On a Casselman–Shalika type formula for unramified Speh representations
HTML articles powered by AMS MathViewer
- by Elad Zelingher;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17185
- Published electronically: April 17, 2025
- HTML | PDF | Request permission
Abstract:
We give a Casselman–Shalika type formula for unramified Speh representations. Our formula computes values of the normalized spherical element of the $(k,c)$ model of a Speh representation at elements of the form $\operatorname {diag}\left (g, I_{(k-1)c}\right )$, where $g \in \operatorname {GL}_c\left (F\right )$ for a non-archimedean local field $F$. The formula expresses these values in terms of modified Hall–Littlewood polynomials evaluated at the Satake parameter attached to the representation. Our proof is combinatorial and very simple. It utilizes Macdonald’s formula and the unramified computation of the Ginzburg–Kaplan integral. This addresses a question of Lapid–Mao [Compos. Math. 156 (2020), pp. 908–945].References
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172
- Yuanqing Cai, Solomon Friedberg, David Ginzburg, and Eyal Kaplan, Doubling constructions and tensor product $L$-functions: the linear case, Invent. Math. 217 (2019), no. 3, 985–1068. MR 3989257, DOI 10.1007/s00222-019-00883-4
- Yuanqing Cai, Solomon Friedberg, Dmitry Gourevitch, and Eyal Kaplan, The generalized doubling method: $(k,c)$ models, Proc. Amer. Math. Soc. 151 (2023), no. 7, 2831–2845. MR 4579360, DOI 10.1090/proc/16370
- Yuanqing Cai, Solomon Friedberg, and Eyal Kaplan, The generalized doubling method: local theory, Geom. Funct. Anal. 32 (2022), no. 6, 1233–1333. MR 4536463, DOI 10.1007/s00039-022-00609-4
- Yuanqing Cai, Solomon Friedberg, and Eyal Kaplan, Doubling constructions: global functoriality for non-generic cuspidal representations, Ann. of Math. (2) 200 (2024), no. 3, 893–966. MR 4817565, DOI 10.4007/annals.2024.200.3.2
- O. Carmon and E. Zelingher, On Ginzburg-Kaplan gamma factors and Bessel-Speh functions for finite general linear groups, arXiv:2406.14262, 2024.
- W. Casselman, The unramified principal series of ${\mathfrak {p}}$-adic groups. I. The spherical function, Compositio Math. 40 (1980), no. 3, 387–406. MR 571057
- W. Casselman and J. Shalika, The unramified principal series of $p$-adic groups. II. The Whittaker function, Compositio Math. 41 (1980), no. 2, 207–231. MR 581582
- Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad, Symplectic local root numbers, central critical $L$ values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1–109 (English, with English and French summaries). Sur les conjectures de Gross et Prasad. I. MR 3202556
- D. Ginzburg, Tensor product $L$-functions on metaplectic covering groups of ${GL}_r$, Proceedings of the American Mathematical Society, In press.
- David Ginzburg and David Soudry, Integrals derived from the doubling method, Int. Math. Res. Not. IMRN 24 (2020), 10553–10596. MR 4190409, DOI 10.1093/imrn/rnz147
- Dmitry Gourevitch and Eyal Kaplan, Multiplicity one theorems for the generalized doubling method (with an appendix by Avraham Aizenbud and Dmitry Gourevitch), J. Eur. Math. Soc. (JEMS) 25 (2023), no. 8, 3007–3092. MR 4612108, DOI 10.4171/jems/1207
- J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447. MR 72878, DOI 10.1090/S0002-9947-1955-0072878-2
- Mark Haiman, Combinatorics, symmetric functions, and Hilbert schemes, Current developments in mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 39–111. MR 2051783
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Hervé Jacquet and Stephen Rallis, Uniqueness of linear periods, Compositio Math. 102 (1996), no. 1, 65–123. MR 1394521
- Eyal Kaplan, Rankin-Selberg integrals and $L$-functions for covering groups of general linear groups, Int. Math. Res. Not. IMRN 15 (2023), 13332–13386. MR 4621866, DOI 10.1093/imrn/rnac201
- Erez M. Lapid and Zhengyu Mao, Local Rankin-Selberg integrals for Speh representations, Compos. Math. 156 (2020), no. 5, 908–945. MR 4085031, DOI 10.1112/s0010437x2000706x
- Caihua Luo, An asymptotic expansion of $(k,c)$-functions for $\textrm {GL}_n(F)$, Math. Z. 306 (2024), no. 2, Paper No. 35, 26. MR 4698102, DOI 10.1007/s00209-024-03431-w
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- S. Ram, Subspace profiles over finite fields and $q$-Whittaker expansions of symmetric functions, arXiv:2309.16607, 2023.
- Yiannis Sakellaridis, A Casselman-Shalika formula for the Shalika model of $\textrm {GL}_n$, Canad. J. Math. 58 (2006), no. 5, 1095–1120. MR 2260513, DOI 10.4153/CJM-2006-040-6
- Yiannis Sakellaridis, Spherical functions on spherical varieties, Amer. J. Math. 135 (2013), no. 5, 1291–1381. MR 3117308, DOI 10.1353/ajm.2013.0046
- Yiannis Sakellaridis and Akshay Venkatesh, Periods and harmonic analysis on spherical varieties, Astérisque 396 (2017), viii+360 (English, with English and French summaries). MR 3764130
- Fumihiro Sato, Fourier coefficients of Eisenstein series of $\textrm {GL}_n$, local densities of square matrices and subgroups of finite abelian groups, Comment. Math. Univ. St. Pauli 54 (2005), no. 1, 33–48. MR 2153954
- Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\textrm {GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67–111. MR 729755, DOI 10.2307/2374430
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Takuro Shintani, On an explicit formula for class-$1$ “Whittaker functions” on $GL_{n}$ over $P$-adic fields, Proc. Japan Acad. 52 (1976), no. 4, 180–182. MR 407208
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084
- E. Zelingher, On matrix Kloosterman sums and Hall-Littlewood polynomials, Trans. Amer. Math. Soc, In press.
Bibliographic Information
- Elad Zelingher
- Affiliation: Department of Mathematics, University of Michigan, 1844 East Hall, 530 Church Street, Ann Arbor, Michigan 48109-1043
- MR Author ID: 1414818
- ORCID: 0000-0002-7451-4798
- Email: eladz@umich.edu
- Received by editor(s): July 18, 2024
- Received by editor(s) in revised form: December 11, 2024, and December 13, 2024
- Published electronically: April 17, 2025
- Communicated by: David Savitt
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 11F70; Secondary 05E05, 11F66, 22E50, 33D52
- DOI: https://doi.org/10.1090/proc/17185