On sets of extreme functions for Fatou’s theorem
HTML articles powered by AMS MathViewer
- by Thiago R. Alves, Leonardo Brito and Daniel Carando;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/16620
- Published electronically: April 30, 2025
- HTML | PDF | Request permission
Abstract:
Bounded holomorphic functions on the disk have radial limits in almost every direction, as follows from Fatou’s theorem. Given a zero-measure set $E$ in the torus $\mathbb T$, we study the set of functions such that $\lim _{r \to 1^{-}} f(r \, w)$ fails to exist for every $w\in E$ (such functions were first constructed by Lusin). We show that the set of Lusin-type functions, for a fixed zero-measure set $E$, contains algebras of algebraic dimension $\mathfrak {c}$ (except for the zero function). When the set $E$ is countable, we show also in the several-variable case that the set of Lusin-type functions contains infinite dimensional Banach spaces and, moreover, contains plenty of $\mathfrak {c}$-dimensional algebras. We also address the question for functions of infinitely many variables.References
- Alexandru Aleman, Jan-Fredrik Olsen, and Eero Saksman, Fatou and brothers Riesz theorems in the infinite-dimensional polydisc, J. Anal. Math. 137 (2019), no. 1, 429–447. MR 3938009, DOI 10.1007/s11854-019-0006-x
- Thiago R. Alves and Daniel Carando, Holomorphic functions with large cluster sets, Math. Nachr. 294 (2021), no. 7, 1250–1261. MR 4316871, DOI 10.1002/mana.201900238
- Richard M. Aron, Luis Bernal González, Daniel M. Pellegrino, and Juan B. Seoane Sepúlveda, Lineability: the search for linearity in mathematics, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016. MR 3445906
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 231999
- Andreas Defant, Domingo García, Manuel Maestre, and Pablo Sevilla-Peris, Dirichlet series and holomorphic functions in high dimensions, New Mathematical Monographs, vol. 37, Cambridge University Press, Cambridge, 2019. MR 3967103, DOI 10.1017/9781108691611
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335–400 (French). MR 1555035, DOI 10.1007/BF02418579
- V. V. Fávaro, D. Pellegrino, and D. Tomaz, Lineability and spaceability: a new approach, Bull. Braz. Math. Soc. (N.S.) 51 (2020), no. 1, 27–46. MR 4063355, DOI 10.1007/s00574-019-00142-3
- Pablo Galindo and Alejandro Miralles, Interpolating sequences for bounded analytic functions, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3225–3231. MR 2322753, DOI 10.1090/S0002-9939-07-08863-6
- N. Lusin, Sur la représentation conforme, Ivanovo-Voznesensk, Bull. Inst. Polytechn. 2 (1919) 77–80.
- N. Lusin and J. Priwaloff, Sur l’unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143–191 (French). MR 1509265
- Toshio Matsushima, Bounded holomorphic functions and maps with some boundary behavior, J. Math. Anal. Appl. 285 (2003), no. 2, 691–707. MR 2005151, DOI 10.1016/S0022-247X(03)00471-2
- James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [ MR0464128]. MR 3728284
- Daniel Pellegrino and Anselmo Raposo Jr., Pointwise lineability in sequence spaces, Indag. Math. (N.S.) 32 (2021), no. 2, 536–546. MR 4218507, DOI 10.1016/j.indag.2020.12.006
- Hervé Queffelec and Martine Queffelec, Diophantine approximation and Dirichlet series, Texts and Readings in Mathematics, vol. 80, Hindustan Book Agency, New Delhi; Springer, Singapore, [2020] ©2020. Second edition [of 3099268]. MR 4241378, DOI 10.1007/978-981-15-9351-2
Bibliographic Information
- Thiago R. Alves
- Affiliation: Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal do Amazonas, 69.077-000 Manaus, Brazil
- MR Author ID: 1053275
- ORCID: 0000-0001-5416-8093
- Email: alves@ufam.edu.br
- Leonardo Brito
- Affiliation: Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal do Amazonas, 69.077-000 Manaus, Brazil
- MR Author ID: 1562145
- ORCID: 0009-0002-2952-3190
- Email: leocareiro2018@gmail.com
- Daniel Carando
- Affiliation: Departamento de Matemática, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires and IMAS-UBA-CONICET, Argentina
- MR Author ID: 621813
- ORCID: 0000-0002-5519-8697
- Email: dcarando@dm.uba.ar
- Received by editor(s): January 4, 2023
- Received by editor(s) in revised form: May 1, 2023, and July 1, 2023
- Published electronically: April 30, 2025
- Additional Notes: The first author was supported in part by CAPES - Brazil and FAPEAM
The second author was supported by FAPEAM
The third author was supported by CONICET-PIP 11220130100329CO and ANPCyT PICT 2018-04104. - Communicated by: Harold P. Boas
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 30H10, 32A35, 46B87; Secondary 46E25, 30H50
- DOI: https://doi.org/10.1090/proc/16620