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There is a remarkable relationship between the roots of a
quintic polynomial, the icosahedron, and elliptic curves.
This discovery is principally due to Felix Klein (1878), but
Klein’s marvellous book [9] misses a trick or two, and
doesn’t tell the whole story. The purpose of this article is
to present this relationship in a fresh, engaging, and con-
cise way. We will see that there is a direct correspondence
between:

• “Evenly ordered” roots (𝑥1, … , 𝑥5) of a Brioschi
quintic

𝑋5 + 10𝐵𝑋3 + 45𝐵2𝑋 + 𝐵2 = 0, (1)

• Points on the icosahedron, and
• Elliptic curves equipped with a primitive basis for

their 5-torsion, up to isomorphism.

Moreover, this correspondence gives us a very efficient di-
rect method to actually calculate the roots of a general quin-
tic! For this, we’ll need some tools both new and old,
such as Cremona and Thongjunthug’s complex arithmetic
geometricmean [3], and the Rogers-Ramanujan continued
fraction [5,12]. These tools are not found in Klein’s book,
as they had not been invented yet!

If you are impatient, skip to the end to see the algo-
rithm.

If not, join me on a mathematical carpet ride through
the mathematics of the last four centuries. Along the way
we will marvel at Kepler’s Platonic model of the solar sys-
tem from 1597, witness Gauss’ excitement in his diary en-
try from 1799, and experience the atmosphere in Trinity
College Hall during the wonderful moment Ramanujan
burst onto the scene in 1913.

For the approach I present here, I have learnt the
most from Klein’s book itself together with the new in-
troduction and commentary by Slodowy [9], as well as
[2,5,8,11].
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Arnold’s Topological Proof of the Unsolvability
of the Quintic
We are all familiar with the formula for the roots 𝑥1, 𝑥2 of
a quadratic polynomial 𝑋2 + 𝑎𝑋 + 𝑏 = 0, namely

𝑥 = −𝑎 ± √𝑎2 − 4𝑏
2 . (2)

Perhaps we are also familiar with Cardano’s formula
(1545) for the roots of a cubic polynomial 𝑋3+𝑎𝑋+𝑏 = 0,

𝑥 = 𝑐 − 𝑎
3𝑐 , 𝑐 = 3

√−𝑏2 +√
𝑏2
4 + 𝑎3

27 . (3)

There is a similar formula for the roots of a quartic polyno-
mial, due to Ferrari (1545). We say formulas like (2) and
(3) express the roots of a polynomial in terms of radicals,
since the only ingredients necessary are the usual algebraic
operations (+, −, ⋅, /) and extraction of 𝑛th roots.

It is also commonly known that Ruffini (1799) and
Abel (1824) showed that there is no such radical formula
for the roots 𝑥𝑖 of a general quintic equation. The standard
modern way to understand these results is the algebraic
framework of Galois (1832). Namely, we associate to a
specific polynomial

𝑃 = 𝑋𝑛 + 𝑎1𝑋𝑛−1 + 𝑎2𝑋𝑛−2 +⋯+ 𝑎𝑛−1𝑋 + 𝑎𝑛 (4)

a finite group 𝐺, the Galois group of 𝑃 ,which is a certain
subgroup of the group 𝑆𝑛 of permutations of the roots
𝑥1, … , 𝑥𝑛 of 𝑃. Galois showed that there is a radical for-
mula for 𝑥𝑖(𝑎1, … , 𝑎𝑛) if and only if 𝐺 is a solvable group (a
tower built from iteratively stacking finite cyclic groups on
top of each other, i.e., “built from epicycles” as Ptolemy
might have put it). Now, the Galois group of a general
quintic is 𝑆5, which is not solvable. Therefore, there is no
radical formula for the roots of a general quintic.

Galois’ approach is elegant but requires a semester’s
worth of abstract algebra to understand. In 1963, the Rus-
sian mathematician Vladimir Arnold gave an alternative
topological proof of the unsolvability of the quintic in a se-
ries of lectures to high school kids in Moscow. In Arnold’s
approach, instead of focusing on finding an algebraic for-
mula for the roots of a specific polynomial 𝑃 as in (4), one
considers the collection of all polynomials of degree 𝑛 as
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a topological space:

Poly𝑛 = {polynomials 𝑋𝑛 + 𝑎1𝑋𝑛−1 +⋯
+ 𝑎𝑛−1𝑋 + 𝑎𝑛, 𝑎1, … , 𝑎𝑛 ∈ ℂ}.

To each polynomial 𝑃 ∈ Poly𝑛 we may associate the un-
ordered set {𝑥1, … , 𝑥𝑛} of its roots, so that we have a covering
space

Roots ↠ Poly𝑛

{𝑥1, … , 𝑥𝑛} ↦
𝑛
∏
𝑖=1

(𝑋 − 𝑥𝑖)

which is branched over the discriminant locus 𝐷 ⊂ Poly𝑛
of polynomials with multiple roots, and is an 𝑆𝑛-principal
bundle over the complement 𝒫𝑛 = Poly𝑛 ⧵𝐷.

If we start at some fixed basepoint polynomial 𝑃0 ∈ 𝒫𝑛,
and move along a path in 𝒫𝑛, the roots of the polynomial
move around (see Figure 1). If we loop back to 𝑃0, then
they will have undergone a permutation. We have estab-
lished a monodromy map

𝜋1(𝒫𝑛, 𝑃0) → 𝑆𝑛 (5)

which in fact classifies the covering space 𝒫𝑛.
(Note how this approach is more geometric than that

of Galois. Instead of caring only about the permutations of
the roots, we also care about the journey they undertook to
accomplish that permutation.)

Arnold’s insight was to show that if there is a radical
formula for the roots of a general polynomial, then the
“dance of the roots” cannot be overly complex, in the sense
that the image of the monodromy map must be a solvable
subgroup of 𝑆𝑛. But, for example, the 1-parameter Brioschi
family of quintics

𝑃𝐵(𝑋) = 𝑋5 + 10𝐵𝑋3 + 45𝐵2𝑋 + 𝐵2, 𝐵 ∈ ℂ

hasmonodromy group𝐴5 (see Figure 1), which is certainly
not solvable since it is simple, as we will see by relating it
to the icosahedron in the next section. Hence the unsolv-
ability of the quintic.

In fact, after some algebraic manipulations involving at
most two square roots [2, Theorem 6.6], finding the roots
of the general quintic

𝑋5 + 𝑎1𝑋4 + 𝑎2𝑋3 + 𝑎3𝑋2 + 𝑎4𝑋 + 𝑎5 = 0 (6)

reduces to finding the roots of the Brioschi quintic1 𝑃𝐵 for
a certain 𝐵 ∈ ℂ.

1Using the Brioschi quintic as normal form is one trick which Klein missed, as
he instead used a different form — the Bring-Jerrard quintic — where the max-
imal number of coefficients 𝑎𝑖 in (6) are zero.
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Figure 1. When the Brioschi parameter loops around 𝐵 = 0
along the blue loop 𝜎 as shown on the left, the roots undergo
the cyclic permutation (14352) as shown on the right. In a
similar way, when 𝐵 loops around 𝐵 = −1/1728 along the red
loop 𝛾, the roots undergo the cyclic permutation (153). These
permutations generate 𝐴5.

Enter the Icosahedron
Now for a wonderful fact: we will show that there is a nat-
ural correspondence between the set of “evenly ordered”
d5-tuples (𝑥1, … , 𝑥5) of roots of a Brioschi quintic 𝑃𝐵, and
the set of points on the icosahedron!

To understand this, recall that the icosahedron

𝐼 ⊂ ℝ3,

that most enigmatic of the Platonic solids, has 30 edges,
20 equilateral faces, and 12 vertices. If we make the identi-
fication ℝ3 = ℂ×ℝ, we can take the vertices to be situated
at:

(0, ±1), ± 1
√5

(−2𝜁𝑖, 1), 𝜁 = 𝑒
2𝜋𝑖
5 . (7)

Consider the group 𝐺 of rotational symmetries of 𝐼. Each
nonidentity 𝑔 ∈ 𝐺 is a rotation about an axis through an
antipodal pair of edge midpoints, face midpoints, or ver-
tices of 𝐼, with order 2, 3, and 5 respectively. In fact, 𝐺
is naturally isomorphic to 𝐴5, the group of even permuta-
tions of 5 things. What are these 5 things that are being
evenly permuted when we rotate the icosahedron? They
are the 5 inscribed octahedra which have their vertices on
the edge midpoints of 𝐼! See Figure 2.

This natural isomorphism between 𝐺 and 𝐴5 gives us
a nice way to see that 𝐴5 is simple (and hence not solv-
able). This is because 𝐺 is simple: if a normal subgroup
𝑁 contains a rotation about an axis through a vertex 𝑣,
then it contains rotations about all axes passing through
vertices (since it is closed under conjugation). But a ro-
tation about an edge midpoint equals the product of the
rotations about the three vertices in a triangle adjacent to it,
while a rotation about a face midpoint equals the product
of the rotations about the two vertices in an edge adjacent
to it. So if 𝑁 contains a rotation about 𝑣, it must be all of
𝐺, and similarly for edge midpoints and face midpoints.
So, 𝐺 is simple, and therefore 𝐴5 is simple.

APRIL 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 445



Figure 2. One of the 5 inscribed octahedra in the icosahedron.
On the right, Kepler’s view of planetary orbits as inscribed
Platonic solids fromMysterium Cosmographicum (1596).

Invariant Polynomials
Let 𝑆2 denote the 2-dimensional unit sphere. Since 𝐺 is
a group of rotational symmetries, it acts on 𝑆2. Our goal
in this section is to understand the quotient space 𝑆2/𝐺,
which we can think of as the “moduli space” of points on
the “round icosahedron” (the soccer ball version of 𝐼, ob-
tained by inflating 𝐼 outward onto the sphere 𝑆2; see Figure
3). We are going to need a toolbox of 𝐺-invariant func-
tions on 𝑆2.

To write down such functions, we need to keep in mind
that 𝑆2 has the structure of a Riemann surface, since we can
identify it with the complex projective plane

ℂℙ1 = {1-dimensional linear subspaces of ℂ2}
via stereographic projection from the north pole,

𝑆2 ≅−→ ℂ ∪ {∞}

(𝑎, 𝑏, 𝑐) ↦ 𝑎 + 𝑏𝑖
1 − 𝑐 ,

followed by the identification

ℂ ∪ {∞} ≅−→ ℂℙ1

𝑧 ↦ ℂ(𝑧, 1)
∞ ↦ ℂ(1, 0).

In what follows, I will freely use these identifications; my
preference is to use the 𝑆2 picture because I want the visual
image of the icosahedron in ℝ3 to be front and center.

Under this identification, the SO(3) rotation action on
𝑆2 translates into an SO(3) action on ℂℙ1, which can be
explained as arising from the natural action of its double
cover SU(2) on ℂ2. We define the binary icosahedral group
̂𝐺 ⊂ SU(2) as the double cover of the icosahedral group

𝐺 ⊂ SO(3). So, we seek ̂𝐺-invariant homogenous polyno-
mials on ℂ2.

We have the vertex polynomial 𝑉 (of degree 12, van-
ishing on the 1-dimensional subspaces corresponding to
icosahedron vertices), the face polynomial 𝐹 (of degree 20,
vanishing on the 1-dimensional subspaces corresponding
to icosahedron face midpoints), and the edge polynomial

x

y

a

b

Figure 3. The round icosahedron and its stereographic
projection. The edge midpoint 𝛼 and face midpoint 𝛽,
together with their stereographic projections 𝑎 and 𝑏, have
been marked for later use.

𝐸 (of degree 30, vanishing on the 1-dimensional subspaces
corresponding to icosahedron edge midpoints):

𝑉 = 𝑢𝑣(𝑢10 + 11𝑢5𝑣5 − 𝑣10) (8)

𝐹 = −𝑢20 + 228(𝑢15𝑣5 − 𝑢5𝑣15) − 494𝑢10𝑣10 − 𝑣20 (9)

𝐸 = 𝑢30 + 522(𝑢25𝑣5 − 𝑢5𝑣25)
− 1005(𝑢20𝑣10 − 𝑢10𝑣20) + 𝑣30 (10)

To see that these polynomials are indeed ̂𝐺-invariant (in-
stead of picking up phase factors when acting with 𝑔 ∈ ̂𝐺),
it helps to realize that 𝐺 is generated by 𝑅𝑧 and 𝑅𝑦, the
rotations about the 𝑧− and 𝑦−axis by angles 2𝜋/5 and 𝜋
respectively. We can take their preimages in SU(2) to be

𝑅̂𝑧 = (𝑒
𝜋𝑖
5 0
0 𝑒−

𝜋𝑖
5
) , 𝑅̂𝑦 = (0 −1

1 0 )

which similarly generate ̂𝐺, andwhich act on homogenous
polynomials in 𝑢, 𝑣 as:

𝑅̂𝑧 ∶ 𝑢 ↦ 𝑒−
𝜋𝑖
5 𝑢, 𝑣 ↦ 𝑒

𝜋𝑖
5 𝑣, 𝑅̂𝑦 ∶ 𝑢 ↦ 𝑣, 𝑣 ↦ −𝑢 (11)

It is clear that our polynomials (8)–(10) are invariant un-
der these transformations, so they are indeed ̂𝐺-invariant.
In fact, they generate the algebra of ̂𝐺-invariant homoge-
nous polynomials on ℂ2.

We can play the same game with our 5 inscribed oc-
tahedra. Let 𝑂𝑖 be the vertex polynomial of the 𝑖th in-
scribed octahedron. It has degree 5 and vanishes at the
1-dimensional subspaces of ℂ2 corresponding to the 8 ver-
tices of 𝑂𝑖. We compute

𝑂1 = (𝑢2 + 𝑣2)(𝑢2 − 2𝑛𝑢𝑣 − 𝑣2)(𝑢2 − 2𝑚𝑢𝑣 − 𝑣2)
where 𝑚 = 𝜁 + 𝜁4 = 1

𝜙
and 𝑛 = 𝜁2 + 𝜁3 = −𝜙, with the

other 𝑂𝑖, 𝑖 = 2… 5 obtained by simply rotating 𝑂1 around
the 𝑧-axis using the 𝑅̂-action in (11).

The Icosahedron and the Quintic
Whenwe rotate the icosahedron, the 5 inscribed octahedra
and hence their vertex polynomials 𝑂𝑖 undergo an (even)
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permutation. Consider the quintic

5
∏
𝑖=1

(𝑋 − 𝑂𝑖)

whose coefficients are symmetric polynomials in the octa-
hedral polynomials 𝑂𝑖 and hence ̂𝐺-invariant polynomi-
als on ℂ2. If we multiply it out, we obtain a Brioschi-type
quintic

𝑋5 − 10𝑉𝑋3 + 45𝑉2𝑋 − 𝐸
as the reader will verify! (The coefficients of 𝑋4 and 𝑋2 are
invariant polynomials of degree 6 and 18 respectively and
hence must vanish, while the coefficients of 𝑋3, 𝑋 and 1
are of degree 12, 24, and 30 and hence must be multiples
of 𝑉 , 𝑉2, and 𝐸 respectively.)

Let us make this correspondence between points on the
icosahedron and ordered roots of a Brioschi quintic clear
and precise. Consider the rationalized octahedral func-
tions

𝑥𝑖 = −𝑉
2

𝐸 𝑂𝑖, 𝑖 = 1… 5.

They are of degree zero in 𝑢 and 𝑣. Therefore, away from
the edge midpoints, they are well-defined complex-valued
functions on 𝑆2. In other words, to each point 𝑧 on the
“round icosahedron” 𝑆2 (excluding edge midpoints), we
can associate an ordered tuple (𝑥1(𝑧), … , 𝑥5(𝑧)) of 5 complex
numbers! We map these 5 numbers to the quintic

𝑃{𝑥𝑖} =
5
∏
𝑖=1

(𝑋 − 𝑥𝑖(𝑧)) (12)

thereby forgetting their ordering. If we multiply out this
quintic, we find that it is a Brioschi quintic

𝑃𝐵 = 𝑋5 + 10𝐵𝑋3 + 45𝐵2𝑋 + 𝐵2

with Brioschi parameter 𝐵(𝑧) = −𝑉5/𝐸2! See Figure 4. In
summary, we have:

Theorem 1. The map

𝑧 ↦ (𝑥1(𝑧), … , 𝑥5(𝑧))
is an𝐴5-equivariant bijection between points on the round icosa-
hedron (minus edge midpoints) and evenly ordered (defined
below) roots of Brioschi quintics 𝑃𝐵 with Brioschi parameter
𝐵(𝑧) = −𝑉5/𝐸2. In other words, it is an explicit equivariant
isomorphism of covering spaces:

𝑆2 ⧵ {edge midpoints} EvOrRoots

𝑆2 ⧵ {∞} Brioschi quintics

≅

𝐵

≅

𝑃

Figure 4. The Brioschi
parameter 𝐵(𝑧) on 𝑆2. The
absolute value maps to the
brightness, while the
argument maps to the hue.
Note the zeros of 𝐵 at the
vertices of the icosahedron,
and the poles at the edge
midpoints.

The only subtlety here is
the notion of an “evenly”
ordered set of roots of a
Brioschi quintic 𝑃𝐵. We
need this because there are
60 points on a generic or-
bit 𝐴5 ⋅ 𝑧 in the icosahe-
dron, while there are 120
ways to order the 5 roots
𝑥1, … , 𝑥5 of the quintic 𝑃𝐵.
We call an ordering of the
roots of a generic Brioschi
quintic 𝑃𝐵 even if, as 𝐵 ap-
proaches 0 through posi-
tive real values (which im-
plies that 𝑧 approaches a
vertex of the icosahedron)
and track the roots contin-
uously, the roots end up in
an even permutation of the

numbering shown in Figure 1.
Theorem 1 tells us that in order to find the roots of a

Brioschi quintic 𝑃𝐵 for some Brioschi parameter 𝐵 ∈ ℂ,
we need to find a point 𝑧 on the icosahedron such that
−𝑉5(𝑧)/𝐸2(𝑧) = 𝐵. Then our 5 ordered roots will be given
by the 5 octahedral numbers 𝑥𝑖(𝑧). Actually calculating
𝑧 in terms of 𝐵 is hard (we need to solve a polynomial
equation of degree 60), but it can be done efficiently using
elliptic curves, as we will see shortly!

A Polynomial Relation
But first, let’s return to the subject of invariant polynomials
on the icosahedron for a moment, as there is an important
relation between 𝑉 , 𝐸, and 𝐹 which we will need later. The
point is that these are polynomials on ℂ2, and three poly-
nomials on a 2-dimensional space must satisfy a relation.
The first opportunity for this relation to occur is in degree
60, and indeed we have:

𝐸2 + 𝐹3 = 1728𝑉5 (13)

This reminds us of modular forms, where the Eisenstein
series satisfies

𝐸26 − 𝐸34 = 1728Δ.

This is the first clue that the icosahedron has something to
do withmoduli spaces of elliptic curves. But for now, what
we need to get out of (13) is that it tells us that

𝐵(𝑧) = −𝑉
5

𝐸2 = − 𝑉5

1728𝑉5 − 𝐹3

so that 𝐵 sends vertices to 0, edgemidpoints to∞, and face
midpoints to −1/1728. This uniquely characterizes it as a
holomorphic map from 𝑆2 to 𝑆2.
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Enter Elliptic Curves
Expressing a number “in terms of radicals” implies hav-
ing access to the roots of unity, i.e., the 𝑛-torsion points
(points 𝑝 such that 𝑛𝑝 = 0) in the nonzero complex num-
bers ℂ∗, thought of as an additive abelian group. In the
nineteenth century, mathematicians discovered that the
set of points on an elliptic curve, i.e., the set 𝐸 of complex
solutions to a cubic equation of the form

𝑦2 = 4𝑥3 − 𝑔2𝑥 − 𝑔3 (14)

also forms an abelian group (once one works projectively).
It was natural to speculate that, while the roots of a quin-
tic could not be expressed in terms of 𝑛-torsion points on
the circle, perhaps they could be expressed in terms of the
5-torsion points of an elliptic curve somehow associated
with the quintic. Remarkably, this is precisely what Her-
mite (1858) and Kiepert (1878) managed to do! To quote
McKean and Moll [10]:

In this way, the solution of the general equation of de-
gree 5 is made to depend upon the equations for the di-
vision of periods of the elliptic functions, as they used
to say.

Hermite and Kiepert worked with the Bring-Jerrard
form of the quintic, and their final expression for the roots
of the quintic in terms of the 5-torsion points of an elliptic
curve is, to this humble author, a bit convoluted and indi-
rect. I will present my own streamlined and modernized
form of Klein’s approach (1878) [9]. We will see that the
60 evenly ordered 5-tuples of roots (𝑥1, … , 𝑥5) of a Brioschi
quintic directly correspond to the 60 equivalence classes of
primitive bases (not points themselves) for the 5-torsion
points of an elliptic curve!

Moduli Spaces of Elliptic Curves
In the previous section we found that the icosahedron is
a 60-sheeted 𝐴5 equivariant covering space of 𝑆2 via the
Brioschi map 𝐵. And moreover, we found that away from
the edge midpoints, this covering space is explicitly iso-
morphic to the covering space of evenly ordered roots of
Brioschi quintics.

Besides the icosahedron, there is another 60-sheeted𝐴5-
equivariant covering space of 𝑆2 occurring in nature: the
moduli space 𝑋(5) of elliptic curves equipped with a prim-
itive basis for their 5-torsion!

Recall that an elliptic curve 𝐸 ⊂ ℂℙ2 given by a cubic
equation as in (14) identifies holomorphically with ℂ/Λ,
the quotient of ℂ by some rank 2 lattice Λ ⊂ ℂ. So, topo-
logically, 𝐸 looks like a doughnut. Moreover, under this
identification the addition operation on 𝐸 is just the stan-
dard addition in ℂ/Λ. Therefore,

5-torsion points of 𝐸 ≅ ℤ/5ℤ × ℤ/5ℤ.

Let 𝑝, 𝑞 be 5-torsion points in ℂ/Λ and let 𝜔1, 𝜔2 ∈
ℂ, Im(𝑤1/𝑤2) > 0 be generators of Λ. Since the equiva-
lence classes [𝜔1/5], [𝜔2/5] generate the 5-torsion of ℂ/Λ,
we can write

𝑝 = 𝑎1[𝜔1/5] + 𝑎2[𝜔2/5]
𝑞 = 𝑏1[𝜔1/5] + 𝑏2[𝜔2/5]

for some matrix

𝛾 ∈ (𝑎1 𝑎2
𝑏1 𝑏2

) ∈ GL2(ℤ, ℤ/5ℤ).

We say that (𝑝, 𝑞) is a primitive basis for the 5-torsion of 𝐸
if det 𝛾 ≡ 1 mod 5. Write

𝑋(5) = {(𝐸, (𝑝, 𝑞))}/ ∼

for the set of equivalence classes (“moduli space”) of pairs
(𝐸, (𝑝, 𝑞)) where 𝐸 is a complex elliptic curve and (𝑝, 𝑞) is
a primitive basis for its 5-torsion (see [4]). Two such pairs
(𝐸, (𝑝, 𝑞)) and (𝐸′, (𝑝′, 𝑞′)) are equivalent if there is an iso-
morphism 𝐸 → 𝐸′ which carries (𝑝, 𝑞) ↦ (𝑝′, 𝑞′).

Write 𝑋(1) for the “vanilla” moduli space of elliptic
curves (no extra torsion information tagged on), and ℍ =
{𝜏 ∈ ℂ ∶ Im(𝜏) > 0} for the upper half plane. Thinking of
an elliptic curve as a quotient ℂ/ℤ ⊕ ℤ𝜏 for some 𝜏 ∈ ℍ,
we can identify these moduli spaces as:

𝑋(1) ≅ ℍ∗/𝑆𝐿(2, ℤ), 𝑋(5) ≅ ℍ∗/Γ(5).

Here, ℍ∗ = ℍ ∪ ℚ ∪ {𝑖∞} is the extended upper half plane
(the extra “cusp” points ℚ ∪ {𝑖∞} are needed to get a com-
pact moduli space; they contribute a single point to the
quotient in 𝑋(1) and 12 points in 𝑋(5)) and

Γ(5) = { (𝑎 𝑏
𝑐 𝑑) ∈ SL(2, ℤ) ∶

(𝑎 𝑏
𝑐 𝑑) ≡ (1 0

0 1) ,mod 5}

is the principal congruence subgroup of level 5. (The congru-
ence relation is done independently entrywise, so the re-
quirement is that 𝑎 ≡ 1 (mod 5), 𝑏 ≡ 0 (mod 5), 𝑐 ≡ 0
(mod 5) and 𝑑 ≡ 1 (mod 5)).

Permutation Wizardry
Now, Γ(5) is a normal subgroup of Γ ≔ SL(2, ℤ), and so we
can form the quotient group

Γ/Γ(5) ≅ PSL(2, ℤ/5ℤ).

Themagic is that PSL(2, ℤ/5ℤ) is isomorphic to𝐴5! Wewill
need to understand this isomorphism explicitly in terms of
the action of 𝐴5 on the five inscribed octahedra2.

2I learned this argument from David Speyer and Beren Gunsolus [13].
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The vertices of an inscribed octahedron𝑂𝑖 are located at
edge midpoints of the icosahedron 𝐼. Therefore, 𝑂𝑖 parti-
tions the vertices of 𝐼 into pairs, and hence encodes a fixed-
point free involution of the 12 vertices of 𝐼. This involu-
tion commutes with the map 𝑝 → −𝑝, and so we conclude
that each inscribed octahedron 𝑂𝑖 encodes (and is in fact
encoded by) a fixed-point free involution 𝑜𝑖 of the 6 vertex
axes of 𝐼.

On the other hand, 𝑃𝑆𝐿(2, ℤ/5ℤ) acts naturally on pro-
jective space

ℙ1(ℤ/5ℤ) = {0, 1, 2, 3, 4,∞},
which also consists of 6 things. So, let us identify the six
vertex axes of the icosahedron in ℝ3 with ℙ1(ℤ/5ℤ) in the
natural way:

ℝ(−2𝜁𝑘, 1) ↦ 𝑘, 𝑘 = 0… 4
ℝ(0, 0, 1) ↦ ∞.

In this way 𝑃𝑆𝐿(2, ℤ/5ℤ) ⊂ 𝑆6 acts by conjugation on
the 5 octahedral involutions 𝑜𝑖 ∈ 𝑆6, and it turns out
that it permutes them evenly, giving our isomorphism
𝑃𝑆𝐿(2, ℤ/5ℤ) ≅ 𝐴5.

Let us pre- and post-compose this isomorphism with
the natural isomorphisms Γ/Γ(5) ≅ PSL(2, ℤ/5ℤ) and 𝐴5 ≅
𝐺 and record the result explicitly for later use.

Lemma 1. The explicit isomorphism

Γ/Γ(5) → 𝐺,

at the level of generators, sends

𝑇 ↦ 𝑅𝑧
𝑆 ↦ 𝑅𝛼,

where 𝑇(𝜏) = 𝜏 + 1 and 𝑆(𝜏) = − 1
𝜏
, and 𝑅𝑧(𝑧) = 𝜁𝑧 and

𝑅𝛼(𝑧) =
𝑛𝑧+1
𝑧−𝑛

are rotations by
2𝜋
5
and 𝜋 counterclockwise about

the positive z-axis and the axis through the edge midpoint 𝛼
shown in Figure 3 respectively.

An Isomorphism of Covering Spaces
The isomorphism 𝑃𝑆𝐿(2, ℤ/5ℤ) ≅ 𝐴5 means that the for-
getful map

𝜋 ∶ 𝑋(5) ↠ 𝑋(1)
is an 𝐴5-equivariant 60-sheeted covering space of 𝑋(1).
Note that we can also make our own direct count of the
sheets in the covering. Given an elliptic curve 𝐸 ∈ 𝑋(1),
there are 480 = 24 × 20 pairs (𝑝, 𝑞) which form a basis for
the 5-torsion, since the only constraint is that 𝑝 ≠ 0 and
𝑞 ∉ {0, 𝑝, 2𝑝, 3𝑝, 4𝑝}. Of these 480 pairs, exactly 120 will
be a primitive basis. If 𝐸 is a generic elliptic curve, then we
must also account for its solitary nontrivial automorphism
𝑝 ↦ −𝑝. So there are 60 points in a generic fiber.

Now, the moduli space 𝑋(1) of elliptic curves identifies
with 𝑆2,

𝑗∶ ℍ∗/𝑆𝐿(2, ℤ)
≅−→ 𝑆2,

via the 𝑗-invariant of an elliptic curve:

𝑗(𝜏) = 1728𝑔32
𝑔32 − 27𝑔23

= 1
𝑞 + 744 + 196884𝑞2 +⋯ .

Here, 𝑞 = 𝑒2𝜋𝑖𝜏 and 𝑔2 and 𝑔3 are the coefficients appearing
in the equation (14) for an elliptic curve 𝐸. If we identify
𝐸 with the quotient of ℂ by a lattice Λ𝜏 = ℤ ⊕ ℤ𝜏, where
𝜏 ∈ ℍ, then they are computed in terms of 𝜏 as

𝑔2 = 60 ∑′

𝜔∈Λ𝜏

1
𝜔4 , 𝑔3 = 140 ∑′

𝜔∈Λ𝜏

1
𝜔6 ,

where the primes on the sums means leaving out 𝜔 = 0
from the sum.

Ok, so now we know that 𝑋(5) is an 𝐴5-equivariant cov-
ering space of 𝑆2. If 𝐸𝑗 is an elliptic curve with invariant
𝑗 ∈ 𝑆2, then the number of points in the fiber is given by

|𝜋−1(𝑗)| = 120
| Aut(𝐸𝑗)|

,

as we explained above. A generic elliptic curve has au-
tomorphism group ℤ/2ℤ, corresponding to the involu-
tion 𝑝 ↦ −𝑝, but precisely two curves have more sym-
metry, namely those constructed from the square lattice
(𝑗 = 1728) and the hexagonal lattice (𝑗 = 0):

Aut(ℂ/ℤ ⊕ ℤ𝑖) ≅ (ℤ/2ℤ)2

Aut(ℂ/ℤ ⊕ ℤ𝑒𝜋𝑖/3) ≅ ℤ/2ℤ × ℤ/3ℤ.
We should also figure out how many cusp points there are
(i.e., count points in the fiber over 𝑗 = ∞). This requires
counting the number of orbits of the action of SL(2, ℤ) on
the extended rationalsℚ∪{𝑖∞}. A quick calculation shows
there are 12 of these, whose representatives we can take to
be:

cusps = {𝑖∞, 25} ∪ {
𝑘
2 ∶ 𝑘 = 0… 9} (15)

So, in summary, 𝑋(5) is an𝐴5-equivariant branched cov-
ering space of 𝑆2, with three branch points 𝑗 = 1728, 𝑗 = 0
and 𝑗 = ∞ having 30, 20, and 12 elements in their fibers re-
spectively. This implies that it is isomorphic, as a branched
covering space, to the “round icosahedron” 𝑆2! In particu-
lar, it has genus zero.
Tidying things up. Let’s tidy up this isomorphism of cov-
ering spaces over 𝑆2 by ensuring that the branch points cor-
respond correctly.

Instead of using 𝐵 = −𝑉5/𝐸2 to identify the icosahe-
dron quotient 𝑆2/𝐴5 with 𝑆2 (which was convenient from
the viewpoint of identifying points on the icosahedron
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𝑗5−→
Figure 5. The map 𝑗5 is an 𝐴5-equivariant map from ℍ∗/Γ to 𝑆2.
The standard tesselation of ℍ∗ by fundamental domains for Γ
is shown, together with their image on 𝑆2. Images taken from
[6].

with ordered roots of Brioschi quintics, but not with el-
liptic curves), we should use Klein’s function

𝐽(𝑧) = 𝐹3
𝑉5 =

1728𝑉5 − 𝐸2
𝑉5 = 1728 + 1

𝐵 (16)

instead. (Recall the fundamental relation (13)). This 𝐽-
invariant aligns correctly with the projection 𝜋 ∶ 𝑋(5) ↠
𝑋(1), since it sends the 30 edge midpoints to 𝐽 = 1728, the
20 face midpoints to 𝐽 = 0, and the 12 vertices to 𝐽 = ∞.
Let us record this in a theorem.

Theorem 2. There is an 𝐴5-equivariant isomorphism 𝑗5 of cov-
ering spaces between the moduli space 𝑋(5) of elliptic curves
equipped with a choice of primitive basis for their 5-torsion, and
the icosahedron, such that the following diagram commutes:

ℍ∗/Γ(5) 𝑆2

𝑆2 𝑆2

𝑗5
≅

𝑗

id

𝐽 (17)

Let us nail down the definition of 𝑗5. Tomake (17) com-
mute, we know it must send:

𝑖∞ ↦ a vertex

𝑖 ↦ ↦ an edge midpoint

𝑒
2𝜋𝑖
3 ↦ a face midpoint.

Since 𝑗5 is 𝐴5-equivariant, it must send fixed points of the
action of 𝐴5 on ℍ∗ to fixed points of the action of 𝐴5 on
𝑆2. This determines 𝑗5 up to some sign choices, which we
now fix.

Refer to Figure 3. A rotation about the 𝑧-axis in 𝑆2 by𝜋/5
corresponds, by Lemma 1, to the transformation 𝜏 ↦ 𝜏+1
of ℍ∗, whose only fixed point is 𝑖∞ ∈ ℍ∗. So, we must
have 𝑗5(𝑖∞) ∈ {0,∞} ⊂ 𝑆2, and wemake the natural choice
𝑗5(𝑖∞) = 0, to line up on-the-nose with 𝑗.

Similarly, a rotation about the 𝛼-axis in 𝑆2 by 𝜋 corre-
sponds to the transformation 𝜏 ↦ −1/𝜏 onℍ∗, whose only
fixed point is 𝜏 = 𝑖. So, 𝑗5(𝑖)must equal±𝑎, and we choose
the plus sign. In the same way, since rotation around 𝑏

Figure 6. Extract from page 9 of Ramanujan’s first letter to
Hardy on January 16, 1913.

by 2𝜋/3 equals the product 𝑅𝑎𝑅𝑧 and hence corresponds
to the transformation 𝜏 ↦ − 1

𝜏+1
, whose only fixed point

is 𝜏 = 𝑒2𝜋𝑖/3, we must have 𝑗5(𝑒
2𝜋𝑖
3 ) = ±𝑏, and again we

choose the plus sign.
In summary, after doing a quick calculation of the stere-

ographic projections 𝛼 and 𝛽 of 𝑎 and 𝑏, we are defining 𝑗5
as the unique 𝐴5 equivariant map ℍ∗/Γ(5) → 𝑆2 satisfying:

𝑗5(𝑖∞) = ∞ (18)

𝑗5(𝑖) = 𝛼 = √
5 +√5

2 − √5 + 1
2 (19)

𝑗5(𝑒
𝜋𝑖
3 ) = 𝛽 = 𝑒

−2𝜋𝑖
10

√30 + 6√5 − 3 − √5
4 . (20)

See Figure 5. This definition is great... but it would be nice
to have an explicit formula for 𝑗5(𝜏), for an arbitrary point
𝜏 ∈ ℍ∗!

Enter Ramanujan
On Sunday evening of February 2, 1913, Bertrand Russell
wrote to his lover Lady Ottoline Morrell from his rooms in
Trinity College Cambridge:

In Hall I found Hardy, and Littlewood in a state of wild
excitement, because they believe they have discovered
a second Newton, a Hindu clerk in Madras on £20 a
year. He wrote to Hardy telling him of some results he
has got, which Hardy thinks quite wonderful, especially
as the man has had only an ordinary school education.
Hardy has written to the Indian Office and hopes to
get the man here at once.

Behold the stir which Srinivasa Ramanujan (1887–1920)
created when he sent his famous letter to Hardy, England’s
foremost mathematician at the time, from the Port Trust
Office in Madras on January 16, 1913. Figure 6 shows an
extract from page 9 of his letter. In formula (4), we see that
Ramanujan introduces a continued fraction

𝑟(𝑞) = 𝑞
1
5

1 + 𝑞
1+ 𝑞2

1+ 𝑞3
1+⋯

(21)
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and states an identity involving it, while in (5) we find the
remarkable evaluation

𝑟(𝑒−2𝜋) = √
5 +√5

2 − √5 + 1
2 . (22)

Hardy famously wrote [7] that formulas (4) and (5) as well

as a similar evaluation of 𝑟(𝑒−2𝜋√5) (from Ramanujan’s sec-
ond letter to Hardy)

... defeated me completely; I had never seen anything
in the least like them before. A single look at them is
enough to show that they could only be written down
by a mathematician of the highest class. They must be
true because, if they were not true, no one would have
had the imagination to invent them.

The continued fraction 𝑟(𝑞) in (21) is called the Rogers-
Ramanujan continued fraction, since it had been first writ-
ten down 20 years earlier by Rogers (1894), who proved
some important identities regarding it. Thus Ramanujan
had independently rediscovered it, and had proved some
remarkable new identities of his own, such as those above.

Ramanujan and the Icosahedron
Staring at equations (19) and (22), we immediately con-
jecture the following relationship between the Rogers-
Ramanujan continued fraction 𝑟 and the 𝑗5 covering map
from the world of elliptic curves:

𝑗5(𝜏) = 𝑟(𝑞), 𝑞 = 𝑒2𝜋𝑖𝜏. (23)

This is indeed the case! From Theorem 2 and the discus-
sion below it, all we need to do is establish equivariance of
𝑟(𝑞), thought of as a function of 𝜏!

Theorem 3 ([5]). The Rogers-Ramanujan continued fraction
𝑟 is an 𝐴5-equivariant map

ℍ∗/Γ(5) → 𝑆2.

That is,

𝑟(𝜏 + 1) = 𝑅𝑧𝑟(𝜏) = 𝜁𝑟(𝜏) (24)

𝑟(−1𝜏 ) = 𝑅𝛼𝑟(𝜏) =
1 − 𝜙𝑟(𝜏)
𝜙 + 𝑟(𝜏) , (25)

where 𝜙 = 1+√5
2

.

The idea of the proof is as follows. Equivariance (24)
with respect to rotations about the 𝑧-axis follows immedi-

ately from the 𝑞
1
5 factor in the definition (21) for 𝑟. The

transformation formula (25) for 𝑟(− 1
𝜏
) follows from the

Rogers-Ramanujan identities which allow us to write 𝑟 as a
ratio of two theta functions, each of whose transformation
properties under 𝜏 ↦ − 1

𝜏
is known.

Once we know 𝑟 is an 𝐴5-equivariant map (and hence
𝑟 = 𝑗5), we immediately have Ramanujan’s beautiful for-
mulas (22) and (20)3!

Indeed, the equivariance allows us to calculate 𝑟(𝜏) at
any point 𝜏 ∈ Γ ⋅ {𝑖, 𝜌,∞}, since these map to the 62 special
points on the icosahedron (12 vertices + 20 facemidpoints
+ 30 edge midpoints). This gives us a bunch of intriguing
identities! For instance, what is 𝑟(0)? Well,

𝑟(0) = 𝑟(𝑆(𝑖∞))
= 𝑅𝛼𝑟(𝑖∞)

= −1𝑛 = 1 + √5
2 .

In other words, we have

1
1 + 1

1+ 1
1+⋯

= 1 + √5
2 ,

which is indeed a well-known identity!
Similarly, for which 𝜏 is 𝑟(𝜏) equal to the edge midpoint

𝑖 ∈ 𝑆2? Well, we know that 𝑟(𝑖 ∈ ℍ) = 𝛼, and we know
that 𝑅2𝑧𝑅𝛼𝑅2𝑧𝑅𝛼𝑅𝑧 ⋅ 𝛼 = 𝑖 ∈ 𝑆2, therefore

𝑟(𝑇2𝑆𝑇2𝑆𝑇 ⋅ 𝑖) = 𝑖, i.e., 𝑟(7 + 𝑖
5 ) = 𝑖,

and hence 𝑟(Γ(5) ⋅ 7+𝑖
5
) = 𝑖.

Gauss and the Arithmetic-Geometric Mean
We’re going to need one final ingredient before we can tie
everything together. In our algorithm for finding the roots
of a quintic, we will start with a quintic, do some magic,
and associate to it an elliptic curve 𝐸 in Weierstrass form:

𝐸 ∶ 𝑦2 = 4𝑥3 − 𝑔2𝑥 − 𝑔3 (26)

The next thing we will need is to find 𝜏 ∈ ℍ such that
𝐸 ≅ ℂ/ℤ ⊕ ℤ𝜏. This means we need to find a basis 𝜔1, 𝜔2
for the period lattice [10] Λ ⊂ ℂ of 𝐸,

Λ = {∫
𝛾

𝑑𝑥
𝑦 ∶ 𝛾 ∈ 𝐻1(𝐸, ℤ)} ,

and then set 𝜏 = 𝜔2
𝜔1

. But we don’t want to have to calcu-

late integrals in order to solve the quintic! How can we
calculate periods efficiently?

This is where the final piece of magic enters the story. In
the late 1790s, Gauss was trying to compute precisely such
a period integral, namely

𝜔 = ∫
1

−1

𝑑𝑥
√1 − 𝑥4

.

He was excited to discover that such period integrals can
be calculated very efficently using an algorithm called the

3This formula appears in Ramanujan’s “lost notebook.”
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Figure 7. The entry in Gauss’ mathematical diary on May 30,
1799, recording his excitement at the discovery that
𝜔 = 𝜋/𝑀(1,√2). Translation from Latin: We have confirmed up
to the eleventh figure that the arithmetic-geometric mean of 1
and √2 equals 𝜋

𝜔
. Therefore, once demonstrated, a

completely new field in analysis will certainly be opened.

arithmetic-geometric mean (see Figure 7). Given two posi-
tive real numbers 𝑎 and 𝑏, define sequences 𝑎𝑛 and 𝑏𝑛 by
starting with 𝑎0 = 𝑎 and 𝑏0 = 𝑏 and then setting

𝑎𝑛+1 =
1
2(𝑎𝑛 + 𝑏𝑛) (27)

𝑏𝑛+1 = √𝑎𝑛𝑏𝑛 (28)

so that 𝑎𝑛+1 is the arithmetic mean of 𝑎𝑛 and 𝑏𝑛, and 𝑏𝑛+1
is their geometric mean. These sequences converge very
rapidly (the accuracy doubles with each iteration), and the
arithmetic-geometric mean of 𝑎 and 𝑏 is defined as the com-
mon limit

𝑀(𝑎, 𝑏) = lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑏𝑛.

More generally, given an elliptic curve 𝐸 in Weierstrass
form (26) which factorizes as

4𝑥2 − 𝑔2𝑥 − 𝑔3 = 4(𝑥 − 𝑒1)(𝑥 − 𝑒2)(𝑥3)
with real roots 𝑒1 < 𝑒2 < 𝑒3, the period lattice is ℤ𝜔1⊕ℤ𝜔2,
where:

𝜔1 =
𝜋

𝑀(√𝑒3 − 𝑒1,√𝑒3 − 𝑒2)
(29)

𝜔2 =
𝜋𝑖

𝑀(√𝑒3 − 𝑒1, √𝑒2 − 𝑒1)
(30)

Finally, in 2010 Cremona and Thongjunthug defined the
arithmetic-geometric mean 𝑀(𝑎, 𝑏) appropriately for com-
plex numbers [3] (one must simply choose the correct
square root in (28) at each step) and gave analogous ver-
sions of (29) and (30). Armed with these formulas, we
can efficiently compute the period of any elliptic curve!

The Algorithm
Let us now put all the ingredients together.

Algorithm 1. Find the roots of a quintic using elliptic curves
and the icosahedron.

Step 1. Start with a general quintic

𝑋5 + 𝑎1𝑋4 + 𝑎2𝑋3 + 𝑎3𝑋2 + 𝑎4𝑋 + 𝑎5 = 0

and transform it to a Brioschi quintic

𝑋5 + 10𝐵𝑋3 + 45𝐵2𝑋 + 𝐵2 = 0

for a certain Brioschi parameter 𝐵 ∈ ℂ.

See [2, Theorem6.6]. This requires extraction of atmost
two square roots, and works away from a set of measure
zero.

Step 2. Determine the associated elliptic curve 𝐸.

The 𝑗-invariant of the associated elliptic curve 𝐸 is 𝑗 =
1728 + 1

𝐵
. A Weierstrass equation

𝑦2 = 4𝑥3 − 𝑔2𝑥 − 𝑔3 (31)

for 𝐸 with this 𝑗-invariant is given by setting

𝑔2 =
−3𝑗

1728 − 𝑗 , 𝑔3 =
𝑗

1728 − 𝑗

since then we have 𝑗 = 𝑔32
𝑔32−27𝑔23

as needed.

Step 3. Find 𝜏 ∈ ℍ such that 𝐸 ≅ ℂ/ℤ ⊕ ℤ𝜏.

Compute 𝜔1, 𝜔2 using the complex arithmetic-
geometric mean algorithm [3], and then set 𝜏 = 𝜔2

𝜔1
.

Step 4. Compute the associated point 𝑧 on the icosahe-
dron as 𝑧 = 𝑗5(𝜏).

Use the Rogers-Ramanujan continued fraction 𝑟, which
converges very rapidly.

Step 5. The five roots, delivered to you in “octahedral or-
dering” free of charge, are (𝑥1(𝑧), 𝑥2(𝑧), 𝑥3(𝑧), 𝑥4(𝑧), 𝑥5(𝑧))!

The implementation of this algorithm as a Mathemat-
ica worksheet, together with all the code for the pictures
presented here, can be found at [1].
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