Connections between metric differentiability and rectifiability
HTML articles powered by AMS MathViewer
- by Iván Caamaño, Estibalitz Durand-Cartagena, Jesús Á. Jaramillo, Ángeles Prieto and Elefterios Soultanis;
- Proc. Amer. Math. Soc. 153 (2025), 2075-2088
- DOI: https://doi.org/10.1090/proc/17123
- Published electronically: February 20, 2025
- HTML | PDF | Request permission
Abstract:
We combine Kirchheim’s metric differentials with Cheeger charts in order to establish a non-embeddability principle for any collection $\mathcal C$ of Banach (or metric) spaces: if a metric measure space $X$ bi-Lipschitz embeds in some element in $\mathcal C$, and if every Lipschitz map $X\to Y\in \mathcal C$ is differentiable, then $X$ is rectifiable. This gives a simple proof of the rectifiability of Lipschitz differentiability spaces that are bi-Lipschitz embeddable in Euclidean space, due to Kell–Mondino. Our principle also implies a converse to Kirchheim’s theorem: if all Lipschitz maps from a domain space to arbitrary targets are metrically differentiable, the domain is rectifiable. We moreover establish the compatibility of metric and $w^*$-differentials of maps from metric spaces in the spirit of Ambrosio–Kirchheim.References
- Luigi Ambrosio and Bernd Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3, 527–555. MR 1800768, DOI 10.1007/s002080000122
- G. Antonelli, E. Le Donne, and A. Merlo, Carnot rectifiability and Alberti representations, Proc. Lond. Math. Soc. (3) 130 (2025), no. 1, Paper No. e70021, 78. MR 4846861, DOI 10.1112/plms.70021
- Adolfo Arroyo-Rabasa, Guido De Philippis, Jonas Hirsch, and Filip Rindler, Dimensional estimates and rectifiability for measures satisfying linear PDE constraints, Geom. Funct. Anal. 29 (2019), no. 3, 639–658. MR 3962875, DOI 10.1007/s00039-019-00497-1
- Jonas Azzam, Poincaré inequalities and uniform rectifiability, Rev. Mat. Iberoam. 37 (2021), no. 6, 2161–2190. MR 4310289, DOI 10.4171/rmi/1258
- David Bate, Structure of measures in Lipschitz differentiability spaces, J. Amer. Math. Soc. 28 (2015), no. 2, 421–482. MR 3300699, DOI 10.1090/S0894-0347-2014-00810-9
- David Bate, Characterising rectifiable metric spaces using tangent spaces, Invent. Math. 230 (2022), no. 3, 995–1070. MR 4506771, DOI 10.1007/s00222-022-01136-7
- David Bate and Sean Li, Characterizations of rectifiable metric measure spaces, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 1, 1–37 (English, with English and French summaries). MR 3621425, DOI 10.24033/asens.2314
- David Bate and Gareth Speight, Differentiability, porosity and doubling in metric measure spaces, Proc. Amer. Math. Soc. 141 (2013), no. 3, 971–985. MR 3003689, DOI 10.1090/S0002-9939-2012-11457-1
- Anders Björn and Jana Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical Society (EMS), Zürich, 2011. MR 2867756, DOI 10.4171/099
- Iván Caamaño, Jesús Á. Jaramillo, and Ángeles Prieto, Characterizing Sobolev spaces of vector-valued functions, J. Math. Anal. Appl. 514 (2022), no. 1, Paper No. 126250, 18. MR 4413309, DOI 10.1016/j.jmaa.2022.126250
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. MR 1708448, DOI 10.1007/s000390050094
- Jeff Cheeger and Bruce Kleiner, Generalized differential and bi-Lipschitz nonembedding in $L^1$, C. R. Math. Acad. Sci. Paris 343 (2006), no. 5, 297–301 (English, with English and French summaries). MR 2253046, DOI 10.1016/j.crma.2006.07.001
- Jeff Cheeger and Bruce Kleiner, Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property, Geom. Funct. Anal. 19 (2009), no. 4, 1017–1028. MR 2570313, DOI 10.1007/s00039-009-0030-6
- Jeff Cheeger and Bruce Kleiner, Metric differentiation, monotonicity and maps to $L^1$, Invent. Math. 182 (2010), no. 2, 335–370. MR 2729270, DOI 10.1007/s00222-010-0264-9
- Jeff Cheeger, Bruce Kleiner, and Andrea Schioppa, Infinitesimal structure of differentiability spaces, and metric differentiation, Anal. Geom. Metr. Spaces 4 (2016), no. 1, 104–159. MR 3543676, DOI 10.1515/agms-2016-0005
- Paul Creutz and Nikita Evseev, An approach to metric space-valued Sobolev maps via weak$*$ derivatives, Anal. Geom. Metr. Spaces 12 (2024), no. 1, Paper No. 20230107, 16. MR 4756846, DOI 10.1515/agms-2023-0107
- Guy C. David, Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces, Geom. Funct. Anal. 25 (2015), no. 2, 553–579. MR 3334235, DOI 10.1007/s00039-015-0325-8
- Guy C. David and Bruce Kleiner, Rectifiability of planes and Alberti representations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 2, 723–756. MR 3964412
- Guido De Philippis, Andrea Marchese, and Filip Rindler, On a conjecture of Cheeger, Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017, pp. 145–155. MR 3701738
- Guido De Philippis and Filip Rindler, On the structure of $\mathcal A$-free measures and applications, Ann. of Math. (2) 184 (2016), no. 3, 1017–1039. MR 3549629, DOI 10.4007/annals.2016.184.3.10
- Nicola Gigli and Alexander Tyulenev, Korevaar-Schoen’s energy on strongly rectifiable spaces, Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 235, 54. MR 4316816, DOI 10.1007/s00526-021-02028-z
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Juha Heinonen, Geometric embeddings of metric spaces, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 90, University of Jyväskylä, Jyväskylä, 2003. MR 2014506
- Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Sobolev spaces on metric measure spaces, New Mathematical Monographs, vol. 27, Cambridge University Press, Cambridge, 2015. An approach based on upper gradients. MR 3363168, DOI 10.1017/CBO9781316135914
- Stephen Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004), no. 2, 271–315. MR 2041901, DOI 10.1016/S0001-8708(03)00089-6
- Stephen Keith, Measurable differentiable structures and the Poincaré inequality, Indiana Univ. Math. J. 53 (2004), no. 4, 1127–1150. MR 2095451, DOI 10.1512/iumj.2004.53.2417
- Martin Kell and Andrea Mondino, On the volume measure of non-smooth spaces with Ricci curvature bounded below, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 2, 593–610. MR 3801291
- Bernd Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), no. 1, 113–123. MR 1189747, DOI 10.1090/S0002-9939-1994-1189747-7
- T. J. Laakso, Ahlfors $Q$-regular spaces with arbitrary $Q>1$ admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000), no. 1, 111–123. MR 1748917, DOI 10.1007/s000390050003
- Andrea Schioppa, Derivations and Alberti representations, Adv. Math. 293 (2016), 436–528. MR 3474327, DOI 10.1016/j.aim.2016.02.013
Bibliographic Information
- Iván Caamaño
- Affiliation: Depto. de Análisis Matemático y Matemática Aplicada, UCM, 28040 Madrid, Spain; and IMPAN, Warsaw, Poland
- ORCID: 0000-0002-6201-7882
- Email: icaamanoaldemunde@impan.pl
- Estibalitz Durand-Cartagena
- Affiliation: Depto. de Matemática Aplicada, ETSI Industriales, UNED, 28040 Madrid, Spain
- MR Author ID: 869504
- ORCID: 0000-0001-6469-3633
- Email: edurand@ind.uned.es
- Jesús Á. Jaramillo
- Affiliation: ICMAT and Depto. de Análisis Matemático y Matemática Aplicada, UCM, 28040 Madrid, Spain
- Email: jaramil@mat.ucm.es
- Ángeles Prieto
- Affiliation: Depto. de Análisis Matemático y Matemática Aplicada, UCM, 28040 Madrid, Spain
- ORCID: 0000-0002-9144-1666
- Email: angelin@mat.ucm.es
- Elefterios Soultanis
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä Seminaarinkatu 15, PO Box 35, FI-40014, University of Jyväskylä, Finland
- MR Author ID: 989349
- ORCID: 0000-0001-9514-3941
- Email: elefterios.e.soultanis@jyu.fi
- Received by editor(s): April 19, 2024
- Received by editor(s) in revised form: October 11, 2024, and October 15, 2024
- Published electronically: February 20, 2025
- Additional Notes: The research of the first author, second author, and third author was partially supported by grant PID2022-138758NB-I00 (Spain). The fifth author’s research was supported by the Finnish Academy grant no. 355122.
- Communicated by: Nageswari Shanmugalingam
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 2075-2088
- MSC (2020): Primary 30L05, 30L99, 51F30
- DOI: https://doi.org/10.1090/proc/17123