Propagation failure, depinning forces, and coupling parameters for particle chains
HTML articles powered by AMS MathViewer
- by Tong Zhou;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17176
- Published electronically: April 17, 2025
- HTML | PDF | Request permission
Abstract:
We utilize the Aubry-Mather theory to investigate the relation between coupling parameters and propagation failure intervals for particle chains. Assume $A<B$ are critical values such that the particle chain has three homogeneous equilibria provided the driving force $F\in (A,B)$. We obtain the following asymptotic relations: The propagation failure interval approaches to $[A,B]$ as the coupling parameter tends to $0$, and the propagation failure interval approaches to $\{0\}$ as the coupling parameter tends to $+\infty$.
The main tool of this paper is a physical quantity called the depinning force, which determines whether the state of the particle chain is pinning or sliding. Recently, it has been proved that the transition threshold $F_c^+$($F_c^-$) for the particle chain coincides with the upper(lower) limit of the upper(lower) depinning force as the rotation number approaches to zero from the right. Our investigations are based on this conclusion.
References
- M. Al Haj, N. Forcadel, and R. Monneau, Existence and uniqueness of traveling waves for fully overdamped Frenkel-Kontorova models, Arch. Ration. Mech. Anal. 210 (2013), no. 1, 45–99. MR 3073148, DOI 10.1007/s00205-013-0641-9
- M. Al Haj and R. Monneau, Velocity diagram of traveling waves for discrete reaction-diffusion equations, NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 6, Paper No. 73, 27. MR 4635914, DOI 10.1007/s00030-023-00871-x
- Sigurd B. Angenent, Monotone recurrence relations, their Birkhoff orbits and topological entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 15–41. MR 1053797, DOI 10.1017/S014338570000537X
- C. Baesens and R. S. MacKay, Gradient dynamics of tilted Frenkel-Kontorova models, Nonlinearity 11 (1998), no. 4, 949–964. MR 1632653, DOI 10.1088/0951-7715/11/4/011
- C. Baesens, R. S. MacKay, and W.-X. Qin, Depinning of discommensurations for tilted Frenkel-Kontorova chains, arXiv:2408.14124v1, 2024.
- C. Baesens, R. S. MacKay, W.-X. Qin, and T. Zhou, Depinning transition of travelling waves for particle chains, Nonlinearity 36 (2023), no. 2, 878–901. MR 4527139, DOI 10.1088/1361-6544/aca94b
- V. Bangert, Mather sets for twist maps and geodesics on tori, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp. 1–56. MR 945963
- Peter W. Bates and Adam Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal. 150 (1999), no. 4, 281–305. MR 1741258, DOI 10.1007/s002050050189
- Peter W. Bates, Xinfu Chen, and Adam J. J. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal. 35 (2003), no. 2, 520–546. MR 2001111, DOI 10.1137/S0036141000374002
- John W. Cahn, John Mallet-Paret, and Erik S. Van Vleck, Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl. Math. 59 (1999), no. 2, 455–493. MR 1654427, DOI 10.1137/S0036139996312703
- A. Carpio, S. J. Chapman, S. Hastings, and J. B. McLeod, Wave solutions for a discrete reaction-diffusion equation, European J. Appl. Math. 11 (2000), no. 4, 399–412. MR 1790043, DOI 10.1017/S0956792599004222
- Xinfu Chen, Jong-Shenq Guo, and Chin-Chin Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Ration. Mech. Anal. 189 (2008), no. 2, 189–236. MR 2413095, DOI 10.1007/s00205-007-0103-3
- Shui-Nee Chow, John Mallet-Paret, and Wenxian Shen, Traveling waves in lattice dynamical systems, J. Differential Equations 149 (1998), no. 2, 248–291. MR 1646240, DOI 10.1006/jdeq.1998.3478
- Shui-Nee Chow and Wen Xian Shen, Dynamics in a discrete Nagumo equation: spatial topological chaos, SIAM J. Appl. Math. 55 (1995), no. 6, 1764–1781. MR 1358800, DOI 10.1137/S0036139994261757
- L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model, Adv. Phys., Vol. 45(1996), 505–598.
- D. Hankerson and B. Zinner, Wavefronts for a cooperative tridiagonal system of differential equations, J. Dynam. Differential Equations 5 (1993), no. 2, 359–373. MR 1223452, DOI 10.1007/BF01053165
- H. J. Hupkes, D. Pelinovsky, and B. Sandstede, Propagation failure in the discrete Nagumo equation, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3537–3551. MR 2813385, DOI 10.1090/S0002-9939-2011-10757-3
- James P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math. 47 (1987), no. 3, 556–572. MR 889639, DOI 10.1137/0147038
- J. R. King and S. J. Chapman, Asymptotics beyond all orders and Stokes lines in nonlinear differential-difference equations, European J. Appl. Math. 12 (2001), no. 4, 433–463. MR 1852310, DOI 10.1017/S095679250100434X
- Vincent Knibbeler, Blaz Mramor, and Bob Rink, The laminations of a crystal near an anti-continuum limit, Nonlinearity 27 (2014), no. 5, 927–952. MR 3197110, DOI 10.1088/0951-7715/27/5/927
- Hans Koch, Rafael de la Llave, and Charles Radin, Aubry-Mather theory for functions on lattices, Discrete Contin. Dynam. Systems 3 (1997), no. 1, 135–151. MR 1422544, DOI 10.3934/dcds.1997.3.135
- R. S. MacKay, Scaling exponents at the transition by breaking of analyticity for incommensurate structures, Phys. D 50 (1991), no. 1, 71–79. MR 1115873, DOI 10.1016/0167-2789(91)90080-S
- R. S. MacKay and J.-A. Sepulchre, Multistability in networks of weakly coupled bistable units, Phys. D 82 (1995), no. 3, 243–254. MR 1326557, DOI 10.1016/0167-2789(94)00243-J
- John Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations 11 (1999), no. 1, 49–127. MR 1680459, DOI 10.1023/A:1021841618074
- Blaz Mramor and Bob Rink, Ghost circles in lattice Aubry-Mather theory, J. Differential Equations 252 (2012), no. 4, 3163–3208. MR 2871797, DOI 10.1016/j.jde.2011.11.023
- Blaž Mramor and Bob Rink, A dichotomy theorem for minimizers of monotone recurrence relations, Ergodic Theory Dynam. Systems 35 (2015), no. 1, 215–248. MR 3294299, DOI 10.1017/etds.2013.47
- M. Peyrard and S. Aubry, Critical behavior at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model, J. Phys. C: Solid State Phys. 16 (1983), 1593–1608.
- Wen-Xin Qin and Ya-Nan Wang, Invariant circles and depinning transition, Ergodic Theory Dynam. Systems 38 (2018), no. 2, 761–787. MR 3774841, DOI 10.1017/etds.2016.42
- Wen-Xin Qin, Bai-Nian Shen, Yi-Lin Sun, and Tong Zhou, Zero entropy and stable rotation sets for monotone recurrence relations, Ergodic Theory Dynam. Systems 43 (2023), no. 5, 1737–1759. MR 4574154, DOI 10.1017/etds.2022.23
- Kai Wang, Xue-Qing Miao, Ya-Nan Wang, and Wen-Xin Qin, Continuity of depinning force, Adv. Math. 335 (2018), 276–306. MR 3836666, DOI 10.1016/j.aim.2018.07.014
- Tong Zhou and Wen-Xin Qin, Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence relations, Math. Z. 297 (2021), no. 3-4, 1673–1692. MR 4229619, DOI 10.1007/s00209-020-02574-w
- Tong Zhou and Qi-Ming Huang, Rotation numbers and bounded deviations for quasi-periodic monotone recurrence relations, J. Math. Anal. Appl. 537 (2024), no. 2, Paper No. 128396, 11. MR 4732913, DOI 10.1016/j.jmaa.2024.128396
- T. Zhou, Periodic generalized Birkhoff solutions and Farey intervals for monotone recurrence relations, J. Dynam. Differential Equations, published online (2024), \PrintDOI{10.1007/s10884-024-10364-9}.
- B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation, SIAM J. Math. Anal. 22 (1991), no. 4, 1016–1020. MR 1112063, DOI 10.1137/0522066
- Bertram Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations 96 (1992), no. 1, 1–27. MR 1153307, DOI 10.1016/0022-0396(92)90142-A
Bibliographic Information
- Tong Zhou
- Affiliation: School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
- Email: zhoutong@mail.usts.edu.cn
- Received by editor(s): March 29, 2024
- Received by editor(s) in revised form: September 17, 2024
- Published electronically: April 17, 2025
- Additional Notes: The research was supported by the National Natural Science Foundation of China (12201446), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB110005), and the Shuangchuang Program of Jiangsu Province (JSSCBS20220898).
The first author is the corresponding author - Communicated by: Wenxian Shen
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 34C12, 34C37, 37L60, 70F45, 70G60
- DOI: https://doi.org/10.1090/proc/17176