Truncated tube domains with multi-sheeted envelope
HTML articles powered by AMS MathViewer
- by Suprokash Hazra and Egmont Porten;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17179
- Published electronically: April 30, 2025
- HTML | PDF | Request permission
Abstract:
The present article is concerned with a group of problems raised by J. Noguchi and M. Jarnicki/P. Pflug, namely whether the envelopes of holomorphy of truncated tube domains are always schlicht, that is, subdomains of $\mathbb {C}^n$, and how to characterise schlichtness if this is not the case. By way of a counter-example homeomorphic to the $4$-ball, we answer the first question in the negative. Moreover, it is possible that the envelope has arbitrarily many sheets. The article is concluded by sufficient conditions for schlichtness in complex dimension two.References
- H. Behnke and K. Stein, Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität, Math. Ann. 116 (1939), no. 1, 204–216 (German). MR 1513225, DOI 10.1007/BF01597355
- S. Bochner, A theorem on analytic continuation of functions in several variables, Ann. of Math. (2) 39 (1938), no. 1, 14–19. MR 1503384, DOI 10.2307/1968709
- G. Buzzard, J. E. Fornaess, E. A. Gavosto, and S. G. Krantz, The several complex variables problem list, arXiv:9509202, 1995.
- Evgeni M. Chirka and Edgar Lee Stout, Removable singularities in the boundary, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 43–104. MR 1319345
- Marek Jarnicki and Peter Pflug, Extension of holomorphic functions, De Gruyter Expositions in Mathematics, vol. 34, De Gruyter, Berlin, [2020] ©2020. Second extended edition [of 1797263]. MR 4201928, DOI 10.1515/9783110630275
- Marek Jarnicki and Peter Pflug, The envelope of holomorphy of a classical truncated tube domain, Proc. Amer. Math. Soc. 150 (2022), no. 2, 687–689. MR 4356178, DOI 10.1090/proc/15662
- Burglind Jöricke, Some remarks concerning holomorphically convex hulls and envelopes of holomorphy, Math. Z. 218 (1995), no. 1, 143–157. MR 1312583, DOI 10.1007/BF02571894
- Burglind Jöricke, Boundaries of singularity sets, removable singularities, and CR-invariant subsets of CR-manifolds, J. Geom. Anal. 9 (1999), no. 2, 257–300. MR 1759448, DOI 10.1007/BF02921939
- B. Jöricke and N. Shcherbina, On some class of sets with multi-sheeted envelope of holomorphy, Math. Z. 247 (2004), no. 4, 711–732. MR 2077417, DOI 10.1007/s00209-003-0642-8
- Christine Laurent-Thiébaut, Sur l’extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (4) 150 (1988), 141–151 (French, with English summary). MR 946033, DOI 10.1007/BF01761467
- E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse, Ann. Mat. Pura Appl. 17 (1910), 61–87.
- Andreas Lind and Egmont Porten, On thickening of holomorphic hulls and envelopes of holomorphy on Stein spaces, Internat. J. Math. 27 (2016), no. 6, 1650051, 19. MR 3516978, DOI 10.1142/S0129167X16500518
- Joël Merker and Egmont Porten, Holomorphic extension of CR functions, envelopes of holomorphy, and removable singularities, IMRS Int. Math. Res. Surv. (2006), Art. ID 28925, 287. MR 2270252
- Joël Merker and Egmont Porten, The Hartogs extension theorem on $(n-1)$-complete complex spaces, J. Reine Angew. Math. 637 (2009), 23–39. MR 2599079, DOI 10.1515/CRELLE.2009.088
- J. Noguchi, A brief proof of Bochner’s tube theorem and a generalized tube, Preprint, arXiv:2007.04597, 2020.
- Egmont Porten, On generalized tube domains over $\Bbb C^n$, Complex Var. Theory Appl. 50 (2005), no. 1, 1–5. MR 2114348, DOI 10.1080/02181070412331329395
- Zbigniew Słodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), no. 3, 363–386. MR 626955, DOI 10.1007/BF01679703
- Edgar Lee Stout, Analytic continuation and boundary continuity of functions of several complex variables, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), no. 1-2, 63–74. MR 628129, DOI 10.1017/S0308210500032364
- Edgar Lee Stout, Polynomial convexity, Progress in Mathematics, vol. 261, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2305474, DOI 10.1007/978-0-8176-4538-0
- Barnet M. Weinstock, On the polynomial convexity of the union of two maximal totally real subspaces of $\textbf {C}^n$, Math. Ann. 282 (1988), no. 1, 131–138. MR 960837, DOI 10.1007/BF01457016
Bibliographic Information
- Suprokash Hazra
- Affiliation: Department of Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden
- MR Author ID: 1289475
- ORCID: 0000-0001-6715-7852
- Email: suprokash.hazra@miun.se, Egmont.Porten@miun.se
- Egmont Porten
- MR Author ID: 643831
- Received by editor(s): May 31, 2023
- Received by editor(s) in revised form: June 11, 2024, and November 27, 2024
- Published electronically: April 30, 2025
- Dedicated: To the memory of Berit Stensønes
- Communicated by: Harold P. Boas
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 32D10, 32D26, 32Q02; Secondary 32V25, 32E20
- DOI: https://doi.org/10.1090/proc/17179