The Iwasawa $\mu$-invariant of certain elliptic curves of analytic rank zero
HTML articles powered by AMS MathViewer
- by Adithya Chakravarthy;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17162
- Published electronically: April 30, 2025
- HTML | PDF | Request permission
Abstract:
This paper is about the Iwasawa theory of elliptic curves over the cyclotomic $\mathbf {Z}_p$-extension $\mathbf {Q}_{\operatorname {cyc}}$ of $\mathbf {Q}$. We discuss a deep conjecture of Greenberg that if $E/\mathbf {Q}$ is an elliptic curve with good ordinary reduction at an odd prime $p$, and $E[p]$ is irreducible as a Galois module, then the Selmer group of $E$ over $\mathbf {Q}_{\operatorname {cyc}}$ has $\mu$-invariant zero. Given an elliptic curve $E/\mathbf {Q}$ of analytic rank zero satisfying certain extra conditions, we give an explicit lower bound for primes $p$ for which $\mu =0$ and $\lambda =0$. The proof involves studying the $p$-adic $L$-function of $E$. The crucial input is a new technique using the Rankin-Selberg method.References
- Amod Agashe, Kenneth Ribet, and William A. Stein, The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 617â636. MR 2251484, DOI 10.4310/PAMQ.2006.v2.n2.a11
- Ashay Burungale, Francesc Castella, and Christopher Skinner, Base change and Iwasawa Main Conjectures for $GL_2$, Preprint, arXiv:2405.00270, 2024.
- Manjul Bhargava and Arul Shankar, The average size of the $5$-Selmer group of elliptic curves is $6$, and the average rank is less than $1$, Preprint, arXiv:1312.7859, 2013.
- Michael J. Drinen, Iwasawa $\mu$-invariants of elliptic curves and their symmetric powers, J. Number Theory 102 (2003), no. 2, 191â213. MR 1997788, DOI 10.1016/S0022-314X(03)00105-7
- Matthew Emerton, Robert Pollack, and Tom Weston, Variation of Iwasawa invariants in Hida families, Invent. Math. 163 (2006), no. 3, 523â580. MR 2207234, DOI 10.1007/s00222-005-0467-7
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377â395. MR 528968, DOI 10.2307/1971116
- Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 51â144. MR 1754686, DOI 10.1007/BFb0093453
- Jiandong Guo, On the positivity of the central critical values of automorphic $L$-functions for $\textrm {GL}(2)$, Duke Math. J. 83 (1996), no. 1, 157â190. MR 1388847, DOI 10.1215/S0012-7094-96-08307-6
- Ralph Greenberg and Vinayak Vatsal, On the Iwasawa invariants of elliptic curves, Invent. Math. 142 (2000), no. 1, 17â63. MR 1784796, DOI 10.1007/s002220000080
- Kenkichi Iwasawa, On $\Gamma$-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), no. 4, 183 â 226.
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, AstĂ©risque 295 (2004), ix, 117â290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmĂ©tiques. III. MR 2104361
- Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1, 1â36. MR 1965358, DOI 10.1007/s00222-002-0265-4
- Debanjana Kundu and Anwesh Ray, Statistics for Iwasawa invariants of elliptic curves, Trans. Amer. Math. Soc. 374 (2021), no. 11, 7945â7965. MR 4328687, DOI 10.1090/tran/8478
- Masato Kurihara, On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I, Invent. Math. 149 (2002), no. 1, 195â224. MR 1914621, DOI 10.1007/s002220100206
- The LMFDB Collaboration, The L-functions and modular forms database, 2024, https://www.lmfdb.org, [Online; accessed 22 April 2024].
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183â266. MR 444670, DOI 10.1007/BF01389815
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Ătudes Sci. Publ. Math. 47 (1977), 33â186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287
- Toshitsune Miyake, Modular forms, Reprint of the first 1989 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. Translated from the 1976 Japanese original by Yoshitaka Maeda. MR 2194815
- Katharina MĂŒller and Anwesh Ray, A heuristic approach to the Iwasawa theory of elliptic curves, Preprint, arXiv:2409.15056, 2024.
- Olivier RamarĂ©, Approximate formulae for $L(1,\chi )$, Acta Arith. 100 (2001), no. 3, 245â266. MR 1865385, DOI 10.4064/aa100-3-2
- Anwesh Ray, Remarks on Greenbergâs conjecture for Galois representations associated to elliptic curves, arXiv:2308.06673, 2023.
- Anwesh Ray, Statistics for Iwasawa invariants of elliptic curves, $\mathrm {III}$, arXiv:2404.09009, 2024.
- Anwesh Ray and R. Sujatha, On the $\mu$-invariants of residually reducible Galois representations, 2023.
- Karl Rubin, The âmain conjecturesâ of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25â68. MR 1079839, DOI 10.1007/BF01239508
- Peter Schneider, The $\mu$-invariant of isogenies, J. Indian Math. Soc. (N.S.) 52 (1987), 159â170 (1988). MR 989235
- Goro Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), no. 6, 783â804. MR 434962, DOI 10.1002/cpa.3160290618
- Goro Shimura, On the periods of modular forms, Math. Ann. 229 (1977), no. 3, 211â221. MR 463119, DOI 10.1007/BF01391466
- Glenn Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75â106. MR 1010156, DOI 10.1007/BF01388845
- Glenn Stevens, Arithmetic on modular curves, Progress in Mathematics, vol. 20, BirkhÀuser Boston, Inc., Boston, MA, 1982. MR 670070
- Christopher Skinner and Eric Urban, The Iwasawa main conjectures for $\rm GL_2$, Invent. Math. 195 (2014), no. 1, 1â277. MR 3148103, DOI 10.1007/s00222-013-0448-1
- William Stein and Christian Wuthrich, Algorithms for the arithmetic of elliptic curves using Iwasawa theory, Math. Comp. 82 (2013), no. 283, 1757â1792. MR 3042584, DOI 10.1090/S0025-5718-2012-02649-4
- Mak TrifkoviÄ, On the vanishing of $\mu$-invariants of elliptic curves over $\Bbb Q$, Canad. J. Math. 57 (2005), no. 4, 812â843. MR 2152940, DOI 10.4153/CJM-2005-032-9
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Hanneke Wiersema and Christian Wuthrich, Integrality of twisted $L$-values of elliptic curves, Doc. Math. 27 (2022), 2041â2066. MR 4574233, DOI 10.4171/dm/x25
Bibliographic Information
- Adithya Chakravarthy
- Affiliation: Department of Mathematics, University of Toronto, 40 St George St, Toronto, Ontario M5S 2E4
- MR Author ID: 1612117
- Email: adithya.chakravarthy@mail.utoronto.ca
- Received by editor(s): July 2, 2024
- Received by editor(s) in revised form: November 10, 2024, and December 4, 2024
- Published electronically: April 30, 2025
- Communicated by: Amanda Folsom
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 11R23, 11G05
- DOI: https://doi.org/10.1090/proc/17162