), Uri Andrews, University of Wisconsin-Madison, and James Freitag, University of 

Illinois Chicago.
New research and open problems in combinatorics I (Code: SS 12A), Pamela Estephania Harris, University of Wisconsin, 

Milwaukee, Erik Insko, Central College, and Mohamed Omar, York University.
Nonlinear waves I (Code: SS 22A), Mihaela Ifrim, University of Wisconsin-Madison, and Daniel I Tataru, UC Berkeley.
Nonstandard and Multigraded Commutative Algebra I (Code: SS 13A), Mahrud Sayrafi, University of Minnesota, Twin 

Cities, and Maya Banks and Aleksandra C Sobieska, University of Wisconsin - Madison.
Panorama of Holomorphic Dynamics I (Code: SS 21A), Suzanne Lynch Boyd, University of Wisconsin Milwaukee, and 

Rodrigo Perez and Roland Roeder, Indiana University - Purdue University Indianapolis.
Posets in algebraic and geometric combinatorics I (Code: SS 26A), Martha Yip, University of Kentucky, and Rafael S. 

González D’León, Loyola University Chicago.
Ramification in Algebraic and Arithmetic Geometry I (Code: SS 29A), Charlotte Ure, Illinois State University, and Nick 

Rekuski, Wayne State University.
Recent Advances in Nonlinear PDEs and Their Applications I (Code: SS 27A), Xiang Wan, Loyola University Chicago, Rasika 

Mahawattege, University of Maryland, Baltimore County, and Madhumita Roy, Graduate Student, University of Memphis.
Recent Advances in Numerical PDE Solvers by Deep Learning I (Code: SS 7A), Dexuan Xie, University of Wisconsin-Mil-

waukee, and Zhen Chao, University of Michigan-Ann Arbor.
Recent Developments in Harmonic Analysis I (Code: SS 6A), Naga Manasa Vempati, Louisiana State University, Nathan 

A. Wagner, Brown University, and Bingyang Hu, Auburn University.
Recent trends in nonlinear PDE I (Code: SS 19A), Fernando Charro and Catherine Lebiedzik, Wayne State University, 

and Md Nurul Raihen, Fontbonne University.
Stochastic Control and Related Fields: A Special Session in Honor of Professor Stockbridge’s 70th Birthday I (Code: SS 18A), 

Chao Zhu, University of Wisconsin-Milwaukee, and MoonJung Cho, U.S. Bureau of Labor Statistics.
The Algebras and Special Functions around Association Schemes I (Code: SS 20A), Paul M Terwilliger, U. Wisconsin-Mad-

ison, Sarah R Bockting-Conrad, DePaul University, and Jae-Ho Lee, University of North Florida.

San Francisco, California
San Francisco State University

May 4–5, 2024
Saturday – Sunday

Meeting #1196
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 3

Deadlines
For organizers: Expired
For abstracts: March 12, 2024

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.
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Invited Addresses
Julia Yael Plavnik, Indiana University, Title to be announced.
Mandi A. Schaeffer Fry, University of Denver, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Commutative and Noncommutative Algebra, Together at Last (Code: SS 1A), Pablo S. Ocal, University of California, Los 
Angeles, Benjamin Briggs, University of Copenhagen, and Janina C Letz, Bielefeld University.

Diagrammatic Algebras in Representation Theory and Beyond (Code: SS 2A), Mee Seong Im, United States Naval Acad-
emy, Liron Speyer, Okinawa Institute of Science and Technology, Arik Wilbert, University of Georgia, and Jieru Zhu, 
University of Queensland.

Extremal Combinatorics and Connections (Code: SS 3A), Sam Spiro, Rutgers University, and Van Magnan, University of 
Montana.

Geometry and Topology of Quantum Phases of Matter (Code: SS 4A), Ralph Martin Kaufmann, Purdue University, and 
Markus J Pflaum, University of Colorado.

Geometry, Integrability, Symmetry and Physics (Code: SS 5A), Birgit Kaufmann and Sasha Tsymbaliuk, Purdue University.
Groups and Representations (associated with Invited Address by Mandi Schaeffer Fry) (Code: SS 6A), Nathaniel Thiem, 

University of Colorado, Mandi A. Schaeffer Fry, University of Denver, and Klaus Lux, University of Arizona.
Homological Methods in Commutative Algebra & Algebraic Geometry (Code: SS 7A), Ritvik Ramkumar, Cornell University, 

Michael Perlman, University of Minnesota, and Aleksandra C Sobieska, University of Wisconsin - Madison.
Inverse Problems (Code: SS 8A), Hanna E. Makaruk, Los Alamos National Laboratory, Los Alamos, NM, and Robert M. 

Owczarek, University of New Mexico.
Mathematical Fluid Dynamics (Code: SS 9A), Igor Kukavica and Juhi Jang, University of Southern California, and Wo-

jciech S. Ozanski, Florida State University.
Mathematical Modeling of Complex Ecological and Social Systems (Code: SS 10A), Daniel Brendan Cooney, University 

of Illinois at Urbana-Champaign, Mari Kawakatsu, University of Pennsylvania, and Chadi M Saad-Roy, University of 
California, Berkeley.

Partial Differential Equations and Convexity (Code: SS 11A), Ben Weinkove, Northwestern University, Stefan Steiner-
berger, University of Washington, Seattle, and Albert Chau, University of British Columbia.

Partial Differential Equations of Quantum Physics (Code: SS 12A), Israel Michael Sigal, University of Toronto, and Ste-
phen Gustafson, University of British Columbia.

Probability Theory and Related Fields (Code: SS 13A), Terry Soo and Codina Cotar, University College London.
Random Structures, Computation, and Statistical Inference (Code: SS 14A), Lutz Warnke, University of California, San 

Diego, and Ilias Zadik, Yale University.
Recent Advances in Differential Geometry (Code: SS 15A), Lihan Wang, California State University, Long Beach, Zhiqin 

Lu, UC Irvine, and Shoo Seto and Bogdan D. Suceavă, California State University, Fullerton.
Recent Developments in Commutative Algebra (Code: SS 16A), Arvind Kumar, Louiza Fouli, and Michael DiPasquale, 

New Mexico State University.
Representations of Lie Algebras and Lie Superalgebras (Code: SS 17A), Dimitar Grantcharov, University of Texas At Ar-

lington, Daniel Nakano, University of Georgia, and Vera Serganova, UC Berkeley.
Research in Combinatorics by Early Career Mathematicians (Code: SS 18A), Nicholas Mayers, North Carolina State Uni-

versity, and Laura Colmenarejo, NCSU.
Special Session in Celebration of Bruce Reznick’s Retirement (Code: SS 19A), Katie Anders, University of Texas at Tyler, 

Simone Sisneros-Thiry, California State University- East Bay, and Dana Neidmann, Centre College.
Tensor Categories and Noncommutative Algebras, I (associated with invited address by Julia Plavnik) (Code: SS 20A), Ellen 

E Kirkman, Wake Forest University, and Julia Yael Plavnik, Indiana University, Bloomington.

Contributed Paper Sessions
AMS Contributed Paper Session (Code: CP 1A), Michelle Ann Manes, University of Hawaii.
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Palermo, Italy
July 23–26, 2024
Tuesday – Friday
Associate Secretary for the AMS: Brian D. Boe
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: Expired
For abstracts: To be announced

San Antonio, Texas
University of Texas, San Antonio

September 14–15, 2024
Saturday – Sunday

Meeting #1198
Central Section
Associate Secretary for the AMS: Betsy Stovall

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 3

Deadlines
For organizers: February 13, 2024
For abstracts: July 23, 2024

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
James Alvarez, University of Texas, Arlington, To Be Announced.
Jason Schweinsberg, University of California, San Diego, To Be Announced.
Anne J. Shiu, Texas A & M University, To Be Announced.

Savannah, Georgia
Georgia Southern University

October 5–6, 2024
Saturday – Sunday

Meeting #1199
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe

Program first available on AMS website: Not applicable
Issue of Abstracts: Volume 45, Issue 4

Deadlines
For organizers: March 5, 2024
For abstracts: August 13, 2024

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Peter Bubenik, University of Florida, To Be Announced.
Akos Magyar, University of Georgia, To Be Announced.
Sarah Peluse, Princeton/IAS, To Be Announced.
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Albany, New York
University at Albany

October 19–20, 2024
Saturday – Sunday

Meeting #1200
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub, 
Lehigh University

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 45, Issue 4

Deadlines
For organizers: March 19, 2024
For abstracts: August 27, 2024

Riverside, California
University of California, Riverside

October 26–27, 2024
Saturday – Sunday

Meeting #1201
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: Not applicable
Issue of Abstracts: Volume 45, Issue 4

Deadlines
For organizers: March 26, 2024
For abstracts: September 3, 2024

Auckland, New Zealand
December 9–13, 2024
Monday – Friday
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: March 24, 2024
For abstracts: To be announced

Seattle, Washington
Washington State Convention Center and the Sheraton Seattle Hotel

January 8–11, 2025
Wednesday – Saturday
Associate Secretary for the AMS: Brian D. Boe
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: April 16, 2024
For abstracts: September 10, 2024

Submit Your Proposals for AMS Special Sessions at the 2025 Joint Mathematics Meetings
All members of the mathematics community are invited to submit proposals for American Mathematical Society (AMS) 
Special Sessions at the 2025 Joint Mathematics Meetings (JMM). If you have a topic that you would like to explore in a 
special session, now is the time to put your great idea into motion.

The 2025 JMM will be held January 8–11, 2025 in Seattle, WA. On behalf of the American Mathematical Society, Prof. 
Brian D. Boe (brian@math.uga.edu), the AMS Associate Secretary responsible for the AMS program at this meeting, 
solicits proposals for AMS Special Sessions for this meeting. Proposals that reflect the full spectrum of interests of the 
mathematical community are welcome.

A special session is a collection of talks devoted to a single area of mathematics or a single topic. Special sessions can 
be proposed by teams of organizers.

Please go to the submission form at https://meetings.ams.org/math/jmm2025/cfs.cgi and provide the following 
information:
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1. the title of the session;
2. the name, affiliation, and email address of one organizer designated as the contact person for all communication about 

the session (any additional organizers should be listed as “co-organizer”);
3. a brief public description of the topic of the proposed special session (character limit 500 with spacing and punctuation);
4. a sample list of speakers whom the organizers plan to invite (it is not necessary to have received confirmed commitments 

from these potential speakers, but the sample list should demonstrate sufficient potential interest in such a session);
5. description of proposed special session, limited to 3000 characters (including spaces and punctuation). This description 

will be used for the purposes of review only, it will not be published;
6. either the primary two-digit MSC (Mathematics Subject Classification) number that most closely matches the topic 

(see http://www.ams.org/mathscinet/msc/msc2020.html) or one of the following new code numbers adopted 
for topics (see http://www.ams.org/journals/notices/202010/rnoti-p1602.pdf):

 • 101: Teaching and learning
 • 102: Recreational mathematics
 • 103: Professional development and professional concerns
 • 104: Wider issues

The deadline for submission of proposals is April 16, 2024. Late proposals will not be considered. No decisions will 
be made on proposals until June 2024. For questions about using the submission form, contact meet@ams.org.

Organizers are encouraged to read the AMS Manual for Special Session Organizers at https://www.ams.org/meetings 
/meet-specialsessionmanual in its entirety.

Some key information: Special sessions will in general be allotted between 4 and 8 hours in which to schedule speakers. 
To enable maximum movement of participants between sessions, organizers must schedule each session speaker for either 
(a) a 20-minute talk with 5-minute discussion and 5-minute break or (b) a 45-minute talk with 5-minute discussion and 
10-minute break. A special session may include any combination of 20-minute and 45-minute talks that fits within the 
time allotted to the session, but all talks must begin and end at the scheduled time.

The number of special sessions in the AMS program at the JMM is limited, and because of the large number of high-quality 
proposals, not all can be accepted. Please be sure to submit as detailed a proposal as possible for review by the Committee 
on Special Sessions and Contributed Paper Sessions, and address the diversity aspects of your list of proposed speakers. 
Decisions will be made on acceptance and scheduling of sessions by June 2024. At that time, contact organizers will be 
notified whether their proposal has been accepted. If so, they will be informed of their session’s schedule and will be sent 
additional information about organizational details.

We look forward to reviewing your proposals.

Call for Proposals for Professional Enhancement Programs (PEPs) at the Joint Mathematics Meetings 
in Seattle, WA, January 8–11, 2025
Send by Tuesday, April 16 to https://meetings.ams.org/math/jmm2025/cfs.cgi.

The AMS solicits proposals for Professional Enhancement Programs (PEPs) at the 2025 Joint Mathematics Meetings 
(JMM) to be held January 8–11, 2025 in Seattle, Washington. Proposers of a PEP should keep in mind the aim of PEPs 
is to improve mathematical education at all levels, contribute to building a more mathematically literate society, make 
mathematics and statistics more attractive as a discipline and career pathway, and enhance the careers of mathematical 
scientists.

Information: Mathematical and statistical instruction has grown in importance due to the expanding connections 
between mathematical/statistical ideas and computing, interdisciplinary foundational connections, as well as the ever- 
growing impact of technology on the social, economic, and cultural fabric of our society. In educating a skilled and di-
verse workforce at both the undergraduate and graduate levels, departments must be able to provide a broad overview 
as well as learning opportunities for advanced topics in mathematics and statistics. In doing so, departments face a wide 
range of recent and historical issues and challenges, including the interface between online teaching, active learning, and 
inclusive pedagogy; the development of effective foundational courses that address the importance of data analysis and 
the need for modeling; effective outreach to regional and national communities; collaboration with broader scholarly 
communities; and increasing diversity and reducing implicit bias in recruitment, hiring, and promotion practices. A major 
part of this challenge is to broaden access to mathematical and statistical education at all levels, which has important 
implications for addressing society’s most pressing and complex problems and for erasing long-standing socioeconomic 
inequities in our society.
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JMM brings together the entire mathematical sciences community. With the aim of PEPs in mind, members of the 
community are invited to propose a PEP that will provide professional development opportunities for participants and 
serve to strengthen departments’ efforts to meet their responsibilities and challenges.

 • PEPs are expected to be hands-on and participants should leave with a tangible product.
 • PEPs are scheduled for two, 2-hour sessions.
 • AMS will provide a total of $1000 to the designated organizer of approved PEPs.
 • Participants will pay a program fee.

Suggested topics:
 • Effective pedagogical and assessment practices for online instruction in the mathematical and statistical sciences 

(especially given lessons learned from the pandemic)
 • Inclusive pedagogy in the mathematical and statistical sciences and curricular practices that promote diversity, 

equity, and inclusiveness in undergraduate and graduate programs
 • Pedagogical practices that promote active learning in specific mathematical and/or statistical courses
 • Novel methods and applications for incorporating data science into established undergraduate and/or graduate 

courses and programs or into established faculty research agendas
 • Innovative implementation of software
 • Interdisciplinary research collaborations within the mathematical community or new connections between 

mathematics and/or statistics and other disciplines
 • Any mathematical or statistical topic that enhances the professional development for faculty and is suited for 

the PEP format
Proposals should include:

1. Title of the event
2. Session format (select “PEP Program”)
3. Name, affiliation, and email address of each organizer, with one organizer designated as the contact person for all 

communication about the event, and their website(s), if available
4. A brief public description of the topic of the proposed PEP (character limit: 500 with spacing and punctuation)
5. A detailed (character limit: 3000) description of the proposed event to include participant takeaways
6. Some sessions associate their event with an organization; list the organization(s) agreeing to be associated with your 

event
7. Time slots to avoid (please indicate in the Notes section where possible)
8. Other JMM events to avoid (please indicate in the Notes section where possible)
9. A list of other events proposed by the organizer (please indicate in the Notes section where possible)
10. If applicable, a two-digit MSC (Mathematics Subject Classification) number (https://mathscinet.ams.org 

/mathscinet/msc/msc2020.html) matching the topic of the event or a three-digit code from the New Expanded 
Classification System (https://www.ams.org/journals/notices/202010/rnoti-p1602.pdf) adopted for topics 
included previously in an MAA or other JMM session

Proposals for PEPs should be submitted to the JMM Program Committee (https://meetings.ams.org/math 
/jmm2025/cfs.cgi) by Tuesday, April 16, 2024.

We look forward to receiving your submissions.

Call for Proposals for Panels, Workshops, and Other Events at the Joint Mathematics Meetings in 
Seattle, WA, January 8–11, 2025
Send by April 16, 2024 to https://meetings.ams.org/math/jmm2025/cfs.cgi.

The AMS solicits proposals for panels, workshops, and other events at the 2025 Joint Mathematics Meetings (JMM) to 
be held January 8–11, 2025 in Seattle, Washington.

We invite proposals that reflect the full spectrum of interests of the mathematical sciences community.
The topics of proposals could be in areas in the mathematical sciences, but there are others, such as: creating an inclusive 

atmosphere in the mathematical sciences community; teaching and learning; professional development and professional 
concerns; recreational mathematics; and wider issues. Events that connect communities are welcome, such as interdisci-
plinary workshops or collaborations between mathematical sciences researchers and mathematics education researchers.

Proposals should include:
1. Title of the event
2. Session format (panel, workshop, other [specify])
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3. Name, affiliation, and email address of each organizer, with one organizer designated as the contact person for all 
communication about the event, and their website(s), if available

4. A brief public description of the topic of the proposed panel, workshop, or other event (character limit: 500 with 
spacing and punctuation)

5. Some sessions associate their event with an organization; list the organization(s) agreeing to be associated with your 
event

6. A detailed (character limit: 3000) description of the proposed event, including the intended audience
7. A proposed list of panelists/moderators/speakers and their institutional affiliation whom the organizers plan to 

invite. Have they agreed to participate?
8. Duration of time requested for the event (please indicate in the Notes section: 1 hour, 1.5 hours, 2 hours, 4 hours)
9. Time slots to avoid (please indicate in the Notes section where possible)
10. Other JMM events to avoid (please indicate in the Notes section where possible)
11. If applicable, a two-digit MSC (Mathematics Subject Classification) number (https://mathscinet.ams.org/math 

scinet/msc/msc2020.html) that matches the topic of the event or a code from the New Expanded Classification 
System (https://www.ams.org/journals/notices/202010/rnoti-p1602.pdf) adopted for topics included 
previously in an MAA or other JMM session

Proposals for panels, workshops, and other events should be submitted to the JMM Program Committee (https://
meetings.ams.org/math/jmm2025/cfs.cgi) by Tuesday, April 16, 2024.

Further information: Panels, workshops, and other events approved by the Program Committee will normally be al-
lotted a 60–90-minute slot, with the exception of a Professional Enhancement Program (PEP) that could run for 4 hours. 
Decisions will be made on proposals after the submission deadline has passed.

The number of panels, workshops, and other events in the AMS program at the Joint Mathematics Meetings is limited, 
and because of the large number of high-quality proposals anticipated, not all can be accepted, nor can all scheduling 
requests be honored.

Please submit as detailed a proposal for your event as soon as possible for review by the JMM 2025 Program Committee. 
Organizers of proposals will be notified whether their proposal has been accepted by end of May. Additional instructions 
and the event schedule will be sent to the contact organizer of each accepted proposal shortly after that deadline.

We look forward to receiving your submissions.

Hartford, Connecticut
Hosted by University of Connecticut; taking place at the Connecticut Convention Center and Hartford 
Marriott Downtown

April 5–6, 2025
Saturday – Sunday
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Washington, District of Columbia
Walter E. Washington Convention Center and Marriott Marquis Washington DC

January 4–7, 2026
Sunday – Wednesday
Associate Secretary for the AMS: Betsy Stovall
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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