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Figure 1. The ℂ∗-action on ℙ1, pictured as the sphere 𝒮2. The
action flows from the north to the south pole.

An introductory example. Consider the complex projective
line with nonhomogeneous coordinates, ℙ1 = ℂ ∪ ∞,
and consider the natural action of themultiplicative group
ℂ∗ ≔ ℂ ⧵ 0 given by

ℂ∗ × ℙ1 ∋ (𝑡, 𝑝)⟼ 𝑡𝑝 ∈ ℙ1.
We have that

lim
𝑡→0

𝑡𝑝 = {0 if 𝑝 ≠ ∞,
∞ if 𝑝 = ∞.

We call 0 the sink and ∞ the source of the action. Such ac-
tion provides a decomposition of ℙ1 into the affine spaces
ℂ and∞. Using the homeomorphism between the projec-
tive line ℙ1 and the sphere 𝒮2, we can draw the action as
in Figure 1.

This is an example of Białynicki-Birula decomposition.
There are some similarities with Morse theory. In that case,
one can study the topology of a manifold𝑀 via its decom-
position provided by the critical points of a function on
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𝑀. Analogously, we will study a (smooth) algebraic vari-
ety via the cell decomposition provided by fixed points of
a ℂ∗-action.
The Białynicki-Birula theory. To keep our feet on the ground,
we will stick to a very basic set-up (cf. [1]) even though the
theory has been developedmore generally (cf. for instance
[5]). So, 𝑋 will be a complex nonsingular projective variety
endowed with a (nontrivial) ℂ∗-action:

ℂ∗ × 𝑋 ∋ (𝑡, 𝑥)⟼ 𝑡 ⋅ 𝑥 ∈ 𝑋.
We consider the decomposition of 𝑋ℂ∗ , the fixed locus of
the action, into connected components:

𝑋ℂ∗ = ⨆
𝑌∈𝒴

𝑌,

where 𝒴 denotes the set of connected components. Since
𝑋 is nonsingular, by a theorem of Iversen (cf. [4]) each
connected component 𝑌 is also nonsingular, hence irre-
ducible.

One can always extend a ℂ∗-action on a nonsingular
projective variety 𝑋 to an algebraic morphism ℙ1 ×𝑋 → 𝑋
(cf. [8]), which means that for 𝑥 ∈ 𝑋 there exist the lim-
iting points to 0 and ∞ and they are fixed points of 𝑋 for
the ℂ∗-action. Notice that the limiting point to ∞ is just
the limiting point to 0 for the opposite action, that is

lim
𝑡→∞

𝑡 ⋅ 𝑥 = lim
𝑡→0

𝑡−1 ⋅ 𝑥.

For a given 𝑌 ∈ 𝒴, we define its Białynicki-Birula cells
(BB-cells for short) to be the two subsets

𝑋±(𝑌) ≔ {𝑥 ∈ 𝑋 ∶ lim
𝑡→0

𝑡±1 ⋅ 𝑥 ∈ 𝑌} ,

where ± will be intended as a shortcut for stating a result
both for the + and for the − decomposition. Essentially,
the BB-cells of a fixed point component 𝑌 consist of all
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the points of 𝑋 that converge to 𝑌 as the parameter 𝑡 of
the action goes to 0 or to ∞.

Theorem (Białynicki-Birula, 1973). Let 𝑋 be a complex
nonsingular projective variety endowed with a (nontrivial) ℂ∗-
action. Consider the induced + and − decompositions. Then
the following hold:

1. 𝑋 = ⨆𝑌∈𝒴 𝑋±(𝑌) and the BB-cells are locally closed subsets
of 𝑋 for any 𝑌 ∈ 𝒴.

2. The natural maps

𝑋±(𝑌) ∋ 𝑥⟼ lim
𝑡→0

𝑡±1 ⋅ 𝑥 ∈ 𝑌

are algebraic: they are locally trivial bundles in the Zariski
topology, and the fibers are affine spaces of rank 𝜈±(𝑌) ≔
dim𝑋±(𝑌) − dim𝑌 .

3. There are homology decompositions

H𝑚(𝑋, ℤ) =⨁
𝑌∈𝒴

H𝑚−2𝜈±(𝑌)(𝑌, ℤ).

As a consequence of the theorem, among the fixed
point components there exist unique 𝑌+, 𝑌− ∈ 𝒴 such that
𝑋+(𝑌+), 𝑋−(𝑌−) are dense subsets of 𝑋 . We call 𝑌+ and 𝑌−
respectively the sink and the source of the action, following
the notation of the introductory example.
An example of Grassmannian. Let 𝑉+ and 𝑉− be 𝑛-
dimensional vector spaces. Consider the ℂ∗-action on 𝑉±
given by

ℂ∗ × 𝑉± ∋ (𝑡, 𝑣)⟼ 𝑡±1𝑣 ∈ 𝑉±.
Let 𝑉 ≔ 𝑉+ ⊕ 𝑉−. Then 𝑉 has a naturally defined ℂ∗-
action such that 𝑉+ and 𝑉− are maximal invariant linear
subspaces.

Consider the induced action on 𝑋 ≔ Gras(𝑛, 𝑉), the
Grassmannian of 𝑛-planes in 𝑉 . The fixed points of the
induced action are the 𝑛-planes in 𝑉 that are ℂ∗-invariant
for the action above. Indeed, if 𝑊 ⊂ 𝑉 is a ℂ∗-invariant
𝑛-plane, then we can write

𝑊 = (𝑊 ∩ 𝑉+) ⊕ (𝑊 ∩𝑊−) ,
where 𝑊± are the eigenspaces on which ℂ∗ acts. One can
prove that the sink and the source of the induced action on
𝑋 are isolated points, representing the subspaces𝑉+ and𝑉−,
respectively.

For explicit computations, suppose that 𝑛 = 2. Then
𝑋 ≃ 𝑄4, a smooth quadric hypersurface in the projective
space ℙ (∧2𝑉) of dimension 5. One can prove that the ac-
tion on 𝑋 is the restriction of the action on ℙ (∧2𝑉) given
by

𝑡 ⋅ [𝑥0 ∶ … ∶ 𝑥5] = [𝑡2𝑥0 ∶ 𝑥1 ∶ 𝑥2 ∶ 𝑥3 ∶ 𝑥4 ∶ 𝑡−2𝑥5] .
Then the fixed locus of the action on 𝑋 is

𝑋ℂ∗ = [1 ∶ 0 ∶ … ∶ 0] ⊔ (ℙ1 × ℙ1) ⊔ [0 ∶ … ∶ 0 ∶ 1],
and the homology groups of 𝑋 can be computed using ho-
mology of points and of ℙ1 × ℙ1. The fixed point com-
ponent ℙ1 × ℙ1 appear as the intersection of the quadric

(∞,∞)

(∞, 0)

(0,∞)

(0, 0)P
1 × P

1

Figure 2. A schematic picture of the ℂ∗-action on ℙ1 × ℙ1. The
action flows from left to right as 𝑡 moves from ∞ to 0.

𝑋 with ℙ3 ⊂ ℙ5 generated by 𝑥1, 𝑥2, 𝑥3, 𝑥4. Notice that the
decompositions of the Grassmannian given by BB-cells are
particular cases of Schubert decomposition.

Furthermore, consider the action on ℙ1 × ℙ1 given, in
nonhomogeneous coordinates, by

ℂ∗ × (ℙ1 × ℙ1) ∋ (𝑡, 𝑝, 𝑞)⟼ (𝑡𝑝, 𝑡𝑞) ∈ ℙ1 × ℙ1.
There are four fixed points for such action

(0, 0), (0,∞), (∞, 0), (∞,∞),
as pictured in Figure 2.

Then, by the homology decomposition of the
Białynicki-Birula theorem,

H0 (ℙ1 × ℙ1, ℤ) = H0 ((∞,∞), ℤ) = ℤ,
H2 (ℙ1 × ℙ1, ℤ) = H0 ((0,∞), Z) ⊕ H0 ((∞, 0), ℤ) = ℤ ⊕ ℤ,
H4 (ℙ1 × ℙ1, ℤ) = H0 ((0, 0), ℤ) = ℤ.
With this decomposition of the homology groups of ℙ1 ×
ℙ1, one can explicitly compute the decomposition of the
homology groups of 𝑋 .
The associated birational map via GIT. A birational map
𝑓 ∶ 𝑍1 99K 𝑍2 between algebraic varieties is a rational map
such that there are open subsets 𝑈𝑖 ⊂ 𝑍𝑖 (for 𝑖 = 1, 2) such
that the restriction 𝑓|𝑈1 ∶ 𝑈1 → 𝑈2 is an isomorphism.

An explicit remark in [7] says that, given a ℂ∗-action
on a nonsingular projective variety 𝑋 , we can associate a
birational map among projective varieties.

Given a finite-dimensional vector space 𝑉 , the projec-
tive space ℙ(𝑉) is the space of lines through the origin of
𝑉 , that is a point of ℙ(𝑉) is an orbit for the ℂ∗-action on
𝑉 ⧵ 0 given by

ℂ∗ × 𝑉 ⧵ 0 ∋ (𝑡, 𝑣)⟼ 𝑡𝑣 ∈ 𝑉.
This example leads to the definition of geometric quotient:
a space whose points represent ℂ∗-orbits of another space,
see [6] for a rigorous introduction.

In the context of the Białynicki-Birula decomposition,
we consider the subsets B± ≔ 𝑋±(𝑌±) ⧵ 𝑌±. They are dense
because 𝑋±(𝑌±) are dense and 𝑌± are closed subsets of 𝑋 .
These sets contain all the orbits that flow to 𝑌±. The quo-
tients of these sets by the action are denoted

𝒢± ≔ B±/ℂ∗.
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Figure 3. A picture of the ℂ∗-action on 𝑋. The action flows
from left to right as 𝑡 goes from ∞ to 0. 𝐶 We draw an orbit 𝐶
flowing from the source to the sink, its tangent directions at
the source and the sink, and the two geometric quotients 𝒢±.

By a theorem of Białynicki-Birula and Święcicka, see [2],
the spaces 𝒢± are geometric quotients. In particular, they
are quasi-projective varieties. Every point of 𝒢+ (resp. 𝒢−)
represents an orbit of the action flowing to the sink 𝑌+
(resp. from the source 𝑌−). Then we can identify such an
orbit with its tangent direction at the sink or the source of
the orbit.

It remains to describe the birational map between the
geometric quotients 𝒢±. We consider the intersection B+∩
B− ⊂ 𝑋±(𝑌±) ⧵ 𝑌±: It contains all the ℂ∗-orbits that flow
from the source to the sink of the action. Then we obtain
a natural birational map

𝜓𝑎 ∶ B− 99K B+,

which is just the identity on the intersection B+ ∩ B−. The
quotient of this map by the ℂ∗-action,

𝜓 ∶ 𝒢− 99K 𝒢+,

is the birational map we are looking for. Notice that, since
there could be orbits that flow from the source to a fixed
point component different from the sink, the map 𝜓 is not
an isomorphism in general.

Geometrically, given a ℂ∗-orbit 𝐶 that flows from the
source to the sink, 𝜓 associates to its tangent direction at
the source and its tangent direction at the sink. Figure 3
gives a schematic picture of the situation.
Torus actions and matrix inversion. In this section, we will
go further on the example of 𝑋 being the Grassmannian
Gras(𝑛, 𝑉), where 𝑉 = 𝑉+ ⊕𝑉− is a 2𝑛-dimensional vector
space.

The tangent space of the Grassmannian at the point
[𝑊] ∈ 𝑋 representing 𝑊 ⊂ 𝑉 is

𝑇𝑋,[𝑊] ≃ Hom (𝑊,𝑉/𝑊) = 𝑊 ∨ ⊗ (𝑉/𝑊) .

As we stated before, the sink 𝑌+ and the source 𝑌− of the
ℂ∗-action are isolated points in the Grassmannian. Then

𝑋+(𝑌+) and 𝑋−(𝑌−) are affine spaces, and there are ℂ∗-
equivariantly isomorphisms

𝑋±(𝑌±) ≃ 𝑇𝑋,𝑌± ≃ 𝑉∨
± ⊗𝑉∓.

with the tangent spaces of 𝑋 at 𝑌+ and 𝑌−. Then the
geometric quotients are isomorphic to projective spaces,
𝒢± ≃ ℙ(𝑉∨

± ⊗𝑉∓), and the induced birational map is

𝜓 ∶ ℙ(𝑉∨
− ⊗𝑉+) 99K ℙ(𝑉∨

+ ⊗𝑉−).
If we fix bases, then 𝑉∨

± ⊗ 𝑉∓ = Hom(𝑉±, 𝑉∓) is the space
of 𝑛 × 𝑛 matrices. Then one can show that 𝜓 is the projec-
tivization of the inversionmap of 𝑛×𝑛matrices. Moreover,
if 𝑛 = 3, then 𝜓 ∶ ℙ8 99K ℙ8 is one of the special quadro-
quadric Cremona transformations classified in [3].
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