Clark measures associated with rational inner functions on bounded symmetric domains
HTML articles powered by AMS MathViewer
- by Mattia Calzi;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17194
- Published electronically: April 17, 2025
- HTML | PDF | Request permission
Abstract:
Given a bounded symmetric domain $D$ in $\mathbb {C}^n$, we consider the Clark measures $\mu _\alpha$, $\alpha \in \mathbb {T}$, associated with a rational inner function $\varphi$ from $D$ into the unit disc in $\mathbb {C}$. We show that $\mu _\alpha =c|\nabla \varphi |^{-1}\chi _{\mathrm b D \cap \varphi ^{-1}(\alpha )}\cdot \mathcal H^{m-1}$, where $m$ is the dimension of the Šilov boundary $\mathrm b D$ of $D$ and $c$ is a suitable constant. Denoting with $H^2(\mu _\alpha )$ the closure of the space of holomorphic polynomials in $L^2(\mu _\alpha )$, we characterize the $\alpha$ for which $H^2(\mu _\alpha )=L^2(\mu _\alpha )$ when $D$ is a polydisc; we also provide some necessary and some sufficient conditions for general domains.References
- A. B. Aleksandrov, Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (1987), no. 5, 490–503, 515 (Russian, with English and Armenian summaries). MR 931885
- A. B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), no. Issled. Lineĭn. Oper. Teorii Funktsiĭ. 17, 7–33, 321 (Russian, with English summary); English transl., J. Soviet Math. 63 (1993), no. 2, 115–129. MR 1039571, DOI 10.1007/BF01099304
- A. B. Aleksandrov, On the maximum principle for pseudocontinuable functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 217 (1994), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 22, 16–25, 218 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 85 (1997), no. 2, 1767–1772. MR 1327511, DOI 10.1007/BF02355285
- A. B. Aleksandrov, On the existence of angular boundary values for pseudocontinuable functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), no. Issled. po Lineǐn Oper. i Teor. Funktsiǐ. 23, 5–17, 307; transl., J. Math. Soc. New York 87 (1997), 3871–3787.
- A. B. Aleksandrov, Isometric embeddings of co-invariant subspaces of the shift operator, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 232 (1996), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 24, 5–15, 213 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 92 (1998), no. 1, 3543–3549. MR 1464420, DOI 10.1007/BF02440138
- Aleksei B. Aleksandrov and Evgueni Doubtsov, Clark measures on the complex sphere, J. Funct. Anal. 278 (2020), no. 2, 108314, 30. MR 4030271, DOI 10.1016/j.jfa.2019.108314
- Aleksei B. Aleksandrov and Evgueni Doubtsov, Clark measures and de Branges–Rovnyak spaces in several variables, Complex Var. Elliptic Equ. 68 (2023), no. 2, 212–221. MR 4544549, DOI 10.1080/17476933.2021.1985480
- John T. Anderson, Linus Bergqvist, Kelly Bickel, Joseph A. Cima, and Alan A. Sola, Clark measures for rational inner functions II: general bidegrees and higher dimensions, Ark. Mat. 62 (2024), no. 2, 331–368. MR 4816871, DOI 10.4310/arkiv.2024.v62.n2.a2
- Kelly Bickel, Joseph A. Cima, and Alan A. Sola, Clark measures for rational inner functions, Michigan Math. J. 73 (2023), no. 5, 1021–1057. MR 4665614, DOI 10.1307/mmj/20216046
- Kelly Bickel, James Eldred Pascoe, and Alan Sola, Singularities of rational inner functions in higher dimensions, Amer. J. Math. 144 (2022), no. 4, 1115–1157. MR 4461957, DOI 10.1353/ajm.2022.0025
- M. Calzi, Clark measures on bounded symmetric domains, Complex Anal. Oper. Theory 18 (2024), 132.
- M. Calzi, Positive pluriharmonic functions on symmetric Siegel domains, Preprint, arXiv:2403.05436, 2024.
- J. A. Cima, A. L. Matheson, and W. T. Ross, The Cauchy transform, American Mathematical Society, 2006.
- Douglas N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math. 25 (1972), 169–191. MR 301534, DOI 10.1007/BF02790036
- M. Coste, Real algebraic sets, https://perso.univ-rennes1.fr/michel.coste/polyens/RASroot.pdf.
- Evgueni Doubtsov, Clark measures on the torus, Proc. Amer. Math. Soc. 148 (2020), no. 5, 2009–2017. MR 4078085, DOI 10.1090/proc/14846
- J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), no. 1, 64–89. MR 1033914, DOI 10.1016/0022-1236(90)90119-6
- J. Faraut and A. Korányi, Analysis on symmetric cones, Clarendon Press, Oxford, 1994.
- M. T. Jury, Operator-valued Herglotz kernels and functions of positive real part on the ball, Complex Anal. Oper. Theory 4 (2010), 301–317.
- Michael T. Jury, Clark theory in the Drury-Arveson space, J. Funct. Anal. 266 (2014), no. 6, 3855–3893. MR 3165246, DOI 10.1016/j.jfa.2013.11.018
- M. T. Jury and R. T. W. Martin, Aleksandrov-Clark theory for Drury-Arveson space, Integral Equations Operator Theory 90 (2018), no. 4, Paper No. 45, 42. MR 3814577, DOI 10.1007/s00020-018-2470-6
- Adam Korányi and Stephen Vági, Rational inner functions on bounded symmetric domains, Trans. Amer. Math. Soc. 254 (1979), 179–193. MR 539914, DOI 10.1090/S0002-9947-1979-0539914-4
- A. Korányi and L. Pukánszky, Holomorphic functions with positive real part on polycylinders, Trans. Amer. Math. Soc. 108 (1963), 449–456. MR 159029, DOI 10.1090/S0002-9947-1963-0159029-5
- O. Loos, Bounded symmetric domains and Jordan pairs, University of California, Irvine, 1977.
- M. Mackey and P. Mellon, Angular derivatives on bounded symmetric domains, Israel J. Math. 138 (2003), 291–315. MR 2031961, DOI 10.1007/BF02783430
- Alexei Poltoratski and Donald Sarason, Aleksandrov-Clark measures, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 1–14. MR 2198367, DOI 10.1090/conm/393/07366
Bibliographic Information
- Mattia Calzi
- Affiliation: Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy
- MR Author ID: 1213820
- ORCID: 0000-0002-5094-9383
- Email: mattia.calzi@unimi.it
- Received by editor(s): October 28, 2024
- Received by editor(s) in revised form: December 19, 2024, and December 23, 2024
- Published electronically: April 17, 2025
- Additional Notes: The author is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The author was partially funded by the INdAM-GNAMPA Project CUP_E53C22001930001
- Communicated by: Harold P. Boas
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 32M15, 32A08
- DOI: https://doi.org/10.1090/proc/17194